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Abstract

The numerical simulation of complex compressible �ow problem is still a challenge nowadays, even for the
simplest physical model such as the Euler and Navier Stokes equations for perfect gases. Researchers in scienti�c
computing need to understand how to obtain ef�cient, stable, very accurate schemes on complex 3D geometries
that are easy to code and to maintain, with good scalability on massively parallel machines. Many people work on
these topics, but our opinion is that new challenges have to be tackled in order to combine the outcomes of several
branches of scienti�c computing to get simpler algorithms of better quality without sacri�cing their ef�ciency
properties. In this proposal, we will tackle several hard points to overcome for the success of this program.

We �rst consider the problem of how to design methods that canhandle easily mesh re�nement, in particular
near the boundary, the locations where the most interesting engineering quantities have to be evaluated. CAD
tools enable to describe the geometry, then a mesh is generated which itself is used by a numerical scheme. Hence,
any mesh re�nement process is not directly connected with the CAD. This situation prevents the spread of mesh
adaptation techniques in industry and we propose a method toovercome this even for steep problems.

Second, we consider the problem ofhandling the extremely complex patterns that occur in a �owbecause
of boundary layers:it is not always suf�cient to only increase the number of degrees of freedom or the formal
accuracy of the scheme. We propose to overcome this with class of very high order numerical schemes that can
utilise solution dependant basis functions.

Our third item is abouthandling unsteady uncertainties in the model, for example in the geometry or the
boundary conditions. This need to be done ef�ciently: the amount of computation increases a priori linearly with
the number of uncertain parameters. We proposea non–intrusive method that is able to deal with general
probability density functions (pdf), and also able to handle pdfs that may evolve during the simulation via a
stochastic optimisation algorithm, for example. This will be combined with the �rst two items ofthis proposal.
Many random variables may be needed, the curse of dimensionality will be dealt thanks to multiresolution method
combined with sparse grid methods.

The aim of this proposal is to design, develop and evaluate solutions to each of these challenges. Currently, and
up to our knowledge,none of these problems have been dealt with for compressible�ows with steep patterns as
in many moderns aerodynamics industrial problems.We propose a work program that will lead to signi�cant
breakthroughs for �ow simulations with a clear impact on numerical schemes and industrial applications. Our
solutions, though developed and evaluated on �ow problems,have a wider potential and could be considered for
any physical problem that are essentially hyperbolic.
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1b. Extended synopsis.

The aim of this project is to make abreakthroughin the numerical simulation of problems that are modelised by a set
of partial differential equations which main behavior is ofhyperbolic nature. We will mainly focus on �uid dynamics
problems, since they are in our main speciality, buta priori the techniques can be generalised to other problems.
Currently, in part because of the emergence of new types of massively parallel machines enabling the possibility of
true real size simulations, in part because of the increasing demand of the industry, we are seeing the following trends:

1. need for more accurate simulations,

2. need of more complex geometries with very heterogeneous sizes in the geometry, all this with a more and more
involved physics,

3. have the possibility of taking into account some uncertainties on the physical model, the geometry and other
parameters in order to evaluate an average behavior, a variance and other statistical quantities if needed.

It is essential to have methods that are simple to code and to run on modern high performance computers.
The choice we have done here are aimed at answering to all these challenges of modern scienti�c computing:
accuracy, simplicity, �exibility.

Accuracy can be reached either by increasing the number of points, or by increasing the order of accuracy of
the computational method or both. In the aeronautical industry, extremely complex �ow patterns occur including
boundary layers, �ow separations, shock waves and various interactions between them. Computers use on a daily
basis meshes of several millions of points to capture these phenomena in the best possible way. Most of the computer
codes are only second order accurate, so that the ef�cient capture of all these phenomena is very dif�cult: a lot of
degrees of freedom are wasted to compensate the weaknesses of codes. One of the ways to overcome partially this
is to use mesh adaptation, but we are faced with the problem ofaccurately capturing the solid boundaries which may
be very complex (think of the combustion chamber of an engine, or a turbo-machine, for example). This situation
is typical of the industry of �uid mechanics: very complex geometries,very complex �ow patterns. Obviously, the
technical challenges that have to be faced nowadays requiremore accuracy in order to capture details that have a
strong in�uence on the �ne tuning of machines. An example is given by the evaluation of drag for an airplane. The
codes need to beaccurate, they also need to befastbecause most of the time they are an element of an optimisation
loop.

Similarly, the physical model may be uncertain. This is typically the case of a turbulence model, this may also
be the case for the geometry or the boundary conditions (a surface might be rough). It is also becoming important to
handle correctly these dif�culties in order to have a good understanding of both the average behavior of the system
and how it may departs from this mean behavior: Tools for the evaluation and quanti�cation of uncertainties in
aerodynamic and thermal performance predictions need to bedeveloped, supporting the aeronautical industry goals
of enhanced design con�dence, risk reduction and improved safety.

The different problem we have sketched have already been partially acknowledged by the EC within the 6th
framework program, but also in the US. The STREPS ADIGMA1 and NODESIM2 are today answers to some of
these questions. Several conferences will be or have been held on these topics, let us mention ECCOMAS 2006
and ICOSAHOM2006 for high order schemes, the "Uncertainty quanti�cation methods in CFD and Fluid Structure
Interaction problems" and “Adaptive Higher Order Variational Methods for Aerospace Applications”, as well as other
similar minisymposia at the ECCOMAS 2008 conference in Venice3, or at the 10th AIAA Non-Deterministic Ap-
proaches Conference, Schaumburg (April 2008)4, or the Symposium " Computational Uncertainty " organized by The
Applied Vehicle Technologies Panel (AVT) in Athens (December 2007).5

1http://www.dlr.de/as/en/Desktopdefault.aspx/tabid-2035//2979_read-4582/
2http://www.nodesim.eu/index.html
3http://www.iacm-eccomascongress2008.org/frontal/default.asp
4http://www.aiaa.org/content.cfm?pageid=230&lumeetingid=1875
5http://www.rto.nato.int/panel.asp?panel=AVT
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A quick search on the NFS grant web page6 gives the following results for the period starting on January 1st,
2007: for the key word “Mesh adaptation”, there are 6 grants for a total of $ 840 000, for “Finite elements” the total
is more than $ 9 million, and “Uncertainty” give a total of more than $ 16 million. These numbers correspondonly to
the grants that has been funded since January 1st 2007, for anaverage period of 3 years. This shows that these topics
are considered as of paramount importance in the US.

Roughly speaking, the current technology in these domains and if we restrict to �uid/hyperbolic problems, are

� to get a good accuracy: either to increase the mesh density locally or globally by mesh adaptation, or to increase
(locally or globally) the polynomial approximation that isused implicitly or explicitly in the numerical scheme.
In particular, nothing really fancy is proposed to handle the boundaries where most of the physics, or most of
the quantities of interest for the engineers, is evaluated.We are not saying that what is currently done is wrong,
but there is a huge gap between the geometry evaluation by CADand the technology employed for the physical
quantities evaluations. As well, nothing fancy is proposedto better take into account the physics of the problem,
for example the boundary layers.

This problem of representing accurately the boundaries is not a toy problem because most of the quantities the
engineer is interested at are boundary quantities, like a drag, a heat �ux, etc. In most mesh generator, one �rst
starts to represent the body surfaces by mead of CAD, then a triangulation of the surface is obtained, and then a
volume mesh is got. The mesh can be made of blocks that are topologically equivalent to cubes, or unstructured
with only tetrahedrons or of hybrid nature. In the numericalscheme, the CAD is forgotten, so that one has to
reconstruct locally the body surface to guaranty accuracy.There is absolutely no hope that the CAD industry
will adapt to engineering like problem, it has to be the opposite. One simple reason is that CAD is a much
bigger industry than the industry of engineering codes: theCAD industry ranges in the $ 5-$10 billion while
the Computer-Aided Engineering (code development is only asub–market of it) is in the $1-$2 billion range.
Moreover the difference in geometrical representation partially explain why the mesh adaptive technique are
still primary an academic endeavor rather an industrial technology: the dif�culty to pass information from one
system of representation to the other one are still too large.

In both cases, there is a need for unconventional method to gobeyond the frontier of knowledge.

