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Abstract

This article investigates the optimal control approach
for the active control and drag optimization of incom-
pressible viscous flow past cylinders. The control func-
tion is the time harmonic angular velocity of the ro-
tating cylinder. The wake flow is solved in the lami-
nar regime (Re = 200) with a finite element method.
Due to the CPU and memory costs related to the op-
timal control theory, a Proper Orthogonal Decomposi-
tion (POD) Reduced Order Model (ROM) is used as
the state equation. Since the POD basis represents
only velocities, we minimize a drag-related cost func-
tion characteristic of the wake unsteadiness. The op-
timization problem is solved using Lagrange multipli-
ers to enforce the constraints. 25% of relative drag
reduction is found when the Navier-Stokes equations
are controlled using the optimal control function deter-
mined with the POD ROM. A cost reduction factor of
respectively one hundred and six hundred is obtained
for respectively the CPU time and the memory. Fi-
nally, limits of the performance of our approach are
discussed.

1 Introduction

Due to its simple geometry and its representative be-
haviour of separated flows [23], the viscous flow past a
circular cylinder has been extensively used in the past
decade as a testbed to develop methodologies that can
be used later to control more complex flows. Different
experimental or numerical approaches have been suc-
cessfully employed for the control of a wake flow but
recently optimal control theory attracted increased at-
tention. For example, [13, 15, 19] used the optimal
control theory with the two-dimensional Navier-Stokes
equations as the state equation to control by rotary
oscillation the unsteady wake of the cylinder. An at-
tractive element of the optimal control approach is the
introduction of a cost function which provides a quan-
titative measure of the desired objective. However the
numerical costs (CPU and memory) associated with

the adjoint equation-based methods used to solve these
optimization problems are so important that the three-
dimensional Navier-Stokes equations are rarely stud-
ied. For cutting down the numerical costs different
approaches are possible (see [12] for a review). One
promising approach is to first use reduced order mod-
els to approximate the fluid flow and then to optimize
exactly the reduced models (read [1] for a discussion
of the use of approximation models in optimization).

The main objective of this article is to develop a low-
cost optimal control approach for drag minimization
of the cylinder wake with harmonic rotary control for
control function. This investigation of drag reduction
by unsteady rotary oscillation of the cylinder was mo-
tivated in part by the experience of Tokumaru and Di-
motakis [22] where 80% of relative drag reduction was
empirically found (Re = 15,000). Recently, Protas and
Wesfreid [20] show? that in the supercritical regime of
the wake flow, the controllability increases with the
Reynolds number. Therefore, since the wake flow re-
mains two-dimensional up to a value of the Reynolds
number approximately equal to 190 where a spanwise
supercritical Hopf bifurcation occurs and where the
three-dimensional effects appear [17, 3|, the optimal
value of the Reynolds number for our two-dimensional
study is slightly lower than 200. However for facilitat-
ing the comparisons with the results of the literature, a
Reynolds number of 200 is considered. Finally, for the
reduced basis approach discussed above different basis
functions exist: for example Lagrange basis, Hermite
basis, Taylor basis, Proper Orthogonal Decomposition
basis (POD),... According to the observations of He
et al. [13], the control minimizing the drag generates
vortices that are less energetic than those produced by
the stationary cylinder. An energetic criterion seems to
be well adapted to the investigation of drag reduction.

IThe argumentation is quoted from [19]: “The mean flow con-
sists of two contributions: the drag of the basic flow (i.e., the
unstable, steady, symmetric flow) which at a given Reynolds
number remains fixed and the drag of the mean flow correction
which is due to the vortex shedding. As the Reynolds number
increases, the relative contribution of the oscillatory part of the
flow to drag becomes more significant.” increasing the control-
lability of the flow.



Therefore, due to the energetic optimality of conver-
gence of the POD basis [16, 6], POD is used to de-
velop a POD Reduced Order Model (ROM) for the
controlled cylinder. A similar approach was already
done in [9, 10] to control the wake flow at a supercrit-
ical Reynolds number of 100.

