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Abstract

The numerical simulation of complex compressible ow prilis still a challenge nowadays, even for the
simplest physical model such as the Euler and Navier Stajestions for perfect gases. Researchers in scienti ¢
computing need to understand how to obtain ef cient, stabdey accurate schemes on complex 3D geometries
that are easy to code and to maintain, with good scalabititpnassively parallel machines. Many people work on
these topics, but our opinion is that new challenges have tadkled in order to combine the outcomes of several
branches of scienti c computing to get simpler algorithnisbetter quality without sacri cing their ef ciency
properties. In this proposal, we will tackle several harthfsto overcome for the success of this program.

We rst consider the problem of how to design methods thatteamdle easily mesh re nement, in particular
near the boundary, the locations where the most interesting engineering tifiemhave to be evaluated. CAD
tools enable to describe the geometry, then a mesh is gedevaich itself is used by a numerical scheme. Hence,
any mesh re nement process is not directly connected wighGAD. This situation prevents the spread of mesh
adaptation techniques in industry and we propose a methaekt@ome this even for steep problems.

Second, we consider the problemhandling the extremely complex patterns that occur in a owbecause
of boundary layersit is not always suf cient to only increase the number of degees of freedom or the formal
accuracy of the schemeWe propose to overcome this with class of very high ordererical schemes that can
utilise solution dependant basis functions.

Our third item is abouhandling unsteady uncertainties in the model for example in the geometry or the
boundary conditions. This need to be done ef ciently: theoamt of computation increases a priori linearly with
the number of uncertain parameters. We propps®n—intrusive method that is able to deal with general
probability density functions (pdf), and also able to hande pdfs that may evolve during the simulation via a
stochastic optimisation algorithm, for example. This will be combined with the rst two items tbfis proposal.
Many random variables may be needed, the curse of dimerigyorndl be dealt thanks to multiresolution method
combined with sparse grid methods.

The aim of this proposal is to design, develop and evaludtgisos to each of these challenges. Currently, and
up to our knowledgejone of these problems have been dealt with for compressiblews with steep patterns as
in many moderns aerodynamics industrial problems.We propose a work program that will lead to signi cant
breakthroughs for ow simulations with a clear impact on rennal schemes and industrial applications. Our
solutions, though developed and evaluated on ow probldrase a wider potential and could be considered for
any physical problem that are essentially hyperbolic.
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1b. Extended synopsis.

The aim of this project is to maketaeakthroughin the numerical simulation of problems that are modelisgd bet

of partial differential equations which main behavior isgperbolic nature. We will mainly focus on uid dynamics
problems, since they are in our main speciality, aytriori the techniques can be generalised to other problems.
Currently, in part because of the emergence of new types séiney parallel machines enabling the possibility of
true real size simulations, in part because of the incrgad@mand of the industry, we are seeing the following trends:

1. need for more accurate simulations,

2. need of more complex geometries with very heterogeneanes ® the geometry, all this with a more and more
involved physics,

3. have the possibility of taking into account some uncaties on the physical model, the geometry and other
parameters in order to evaluate an average behavior, agarénd other statistical quantities if needed.

It is essential to have methods that are simple to code and taun on modern high performance computers.
The choice we have done here are aimed at answering to all treeshallenges of modern scienti ¢ computing:
accuracy, simplicity, exibility.

Accuracy can be reached either by increasing the numberiofspmr by increasing the order of accuracy of
the computational method or both. In the aeronautical imgusxtremely complex ow patterns occur including
boundary layers, ow separations, shock waves and variotesdctions between them. Computers use on a daily
basis meshes of several millions of points to capture thkeagmena in the best possible way. Most of the computer
codes are only second order accurate, so that the ef cigstuca of all these phenomena is very dif cult: a lot of
degrees of freedom are wasted to compensate the weaknésseies. One of the ways to overcome partially this
is to use mesh adaptation, but we are faced with the probleanairately capturing the solid boundaries which may
be very complex (think of the combustion chamber of an engine turbo-machine, for example). This situation
is typical of the industry of uid mechanics: very complex geometriggry complex ow patterns. Obviously, the
technical challenges that have to be faced nowadays remgre accuracy in order to capture details that have a
strong in uence on the ne tuning of machines. An exampleiigeg by the evaluation of drag for an airplane. The
codes need to baccurate they also need to biastbecause most of the time they are an element of an optinsatio
loop.

Similarly, the physical model may be uncertain. This is ¢gly the case of a turbulence model, this may also
be the case for the geometry or the boundary conditions facgumight be rough). It is also becoming important to
handle correctly these dif culties in order to have a goodenstanding of both the average behavior of the system
and how it may departs from this mean behavior: Tools for treuation and quanti cation of uncertainties in
aerodynamic and thermal performance predictions need tiebeloped, supporting the aeronautical industry goals
of enhanced design con dence, risk reduction and improedety

The different problem we have sketched have already bedralpaacknowledged by the EC within the 6th
framework program, but also in the US. The STREPS ADIGMand NODESIM? are today answers to some of
these questions. Several conferences will be or have bddrmohehese topics, let us mention ECCOMAS 2006
and ICOSAHOM2006 for high order schemes, the "Uncertaintgng cation methods in CFD and Fluid Structure
Interaction problems" and “Adaptive Higher Order Variatib Methods for Aerospace Applications”, as well as other
similar minisymposia at the ECCOMAS 2008 conference in dehior at the 10th AIAA Non-Deterministic Ap-
proaches Conference, Schaumburg (April 2608) the Symposium " Computational Uncertainty " organizgd be
Applied Vehicle Technologies Panel (AVT) in Athens (Dec&mB007)

*http://mww.dir.de/as/en/Desktopdefault.aspx/tabi®®//2979 read-4582/
2http://www.nodesim.eu/index.html
3http://www.iacm-eccomascongress2008.org/frontadidiéfasp
“http://www.aiaa.org/content.cfm?pageid=230&lumegitin 1875
Shttp://www.rto.nato.int/panel.asp?panel=AVT



PartB_ADDECCO

A quick search on the NFS grant web p&ggves the following results for the period starting on Jagiubst,
2007: for the key word “Mesh adaptation”, there are 6 graotsftotal of $ 840 000, for “Finite elements” the total
is more than $ 9 million, and “Uncertainty” give a total of redhan $ 16 million. These numbers corresponty to
the grants that has been funded since January 1st 2007, favarage period of 3 yearg his shows that these topics
are considered as of paramount importance in the US.

Roughly speaking, the current technology in these domaidsfave restrict to uid/hyperbolic problems, are

to get a good accuracy: either to increase the mesh denséih@r globally by mesh adaptation, or to increase
(locally or globally) the polynomial approximation thatlsed implicitly or explicitly in the numerical scheme.
In particular, nothing really fancy is proposed to handle bloundaries where most of the physics, or most of
the quantities of interest for the engineers, is evaluaféelare not saying that what is currently done is wrong,
but there is a huge gap between the geometry evaluation by &@whe technology employed for the physical
guantities evaluations. As well, nothing fancy is proposedetter take into account the physics of the problem,
for example the boundary layers.