� for uncertainty quanti�cation, most of the research is done(i) in developing statistical techniques or gradient
type methods for the identi�cations of the most sensitive parameters, (ii) and once this is done, assuming a
probability density function (pdf) by a way or another, compute the �ow statistics by intrusive or non intrusive
methods. In the second item, either the numerical method cannot be modi�ed once the uncertain parameters
and the type of the pdf are chosen (this is the case of Polynomial Chaos type methods), or very smooth pdf
can only be reasonably be taken into account (this is the caseof most non intrusive methods, except Monte
Carlo method, but the convergence is extremely slow). In both cases, except for Monte Carlo methods again,
if some additional knowledge is reached during the simulation, for example by �ltering, every thing has to
be started again from scratch. The development of an industrial code takes so many man-years that it is not
possible to convince anybody to rewrite a code from scratch only for taking into account the quanti�cation of
uncertainties so that here again, there is a need of a versatile, accurate enough and non intrusive method,that is
again unconventional method to go beyond the frontier of knowledge.

Our proposal is an answer to these challenges, and our purpose is to develop methods than could be used in
industry in the mid term.

The proposal is discussed around three main items:

� How to make easy the interaction between the CAD descriptionof the geometry and the numerical algorithm
in �uid problems where the �ow may be irregular, with strong gradients and complex patterns,

� How to both increase the accuracy and lower the number of degrees of freedom for compressible viscous
problems,

6http://www.nsf.gov/awardsearch/
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� How to construct �exible and versatile uncertainty quanti�cation methods for compressible �uid problems.

Most numerical methods use in a way or another a local polynomial representation of the data. The current
technology for increasing the order of accuracy of numerical methods consists mainly in increasing the degree of
the local polynomial approximation. In �uid problems, there are currently three types of methods. The �rst one
consists in using the �nite volume method with a very high order polynomial reconstruction; it is used for improving
the accuracy of the arguments of the numerical �ux. Examplesare the ENO and WENO methods which are very
expensive and mainly very complex to implement. We are not aware of any industrial code of this type. The second
one is the Discontinuous Galerkin method which is a compromise between the �nite volume method and the �nite
element method. There are currently a lot of activity aroundthis class of schemes in Europe, the US and China. This
is still a complex method which is very �exible but suffers from several drawbacks: the number of degrees of freedom
increase extremely quickly with the number of mesh points, the approximation of viscous terms is still a research
topic, and last the stabilisation of the schemes in steep gradient zone is very challenging: all the methods we are
aware of either kill the local accuracyevenat local extrema, or generate small spurious oscillation atdiscontinuities.
Killing the accuracy at smooth extremas is at the opposite ofthe goal of high order schemes! The last class of method
are stabilised continuous �nite element methods. This class can be divided into two sub classes depending on wether
the stabilisation mechanism is parameter free or not. The advantage of the continuous �nite element methods is that
the number of degrees of freedom is much less important than in the discontinuous Galerkin one though still large.
The drawback is less �exibility, even though the parameter free stabilised continuous �nite element method which
are discussed in this proposal called the residual distribution (RD) methods, have a version that enable to handle non
conformal meshes, as the discontinuous Galerkin techniques. We are currently working on the very high order version
of the RD schemes within the FP6 STREP ADIGMA.

In order to overcome the dif�culties we have mentioned, our strategy is:

� Handling the interaction between the mesh and the scheme: instead of using standard Lagrange interpolant (for
RD and DG) schemes or modal representations for DG, one can consider Bézier or NURBS representations:
this amounts to abandon the idea of interpolation, the degrees of freedom are control points and the same
representation is usedbothfor the surface and the �ow parameters. This isogeometric representation has been
promoted by T.J. Hughes and coworker (a Google search provides 1180 answers, most from UT Austin) and has
never been used in compressible �uid problems or hyperbolicproblems because of the stabilisation weaknesses
of the Hughes'SUPG method. In our opinion, the understanding of how NURBS/Bézier approximation can be
combined with the �exible parameter–free and non–oscillatory RD framework will provide practical answers
to many simulation problems in �uid dynamics, taking into account adaptation strategies, including near the
boundaries.

� Reducing the number of degree of freedom in viscous layers. The �nite element theory is much more advanced
for structural mechanics than �uid dynamics. In particular, singularities of solids like cracks, or boundary
layers are now better approximated by mean of the Extended Finite Element method or Generalized Finite
Element method. The idea is to enrich the set of approximating functions by adding to the standard elements
localised additional terms that mimic the local singularities of the solution. Global continuity and smoothness
between the standard representation and the extended one istaken into account by smooth partitions of unity.
This idea of extending the representation functions set hasneverbeen envisaged in �uid problems. In viscous
problem, the velocity has alog pro�le in the normal direction to the wall, so one can consider this type of
enrichment function. Similar enrichment for the other variables can also be obtained. The partition of unity can
be constructed from the distance function to the wall, the distance function can be evaluated, even for general
meshes, by Hamilton Jacobi for which the PI made signi�cant contributions for general meshes.

� Uncertainty quanti�cation. Instead of using polynomial chaos type method, we represent the solutionU(x; t; ! ),
wherex (resp.t) are the space (resp. time) coordinate and! is a random parameter, by its averaged conditional
expectancy in “control volumes” in the probability space. This representation combined with very standard
reconstruction tools as use in �nite volume methods enable to write a priori a discrete evolution equation on
these averaged conditional expectancies. This requires the knowledge of the probability density function, but
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the change from one pdf to an other, if an optimisation technique is used in order to increase the knowledge
on the pdf, is rather easy, once again using standard tools for ALE algorithms for �uids. The knowledge of
the averaged conditional expectancies and the pdf permits to compute any statistics ofU. This method also
requires to know the most important random variables, this is possible thanks to statistical technique which
are out of this proposal. The number of random variables inU may be large so we are faced with the curse
of dimensionality problem. We intend to solve it by two methods, that can be combined together. One is a
multiresolution method which only need the knowledge of theaveraged conditional expectancies7 or extension
to our data structure of sparse grid methods. Given a previous code for �uid (for example), the method can be
coded as a loop over it, so it is rather non intrusive. The dif�culty is to feed the original code with the right
argument, see section 2 of the proposal.

In each case, we will study the impact of the proposed algorithms on the ef�ciency of the method in term of CPU.
Special attention will be given to the high performance computing aspects of the method: parallelisation, locality of
the data, easiness in the coding, preconditionner issues for solving steady problems, etc. A particular attention will
also be given to provable error bounds, either analyticallyor computationally on well chosen test cases.

If successful, the proposal will be a real breakthrough withmid term consequences on several industrial applica-
tions. Several groups have already shown their interest in various aspects of these research program and wish to be
informed about the evolution of the project : let us mention SNECMA Solid Propulsion near Bordeaux (specialised
in rocket engines), SNECMA near Paris (specialised in airplane engines) and Dassault Aviation. We have a very good
knowledge of the research department of these groups via previous or current research contracts.

We have analysed the level of dif�culty to reach success. Allthe developments will be conducted in a parallel
software which contains all the know–how we have reached on compressible �ow solvers8. The �rst item (use of
Bézier/NURBS representations in computer codes for �uids), if successful, will have important consequences on
computational solutions in industry. For the �rst item, we have already very preliminary results (on scalar problem
and square geometry): we already know that using non Lagrangian degrees of freedom does not affect the stability of
the scheme nor the quality of the result. Hence the real dif�culty is the handling of boundaries which is a reasonably
tractable issue. Note also that within INRIA, several team–projects are involved in internationally recognized research
developments on computer graphics, mesh generation, surface representation: the Geometrica team (J.D. Boissonnat,
mesh generation) in Sophia Antipolis, the Gamma team (P.L. Georges, mesh generation), the Alice team (B. Levy
who has got an ERC starting grant last fall, CAD, surface meshes). It is easy to have exchanges with these teams.

The second item (use of fancy solution representation in CFDcodes) is more complex to implement because it
may need a deeper understanding of boundary layers, and thisis a dif�cult topic by excellence. However, we do
not think that such extreme things will be needed to make the algorithm a success. Very likely, less sophisticated
solutions, combined with the knowledge and the know–how we already have on high order schemes, as well as on
fast algorithms to compute a distance function in order to get a reasonable guess of the boundary layers test functions
will make the job.