This article is organized as follows: §2 introduces the
flow configuration and describes the numerical method
used to simulate the flow. In the next two sections, the
Proper Orthogonal Decomposition is first introduced
(§3), then we outline the control function method used
to develop a POD ROM of the controlled flow (§4).
The optimal control problem is stated in §5 which in-
cludes the definition of the cost function and a de-
scription of the Lagrange multiplier method used to
solve the constrained optimization problem. Finally,
before to present the results of the POD ROM based
control in §6.2 and the drag reduction obtained with
the Navier-Stokes equations when the optimal control
function determined with the POD ROM is used (§6.3),
we describe in §6.1 how to determine generalized POD
basis functions.

2 Flow configuration

The flow around a circular cylinder of diameter D is
solved on a two-dimensional domain € filled with a
Newtonian incompressible viscous fluid (figure 1). The
continuity and Navier-Stokes equations written in di-
mensionless form are discretized in time by a three
steps projection method and in space using a Galerkin
finite element approximation (P;, P;). The unstruc-
tured mesh consisting of 25,000 triangles and 12,000
vertices is refined around the cylinder and in the wake
to capture the Von Karméan’s street. The details of the
numerical method can be found in [7] and will not be
discussed here.

The simulations are performed at a Reynolds number
equal to 200. One can notice on figure 2 that our nu-
merical simulation exhibits the well-known Von Kar-
méan street and that no spurious reflections from the
downstream boundary are visible.

In a viscous flow the total forces acting on a body are
contributed by the pressure and skin friction terms.
Let K, be the pressure coefficient defined by

_P-Py
P1/2p02,

where the subscript co denotes quantities evaluated on
the input boundary. The aerodynamic coefficients can
then be calculated in a dimensionless form as:
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Figure 1: Geometry of the domain (diameter of the cylin-
der=1; upstream and downstream boundaries
are respectively at 10 and 20 from the center
of the cylinder; height=20).

Figure 2: Pressure contours at ¢t = 150 for Re = 200.
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where Cp and C, represent respectively the drag and
lift coefficients.

The time histories of the lift and drag coefficients are
represented in figure 3. Their time averaged ampli-
tudes are respectively 0.0921 and 1.3822 (table 1). The
periodic regime which is reached asymptotically, when
the non linear saturation is observed, is characterized
by the frequency at which vortices are shed. For com-
parison purposes, it was found convenient to introduce
a non dimensional representation of the shedding fre-
quency, the Strouhal number defined as

S =

IS

where f is the fundamental frequency obtained by a
spectral analysis of the aerodynamic coefficients (see
figure 4).

In table 1, our vortex shedding Strouhal number and
time-averaged drag coefficient are compared to refer-
ence results available in the literature. The agreement
with all the previous experimental and computational
data is very good. Similarly (not shown in table 1),



| R, | Auteurs | Sy | Cp |
200 | Braza et al.[5] 0.200 | 1.400
Henderson et al.[14] | 0.197 | 1.341
He et al.[13] 0.198 | 1.356
Homescu et al.[15] - 1.440
present study 0.195 | 1.382

Table 1: Comparison for R. = 200 of the vortex shedding
Strouhal number and the mean total drag coef-
ficient for our simulation and reference results.
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Figure 3: Temporal evolution of the aerodynamic coeffi-
cients for the stationary cylinder at Re = 200.
— drag, --- lift.
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Figure 4: Power spectral density of the aerodynamic co-
efficients. — drag, --- lift.

the time-averaged lift coefficient is seen to be in very
good agreement with the results obtained previously.

Therefore, for the low Reynolds number value of this
study, our two-dimensional numerical simulation can
be viewed to represent correctly the dynamics of the
cylinder wake flow. However, we have to keep in mind
that for higher values of the Reynolds number, the
three dimensional phenomena become predominant ex-
plaining the well-known over-prediction of the drag co-
efficient for two-dimensional simulations (see [23]).

Hereafter, we consider that the cylinder rotates coun-
terclockwise with angular velocity ~(¢) which is sought
using the Optimal Control Theory in order to reduce
the instationnarity of the wake.