This problem of representing accurately the boundariestig oy problem because most of the quantities the
engineer is interested at are boundary quantities, likeg,dr heat ux, etc. In most mesh generator, one rst
starts to represent the body surfaces by mead of CAD, theéargtration of the surface is obtained, and then a
volume mesh is got. The mesh can be made of blocks that aretigally equivalent to cubes, or unstructured
with only tetrahedrons or of hybrid nature. In the numermeieme, the CAD is forgotten, so that one has to
reconstruct locally the body surface to guaranty accurdbtyere is absolutely no hope that the CAD industry
will adapt to engineering like problem, it has to be the ofjgosOne simple reason is that CAD is a much
bigger industry than the industry of engineering codes:GA® industry ranges in the $ 5-$10 billion while
the Computer-Aided Engineering (code development is ordyta-market of it) is in the $1-$2 billion range.
Moreover the difference in geometrical representatiorigdhr explain why the mesh adaptive technique are
still primary an academic endeavor rather an industridirietogy: the dif culty to pass information from one
system of representation to the other one are still too large

In both cases, there is a need for unconventional method tmegond the frontier of knowledge.

for uncertainty quanti cation, most of the research is ddi)én developing statistical techniques or gradient
type methods for the identi cations of the most sensitiveapaeters, (i) and once this is done, assuming a
probability density function (pdf) by a way or another, cartgothe ow statistics by intrusive or non intrusive
methods. In the second item, either the numerical methodatare modi ed once the uncertain parameters
and the type of the pdf are chosen (this is the case of Polalddtiaos type methods), or very smooth pdf
can only be reasonably be taken into account (this is the @fas®st non intrusive methods, except Monte
Carlo method, but the convergence is extremely slow). Ih loases, except for Monte Carlo methods again,
if some additional knowledge is reached during the simoitatior example by ltering, every thing has to
be started again from scratch. The development of an industide takes so many man-years that it is not
possible to convince anybody to rewrite a code from scratdi for taking into account the quanti cation of
uncertainties so that here again, there is a need of a Jersatcurate enough and non intrusive mettbdlt is
again unconventional method to go beyond the frontier ofltedge.

Our proposal is an answer to these challenges, and our purpde develop methods than could be used in
industry in the mid term.

The proposal is discussed around three main items:

How to make easy the interaction between the CAD descrifgifdhe geometry and the numerical algorithm
in uid problems where the ow may be irregular, with strongeglients and complex patterns,

How to both increase the accuracy and lower the number ofedsgof freedom for compressible viscous
problems,

Shttp:/iwww.nsf.gov/awardsearch/



PartB_ADDECCO

How to construct exible and versatile uncertainty quacttion methods for compressible uid problems.

Most numerical methods use in a way or another a local polyalorapresentation of the data. The current
technology for increasing the order of accuracy of numémoeethods consists mainly in increasing the degree of
the local polynomial approximation. In uid problems, teeare currently three types of methods. The rst one
consists in using the nite volume method with a very highargolynomial reconstruction; it is used for improving
the accuracy of the arguments of the numerical ux. Examplesthe ENO and WENO methods which are very
expensive and mainly very complex to implement. We are natrewf any industrial code of this type. The second
one is the Discontinuous Galerkin method which is a compserbietween the nite volume method and the nite
element method. There are currently a lot of activity arotimsl class of schemes in Europe, the US and China. This
is still a complex method which is very exible but suffer®i several drawbacks: the number of degrees of freedom
increase extremely quickly with the number of mesh poirtis, @pproximation of viscous terms is still a research
topic, and last the stabilisation of the schemes in steegigmtizone is very challenging: all the methods we are
aware of either kill the local accura®wenat local extrema, or generate small spurious oscillatiasfisstontinuities.
Killing the accuracy at smooth extremas is at the oppositeefoal of high order schemes! The last class of method
are stabilised continuous nite element methods. Thissctas be divided into two sub classes depending on wether
the stabilisation mechanism is parameter free or not. Tharddge of the continuous nite element methods is that
the number of degrees of freedom is much less important tinémei discontinuous Galerkin one though still large.
The drawback is less exibility, even though the parametegfstabilised continuous nite element method which
are discussed in this proposal called the residual disioibfRD) methods, have a version that enable to handle non
conformal meshes, as the discontinuous Galerkin techsiqife are currently working on the very high order version
of the RD schemes within the FP6 STREP ADIGMA.

In order to overcome the dif culties we have mentioned, duategy is:

Handling the interaction between the mesh and the schersieaith of using standard Lagrange interpolant (for
RD and DG) schemes or modal representations for DG, one a@sides Bézier or NURBS representations:
this amounts to abandon the idea of interpolation, the @sgoé freedom are control points and the same
representation is usdibthfor the surface and the ow parameters. This isogeometpcagentation has been
promoted by T.J. Hughes and coworker (a Google search @m®\itl80 answers, most from UT Austin) and has
never been used in compressible uid problems or hyperhwliblems because of the stabilisation weaknesses
of the Hughes'SUPG method. In our opinion, the understapdirhow NURBS/Bézier approximation can be
combined with the exible parameter—free and non-osahatRD framework will provide practical answers
to many simulation problems in uid dynamics, taking intocaont adaptation strategies, including near the
boundaries.

Reducing the number of degree of freedom in viscous layérs. fiite element theory is much more advanced
for structural mechanics than uid dynamics. In particulaingularities of solids like cracks, or boundary
layers are now better approximated by mean of the ExtendeiteFtlement method or Generalized Finite
Element method. The idea is to enrich the set of approximdtinctions by adding to the standard elements
localised additional terms that mimic the local singulastof the solution. Global continuity and smoothness
between the standard representation and the extended @ieisinto account by smooth partitions of unity.
This idea of extending the representation functions senkasrbeen envisaged in uid problems. In viscous
problem, the velocity has kg pro le in the normal direction to the wall, so one can consitl@s type of
enrichment function. Similar enrichment for the other &hles can also be obtained. The partition of unity can
be constructed from the distance function to the wall, tls¢agice function can be evaluated, even for general
meshes, by Hamilton Jacobi for which the Pl made signi camttdbutions for general meshes.

Uncertainty quanti cation. Instead of using polynomiabds type method, we represent the solutidr; t;! ),
wherex (resp.t) are the space (resp. time) coordinate arid a random parameter, by its averaged conditional
expectancy in “control volumes” in the probability spacehisTrepresentation combined with very standard
reconstruction tools as use in nite volume methods enablerite a priori a discrete evolution equation on
these averaged conditional expectancies. This requieskrntbwledge of the probability density function, but
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the change from one pdf to an other, if an optimisation tegmmiis used in order to increase the knowledge
on the pdf, is rather easy, once again using standard toolslfe algorithms for uids. The knowledge of
the averaged conditional expectancies and the pdf permiternpute any statistics &f. This method also
requires to know the most important random variables, thigassible thanks to statistical technique which
are out of this proposal. The number of random variabled imay be large so we are faced with the curse
of dimensionality problem. We intend to solve it by two meathpthat can be combined together. One is a
multiresolution method which only need the knowledge ofatieraged conditional expectandies extension

to our data structure of sparse grid methods. Given a prewiode for uid (for example), the method can be
coded as a loop over it, so it is rather non intrusive. Theadtlilty is to feed the original code with the right
argument, see section 2 of the proposal.

In each case, we will study the impact of the proposed algoiston the ef ciency of the method in term of CPU.

Special attention will be given to the high performance cotimg aspects of the method: parallelisation, locality of
the data, easiness in the coding, preconditionner issueslgng steady problems, etc. A particular attention will
also be given to provable error bounds, either analyticailgomputationally on well chosen test cases.

If successful, the proposal will be a real breakthrough wiitd term consequences on several industrial applica-
tions. Several groups have already shown their interesaiiiows aspects of these research program and wish to be
informed about the evolution of the project : let us mentildEEMA Solid Propulsion near Bordeaux (specialised
in rocket engines), SNECMA near Paris (specialised in amplengines) and Dassault Aviation. We have a very good
knowledge of the research department of these groups wa#peeor current research contracts.

We have analysed the level of dif culty to reach success. tAd developments will be conducted in a parallel
software which contains all the know—how we have reachedoonpeessible ow solvers The rst item (use of
Bézier/NURBS representations in computer codes for yidsyuccessful, will have important consequences on
computational solutions in industry. For the rst item, wavie already very preliminary results (on scalar problem
and square geometry): we already know that using non Lagmantggrees of freedom does not affect the stability of
the scheme nor the quality of the result. Hence the real difycis the handling of boundaries which is a reasonably
tractable issue. Note also that within INRIA, several teprojects are involved in internationally recognized reskea
developments on computer graphics, mesh generationcsudaresentation: the Geometrica team (J.D. Boissonnat,
mesh generation) in Sophia Antipolis, the Gamma team (Pdar@es, mesh generation), the Alice team (B. Levy
who has got an ERC starting grant last fall, CAD, surface regsht is easy to have exchanges with these teams.