The last topic is in our opinion the most dif�cult one. The basic algorithm as we have sketched it will work: it has
been shown on a toy example (see section 2) that this is a reasonable and versatile one. The main problem is to face the
curse of dimensionality. This is acommonproblem to any Uncertainty Quanti�cation tool, even for Monte Carlo ones
since it translates into many simulations. We have indicated several tracks we believe to be reasonable. They should
in principle help to reduce the computational size of the problem. Even if only low dimension problem can be dealt
with, this will be important for scienti�c and industrial applications: many problems, such as turbulence modelling,
translate into rather low dimensional probability space. More over, the method we propose is able, in principle, to
handle easily any evolution of the pdf via a learning process, contrarily to most UQ methods. Here again, I bene�t
from the scienti�c environment of the University Bordeaux Iand INRIA: in Bordeaux I, Pierre Dal Moral, who is also
an INRIA research director, is a specialist of stochastic algorithm, and in INRIA Sophia Antipolis, I have excellent
contacts with Denis Talay who is a world class researcher in stochastic algorithm (he is editor of many Journals).

7a few years ago, the PI has already successfully worked on this method for other problems.
8http://www.math.u-bordeaux.fr/ abgrall/�uidbox.html
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The success of this proposal will need the following: During5 years, 90% of my time will be devoted to this
proposal. Four PhDs will work full time on this: one for the �rst item, one for the second and two on the last
one (one for the basic method, one for the curse of dimensionality problem). We will need 8 man-year of post doc
or engineers whose task will be to further implement, test and validate the method on modern computers or grids.
Indeed the UQ method is quite adapted to computational gridsbecause the main part of the CPU is in the �ow solver.
The members of my group will be associated part time on this research program. Three of them have expertise in
�uid solvers, mesh generation and adaptation, The two others have expertise in computer science, and mainly in
graph partitioning for parallel mesh adaptation and high performance parallel linear algebra solvers. Indeed, it is of
paramount importance to validate the tools we will develop on massively parallel machines. The most striking case
is the one of a simulation of a 3D �ow simulation where some parameters are uncertain. The method we propose
consists in cleverly collecting the results of many 3D deterministic simulations in a way independent the structure
of the probability density function. Each deterministic calculation is quite costfull, and a good technique is to use a
parallisable algorithm. The deterministic method we propose havea priori an excellent behavior with respect to this
constraint. If several random parameters are needed, the volume of computation increases linearly with their number,
so that a good parallelisation strategy is mandatory.

Pr Charbel Farhat (Stanford), Tim Barth (NASA Ames Rc), Pr. C. W Shu (Brown University), each beeing inter-
nationally recognised researchers, will also be associated the various aspects of this research program. More precisely,
Prpfessors Farhat and Shu have direct interest in the �rst two items (i.e. the use of more adapted representation for
the unknowns in order to handle the boundaries). Pr Shu also leads an NSF grant on uncertainty quanti�cation in the
period 8/2005–7/2008 and has interest in the UQ part of the proposal. Tim Barth has interest in uncertainty quanti�ca-
tion as well as in the two other items. We already have worked with them (visits and/or joint publications). Ph. Pebay
(Sandia National Labs, Livermore, CA), who is a specialist of high performance computing, is also interested in this
work and is willing to participate. In order to invite these specialists that already have agreed to come, 12 months for
visiting professors are scheduled.
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2. The ADDECCO proposal

2.1 Context and objectives

The aim of this project is to make abreakthroughin the numerical simulation of problems that are modelised by a
set of partial differential equations which main behavior is of hyperbolic nature. Currently, in part because of the
emergence of new types of massively parallel machines enabling the possibility of true real size simulations, in part
because of the increasing demand of the industry, we are seeing the following trends:

1. need for more accurate simulations,

2. need of more complex geometries with very heterogeneous sizes in the geometry, all this with a more and more
involved physics,

3. have the possibility of taking into account some uncertainties on the physical model, the geometry and other
parameters in order to evaluate an average behavior, a variance and other statistical quantities if needed.

Accuracy can be reached either by increasing the number of points, or by increasing the order of accuracy of the com-
putational method or both. In the aeronautical industry, where extremely complex �ow patterns including boundary
layers, �ow separations, shock waves and various interaction between them, computers use on a daily basis meshes
of several millions of points to capture these phenomena in the best possible way. Most of the computer codes are
only second order accurate, so that the ef�cient capture of all these phenomena is very dif�cult: a lot of degrees of
freedom are wasted to compensate the weaknesses of codes. One of the ways to overcome partially this is to use
mesh adaptation, but we are faced with the problem of accurately capturing the solid boundaries which may be very
complex (think of the combustion chamber of an engine, or a turbo machine, for example). This situation istypical of
the industry of �uid mechanics: very complex geometries, very complex �ow patterns.

However, the technical challenges that have to be faced nowadays require more accuracy in order to capture
details that have a strong in�uence on the �ne tuning of machines. An example is given by the evaluation of drag for
an airplane. The codes need to beaccurate, they also need to befastbecause most of the time they are an element of
an optimisation loop.

Similarly, the physical model may be uncertain. This is typically the case of a turbulence model, this may also
be the case for the geometry or the boundary conditions (a surface might be rough). It is also becoming important to
handle correctly these dif�culties in order to have a good understanding of both the average behavior of the system
and how it may departs from this mean behavior: Tools for the evaluation and quanti�cation of uncertainties in
aerodynamic and thermal performance predictions need to bedeveloped, supporting the aeronautical industry goals
of enhanced design con�dence, risk reduction and improved safety.

The different problem we have sketched have already been partially acknowledged by the EC within the 6th
framework program, but also in the US. The STREPS ADIGMA9 and NODESIM10 are today answers to some
of these questions. Several conferences will be or have beenheld on these topics, let us mention ECCOMAS 2006
and ICOSAHOM2006 for high order schemes, the "Uncertainty quanti�cation methods in CFD and Fluid Structure
Interaction problems" and “Adaptive Higher Order Variational Methods for Aerospace Applications”, as well as other
similar minisymposia at the ECCOMAS 2008 conference in Venice11, or at the 10th AIAA Non-Deterministic Ap-
proaches Conference, Schaumburg (April 2008)12, or the Symposium " Computational Uncertainty " organized by
The Applied Vehicle Technologies Panel (AVT) in Athens (December 2007).13

Roughly speaking, the current technology in these domains are

� to get a good accuracy: either to increase the mesh density locally or globally by mesh adaptation, or to increase
(locally or globally) the polynomial approximation that isused implicitly or explicitly in the numerical scheme.

9http://www.dlr.de/as/en/Desktopdefault.aspx/tabid-2035//2979_read-4582/
10http://www.nodesim.eu/index.html
11http://www.iacm-eccomascongress2008.org/frontal/default.asp
12http://www.aiaa.org/content.cfm?pageid=230&lumeetingid=1875
13http://www.rto.nato.int/panel.asp?panel=AVT
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In particular, nothing really fancy is proposed to handle the boundary where most of the physics, or most of the
quantities of interest for the engineers, is evaluated. We are not saying that what is currently done is wrong,
but there is a huge gap between the geometry evaluation by CADand the technology employed for the physical
quantities evaluations. As well, nothing fancy is proposedto better take into account the physics of the problem,
for example the boundary layers. This problem of representing accurately the boundaries is not a toy problem
because most of the quantities the engineer is interested inare boundary quantities, like a drag, a heat �ux, etc.
In both cases, there is a need for unconventional methods to go beyond the frontier of knowledge.

� for uncertainty quanti�cation, most of the research is done(i) in developing statistical techniques or gradient
type methods for the identi�cations of the most sensitive parameters, (ii) and once this is done, assuming a
probability density function (pdf) by a way or another, compute the �ow statistics by intrusive or non intrusive
methods. In the second item, either the numerical method cannot be modi�ed once the uncertain parameters
and the type of the pdf are chosen (this is the case of Polynomial Chaos type methods), or very smooth pdf
can only be reasonably be taken into account (this is the caseof most non intrusive methods, except Monte
Carlo method, but the convergence is extremely slow). In both cases, except for Monte Carlo methods again,
if some additional knowledge on the pdf is reached during thesimulation, every thing has to be started again
from scratch. Here again, there is a need of a versatile, accurate enough and non intrusive method,that is again
unconventional methods to go beyond the frontier of knowledge.