3 Proper Orthogonal Decomposition
(POD)

This method was introduced in turbulence by Lumley
in 1967 [16] as an unbiased definition of the coherent
structures widely known to exist in a turbulent flow.
Starting with a set of realizations of the velocity fields
u(X) where X = (x,t) € D = Q x Rt, a coherent
structure is defined as the deterministic function ®(X)
which is most similar on average to the realizations
u(X). Mathematically, the notion of "most similar"
corresponds to the solution of the following constrained
maximization problem:

m£x<|(u,<1>)|2> wrt. ||®*P=1 (2)

where (.,.) denotes a scalar product in the Hilbert
space of square-integrable functions, |.| is the corre-
sponding norm and the brackets (.) denote an averag-
ing operation, which may be a time or space average.
More details on POD and all the justifications can be
found in [6].

From variational calculus it can be shown that the
problem (2) is equivalent to a Fredholm integral eigen-
value problem:

/ Rij(X,X")®,(X")dX' = A;(X)  (3)
D

where R;;(X, X') is the two-point space-time correla-
tion tensor. Since R is self-adjoint and non-negative
definite, it follows from the Hilbert-Schmidt theory
that equation (3) has a denumerable infinite num-
ber of eigenvalues A\(™ and eigenfunctions @En) (n =
1,...,+00). These eigenvalues are all real and positive
and form a decreasing and convergent series. The as-
sociated eigenvectors ®™ form a complete orthogonal
set that is optimal in an energetic sense (for a given
number of modes N, the projection on the subspace
spanned by the N leading eigenfunctions will contain
the greatest possible kinetic energy on average). Since



the POD eigenfunctions can be represented as linear
combinations of the velocity fields, they inherit all the
properties of the original data that are linear or homo-
geneous. Hence the eigenfunctions are divergence free
for an incompressible fluid and verify automatically
the homogeneous boundary conditions of the numer-
ical simulation used to determine the flow realizations.

Depending on the choice made for the average opera-
tor (.) appearing in (2), two equivalent formulations
of POD can be found [6]. When the average is esti-
mated in time, the first approach called classical POD
or direct method and originally introduced by Lumley
is obtained. In this case, the kernel R of the Fredholm
equation (3) is replaced by the two-point spatial cor-
relation tensor r;;(x, ') and the eigenfunctions ®(X)
by ¢(x). In the second case suggested by Sirovich [21]
and called snapshot POD, the average operator is eval-
uated as a space average over the domain in interest.
The Fredholm equation to be solved is then defined by:

/ Clt )™ () dt! = AW (1) (@)
T

1

where C(t,t') = ?/ w; (2, t)u;(x) dx is the temporal
Q

correlation tensor.

For reasons of statistical convergence of the aver-
age operator, the snapshot POD is more appropriate
when data issued from numerical simulations are used.
Hence, this method was adopted in our work.

Finally the set of POD modes {¢™}}>] is complete
in the sense that any velocity field u(z,t) can be ex-
panded in the eigenfunctions as

Npop

wila,t) = > a™ (1ol (x). (5)

n=1

where Npop is equal to the number of flow realizations
used to solve the POD problem (4).

4 POD ROM of the controlled cylinder
wake

When the rotary control is applied, the boundary con-
ditions on the cylinder become inhomogeneous and
time-dependent. As a consequence, the POD basis
functions used in the Galerkin projection have not ho-
mogeneous boundary conditions and extra terms ap-
pear in the POD reduced order model. To address this
situation, the control function method introduced in [9]

is used. In this approach, the velocity expansion is now
defined as

Npop

w(@,t) = um(x) + () uc(x) + Y o (t)p" (@)
k=1
(6)

where w,,(x) is the mean velocity field obtained
as an ensemble average of the flow realizations and
where u.(x) is an arbitrary control function satisfying
homogeneous boundary conditions. A convenient way
to generate it is to take the solution for the steady
cylinder rotation with v = 1.