The second item (use of fancy solution representation in C&d®s) is more complex to implement because it
may need a deeper understanding of boundary layers, and taisglif cult topic by excellence. However, we do
not think that such extreme things will be needed to make kerithm a success. Very likely, less sophisticated
solutions, combined with the knowledge and the know—how Inesady have on high order schemes, as well as on
fast algorithms to compute a distance function in order teageasonable guess of the boundary layers test functions
will make the job.

The last topic is in our opinion the most dif cult one. The aalgorithm as we have sketched it will work: it has
been shown on a toy example (see section 2) that this is atalalecand versatile one. The main problem is to face the
curse of dimensionality. This is@mmorproblem to any Uncertainty Quanti cation tool, even for MerCarlo ones
since it translates into many simulations. We have inditatsreral tracks we believe to be reasonable. They should
in principle help to reduce the computational size of thebfgm. Even if only low dimension problem can be dealt
with, this will be important for scienti ¢ and industrial gpications: many problems, such as turbulence modelling,
translate into rather low dimensional probability spaceor&lover, the method we propose is able, in principle, to
handle easily any evolution of the pdf via a learning progcesstrarily to most UQ methods. Here again, | bene t
from the scienti c environment of the University Bordeauarid INRIA: in Bordeaux I, Pierre Dal Moral, who is also
an INRIA research director, is a specialist of stochastjoaihm, and in INRIA Sophia Antipolis, | have excellent
contacts with Denis Talay who is a world class researchetorthastic algorithm (he is editor of many Journals).

"a few years ago, the Pl has already successfully worked smtéihod for other problems.
8http:/ivww.math.u-bordeaux.fr/ abgrall/ uidbox.html
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The success of this proposal will need the following: Durthgears, 90% of my time will be devoted to this
proposal. Four PhDs will work full time on this: one for thestritem, one for the second and two on the last
one (one for the basic method, one for the curse of dimen#ipmeaioblem). We will need 8 man-year of post doc
or engineers whose task will be to further implement, test \alidate the method on modern computers or grids.
Indeed the UQ method is quite adapted to computational gedause the main part of the CPU is in the ow solver.
The members of my group will be associated part time on tlEsarch program. Three of them have expertise in

uid solvers, mesh generation and adaptation, The two atlmave expertise in computer science, and mainly in
graph partitioning for parallel mesh adaptation and higtiguenance parallel linear algebra solvers. Indeed, it is of
paramount importance to validate the tools we will developr@ssively parallel machines. The most striking case
is the one of a simulation of a 3D ow simulation where somegpaeters are uncertain. The method we propose
consists in cleverly collecting the results of many 3D deieistic simulations in a way independent the structure
of the probability density function. Each deterministidccdation is quite costfull, and a good technique is to use a
parallisable algorithm. The deterministic method we psw#pbavea priori an excellent behavior with respect to this
constraint. If several random parameters are needed, theeamf computation increases linearly with their number,
so that a good parallelisation strategy is mandatory.

Pr Charbel Farhat (Stanford), Tim Barth (NASA Ames Rc), PAACShu (Brown University), each beeing inter-
nationally recognised researchers, will also be assatthtevarious aspects of this research program. More plgcise
Prpfessors Farhat and Shu have direct interest in the rstiteams (i.e. the use of more adapted representation for
the unknowns in order to handle the boundaries). Pr Shu @églslan NSF grant on uncertainty quanti cation in the
period 8/2005—-7/2008 and has interest in the UQ part of thpgwal. Tim Barth has interest in uncertainty quanti ca-
tion as well as in the two other items. We already have workigd thhem (visits and/or joint publications). Ph. Pebay
(Sandia National Labs, Livermore, CA), who is a specialfgtigh performance computing, is also interested in this
work and is willing to participate. In order to invite thegeesialists that already have agreed to come, 12 months for
visiting professors are scheduled.
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2. The ADDECCO proposal

2.1 Context and objectives

The aim of this project is to makela&eakthroughin the numerical simulation of problems that are modelisg@ b
set of partial differential equations which main behav®of hyperbolic nature. Currently, in part because of the
emergence of new types of massively parallel machines iegathle possibility of true real size simulations, in part
because of the increasing demand of the industry, we anegsthes following trends:

1. need for more accurate simulations,

2. need of more complex geometries with very heterogeneanes ® the geometry, all this with a more and more
involved physics,

3. have the possibility of taking into account some unceti@s$ on the physical model, the geometry and other
parameters in order to evaluate an average behavior, angarénd other statistical quantities if needed.

Accuracy can be reached either by increasing the numberiatispor by increasing the order of accuracy of the com-
putational method or both. In the aeronautical industryergtextremely complex ow patterns including boundary
layers, ow separations, shock waves and various inteyadiietween them, computers use on a daily basis meshes
of several millions of points to capture these phenomenaeérbest possible way. Most of the computer codes are
only second order accurate, so that the ef cient capturdldhase phenomena is very dif cult: a lot of degrees of
freedom are wasted to compensate the weaknesses of codesof @re ways to overcome partially this is to use
mesh adaptation, but we are faced with the problem of aayreapturing the solid boundaries which may be very
complex (think of the combustion chamber of an engine, ortzotmachine, for example). This situationtypical of

the industry of uid mechanics: very complex geometriesyMveomplex ow patterns.

However, the technical challenges that have to be faced dheygarequire more accuracy in order to capture
details that have a strong in uence on the ne tuning of maelsi. An example is given by the evaluation of drag for
an airplane. The codes need todmeurate they also need to biastbecause most of the time they are an element of
an optimisation loop.

Similarly, the physical model may be uncertain. This is ¢gly the case of a turbulence model, this may also
be the case for the geometry or the boundary conditions facgumight be rough). It is also becoming important to
handle correctly these dif culties in order to have a goodenstanding of both the average behavior of the system
and how it may departs from this mean behavior: Tools for treuation and quanti cation of uncertainties in
aerodynamic and thermal performance predictions need tiebeloped, supporting the aeronautical industry goals
of enhanced design con dence, risk reduction and improedetg.

The different problem we have sketched have already bedialpaacknowledged by the EC within the 6th
framework program, but also in the US. The STREPS ADIGRIAnd NODESIM' are today answers to some
of these questions. Several conferences will be or have Ihelenon these topics, let us mention ECCOMAS 2006
and ICOSAHOM2006 for high order schemes, the "Uncertaintgng cation methods in CFD and Fluid Structure
Interaction problems" and “Adaptive Higher Order Variatib Methods for Aerospace Applications”, as well as other
similar minisymposia at the ECCOMAS 2008 conference in ¥ or at the 10th AIAA Non-Deterministic Ap-
proaches Conference, Schaumburg (April 2888)r the Symposium " Computational Uncertainty " organizgd b
The Applied Vehicle Technologies Panel (AVT) in Athens (Beber 200713

Roughly speaking, the current technology in these domaims a

to get a good accuracy: either to increase the mesh densétihor globally by mesh adaptation, or to increase
(locally or globally) the polynomial approximation thatlsed implicitly or explicitly in the numerical scheme.

Shttp://www.dIr.de/as/en/Desktopdefault.aspx/tabi®&/2979_read-4582/
http://www.nodesim.eu/index.html
Phttp://www.iacm-eccomascongress2008.org/frontadldiefasp
2http://www.aiaa.org/content.cfm?pageid=230&Ilumegitir 1875
Bhttp://www.rto.nato.int/panel.asp?panel=AVT
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In particular, nothing really fancy is proposed to handke bloundary where most of the physics, or most of the
quantities of interest for the engineers, is evaluated. Wenat saying that what is currently done is wrong,

but there is a huge gap between the geometry evaluation by &@whe technology employed for the physical

guantities evaluations. As well, nothing fancy is proposedetter take into account the physics of the problem,
for example the boundary layers. This problem of represgrdaccurately the boundaries is not a toy problem
because most of the quantities the engineer is interestae inoundary quantities, like a drag, a heat ux, etc.