Our proposal is an answer to these challenges, and our purpose is to develop methods than could be used in
industry in the midterm.

The methodology we propose is a general purpose one, but we will mainly concentrate on �uid dynamics prob-
lems, and in particular on high Reynolds �uids �ows problems. Other natural application domains are aeroaccoustics,
magneto-hydrodynamics, geophysics and more generally any�eld where the system can be described by a �rst order
hyperbolic system, this because of the structure of the partial differential equations. In each case, the methods are
designed for handling complex geometries, and the mesh is discretised by unstructured meshes.

We propose to develop

1. high order solution strategies to the above problems where the high order is obtained thanks to elements (in
the �nite element meaning) that are adapted to the solution structure and the geometry. As explained in what
follows, our strategy is very different from standard high order methods such as the Discontinuous Galerkin
(DG) methods.

2. numerical strategies that allows to handle general uncertainties in the problems, such as, in �uid mechanics,
the uncertainties in the models, the boundary conditions orthe geometry. The proposed strategy is essentially
non intrusive, is not of the polynomial chaos type nor of the collocation type, see e.g. [1, 2]. Moreover, and
contrarily to the conventional methods that are currently developed stochastic optimisation can be coupled with
the method.

2.2 State of the art

In this paragraph, we review the state of the art for high order schemes adapted to hyperbolic problems or parabolic
problems where the diffusive term has only a very local role,as in the Navier Stokes with large Reynolds numbers. In
a second part, we review the methods for uncertainty quanti�cation.

2.2.1 Very high order schemes for hyperbolic/hyperbolic problems

Recent conferences, and their numbers, like ICOSAHOM (Beijing, 2006)14, ECCOMAS CFD 200615, ICCFD in
Ghent16 or ICFD 200617, as well as the numerous recent publications in the journal of Computational Physics, Com-

14http://lsec.cc.ac.cn/ icosahom/
15http://www.eccomascfd2006.nl/
16http://www.vki.ac.be/iccfd4/index.html
17http://www.icfd.reading.ac.uk/ICFD2007/
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puters and Fluids, SIAM Journal on Scienti�c Computing or Journal of Scienti�c Computing, have indicated that
there is a lot of interest in high order schemes for general hyperbolic problems, mesh adaptation, unstructured meshes
and the simulation of complex physics such as multiphase �ows, MHD or wave propagation problems, see e.g. [3, 4]
and the references therein. Many groups are working on theseproblems or related ones. Let us mention the Applied
Math Department at Brown University (C.W Shu), T. Barth (NASA Ames), groups in the Institute of Computational
Mathematics of the Chinese Academy of Sciences or Naking University (Pr. Qiu) to mention just a few. Within Eu-
rope, many groups are also focusing on these issues: the different teams within the FP6 STREP ADIGMA, groups in
Bari and Trento University to quote a few, and for applications in aerodynamics, and in France, we may mention the
GAMMA, SMASH and NACHOS teams at INRIA, ONERA or different groups in Universities (Paris VI , Marseilles,
Toulouse, Ecole Centrale de Lyon, etc).

Which methods are popular, what are their limitations ? In order to �x ideas and notations, consider the simple
scalar convection diffusion model on
 � Rd (d = 2 ; 3)

@u
@t

+ div f (u) � " � u = 0 (1)

with Dirichlet boundary conditions on@
 if " > 0 and on the in�ow part of the boundary when" = 0 . The �ux
f is assumed to beC1 at least in the variableu. One can draw the picture from this simple problem. Considera
discretization of the domain
 by a triangulationsTh. The elements ofTh are denoted byf K i gi =1 ;:::;n e . They are
polygons and cover
 and are such that ifK i 6= K j , then the intersection the interiors ofK i andK j are empty.
The mesh may be conformal or non conformal in the �nite element fashion18. Being conformal or potentially non
conformal is a crucial choice.

If the mesh is non conformal, the most developed class of numerical methods is the Discontinuous Galerkin
method. It is a natural extension of the �nite volume method when the control volumes are the mesh elementsK . It
has been invented by Reed in 1973, analysed by Le Saint and Raviart in the late 70's, and after a pioneering work by
Cockburn and Chavent [5], it has been revived by a series of paper by Shu and Cockburn in the early 90's. The idea
is to use an approximation space that is composed of discontinuous functions. More precisely, given an integerp (the
maximum degree of the interpolation), we consider the approximation spaceVh de�ned by

Vh = f u such that for anyK in Th ; ujK is a polynomial of degree a mostpg:

The functions ofVh are smooth inside the elementsK but are in general discontinuous across their edges and faces.
In the followingP` (K ) the vector space of polynomials of degree` de�ned in K , it is of dimensionnK . Of course
other choices or constraints area priori possible, but this is the simplest and most widespread one. Note that there
is no reason that the degree of the approximation in two neighboring element be the same: this is one strenght of the
method and it opens an avenue for mesh adaptation.

K

n

K �

Figure 1:Example of two neighboring elements
K andK � and the outward unit normaln.

Referring to Figure 1 and the notations therein, the next
step is to develop a weak form of (1). For the sake of sim-
plicity, we do not develop on boundary conditions here.
First, in the case" = 0 , the variational formulation writes:
for any' 2 Vh, �nd u 2 Vh and anyK 2 Th such that
Z

K
' (x)

@u
@t

dx+
Z

K
r ' �f (u) dx�

Z

@K
f̂ (ujK ; u� ; n)' (x) = 0 :

(2)
Here,n is the outward unit normal toK , u� refer to the

trace of the numerical solution on the elementK � on the
opposite side ofK , see again Figure 1. Last,̂f is a consis-
tent numerical approximation of the continuous �uxf , i.e.
f̂ (u; u; n) = f (u)n (we are dealing with scalar problems
for the sake of simplicity), and̂f (u; v; n) = � f̂ (u; v; � n)
to guaranty conservation.

18We say that the triangulation is conformal is the intersection of two elements are either empty or is a point, a complete edge, a complete
face, in dimension� 3.
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The relations (2) de�nenK differential relations. First, consider the differential
@u
@t

, it is approximated via an

ODE solver, and we denote by
Du
Dt

the approximation. The approximation can be explicit or explicit. If U denotes a

representation ofujK via a basis ofP` (K ), the relations (2) translate into

M
Du
Dt

+ F = 0

where the components ofF are the left hand side of (2) evaluated by mean of numerical quadratures. The mass matrix
M is independent ofU and is a symmetric block diagonal de�nite positive matrix. Aproper choice of the polynomial
expansion leads to a diagonal matrix. For example, ifK is topologically equivalent to a Cartesian product of intervals
[� 1; 1], the natural expansion is obtained via Legendre polynomials.

The nice feature of the method is that the semi–discrete scheme (2) satis�es an entropy inequality when̂f is an
E–scheme, and when the entropy isU(u) = u2

2 : one has a natural energy stability. The dif�culty is to ensure L 1

bounds when the polynomial degree is larger than 1, so that there is a need to add a stabilisation mechanism. It is
still a research topic to �nd proper stabilisation mechanisms without destroying the formal accuracy of the scheme
in particular at discontinuities and extrema. This is not a problem in case of a discontinuity in the solution, since the
notion of accuracy in this case has no meaning, except that itleads to the enlargement of the discontinuity. It becomes
more problematic in the case of smooth extrema because this is precisely the feature that one wants to properly
compute.

When" > 0, the approximation of the dissipative term is really non trivial, in part because the approximation
space is not inH 1(
) while the dissipative term of (1) is de�ned naturally inH 1(
) . Of course several solutions
exists to solve the problem, see [6]. Up to our knowledge, allthe published approximations depend on parameters
that are problem dependant. In addition to this, the stencilof the numerical scheme becomes larger since one needs,
for any elementK 2 Th , the immediate neighbors (for the convective and dissipative terms) and the neighbors of the
neighbors (for the dissipative terms).

For DG methods, after the work by Bassi and Rebay [7], it is known that the boundary conditions implementation
need to beveryaccurate otherwise the scheme may develop some kind of instabilities. For this, an accurate boundary
representation is needed, up to my knowledge, this is done “by hand” since there is no natural connection between the
CAD and the numerical solver. This problem of representing accurately the boundaries is not a toy problem because
most of the quantities the engineer is interested at are boundary quantities, like a drag, a heat �ux, etc.