The weak form of the Navier-Stokes equations is then
restricted to the POD subspace Dﬁgoa? spanned by the

first Ny, spatial eigenfunctions d)(i). The energetic
optimality of the POD basis functions suggests that
only a very small number of POD modes may be nec-
essary to describe efficiently any flow realizations of
the input data. The dimension Nyq < Npop of the
subspace Dﬁg’? is the smallest integer M such that
the relative information content defined as the ratio
Zij\i1 )\(i)/zij\f’fw A9 is greater than 6% where ¢ is
a predefined percentage of energy (here § = 99 and
M = Ngyq = 4 see figure 9). The Galerkin projection
yields [7]:

(qs“), X V)u) = (. V-9”) - [po?”]
o (Vo (a)T) + o [(Vu)T o]
(7)

with [a]:/a~ndF and (A,B):/A:BdQ:
r Q

Z / A;;Bj; Q.

0,5 78

Inserting the expansion (6) into the Galerkin projec-
tion (7) of the Navier-Stokes equations, we obtain after
some algebraic manipulations the reduced order con-
trol model:

da(l) (t) Ngal ) Ngal Ngal )
A+ > BijaD )+ > > Cijra? (t)a (1)
j=1 j=1 k=1
d P
i ) 2
D, -1 . ol )
+ zdt+ 51+;Eja )| v+ Gy

(®)

The coefficients A;, Bij, Cijr, Di, &, Fi; and G;
depend explicitly on ¢, u,, and u.. Their expression
are given in [6].

The system of equations (8) is then integrated in time
with a fourth order Runge Kutta scheme from a given
set of initial conditions

a(0) = (u(z, 0), ¢ (x)),

yielding a set of predicted time histories for the mode

i=1,-,Nya (9)



Figure 5: Comparison of the predicted (—) and projected
(- -) mode amplitudes for the stationary cylin-
der (v = 0).

amplitudes a(?(t) which can be compared with the
POD temporal eigenfunctions.

Due to the truncature involved in the POD-Galerkin
approach, the higher POD modes corresponding to the
dissipative scales of the flow are not explicitly taken
into account in the POD ROM. As a consequence,
when the equations (8) are integrated in time, numeri-
cal instabilities arise after a few vortex shedding period
and the model is no longer sufficiently accurate. This
problem is formally equivalent to that of large-eddy-
simulation where we have to model the energy transfers
between the Fourier modes lower than a given cutoff
value that are simulated and those higher than this
cutoff value that are not explicitly simulated. Here,
the low-dimensional Galerkin model (8) is stabilized
by an eddy-viscosity estimated as the solution of an
auxiliary optimization problem described in [4].

As shown in figure 5 for an uncontrolled flow (v = 0),
when the POD ROM is stabilized numerically, excel-
lent qualitative and quantitative agreement are found
between the integrated time histories of the POD
modes kept in the truncation and the results obtained
by the numerical simulation. For a controlled flow, an
accurate description of the dynamical behaviour is pos-
sible but special care is needed to develop the low-order
model. This point is described in §6.

5 Optimal control approach

In this section we discuss how the Optimal Control ap-
proach can be used to determine the rotation rate ~y(t).
The aim is to minimize a cost function 7, which incor-

porates the control goal and some measure of the con-
trol effort, over a certain period of time T correspond-
ing to few periods of the Von Karman street. Here we
envisage employing the POD ROM of §4 for model-
based control of the vortex shedding flow. Therefore,
since only the flow velocities are directly represented
by the POD basis functions, our objective is to min-
imize a drag-related cost function. A natural control
aim is the reduction of the wake unsteadiness i.e. the
energy of the wake [10]. Mathematically, this goal is
expressed as the following functional

T
T(w,7(t)) = /O /Q T(ulz, £),~(t)) ddt

a T ﬁ T
—/ /Hu(x, t)\\gdadt+—/ (1) dt
2 0 Q 2 0

where the first term represents the control goal and the
second a penalization term. In this formulation o and
[ are two positive regularization parameters that can
be empirically chosen to limit the size of the control.
Introducing the POD expansion (6), this functional be-
comes:

T
F(a() = [ Ian)d
0
T Ngat T
_a 02 g4 P / 2
2/0 Za dt + 3 i ~y(t)? dt.
=1
(10)
The flow control problem is then expressed as:
min 7 (a, (1))
v(t)
w.r.t. (11)

N(a, ~(t)) = 0.

where the constraints A (a, v(t)) = 0 correspond to
the POD ROM (8).