In both cases, there is a need for unconventional methods begond the frontier of knowledge.

for uncertainty quanti cation, most of the research is d¢nen developing statistical techniques or gradient
type methods for the identi cations of the most sensitiveapaeters, (ii) and once this is done, assuming a
probability density function (pdf) by a way or another, cangthe ow statistics by intrusive or non intrusive
methods. In the second item, either the numerical methodatdre modi ed once the uncertain parameters
and the type of the pdf are chosen (this is the case of Polaldbtiaos type methods), or very smooth pdf
can only be reasonably be taken into account (this is the @fas®st non intrusive methods, except Monte
Carlo method, but the convergence is extremely slow). lh loases, except for Monte Carlo methods again,
if some additional knowledge on the pdf is reached duringstheulation, every thing has to be started again
from scratch. Here again, there is a need of a versatile aiecanough and non intrusive methduit is again
unconventional methods to go beyond the frontier of knayded

Our proposal is an answer to these challenges, and our purpds develop methods than could be used in
industry in the midterm.

The methodology we propose is a general purpose one, but lmainly concentrate on uid dynamics prob-
lems, and in particular on high Reynolds uids ows problen@ther natural application domains are aeroaccoustics,
magneto-hydrodynamics, geophysics and more generallyetsthyvhere the system can be described by a rst order
hyperbolic system, this because of the structure of thegpalitferential equations. In each case, the methods are
designed for handling complex geometries, and the mesisésafised by unstructured meshes.

We propose to develop

1. high order solution strategies to the above problems evttex high order is obtained thanks to elements (in
the nite element meaning) that are adapted to the solutiorctire and the geometry. As explained in what
follows, our strategy is very different from standard higlder methods such as the Discontinuous Galerkin
(DG) methods.

2. numerical strategies that allows to handle general taicges in the problems, such as, in uid mechanics,
the uncertainties in the models, the boundary conditiont@geometry. The proposed strategy is essentially
non intrusive, is not of the polynomial chaos type nor of tb#acation type, see e.g. [1, 2]. Moreover, and
contrarily to the conventional methods that are currenglyetbped stochastic optimisation can be coupled with
the method.

2.2 State of the art

In this paragraph, we review the state of the art for high osgbemes adapted to hyperbolic problems or parabolic
problems where the diffusive term has only a very local ratein the Navier Stokes with large Reynolds numbers. In
a second part, we review the methods for uncertainty queaion.

2.2.1 Very high order schemes for hyperbolic/hyperbolic poblems

Recent conferences, and their numbers, like ICOSAHOM {Bgij2006}*, ECCOMAS CFD 200&, ICCFD in
Ghent® or ICFD 20067, as well as the numerous recent publications in the jourh@bonputational Physics, Com-

Yhttp://lsec.cc.ac.cn/ icosahom/
Bhttp:/iwww.eccomascfd2006.nl/
Bhttp://www.vki.ac.beficcfd4/index.html
Yhttp:/iwww.icfd.reading.ac.uk/ICFD2007/



PartB_ADDECCO

puters and Fluids, SIAM Journal on Scienti c Computing oudwal of Scienti c Computing, have indicated that
there is a lot of interest in high order schemes for genenaéyolic problems, mesh adaptation, unstructured meshes
and the simulation of complex physics such as multiphases,dAHD or wave propagation problems, see e.g. [3, 4]
and the references therein. Many groups are working on {hedgems or related ones. Let us mention the Applied
Math Department at Brown University (C.W Shu), T. Barth (N®8mes), groups in the Institute of Computational
Mathematics of the Chinese Academy of Sciences or Nakingdusity (Pr. Qiu) to mention just a few. Within Eu-
rope, many groups are also focusing on these issues: tleeattifiteams within the FP6 STREP ADIGMA, groups in
Bari and Trento University to quote a few, and for applicasian aerodynamics, and in France, we may mention the
GAMMA, SMASH and NACHOS teams at INRIA, ONERA or differentams in Universities (Paris VI, Marseilles,
Toulouse, Ecole Centrale de Lyon, etc).
Which methods are popular, what are their limitations ? bieoto x ideas and notations, consider the simple
scalar convection diffusion model on RY(d=2;3)
@u_ . "
@t+ div f (u)
with Dirichlet boundary conditions o@ if " > 0 and on the in ow part of the boundary wheén= 0. The ux
f is assumed to b€! at least in the variable. One can draw the picture from this simple problem. Consider

u=0 (1)

.....

polygons and cover and are such that K; 6 Kj, then the intersection the interiors kfi andK; are empty.
The mesh may be conformal or non conformal in the nite elenfashion'8. Being conformal or potentially non
conformal is a crucial choice.

If the mesh is non conformal, the most developed class of numerical methods is the Diszants Galerkin
method. It is a natural extension of the nite volume methdukw the control volumes are the mesh eleméntdt
has been invented by Reed in 1973, analysed by Le Saint anidrRavthe late 70's, and after a pioneering work by
Cockburn and Chavent [5], it has been revived by a seriespdipay Shu and Cockburn in the early 90's. The idea
is to use an approximation space that is composed of disewanis functions. More precisely, given an integéthe
maximum degree of the interpolation), we consider the appration spacé/,, de ned by

Vh = fu such that for anK in Ty; Ujk is a polynomial of degree a mosg:

The functions oV}, are smooth inside the elemer{sbut are in general discontinuous across their edges and.face
In the following P+ (K') the vector space of polynomials of degrede ned in K, it is of dimensionngk . Of course
other choices or constraints aaepriori possible, but this is the simplest and most widespread om¢e that there
is no reason that the degree of the approximation in two heighg element be the same: this is one strenght of the

method and it opens an avenue for mesh adaptation.
Referring to Figure 1 and the notations therein, the next

step is to develop a weak form of (1). For the sake of sim-
plicity, we do not develop on boundary conditions here.
First, in the casé = 0, the variational formulation writes:
forany' 2 V,, nd u2 V, and anyK 2 Ty, such that
Z Z VA
Ly @U . Sy :
(X)=dx+ ' f(u)dx (Ui ;u ;n)' (x)=0:
@t @K
2)
Here,n is the outward unit normal t& , u refer to the
trace of the numerical solution on the elem&nt on the
opposite side oK , see again Figure 1. Last,is a consis-
s‘tent numerical approximation of the continuous fixi.e.
f’\(u; u;n) = f (u)n (we are dealing with scalar problems
for the sake of simplicity), anfi(u;v;n) = f(u;v; n)
to guaranty conservation.

K K

Figure 1:Example of two neighboring element
K andK and the outward unit normat.

B\We say that the triangulation is conformal is the intersectf two elements are either empty or is a point, a complege eal complete
face, in dimension 3.
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The relations (2) de neng differential relations. First, consider the dlﬁerent%t, it is approximated via an

Du L . . o
ODE solver, and we denote bBT the approximation. The approximation can be explicit orliekp If U denotes a
representation afijx via a basis oP-(K'), the relations (2) translate into

Du
M Dt +F =0
where the components Bf are the left hand side of (2) evaluated by mean of numericadiiures. The mass matrix
M is independent of) and is a symmetric block diagonal de nite positive matrixpfoper choice of the polynomial
expansion leads to a diagonal matrix. For exampli, i§ topologically equivalent to a Cartesian product of inéds
[ 1;1], the natural expansion is obtained via Legendre polynamial

The nice feature of the method is that the semi—discretensel{g) satis es an entropy inequality whéhis an
E-scheme, and when the entropydéu) = %: one has a natural energy stability. The dif culty is to eresu*’
bounds when the polynomial degree is larger than 1, so tleat fis a need to add a stabilisation mechanism. It is
still a research topic to nd proper stabilisation mechamsswithout destroying the formal accuracy of the scheme
in particular at discontinuities and extrema. This is not@bfem in case of a discontinuity in the solution, since the
notion of accuracy in this case has no meaning, except tleads to the enlargement of the discontinuity. It becomes
more problematic in the case of smooth extrema becausestiigecisely the feature that one wants to properly
compute.