Our last comment is about the number of degrees of freedoms. For a regular mesh, if the approximation setVh

is de�ned with polynomials of degreep, there is of the order ofp3ns degrees of freedoms (precisely10nt for p = 1 ,
55nt for p = 2 , 210nt for p = 3 , 630nt for p = 4 wherent is the number of tetrahedrons, and ifns is the number of
vertices,nt � 6ns). This is huge, since for industrial size applications,ns can be of the order of millions.

If the mesh is conformal, one can consider stabilized �nite element methods. Roughlyspeaking, there are two
types of such methods: the Petrov–Galerkin methods such as the SUPG or stream–line diffusion method, and the
Residual Distribution schemes. The �rst class is obtained by a variational formulation similar to what is done for (1),
except that a new term needs to be added for stability reasons. Here, the solution is sought in

Vh = f u continuoussuch that for anyK in Th; ujK is a polynomial of degree a mostpg:

For the steady version of (1) with Dirichlet boundary conditions the Petrov–Galerkin method is: �ndu 2 Vh such that
for any' 2 Vh ,

�
Z



r 'f (u)dx + �

Z



div f (u) f 0

u � r 'dx +
Z

�
g' ndl+

Z



�u

�
' + �f 0

u � r '
�
dx + "

Z



r ' � r udx

� "�
Z



� u f 0

u(u) � r 'dx = 0
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Here� = Ch, whereC is a positive constant. Again, we do not elaborate on the boundary conditions, for the sake of
simplicity.

Another class of schemes which are still under active development consists in the Residual Distribution schemes
(RD). This formulation has been initiated by P.L. Roe in the 80's, and the stream–line diffusion method above can also
be seen as a member of this class. However, the main emphasis here is onL 1 stability properties, and notL 2 ones.
In their original form, they were second order accurate onlyand tuned for steady problems [8], but many advances
have been obtained by myself and members of my group.

Consider the steady version of (1), i.e. the
@
@t

is removed and we have boundary conditions. The second order

accurate method is constructed in several steps. Consider atriangular type mesh �rstTh. The vertices are denoted
f M i gi =1 ;ns . The solution is approximated at the vertices, ieui � u(M i ). This is a �rst difference with DG meth-
ods. In each triangle, the solution is approximated by a linear Lagrange interpolantuh : the interpolation is globally
continuous. Then we evaluate, for each elementT, the total residual� T de�ned by

� T (uh) =
Z

@T
f (uh) � ndl:

The third step is to split the total residual in sub–residuals � T , one for each vertex ofT, � T
i (uh), for M i 2 T, so that

the following conservation holds X

M i 2 T

� T
i (uh) = � T (uh):

The scheme writes
for eachM i ;

X

T;M i 2 T

� T
i (uh) = 0 :

This provides one equation per vertex (Dirichlet boundary conditions are applied on the in�ow boundaries) which are
generally solved by an iterative scheme. One can show [9] that if (i) the numerical solution staysL 1 bounded, (ii) a
sub-sequence converges inL 2 towards aL 2 functionu, and (iii) the element–size conservation holds true, thenu is a
weak solution of (1).

Examples of sub–residuals� T
i , and in particular examples that guaranties both aL 1 bound and formally second

order accuracy are given in [a3,a4]. These properties are not in contradiction since the scheme has to be non linear,
according to Godunov' theorem. Note that in the case of a smooth solution, the accuracy is kept even at extrema,
contrarily to classical MUSCL or DG type scheme. This is obtained thanks to a deep understanding of the structure of
the equation : we use in the construction that (i) the problemis steady and (ii) the interpolation (continuous piecewise
linear) is second order accurate, and not any Taylor expansion like argument. The scheme can be made parameter
free.

These construction can be extended to unsteady problem [a3], again using the structure of the equation, and to
any order of accuracy, at least for scalar problem [a8]. Notethat any standard �rst order �nite volume scheme can
be rephrased as a RD scheme, see [a6], a remark that opens manydoors. We are currently developing these schemes
for the Euler equations, as well as for the Navier Stokes, up to fourth order with the FP6 STREP ADIGMA. The
challenge is to understand how to discretise viscous problems, several tracks are under investigation.

In our simulations on very high order step using quadratic Lagrange interpolant, we have experienced the follow-
ing fact: the scheme and the results seems to be much less dependant, compared to DG, on the boundary representation
and the implementation of the boundary conditions. Nevertheless, if one wants to recover the expected order of accu-
racy, as in DG methods, we must accurately represent the boundary condition. Again, this is done “by hand” because
there is no direct connection between the CAD and the numerical solver. This problem of representing accurately the
boundaries is not a toy problem because most of the quantities the engineer is interested at are boundary quantities,
like a drag, a heat �ux, etc.

We end this section by an evaluation of the number of freedom.Let us emphasize that the approximation functions
are here globally continuous, in contrast with the DG method. For a regular mesh, if the approximation setVh is
de�ned with polynomials of degreep, there is again of the order ofp3ns degrees of freedoms (preciselyns for p = 1 ,
8ns for p = 2 , 27ns for p = 3 , 64n3 for p = 4 wherens is the number of tetrahedrons). This is huge, since for
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industrial size applications,ns can be of the order of millions, but much less than for DG sincethe ratio DG/RD is24
for p = 1 , 7:5 for p = 2 , 40=9 � 4:44 for p = 3 , 105=32 � 3:28 for p = 4 and336=125 � 2:68 for p = 5 and so
on . . . Currently, it is not very reasonable to expect more than 4th order accurate schemes because of the size of the
computers. Moreover, the real breakthrough is expected between second and third order accuracy, so the algorithmic
complexity of RD scheme is expected to be much less than for DGones.

If one has in mind to have some �exibility in the mesh structure, for example to compute helicopter blades where
some pieces of the geometry move with respect to others, or inthe case of turbomachineries, it might be interesting
to combine the conformal and non conformal properties of themeshes. Recently, we have shown that this is possible
in the context of residual distribution schemes, and the schemes have provableL 1 properties.19

2.2.2 Uncertainty quanti�cation

In many cases, the de�nition of the physical problem is not fully known. This may be the case for several reasons:

� The geometry may be known only partially. Imagine that the body surface is rough, one can certainly parametrize
the roughness by some random process. We are aware of an industrial example, the one of the nozzle located at
the exit of a rocket engine designed by SNECMA where the surface departs slightly from an average surface.
One can interpret the shape of the boundary as one event of a random variable.

� The boundary conditions may be partially known only, for example in the case of �uctuations of some parame-
ters,

� Some constants in the model can be uncertain, think for example of a turbulence model. This is a very important
practical problem for industry.

In each case, even if the model, hence the numerical method . .. , suffers from de�ciencies, there is still a need to
compute and simulate !

In order to tackle this issues, there are currently several techniques available in the engineering community, and
this is a very active research topic as we have recalled aboveby giving some recent conferences on this topic.

One technique relies on polynomial chaos expansion. Assuming that the random inputs data which depends on
spacex 2 A � Rd and a a random parameter, say the boundary conditions to �x ideas, is de�ned on a probabilistic
space(
 ; A ; P) and has a �nite variance, we can de�ne the covariance matrix

C(x; y) = E(X (x; :)X (y; :)) ; for x; y 2 A:

If f k is thek–th eigenfunction Z

A
C(x; y)f k (y)dy = � k f k(x);

one can write the Karhunen-Loève expansion ofX ,

X (x; ! ) =
1X

k=0

p
� k f k(x)� k (! ) (3)

where the� k are uncorrelated Gaussian random variables. Then, following [10], one can expand the solution of (1) as

u(t; x; ! ) = a0� 0 +
1X

i 1=1

ai 1 � 1(� 1(! )) +
1X

i 1=1

1X

i 2=1

ai 1 i 2 � 2(� 1(! ); � 2(! ))

+ : : :

+
1X

i 1=1

1X

i 1=1

: : :
1X

i k =1

ai 1 i 2 :::i k � k (� 1(! ); � 2(! ); : : : ; � k (! ))

+ : : :

(4)

19R. Abgrall and C.W. Shu. Development of residual distribution schemes for the discontinuous galerkin methods : the scalar case.Com-
munication in Computational Physics, 2008, in revision and R. Abgrall, Une méthode de type distributive employant des éléments discontinus
pour le calcul d'écoulemnets avec choc. Research Report 6439, INRIA, Feb. 2008, https://hal.inria.fr/inria-00218209
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The functions� k are de�ned by

� k (� 1; � 2; : : : ; � k) = ( � 1)ke� �� T @ke� � �� T

@�1 : : : @�k
:

The idea is, after truncation both in the random input and (4), to introduce this relation into (1), then to use a spectral
method (because of the form of the� k ). There are other versions of this polynomial chaos, see forexample [11, 12].