The constrained optimization problem (11) is solved
using the Lagrange multiplier method as described in
[11]. The constraints are enforced by introducing the
Lagrange multipliers or adjoint variables & and the La-
grangian functional

‘C(av Y5 5) = j(a77(t)) - <£7 N(a7 ’Y)> (12)
Ngal

T
— T(av®) -y / &6 Ni(a, 7) dt.

i=1

The solutions (states a, co-states £ and control v) of
the new unconstrained optimization problem are such
that L(a, v, &) is rendered stationary:

oL oL oL

— () L & = 5el) =
oL 8a(i)5a +8W67+8§(i)5§ =0.




where da, 6y and §€ are arbitrary variations.

Considering? that each argument of £ is independent
of the others, the optimality system is determined by
setting the first variation of £ with respect to &, a and
to v to be equal to zero.

oL
2€®
covers the state equation N(a, ¥(t)) = 0.

After evaluation the Fréchet differential 8¢ re-

Setting the first variation of £ with respect to the state
a equal to zero gives, after integration by parts, the
adjoint equations

dgW () (i)
pra (t)

Ngal Ngal

=D Bii + @) Fio+ > (Cran +Cira) aP (1) | €9(2)
=1

i (13)

with terminal conditions:

() = 0. (14)

Finally, setting the first variation of £ with respect
to the control v equal to zero yields the optimality
conditions

N, al ;
g de@
=Y D15
=1
Ngal Ngal
+ Z &+ Z fija(j) + 2gi'7(t) §(i)~
i=1 j=1

(15)

The first-order necessary conditions yield a system of
coupled partial differential equations (state equation
8, adjoint equations 13 and optimality condition 15)
called optimality system. Due to large storage and
CPU costs that system cannot be solved without itera-
tion. Instead a simple iterative process can be effected
as follows:

Start with an initial guess for the control function v(t).

1. Using the latest guess for the control, solve the
POD ROM (8) forward in time for the mode am-
plitudes a(t).

2. Using the mode amplitudes computed in step 1,
solve the adjoint equations (13) backward in time
for the adjoint variables &(t).

2This was not true for the original optimization problem (11)
involving 7 since the arguments a and -y were constrained to

satisfy N(a, v(t)) = 0.

3. Using the state variables computed in step 1 and
the adjoint variables computed in step 2, esti-
mate the optimality condition (15).

4. Using this estimation compute a new guess for
the control Ynew(t) = Youd(t) + wd. Here d is
a direction of descent estimated with one’s fa-
vorite optimization method using the gradient of
the functional % and w the length step in that
direction.

5. If some stopping criterion is satisfied, stop; oth-
erwise, return to step 1.

6 POD ROM based control

In §4, it was shown that the reduced order control
model (8) can represent sufficiently well the dynam-
ics of the vortex shedding flow. Therefore in this sec-
tion, we use the results of the optimal control theory
presented in §5 to determine a model based control
function ~y(¢).

6.1 Generalized POD basis functions

In this study we decide to not reset the POD low order
model (8) during the optimization process. Clearly, it
corresponds to the assumption that one must be able
to predict the system behaviour during the period T of
the optimization, hence the importance of developing
accurate low order models. For this reason, we follow
the method introduced in [9] and derived generalized
POD basis functions. A slowly varying amplitude and
frequency sinusoid or 'chirp’ is imposed as rotation rate
for the cylinder. This temporal excitation 7, shown in
figure 6 is mathematically represented by the function:

Ye(t) = A1 sin(2m Sy t) X sin(27Sso t — Agsin(2wS;3 1))

where A; = 4, Ay = 18, S;; = 1/120, S;, = 1/3 and
Sys = 1/60.