When" > 0, the approximation of the dissipative term is really nowiali in part because the approximation
space is not irH X() while the dissipative term of (1) is de ned naturally kh'() . Of course several solutions
exists to solve the problem, see [6]. Up to our knowledgethalpublished approximations depend on parameters
that are problem dependant. In addition to this, the steridtie numerical scheme becomes larger since one needs,
for any elemenK 2 Ty, the immediate neighbors (for the convective and dissipagrms) and the neighbors of the
neighbors (for the dissipative terms).

For DG methods, after the work by Bassi and Rebay [7], it iskmthat the boundary conditions implementation
need to bereryaccurate otherwise the scheme may develop some kind obilitsés. For this, an accurate boundary
representation is needed, up to my knowledge, this is dopedhd” since there is no natural connection between the
CAD and the numerical solver. This problem of representicgueately the boundaries is not a toy problem because
most of the quantities the engineer is interested at aredaoyrguantities, like a drag, a heat ux, etc.

Our last comment is about the number of degrees of freedowrsa Fegular mesh, if the approximation &t
is de ned with polynomials of degrep, there is of the order gi*ns degrees of freedoms (precisdlgn, forp=1,
55n; for p =2, 210n; for p = 3, 63 for p = 4 wheren; is the number of tetrahedrons, anchif is the number of
vertices,n;  6ng). This is huge, since for industrial size applicationg.can be of the order of millions.

If the mesh is conformal, one can consider stabilized nite element methods. Roughlyaking, there are two
types of such methods: the Petrov—Galerkin methods sucheaSWPG or stream-line diffusion method, and the
Residual Distribution schemes. The rst class is obtainga bariational formulation similar to what is done for (1),
except that a new term needs to be added for stability reastere, the solution is sought in

Vh = fu continuoussuch that for anK in Ty; ujk is a polynomial of degree a masy:

For the steady version of (1) with Dirichlet boundary coimfis the Petrov—Galerkin method is: nd2 V;, such that
forany' 2 Vi,
Z VA Z
r'f (u)dx + divf(u)fl? r'dx + g nd+
Z Z
u '+ fF2rr dx+ " rtoroudx
z
" ufdu) rdx =0

10
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Here = Ch, whereC is a positive constant. Again, we do not elaborate on the tanynconditions, for the sake of
simplicity.

Another class of schemes which are still under active dgveént consists in the Residual Distribution schemes
(RD). This formulation has been initiated by P.L. Roe in tB&s8and the stream—line diffusion method above can also
be seen as a member of this class. However, the main empleasissionL® stability properties, and nat? ones.

In their original form, they were second order accurate @mlg tuned for steady problems [8], but many advances
have been obtained by myself and members of my group.

Consider the steady version of (1), i.e. t tis removed and we have boundary conditions. The second order

accurate method is constructed in several steps. Considi@ngular type mesh rsfy,. The vertices are denoted
fMigi=1:n,. The solution is approximated at the verticesuie u(M;). This is a rst difference with DG meth-
ods. In each triangle, the solution is approximated by alinegrange interpolant”: the interpolation is globally
continuous. Then we evaluate, for each elenferthe total residual ' de ned by
Z
T = f(u") ndl:
@T
The third step is to split the total residual in sub-resigudl, one for each vertex 6f, [ (u"), forM; 2 T, so that
the following conservation holds
Tun=Tn:
Mi2T
The scheme writes X
for eachM; TuM=o:
TM;2T
This provides one equation per vertex (Dirichlet boundamyditions are applied on the in ow boundaries) which are
generally solved by an iterative scheme. One can show []fttiathe numerical solution stays® bounded, (ii) a
sub-sequence convergesliA towards &2 functionu, and (iii) the element-size conservation holds true, thena
weak solution of (1).

Examples of sub—residualgT, and in particular examples that guaranties botH abound and formally second
order accuracy are given in [a3,a4]. These properties arsmontradiction since the scheme has to be non linear,
according to Godunov' theorem. Note that in the case of a #msalution, the accuracy is kept even at extrema,
contrarily to classical MUSCL or DG type scheme. This is ot#d thanks to a deep understanding of the structure of
the equation : we use in the construction that (i) the probtesteady and (ii) the interpolation (continuous piecewise
linear) is second order accurate, and not any Taylor expariie argument. The scheme can be made parameter
free.

These construction can be extended to unsteady problemdgg&in using the structure of the equation, and to
any order of accuracy, at least for scalar problem [a8]. Nlwatany standard rst order nite volume scheme can
be rephrased as a RD scheme, see [a6], a remark that openslomaay We are currently developing these schemes
for the Euler equations, as well as for the Navier Stokes,oufparth order with the FP6 STREP ADIGMA. The
challenge is to understand how to discretise viscous pmuhlseveral tracks are under investigation.

In our simulations on very high order step using quadratigraage interpolant, we have experienced the follow-
ing fact: the scheme and the results seems to be much lessddepecompared to DG, on the boundary representation
and the implementation of the boundary conditions. Needetls, if one wants to recover the expected order of accu-
racy, as in DG methods, we must accurately represent thedbogicondition. Again, this is done “by hand” because
there is no direct connection between the CAD and the nualesadver. This problem of representing accurately the
boundaries is not a toy problem because most of the quantiteeengineer is interested at are boundary quantities,
like a drag, a heat ux, etc.

We end this section by an evaluation of the number of freedaus emphasize that the approximation functions
are here globally continuous, in contrast with the DG methBdr a regular mesh, if the approximation §&tis
de ned with polynomials of degrep, there is again of the order pfns degrees of freedoms (precisely forp =1,
8ns for p = 2, 27ng for p = 3, 64n3 for p = 4 whereng is the number of tetrahedrons). This is huge, since for

11
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industrial size applicationsis can be of the order of millions, but much less than for DG stheeratio DG/RD i24
forp=1,75forp=2,409 4:44forp=3,10532 3:28forp =4 and336=125 2:68for p =5 and so

on ... Currently, it is not very reasonable to expect more #ih order accurate schemes because of the size of the
computers. Moreover, the real breakthrough is expectesldagt second and third order accuracy, so the algorithmic
complexity of RD scheme is expected to be much less than fooD&S.

If one has in mind to have some exibility in the mesh struetuior example to compute helicopter blades where
some pieces of the geometry move with respect to others, theicase of turbomachineries, it might be interesting
to combine the conformal and non conformal properties ohtleshes. Recently, we have shown that this is possible
in the context of residual distribution schemes, and themses have provable! properties-®

2.2.2 Uncertainty quanti cation

In many cases, the de nition of the physical problem is ndiyfknown. This may be the case for several reasons:

The geometry may be known only partially. Imagine that theybgurface is rough, one can certainly parametrize
the roughness by some random process. We are aware of atri@mdeisample, the one of the nozzle located at
the exit of a rocket engine designed by SNECMA where the sarteparts slightly from an average surface.
One can interpret the shape of the boundary as one event nflamavariable.

The boundary conditions may be partially known only, forrapée in the case of uctuations of some parame-
ters,

Some constants in the model can be uncertain, think for eleaofip turbulence model. This is a very important
practical problem for industry.

In each case, even if the model, hence the numerical methoaduffers from de ciencies, there is still a need to
compute and simulate !

In order to tackle this issues, there are currently seveddrtiques available in the engineering community, and
this is a very active research topic as we have recalled aipgé/ing some recent conferences on this topic.

One technique relies on polynomial chaos expansion. Aswyihiat the random inputs data which depends on
spacex 2 A RYand a a random parameter, say the boundary conditions toeasidis de ned on a probabilistic
spacg ;A;P) and has a nite variance, we can de ne the covariance matrix

Clxy) = E(X (%)X (y;1); forxjy 2 A:
If fi is thek—th eigenfunction 7
. COsY)fk()dy = kfk(x);
one can write the Karhunen-Loéve expansioiXof

X p__
X(x;!)= kfk(X) k(') 3)
k=0

where the i are uncorrelated Gaussian random variables. Then, faipyiO], one can expand the solution of (1) as

s X X
ut;x;! )= ag o+ aj, 1( 12(! )+ i, 2( 1(1); 2(1))

=1 i1=1 =1
+ 1l
. . (4)
+ QAigip:iy k( 1(! ); 2(! );.“; k(! ))
i1=1i1=1 ik=1
+

R. Abgrall and C.W. Shu. Development of residual distribatschemes for the discontinuous galerkin methods : tharscase.Com-
munication in Computational Physic2008, in revision and R. Abgrall, Une méthode de type distive employant des éléments discontinus
pour le calcul d'écoulemnets avec choc. Research Repo®, 6MRIA, Feb. 2008, https://hal.inria.fr/inria-0021820
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The functions ¢ are de ned by

T @e T .