In our opinion, there are at least three drawbacks to this approach. First, it is not clear at all what should be the
right truncation level in the expansion (4), see for example[13]. Second, if one has a good numerical method to solve
one problem, the numerical strategy has to be revisited fromA to Z to go to another one. It is also not clear how to
handle discontinuities in the formulation. The last one is that if one changes the structure of the input random function,
every thing has to be restarted from scratch. This is the casein particular when new informations are introduced to
the system.

The second problem of the previous approach, that the methodis intrusive, can be tackled by a method which is
in between the spectral expansion that has been sketched above and the Monte Carlo method. One chooses a “good”
set of random realisations and one run the baseline numerical scheme for these random parameters. Since the output
of the whole computation is to evaluate expectation of a functional f of the the solution, say the pressure distribution
to �x ideas, these functional depend on� 1, . . . , � N . The random parameters are chosen such that the expectancy

E(f ) =
Z



f (� 1; : : : ; � N )d�

can easy be evaluated easily with a good accuracy. This amounts to �nd quadrature points for this integral. These
quadrature points are related in general to zeros of some orthogonal polynomials. The curse of dimensionality can be
tackled by mean of the Smolyak quadrature formula, for example. This path has been explored by several researchers,
see for example [2].

In our opinion, one of the weakness of this technique is that if the probability density functions are not smooth
enough – this may occur in some combustion problems, see [13,14] for example–, the convergence of the integral
may be very slow.

In both case, an other major drawback is the following: the pdf is in general not known, so that the whole
process collapses. The numerical procedure may be one part of a more general loop in which a learning process
is implemented, via some optimisation loop for example. Clearly, once the expansion (3) has been chosen, there
is no space for any learning process so that the expected results of the whole methodology can be disappointing.
How can we construct a numerical method, able to handle true �uid problems, for which a learning process can be
implemented ?

2.3 Methodology

This section describes the technical content of the ADDECCOproposal.
The aim is to propose adaptive numerical methods for computing 2D and 3D compressible �ow problems that are

capable of solving several important dif�culties in �ow simulation. By adaptive, I mean of course that the mesh can
be adapted to the solution, but the main topic is to adapt the numerical method to the structure of the problem. More
precisely, we want to deal with the following challenges:

� What is the impact of the geometry description on the numerical strategy and how can we make it as �exible as
possible ?

� Can we adapt the numerical strategy so that good numerical results can be achieved with relatively few mesh
points ? One possible track is to adapt the mesh while keepingthe number of points relatively constant, this is
the strategy that has been explored by Alauzet et al. [15]; orusing duality arguments like in [16] for example.
We intend to couple the Residual Distribution strategy, because it need less degrees of freedom than the DG
one, with a more clever choice of basis and test functions. The same idea can be explored for different physical
problems such as acoustic ones or geophysical ones: in thesehigh frequency wave propagation problems, one
can certainly exploit the structure of solution in the numerical method.
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� In many physical or industrial type problems, the model is only partially known. This may be the case of
the geometry, the boundary conditions, the turbulence model, etc. Can we de�ne a numerical algorithm that
can easily take into account the uncertainties in the model,can handle a relatively large number of random
parameter and can also be easily adapted, via, for example anoptimisation loop ?

Throughout the project, despite three apparently different topics will be covered, we will use/develop the same type
of numerical technology: the residual distribution schemes because they are robust, simple to implement, implicit by
nature and parameter free. The accuracy of the type of RD scheme we will use may differ depending on the problem
(for example in the UQ problem, we will certainly restrict ourselves to the simplest RD schemes), but the construction
and implementation philosophy are the same. A registered version of the parallel (MPI) softwareFluidBox is
located at http://www.math.u-bordeaux.fr/s abgrall/�uidboxlight.tgz.

2.3.1 Numerical schemes

This part falls within the context of Residual Distributionschemes. They are �nite element type schemes where a
parameter–free mechanism enables to compute subsonic, transonic, supersonic and hypersonic �ow problem without
any oscillations.

� Adapt the solution representation.

As said before, we are extending the schemes to more than second order accuracy. Doing so, it is known, see [7]
for another method, that the scheme accuracy can be spoiled if the boundaries are not represented accurately.

In most mesh generators, one �rst starts to represent the body surfaces by mean of CAD, then a triangulation of
the surface is obtained, and then a volume mesh is got. The mesh can be made of blocks that are topologically
equivalent to cubes, or unstructured with only tetrahedrons or of hybrid nature. In the numerical scheme,
the CAD is forgotten, so that one has to reconstruct locally the body surface to guaranty accuracy. There is
absolutely no hope that the CAD industry will adapt to engineering like problem, it has to be the opposite. One
simple reason is that CAD is a much bigger industry than the industry of engineering codes: the CAD industry
ranges in the $ 5-$10 billion while the Computer-Aided Engineering (code development is only a sub–market
of it) is in the $1-$2 billion range. Moreover the differencein geometrical representation partially explains
why the mesh adaptive techniques are still primary an academic endeavor rather an industrial technology: the
dif�culties to pass information from one system of representation to the other one are still too large.

In a recent paper, Hughes and al. [17] have used a Bézier representation of the �ow variables, or better a
NURBS20 one. The idea behind this is that the CAD use Bézier and/or NURBS to represent the surface. If one
is able to use the same control parameters for both the surface and the solution representations, the treatment
of boundaries becomes trivial. Moreover, if one re�nes the mesh, this translates to the surface by adding some
control points: things become also natural. There exists generalisations of NURBS that permit a non conformal
representation of the surface, examples are the NURCCSs [18].

This idea can rather easily be imported in the RD framework because of its �exibility so that one can expect
a numerical method able to solve regular and non–regular �owpatterns where adaptation tools will naturally
“talk” to the CAD. This is exactly what is currently needed. We propose to explore this idea, both from a
theoretical and a practical view point.

As a matter of fact, we have already implemented this solution representation on a simple scalar example,
namely the Burgers equation in[0; 1]2 with in�ow boundary conditionu(x; 0) = 1 :5 � 2x and then a non
trivial one, the Guckenheimer problem [19]. The �rst example has a convex �ux, while in the second one the
�ux changes concavity so that the problem is more dif�cult. The results for aP2 Lagrange interpolation and
quadratic Bézier functions in triangles are represented on�gure 2.

20Non-Uniform Rational B-Splines
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(a) (b)

(c) (d)

Figure 2: Solution of the Burgers equations using:
(a) P2 Lagrange interpolation, (b) Bézier represen-
tation, and the Gückenheim equation: (c)P2 La-
grange interpolation, (d) Bézier representation.

(a) (b)

(c) (d)

Figure 3:Example of average solution and standard
deviation for a convection problem with periodic
boundary condition: (a) �rst order, (b) second order
in space and the Burger equation: (a) �rst order,
(b) second order in space. The initial condition is
u0(x) = sin( x + ' ) with ' random equidistributed
in [0; 1]. There are80 points in[0; 1] and30 points
in the probability space. For some timeT, the mean
solutionsE(u)(x; T ) andE(u)(x; T ) � � (x; T ) are
plotted;� is the local variance.

Of course, these examples have simple boundaries, but they show that the method has an excellent potential.
The questions to look at are:

(i) How to extend this to systems,

(ii) make the scheme effective on boundaries,

(iii) how to handle viscous terms (this is a general questionfor RD schemes),

(iv) how to adapt the method to unsteady problems,

(v) study and understand how the mesh adaptation techniques, for example those developed by Dobrzynski et
al. [20]. (C. Dobrzynski is in my group).

(vi) what is the most effective parallel implicit strategy,in particular in connection with parallel adaptation.
We have a good contact with the Snadia group, in particular P.Pebay and T. Tautges, who is developing
MOAB 21 which is a parallel mesh adapter. In my group, there is also F.Pellegrini who is a computer
scientist specialised in graph partitioning, he has developed the PTScotch library22 which is an alternative
to the METIS library.

� The second item deals with the adaptation of the local solution representation to the �ow structure. Up to now, in
each elements, the �ow parameters are interpolated by a Lagrange interpolant. In a boundary layer, for example,
the velocity changes very quickly in the direction normal tothe walls with alog pro�le. The temperature may
also change very quickly, for example in the case of Dirichlet boundary conditions. The classical way for
dealing with this question is to have a cluster of mesh pointsthat is dense enough in the boundary layer. Thus,
most of the memory and computer power is used in these small but essential regions: what happens near the
wall boundary is the most important for the engineer.

In solid mechanics, there is a relatively long tradition of adapting the functional spaces in the Discontinuous
Galerkin formulation to the local structure of the solution. This is the case for the simulations of cracks, bound-

21http://cubit.sandia.gov/MOAB/
22http://www.labri.fr/perso/pelegrin/scotch/scotch_en.html

15



PartB_ADDECCO

ary layers, etc. In the XFEM method, the variational setting, originally made of Lagrange interpolant, is en-
riched with functions that translate the behavior of some solution of ideal crack problems, boundary layer prob-
lems, etc. In elements near the crack, the solution is soughtof the formuh(x) = u1(x)+

P k
i =1

P r
� =1 a�i ' � L �i (x)

whereu1 lies in the standard �nite element spaceP ` , the functions' � form a partition of unity, and theL �i are
enrichment functions, for example solutions of elementaryproblems.

In the case of �uid mechanics,this idea has, up to my knowledge, never been implemented. Let me sketch
one possible implementation. The velocity pro�le in the direction normal to the boundary has an exponential
form. Using Hamilton Jacobi techniques such as those I have previously developed [21]23, it is easy to have
(quickly by fast marching methods) an approximation of the distance function, and thus to construct explicit
approximations of the velocity: this is the equivalent of the enrichment functions in the XFEM method. The
dif�cult point is then to construct partitions of unity and the �rst thing to try is to export the methods of XFEM
to our context. Since many smooth partitions of unity exist,for example with radial basis functions, there
certainly a good candidate.

To achieve this program, the �rst thing to do is to test and evaluate the RD formulation on a very simple example,
for example on[0; 1]

u0 = "u 00; u(0) = 0 andu(1) = 1

for which the explicit solution is known. Once we get some understanding of the problem, both experimentally
and analytically, more complex multidimensional problem will be examined. The issues are the same as in the
previous item, in particular the computational ef�ciency.One additional dif�culty is to understand how the
correction term can be put in the viscous formulation in a natural fashion.

This idea can also be used for different physical problems: acoustics, aeroacoustics, and geophysical problems
where an high frequencyansatzcan be employed in the same spirit. The sets of PDE can also be approximated
in the RD framework because they are hyperbolic problems.

2.3.2 Uncertainty quanti�cation

Let us describe the proposed methodology on a scalar non linear conservation law with(x; t; ! ) 2 [0; 1] � R+ � 


@
@t

u(x; t; ! ) +
@

@x
f (u(x; t; ! )) = 0

Assume that the discretisation in the non random case is doneby a �nite volume scheme (this is not essential).
We discretise[0; 1] � 
 in “control volumes” in space and the probability space and let Cij denote the sub-domain
[x i � 1=2; x j +1 =2] � [! j ; ! j +1 ] (� x j = x j +1 =2 � x j � 1=2 and� ! j +1 =2 = ! j +1 � ! j ) with total measure

R
Cij

dx d� (! ).
Integrating overCij and application of the divergence theorem yields

d
dt

Z

Cij

u(x; t; ! ) dx d� (! ) +
Z

� ! j +1 =2

�
f (u(x i + � x i =2; t; ! )) � f (u(x i � � x i =2; t; ! ))

�
d� (! ) = 0

Next de�ne the averaged conditional expectanciesE ij (u) � 1
meas(Cij )

R
Cij

u(x; t; ! ) dx d� (! ): The semi-discrete
approximation is then given by

d
dt

E ij (u) +
1

meas(Cij )

Z

� ! j +1 =2

�
f (u(x i + � x i =2; t; ! )) � f (u(x i � � x i =2; t; ! ))

�
d� (! ) = 0 :

Godunov-like schemes are devised by supplanting the true �ux at spatial interfaces of each cell by Lipschtiz
continuous numerical �uxes,h(uL ; uR ) : R � R 7! R f (u(x i + � x i =2; t; ! )) � h(uL

i +1 =2(t; w); uR
i +1 =2(t; ! ))

equipped with the following properties: consistency and conservation, monotonicity. We have

d
dt

E ij (u) +
1

meas(Cij )

Z

� ! j +1 =2

�
h(uL

i +1 =2; uR
i +1 =2) � h(uL

i � 1=2; uR
i � 1=2)

�
d� (! ) = 0 : (5)

23Other methods exist of course, but here the assumption is that the mesh is non structureda priori. Hence, most existing method collapse.
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The next step is to evaluate the conditional expectation of the �ux. For this we can use tools that are familiar in
the �nite volume context : the reconstruction algorithm that is applied to the cell expectations. De�ne the �nite-
dimensional tensor product approximation in each cell

uCij (x; ! ) =
X

0� r � p
0� s� q

~u(r;s )
Cij

�
x � x i

� x i

� r �
! � ! j +1 =2

� ! j +1 =2

� s

(6)

consisting of at mostp-th order monomials in physical space andq-th order monomials in probability space. The
coef�cients are then determined from the requirement that this tensor product approximation produce the correct cell
expectations in the surrounding cells,Ci 0;j 0, with stencili � mx � i0 � i + M x andj � m! � j 0 � j + M ! . This
is the same method than the one used in ENO/WENO schemes, see [22]. By appropriate choice of cell stencil widths
(mx ; M x ) and(m! ; M ! ), the linear algebraic systems in each isolated dimension are uniquely solvable subject to
technical conditions on the probability distribution. Thecoef�cients ~u(r;s )

Cij
in the tensor product are then ef�ciently

determined. The time derivative in (5) are approximated by asuitable ODE solver. In the examples bellow, we have
chosen a second order Runge-Kutta method. As a �rst step24, this algorithm has been applied to the convection
problem (f (u) = u) and the Burgers equationf (u) = 1

2u2 for an initial condition of the formu0(x) = sin
�
a(! )x +

b(! )
�
, see Figure 3. The results show that that the method has a potential, but of course many things need to be done

to get an ef�cient one. The method is relatively non intrusive: the algorithm is organised in several loops of increasing
depth. The �rst loop is a loop over the probability discretisation, all the other internal loops are those of the original
scheme: very little has to be modi�ed.

We have described a general method that can be applied to any base scheme, not only Godunov like ones. Other
schemes, such as the ones developped in section 2.3.1 can also be dealt in the same spirit. There are many open
questions

� Usually, Godunov type methods have a stability criteria which depends on the speed of the fastest waves. Here
this speed depends on the random parameter, so, can we �nd a uniform bound hat will de�ne a minimum time
step. It is very likely that the answer is no for a general pdf,so that one has to consider implicit schemes.
How to extend this methodology to implicit schemes ? Again, anatural candidate (because they are implicit
scheme by essence) are the RD schemes, but this point is not essential: to demonstrate the versatility, we have
to demonstrate that it is not scheme dependant. This will be done.

� How to extend this for systems of conservation laws and to other physically relevant systems , such as the Navier
Stokes equations ? In the toy example shown above, we have also implemented the viscous Burger equation, so
that in principle, if the previous item has got a satisfactory answer, this is not a problem.