@1::: @«
The idea is, after truncation both in the random input andt@introduce this relation into (1), then to use a spectral
method (because of the form of thg). There are other versions of this polynomial chaos, seexample [11, 12].

In our opinion, there are at least three drawbacks to thiscagp. First, it is not clear at all what should be the
right truncation level in the expansion (4), see for exanipBd. Second, if one has a good numerical method to solve
one problem, the numerical strategy has to be revisited #amZ to go to another one. It is also not clear how to
handle discontinuities in the formulation. The last oné& if one changes the structure of the input random fungction
every thing has to be restarted from scratch. This is the icagarticular when new informations are introduced to
the system.

The second problem of the previous approach, that the méthattusive, can be tackled by a method which is
in between the spectral expansion that has been sketched abd the Monte Carlo method. One chooses a “good”
set of random realisations and one run the baseline nurhedibame for these random parameters. Since the output
of the whole computation is to evaluate expectation of ational f of the the solution, say the pressure distribution
to x ideas, these functional depend op, ..., n. The random parameters are chosen such that the expectancy

z

E(f)= f(1;:00; n)d

can easy be evaluated easily with a good accuracy. This asitmmd quadrature points for this integral. These
guadrature points are related in general to zeros of sorhegwhal polynomials. The curse of dimensionality can be
tackled by mean of the Smolyak quadrature formula, for examphis path has been explored by several researchers,
see for example [2].

In our opinion, one of the weakness of this technique is thitel probability density functions are not smooth
enough — this may occur in some combustion problems, seelf]l3or example—, the convergence of the integral
may be very slow.

In both case, an other major drawback is the following: théigdn general not known, so that the whole
process collapses. The numerical procedure may be one fpanmore general loop in which a learning process
is implemented, via some optimisation loop for example. a@¥e once the expansion (3) has been chosen, there
iS no space for any learning process so that the expectetisre§uhe whole methodology can be disappointing.
How can we construct a humerical method, able to handle tuigk problems, for which a learning process can be
implemented ?

2.3 Methodology

This section describes the technical content of the ADDE@@iposal.

The aim is to propose adaptive numerical methods for comg@D and 3D compressible ow problems that are
capable of solving several important dif culties in ow suation. By adaptive, | mean of course that the mesh can
be adapted to the solution, but the main topic is to adapt tingenical method to the structure of the problem. More
precisely, we want to deal with the following challenges:

What is the impact of the geometry description on the nuraésitategy and how can we make it as exible as
possible ?

Can we adapt the numerical strategy so that good numerisaltsecan be achieved with relatively few mesh
points ? One possible track is to adapt the mesh while kegpagumber of points relatively constant, this is
the strategy that has been explored by Alauzet et al. [15)sorg duality arguments like in [16] for example.
We intend to couple the Residual Distribution strategy,aose it need less degrees of freedom than the DG
one, with a more clever choice of basis and test functions. SBme idea can be explored for different physical
problems such as acoustic ones or geophysical ones: inltiggsérequency wave propagation problems, one
can certainly exploit the structure of solution in the nuitermethod.

13
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In many physical or industrial type problems, the model ity grartially known. This may be the case of
the geometry, the boundary conditions, the turbulence inetle Can we de ne a numerical algorithm that
can easily take into account the uncertainties in the madel, handle a relatively large number of random
parameter and can also be easily adapted, via, for examplptemnisation loop ?

Throughout the project, despite three apparently diffetepics will be covered, we will use/develop the same type
of numerical technology: the residual distribution schetbecause they are robust, simple to implement, implicit by
nature and parameter free. The accuracy of the type of RDrezkee will use may differ depending on the problem
(for example in the UQ problem, we will certainly restrictreelves to the simplest RD schemes), but the construction
and implementation philosophy are the same. A registeresiore of the parallel (MPI) softwar€luidBox is
located at http://www.math.u-bordeauxsfabgrall/ uidboxlight.tgz.

2.3.1 Numerical schemes

This part falls within the context of Residual Distributischemes. They are nite element type schemes where a
parameter—free mechanism enables to compute subsomisotiia, supersonic and hypersonic ow problem without
any oscillations.

Adapt the solution representation.

As said before, we are extending the schemes to more thandseoter accuracy. Doing so, it is known, see [7]
for another method, that the scheme accuracy can be spbiteelhoundaries are not represented accurately.

In most mesh generators, one rst starts to represent thg fadaces by mean of CAD, then a triangulation of

the surface is obtained, and then a volume mesh is got. Thie ca@sbe made of blocks that are topologically

equivalent to cubes, or unstructured with only tetraheslronof hybrid nature. In the numerical scheme,

the CAD is forgotten, so that one has to reconstruct loc&iéy liody surface to guaranty accuracy. There is
absolutely no hope that the CAD industry will adapt to engiimg like problem, it has to be the opposite. One
simple reason is that CAD is a much bigger industry than tHastry of engineering codes: the CAD industry

ranges in the $ 5-$10 billion while the Computer-Aided Eregiring (code development is only a sub—market
of it) is in the $1-$2 billion range. Moreover the differentegeometrical representation partially explains

why the mesh adaptive techniques are still primary an acedenadeavor rather an industrial technology: the
dif culties to pass information from one system of repretsgion to the other one are still too large.

In a recent paper, Hughes and al. [17] have used a Béziersmqetion of the ow variables, or better a
NURBS one. The idea behind this is that the CAD use Bézier and/or BIE/R® represent the surface. If one
is able to use the same control parameters for both the suafad the solution representations, the treatment
of boundaries becomes trivial. Moreover, if one re nes thesim this translates to the surface by adding some
control points: things become also natural. There exigtegdisations of NURBS that permit a non conformal
representation of the surface, examples are the NURCC&s [18

This idea can rather easily be imported in the RD framewordabse of its exibility so that one can expect
a numerical method able to solve regular and non—regular patterns where adaptation tools will naturally
“talk” to the CAD. This is exactly what is currently needed.e\ffropose to explore this idea, both from a
theoretical and a practical view point.

As a matter of fact, we have already implemented this solutepresentation on a simple scalar example,
namely the Burgers equation [B; 1]° with in ow boundary conditionu(x; 0) = 1:5 2x and then a non
trivial one, the Guckenheimer problem [19]. The rst examplas a convex ux, while in the second one the
ux changes concavity so that the problem is more dif culth@ results for &2 Lagrange interpolation and
guadratic Bézier functions in triangles are representedjore 2.

20Non-Uniform Rational B-Splines
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(@) (b)

() (d)

Figure 3:Example of average solution and standard

deviation for a convection problem with periodic

boundary condition: (a) rst order, (b) second order

in space and the Burger equation: (a) rst order,

(©) (d) (b) second order in space. The initial condition is

Uo(x) =sin(x + ') with' random equidistributed
Figure 2: Solution of the Burgers equations using: in [0; 1]. There are80 points in[0; 1] and 30 points
(a) P2 Lagrange interpolation, (b) Bézier represen- in the probability space. For some tirflg the mean
tation, and the Giickenheim equation: @ La- solutionse (u)(x; T) andE(u)(x;T)  (x;T) are
grange interpolation, (d) Bézier representation. plotted; is the local variance.

Of course, these examples have simple boundaries, but liosy that the method has an excellent potential.
The questions to look at are:

(i) How to extend this to systems,

(i) make the scheme effective on boundaries,
(iif) how to handle viscous terms (this is a general quesfiorRD schemes),
(iv) how to adapt the method to unsteady problems,

(v) study and understand how the mesh adaptation technifpresxample those developed by Dobrzynski et
al. [20]. (C. Dobrzynski is in my group).