� The next real challenge is the following: When the number of random parameters becomes large, we are facing
the curse of dimensionality. There are several ways of facing this. One is to adapt Harten's multiresolution anal-
ysis to compress the number of relevant conditional expectancies to store [23], [d1]. The evaluation of relevant
statistics can be done using Smolyak expansion type ideas, and the couplings between this and the multiresolu-
tion analysis is interesting. To achieve this coupling, onehas to explain how sparse grid methods (like Smolyak)
can be translated into this �nite volume like framework: thesparse grid technique are interpolatory methods,
ours uses cell averages. The problem of ef�ciently implementing high dimension PDE methods of the type we
are considering has similarities with what is done for Vlasov equations because there are 3 space dimensions
and 3 dimensions for the velocity space [24]. Of course the physics is different, but the data management bears
similarities. This meet the question of ef�ciently implementing implicit schemes on adaptive grids. The ideas
and techniques that have been developed in the case high dimension Vlasov case are certainly a starting point
for our needs

� It is a priori possible to change the probability distribution during thesimulations using �ltering methods or
stochastic optimisation techniques once ana priori form of the pdf has been given. This may be usefull when
for example experimental data are given and if one wishes to �t the simulation to the experiments. Other

24done in collaboration with T. Barth, NASA Ames RC, California, USA
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situation can be imagined. Once again, these optimisation techniques are not compatible with current UQ tools
but are important in applications. Translated into the formalism that we have sketched above, this amounts to a
problem very similar to what has to be done for mesh adaptation.

2.4 High performance computing aspects

The ultimate goal is to be able to do 3D simulations on realistic 3D geometries. This can only be done on massively
parallel machines. The methods of section 2.3.1 need to solve large non linear equations, hence iterative techniques
such as GMRES with preconditionning are mandatory. The sizeof 3D problems to solve are very large so that
ef�ciency can only be obtained through a massive use of parallel machines, including for the solutions of these non
linear systems.

For the methods of section 2.3.2, the situation is more dramatic. The reason is very clear from equation (5). In the
3D case, the second term of the equation is the sum of a time derivative and spatial terms, roughly speaking one per
space dimension. Hence the evaluation of (5) for a single layer in the probability space amounts to a deterministic 3D
�ow calculation for one time step. If the problem is steady, again the evaluation for a single layer in the probability
space amounts to a deterministic 3D steady �ow calculation.This can be ef�ciently done on parallel machines, and the
algorithms we propose in section 2.3.1 area priori well �tted to this, but we have to understand how the coding must
be done on machines having tens or hundreds of processors. When we have several random variables, the probability
space has several dimensions: the computations must be doneon a massively parallel machine. We are faced with all
the dif�culties arising from the fact that when we need to compute the different terms of equation (5), several layers
of data in the probability “direction” may be needed depending on the polynomial degree of (6). Understanding,
managing this and deriving the data structure is a work for specialists, this is why whe have asociated to this proposal
two specialists of scienti�c computing with a large background in computer science.

2.5 Risk evaluation

The proposal is organised around three items where the levelof dif�culty and the possibility of failure is increasing.
In the description, we have tried to describe the way we intend to proceed, and the several paths that are possible to
reach our aims. Let us discuss the con�dence of success/failure of this proposal

� The �rst item (use of Bézier/NURBS representations in computer codes for �uids), if successful, will have
important consequences on computational solutions in industry. As we have shown, the very preliminary results
we already have obtained indicate that the proposed method will work, and in principle it should facilitate the
communication between the CAD tools for the body surface de�nition and the numerical algorithm. This item
has an excellent probability of success.

� The second item (use of fancy solution representation in CFDcodes) is more complex to implement because it
may need a deeper understanding of boundary layers, and thisis a dif�cult topic by excellence. However, we do
not think that such extreme things will be needed to make the algorithm a success. Very likely, less sophisticated
solutions, combined with the knowledge and the know–how we already have on high order schemes, as well as
on fast algorithms to compute a distance function in order toget a reasonable guess of the boundary layers test
functions will make the job.

� The last topic is in our opinion the most dif�cult one. The basic algorithm as we have sketched it will work:
it has been shown on a toy example that this is a reasonable andversatile one. The main problem is to face
the curse of dimensionality and the CPU cost of any simulation. This is acommonproblem to any Uncertainty
Quanti�cation tool, even for Monte Carlo ones since it translates into many simulations. We have indicated
several tracks we believe to be reasonable. They should in principle help to reduce the computational size of
the problem. Even if only low dimension problems can be dealtwith, this will be important for scienti�c and
industrial applications: many problems, such as turbulence modelling, translate into rather low dimensional
probability spaces. Moreover, the method we propose is able, in principle, to handle easily any evolution of the
pdf via stochastic optimisation algorithms, contrarily tomost UQ methods.
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In this program, I will associate several people of my group:Mario Ricchiuto who is a young research scientist,
specialist in approximation methods for hyperbolic problems, Boniface Nkonga who is an associate professor that
has an excellent knowledge of moving meshes methods and highperformance computing technique (he is the main
author of the parallel CFD tool on which we will implement andtest these methods), Cécile Dobrzynski who is a
young assistant professor specialist in meshing problems,and two computer scientists: Pascal Hénon and F. Pellegrini
Pascal Hénon is a young research scientist, he is a specialist of highly parallel linear algebra tools and preconditioning
techniques. F. Pellegrini is a specialist of graph partitioning methods, in parallel. P. Del Moral25, an internationally
recognized researcher in stochastic algorithms, is a research director at INRIA Bordeaux Sud–Ouest in Bordeaux; he
has agreed to be associated on the Uncertainty Quanti�cation problem aspect of the ADDECCO proposal, and more
precisely for the coupling of the algorithm to stochastic optimisation methods.

This group of people represents the ideal balance between top know-how in approximation methods, computer
science competences for high quality scienti�c computing,mesh generation/adaptation and stochastic algorithms.

To these people, I already have taken contacts with several internationally recognised scientists who are ready to
spend several months in Bordeaux and to be associated to thiswork: C. W Shu26 (Brown University), C. Fahrat27

(Stanford University) for the �rst two items, and T. Barth28 with whom I have started the UQ aspect of the proposal.
P. Pebay from Sandia, Livermore is interested in the high performance computing aspects of the proposal.

2.6 Resources, managing plan

At INRIA Bordeaux Sud–Ouest and Institut de Mathématiques of the University of Bordeaux, we have access to
a cluster of unix computers (32 nodes) through a 100 mbit network. This will be upgraded to 100 nodes and a 10
Gbyte/s network in the coming year if the funding asked by INRIA, the Computer Science department and the Institute
of Mathematics asked to the local government is successfull. This cluster are shared by about 50 scientists.

2.6.1 Working plan and schedule

1. Work related to Bézier/NURBS representation of solutions in hyperbolic/parabolic problems: 1PhD (3 years)
and 1 PostDoc (2 years)

a) Development of Bézier/NURBS based solvers for non smoothhyperbolic problems,

b) Development of Bézier/NURBS based solvers for non smoothhyperbolic/parabolic problems,

c) Implicitation/parallelisation of these solvers, HPC aspects (mesh partitioning, . . . ),

d) Mesh adaptation, relationships to the data structure.

2. Work related to solution adapted representation. The main topic will be the approximation of the Navier Stokes
equations: 1PhD (3years) and 1 PostDoc (2 years)

a) Development solvers for the Navier Stokes equations,

b) Implicitation/parallelisation of these solvers, HPC aspects (mesh partitioning, . . . ),

c) Mesh adaptation, optimisation of the partition of unity,relation ships to the data structure,

3. Uncertainty quanti�cation: 2 PhDs (2 � 3 years 3a–3b and 3d), 1 engineer (2 years, computer scientistpro�le
for the HPC aspects), 1 PostDoc (2 years). The 3-c and 3-d are connected.

a) Development of the method. The baseline scheme will be thestandard second order RD scheme for steady
and unsteady Navier Stokes problems already in theFluidBox software.

25http://www.math.u-bordeaux.fr/ delmoral/
26http://www.dam.brown.edu/people/shu/
27http://soe.stanford.edu/research/layout.php?sunetid=cfarhat
28http://people.nas.nasa.gov/ barth/
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b) Multiresolution/Smolyak aspects for handling several sources of uncertainties.

c) High performance aspects, grid computing, validation, at each end of main phase.

d) Coupling of the algorithm with stochastic optimisation methods.

Work schedule year 1 year 2 year 3 year 4 year 5
Item 1a
Item 1b
Item 1c
Item 1d

Item 2a
Item 2b
Item 2c

Item 3a
Item 3b
Item 3c
Item 3d
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