(vi) what is the most effective parallel implicit stratedsy, particular in connection with parallel adaptation.
We have a good contact with the Snadia group, in particul@eBay and T. Tautges, who is developing
MOAB 2! which is a parallel mesh adapter. In my group, there is algeeRegrini who is a computer
scientist specialised in graph partitioning, he has dgeddhe PTScotch libra? which is an alternative
to the METIS library.

The second item deals with the adaptation of the local smiugpresentation to the ow structure. Up to now, in
each elements, the ow parameters are interpolated by anagrinterpolant. In a boundary layer, for example,
the velocity changes very quickly in the direction normatte walls with alog pro le. The temperature may
also change very quickly, for example in the case of Diriclleundary conditions. The classical way for
dealing with this question is to have a cluster of mesh pdhdsis dense enough in the boundary layer. Thus,
most of the memory and computer power is used in these smiadigsential regions: what happens near the
wall boundary is the most important for the engineer.

In solid mechanics, there is a relatively long tradition dapting the functional spaces in the Discontinuous
Galerkin formulation to the local structure of the solutidrhis is the case for the simulations of cracks, bound-

Zhttp://cubit.sandia.gov/MOAB/
Z2http://www.labri.fr/perso/pelegrin/scotch/scotch. leml
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ary layers, etc. In the XFEM method, the variational settimgginally made of Lagrange interpolant, is en-
riched with functions that translate the behavior of sometsm of ideal crack problelms, bgundary layer prob-
lems, etc. In elements near the crack, the solution is safghe formu”(x) = uy(x)+ :‘:1 fpai' Li(x)
whereuy lies in the standard nite element spake, the functions  form a partition of unity, and the ; are

enrichment functions, for example solutions of elemengapblems.

In the case of uid mechanicghis idea has, up to my knowledge, never been implemeritetdme sketch
one possible implementation. The velocity pro le in theatition normal to the boundary has an exponential
form. Using Hamilton Jacobi techniques such as those | hesiqusly developed [2%}, it is easy to have
(quickly by fast marching methods) an approximation of thetashce function, and thus to construct explicit
approximations of the velocity: this is the equivalent of #nrichment functions in the XFEM method. The
dif cult point is then to construct partitions of unity ante rst thing to try is to export the methods of XFEM
to our context. Since many smooth partitions of unity exist,example with radial basis functions, there
certainly a good candidate.

To achieve this program, the rstthing to do is to test and@ae the RD formulation on a very simple example,
for example onf0; 1]

0= »y%  y(0)=0 andu(l) =1

for which the explicit solution is known. Once we get someenstinding of the problem, both experimentally
and analytically, more complex multidimensional probleiili e examined. The issues are the same as in the
previous item, in particular the computational ef cienc@ne additional dif culty is to understand how the
correction term can be put in the viscous formulation in airstfashion.

u

This idea can also be used for different physical problerosustics, aeroacoustics, and geophysical problems
where an high frequen@nsatzcan be employed in the same spirit. The sets of PDE can alspprexamated
in the RD framework because they are hyperbolic problems.

2.3.2 Uncertainty quanti cation

Let us describe the proposed methodology on a scalar naar laomservation law witfix; t;! ) 2 [0;1] R*

Suoat1 )+ SF (Uit ) =0

Assume that the discretisation in the non random case is bipre nite volume scheme (this is not essential).

We discretisg0; 1] in “control volumes” in space and the probability space atd}; denote ?@e sub-domain
Xi 1=2:Xje1=2] [jiljaal( Xj = Xjaa=2 Xj 1pand !j;="!j4 !j)withtotal measurec, dxd (!).
Integrating ovelC;; and application of the divergence theorem yields
q Z Z
a . u(x;t;! )dxd (1) + | f(u(xi + xi=2;t;1))  f(u(x xi=2;t;1)) d (1)=0
ij P+l =2

R
Next de ne the averaged conditional expectandigs(u) ci u(x;t;! )dxd (!): The semi-discrete
approximation is then given by
d Z
geEi (W +

1
meas(Cj )

m@ij) e f(u(xi+ xi=2;t;1))  f(u(x; xi=2t1) d (1)=0 :

Godunov-like schemes are devised by supplanting the trxeatuspatial interfaces of each cell by Lipschtiz
continuous numerical uxesh(u-;u®) : R R 70 Rf(u(xi + x=2t!))  h(uh, ,(tEw);ul, (t!))
equipped with the following properties: consistency andsepvation, monotonicity. We have

Z
d
—Eijj (u) +

pr h(uiL+1=2;Uﬁ1=2) h(uiL 1:2;UiR 1=) d (1)=0: %)

)

measCj; )

Z0ther methods exist of course, but here the assumptiontihiaanesh is non structuredpriori. Hence, most existing method collapse.
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The next step is to evaluate the conditional expectatiorhef tix. For this we can use tools that are familiar in
the nite volume context : the reconstruction algorithm tti applied to the cell expectations. De ne the nite-
dimensional tensor product approximation in each cell

X T |
. _ (rs) X Xj : Sj+1=2
uCij (X,! ) - CIJ

0
0

‘o Xi Hj+1=2 ©

s q

consisting of at mosp-th order monomials in physical space agth order monomials in probability space. The
coef cients are then determined from the requirement thisttensor product approximation produce the correct cell
expectations in the surrounding celipjo, with stencili  my i i+ Myandj m, j% j+ M,. This

is the same method than the one used in ENO/WENO scheme22Xe8Y appropriate choice of cell stencil widths
(my; M) and(m; ; M, ), the linear algebraic systems in each isolated dimensierumiquely solvable subject to

technical conditions on the probability distribution. Téwef cients u(rs) in the tensor product are then ef ciently
determined. The time derivative in (5) are approximated byitable ODE solver. In the examples bellow, we have
chosen a second order Runge-Kutta method. As a rst*$tehis algorithm has been applied to the convection
problem ¢ (u) = u) and the Burgers equatidr(u) = %uz for an initial condition of the formug(x) = sin a(! )x +
b(! ) , see Figure 3. The results show that that the method has atjpdtéut of course many things need to be done
to get an ef cient one. The method is relatively non intresithe algorithm is organised in several loops of increasing
depth. The rst loop is a loop over the probability discratisn, all the other internal loops are those of the original
scheme: very little has to be modi ed.

We have described a general method that can be applied tcageysibheme, not only Godunov like ones. Other
schemes, such as the ones developped in section 2.3.1 cabeatiealt in the same spirit. There are many open
guestions

Usually, Godunov type methods have a stability criteriachitdepends on the speed of the fastest waves. Here
this speed depends on the random parameter, so, can we nifbanalbound hat will de ne a minimum time
step. It is very likely that the answer is no for a general df,that one has to consider implicit schemes.
How to extend this methodology to implicit schemes ? Againatural candidate (because they are implicit
scheme by essence) are the RD schemes, but this point isseritiet to demonstrate the versatility, we have
to demonstrate that it is not scheme dependant. This wildne d

How to extend this for systems of conservation laws and tergthysically relevant systems , such as the Navier
Stokes equations ? In the toy example shown above, we havergiéemented the viscous Burger equation, so
that in principle, if the previous item has got a satisfagtanswer, this is not a problem.

The next real challenge is the following: When the numberatiom parameters becomes large, we are facing
the curse of dimensionality. There are several ways of faitiis. One is to adapt Harten's multiresolution anal-
ysis to compress the number of relevant conditional expega to store [23], [d1]. The evaluation of relevant
statistics can be done using Smolyak expansion type idedgha couplings between this and the multiresolu-
tion analysis is interesting. To achieve this coupling, bagto explain how sparse grid methods (like Smolyak)
can be translated into this nite volume like framework: thgarse grid technique are interpolatory methods,
ours uses cell averages. The problem of ef ciently impletimgnhigh dimension PDE methods of the type we
are considering has similarities with what is done for Viasquations because there are 3 space dimensions
and 3 dimensions for the velocity space [24]. Of course thesighk is different, but the data management bears
similarities. This meet the question of ef ciently implentang implicit schemes on adaptive grids. The ideas
and techniques that have been developed in the case higingloneVlasov case are certainly a starting point
for our needs

It is a priori possible to change the probability distribution during $i@ulations using Itering methods or
stochastic optimisation techniques onceagpriori form of the pdf has been given. This may be usefull when
for example experimental data are given and if one wishest tihe simulation to the experiments. Other

Zdone in collaboration with T. Barth, NASA Ames RC, CalifanlJSA
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situation can be imagined. Once again, these optimisatitmiques are not compatible with current UQ tools
but are important in applications. Translated into the faliem that we have sketched above, this amounts to a
problem very similar to what has to be done for mesh adaptatio

2.4 High performance computing aspects

The ultimate goal is to be able to do 3D simulations on realBD geometries. This can only be done on massively
parallel machines. The methods of section 2.3.1 need t@ $atge non linear equations, hence iterative techniques
such as GMRES with preconditionning are mandatory. The gizZ8D problems to solve are very large so that
ef ciency can only be obtained through a massive use of fEnalachines, including for the solutions of these non
linear systems.

For the methods of section 2.3.2, the situation is more diianiBhe reason is very clear from equation (5). In the
3D case, the second term of the equation is the sum of a tinnatiee and spatial terms, roughly speaking one per
space dimension. Hence the evaluation of (5) for a singlerlaythe probability space amounts to a deterministic 3D
ow calculation for one time step. If the problem is steadgain the evaluation for a single layer in the probability
space amounts to a deterministic 3D steady ow calculatidris can be ef ciently done on parallel machines, and the
algorithms we propose in section 2.3.1 arpriori well tted to this, but we have to understand how the codingstnu
be done on machines having tens or hundreds of processoen Wihave several random variables, the probability
space has several dimensions: the computations must beodamassively parallel machine. We are faced with all
the dif culties arising from the fact that when we need to qarte the different terms of equation (5), several layers
of data in the probability “direction” may be needed depagdon the polynomial degree of (6). Understanding,
managing this and deriving the data structure is a work fecigists, this is why whe have asociated to this proposal
two specialists of scienti ¢ computing with a large backgna in computer science.

2.5 Risk evaluation

The proposal is organised around three items where the dé\lif culty and the possibility of failure is increasing.
In the description, we have tried to describe the way we thterproceed, and the several paths that are possible to
reach our aims. Let us discuss the con dence of success#éailf this proposal

The rst item (use of Bézier/NURBS representations in cotepuodes for uids), if successful, will have
important consequences on computational solutions irstngluAs we have shown, the very preliminary results
we already have obtained indicate that the proposed metiibdiavk, and in principle it should facilitate the
communication between the CAD tools for the body surfacend®n and the numerical algorithm. This item
has an excellent probability of success.

The second item (use of fancy solution representation in €&d2s) is more complex to implement because it
may need a deeper understanding of boundary layers, arid ghisf cult topic by excellence. However, we do
not think that such extreme things will be needed to makeltigithm a success. Very likely, less sophisticated
solutions, combined with the knowledge and the know—how weady have on high order schemes, as well as
on fast algorithms to compute a distance function in ordeyetoa reasonable guess of the boundary layers test
functions will make the job.

The last topic is in our opinion the most dif cult one. The laalgorithm as we have sketched it will work:
it has been shown on a toy example that this is a reasonableessatile one. The main problem is to face
the curse of dimensionality and the CPU cost of any simulafichis is acommorproblem to any Uncertainty
Quanti cation tool, even for Monte Carlo ones since it tia@tss into many simulations. We have indicated
several tracks we believe to be reasonable. They shouldriniple help to reduce the computational size of
the problem. Even if only low dimension problems can be dedh, this will be important for scienti ¢ and
industrial applications: many problems, such as turbidemodelling, translate into rather low dimensional
probability spaces. Moreover, the method we propose is abpginciple, to handle easily any evolution of the
pdf via stochastic optimisation algorithms, contrarilynbost UQ methods.
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In this program, | will associate several people of my groMario Ricchiuto who is a young research scientist,
specialist in approximation methods for hyperbolic protide Boniface Nkonga who is an associate professor that
has an excellent knowledge of moving meshes methods andpkigbrmance computing technique (he is the main
author of the parallel CFD tool on which we will implement atedt these methods), Cécile Dobrzynski who is a
young assistant professor specialist in meshing problantstwo computer scientists: Pascal Hénon and F. Pellegrini
Pascal Hénon is a young research scientist, he is a speofdiighly parallel linear algebra tools and preconditiumi
techniques. F. Pellegrini is a specialist of graph partitig methods, in parallel. P. Del Mof8) an internationally
recognized researcher in stochastic algorithms, is amdseaector at INRIA Bordeaux Sud—Ouest in Bordeaux; he
has agreed to be associated on the Uncertainty Quantircatioblem aspect of the ADDECCO proposal, and more
precisely for the coupling of the algorithm to stochastitimpsation methods.

This group of people represents the ideal balance betwgehkrnow-how in approximation methods, computer
science competences for high quality scienti c computingsh generation/adaptation and stochastic algorithms.

To these people, | already have taken contacts with seveeshationally recognised scientists who are ready to
spend several months in Bordeaux and to be associated tadhks C. W Shid® (Brown University), C. Fahrat
(Stanford University) for the rst two items, and T. Barthwith whom | have started the UQ aspect of the proposal.
P. Pebay from Sandia, Livermore is interested in the higfopmance computing aspects of the proposal.

2.6 Resources, managing plan

At INRIA Bordeaux Sud-Ouest and Institut de Mathématiquethe University of Bordeaux, we have access to
a cluster of unix computers (32 nodes) through a 100 mbit oxtwThis will be upgraded to 100 nodes and a 10
Gbyte/s network in the coming year if the funding asked by INRhe Computer Science department and the Institute
of Mathematics asked to the local government is successfuis cluster are shared by about 50 scientists.

2.6.1 Working plan and schedule

1. Work related to Bézier/NURBS representation of soligionhyperbolic/parabolic problems: 1PhD (3 years)
and 1 PostDoc (2 years)
a) Development of Bézier/NURBS based solvers for non smiogplerbolic problems,
b) Development of Bézier/NURBS based solvers for non smbygierbolic/parabolic problems,
¢) Implicitation/parallelisation of these solvers, HP@edts (mesh partitioning, ...),
d) Mesh adaptation, relationships to the data structure.
2. Work related to solution adapted representation. Tha mogic will be the approximation of the Navier Stokes
equations: 1PhD (3years) and 1 PostDoc (2 years)
a) Development solvers for the Navier Stokes equations,
b) Implicitation/parallelisation of these solvers, HP@ests (mesh partitioning, .. .),
¢) Mesh adaptation, optimisation of the partition of uniglation ships to the data structure,

3. Uncertainty quanti cation: 2 PhD2( 3years 3a—3b and 3d), 1 engineer (2 years, computer scipraigt
for the HPC aspects), 1 PostDoc (2 years). The 3-c and 3-cbarected.

a) Development of the method. The baseline scheme will bstémelard second order RD scheme for steady
and unsteady Navier Stokes problems already irFth@lBox  software.

Bhttp:/iwww.math.u-bordeaux.fr/ delmoral/
Bhttp://www.dam.brown.edu/people/shu/
2'http://soe.stanford.edu/research/layout.php?sureftchat
Zhttp://people.nas.nasa.gov/ barth/
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b) Multiresolution/Smolyak aspects for handling seveaalrses of uncertainties.
¢) High performance aspects, grid computing, validatioaah end of main phase.
d) Coupling of the algorithm with stochastic optimisatioetmods.

Work schedulg year 1 year 2 year 3 year 4 year 5
item 12 |
Item 1b :
Item 1c I
ltem 1d I I
Item 2a [ ]
Item 2b
Item 2c
ltem 3a |
Item 3b
ltem 3c I
Item 3d [ ]
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