In figure 7 we show the spectra of the excitation func-
tion 7.. The frequencies vary continuously from Sy = 0
to S; ~ 0.65 and the spectra presents a weak dominat-
ing mode for S; ~ 0.4.

The Navier-Stokes equations are then solved with .
for boundary conditions on the cylinder. During the
course of the excitation 600 snapshots are taken uni-
formly over one period T, = 60 of excitation. These
snapshots are used to form the temporal correlation
matrix for the Fredholm equation (4).

The POD eigenvalues for the uncontrolled flow (y = 0)
and manipulated flow (y = 7.) are shown in figure 8
on a semi log-scale. For the uncontrolled flow, the set
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Figure 6: Temporal excitation . imposed to the cylinder
for deriving the generalized POD basis func-
tions.
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Figure T7: Spectra (in arbitrary units) of the temporal
excitation ~e.

of eigenvalues fall-off rapidly, and hence a low num-
ber of POD modes is necessary to represent accurately
any velocity field. Clearly for the manipulated flow
the spread of energy is much more uniform and many
more degrees of freedom than for the uncontrolled flow
are excited. As a consequence for a given number of
modes kept in the POD expansion, the projection er-
ror of the snapshots on the POD basis functions is
greater for the manipulated flow than for the uncon-
trolled flow. To make this idea more precise, one can
study the relative information content as defined in §4.
This quantity is represented in figure 9 for the uncon-
trolled flow (v = 0) and manipulated flow (v = ~.). It
is found that two modes are sufficient to represent 98%
of the total kinetic energy in the uncontrolled case and
that it is necessary to keep 40 modes (less than 7% of
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Figure 8: Comparison of the POD eigenvalue spectrum
for the uncontrolled flow (y = 0) and the ma-
nipulated flow (y = v.).
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Figure 9: Comparison of the relative information con-
tent for the uncontrolled flow (v = 0) and the
manipulated flow (v = 7).

all the POD modes) when the excitation . is applied.
Therefore the state equation (8) used in the iterative
optimization process of §5 correspond to Ngq = 40.

6.2 Results of the POD ROM based control

The results of this section correspond to the case when
the cost of the control is neglected i.e. o = 1 and
B = 0 in the functional (10). The control function
v is determined as a converged solution of the itera-
tive process introduced at the end of §5. As an initial
guess for the control function the excitation ~, is se-
lected. In step 4 of the iterative method a steepest
descent method is used in conjunction with a back-



tracking Armijo method? for the linear search. The de-
tails of this optimization method can be found in [18].
The iterative method is stopped when the last two val-
ues of the functional J is sufficiently close i.e. when
AT (a,7)] = |Tnew(@,7) — Toua(a,7)| < 107°. Once
this criterion of convergence is reached, the relative
reduction of the cost function J characterizing the
wake unsteadiness is equal* to 43%. Finally the tem-
poral evolution of the optimized control function oy
is shown in figure 10.

Reduction of the drag coefficient using time harmonic
rotary oscillation was reported by [22, 2, 13, 15, 20].
Therefore, if we want to compare our result with those
of the literature, we need to determine the amlitude A
and the Strouhal number S; such that the optimized
control function writes o (t) = Asin(27wSit). A time
average amplitude A ~ 2.2 is easily determined. In fig-
ure 11 we show the spectra of the control function yop¢:
a mean peak appears corresponding to S; ~ 0.53 and
two other peaks much less energetic are also clearly
visible. According to [13] the contributions of these
lower modes are negligible for the drag. As a conse-
quence these peaks are neglected in the following and
the optimal control 7, is sinusoidal with an amplitude
A = 2.2 and a Strouhal number S; = 0.53.

6.3 Drag reduction for the Navier-Stokes model
By definition of the optimization problem (11), the
control function v, is optimal for the POD ROM.
There is no mathematical proof of optimality with
respect to the Navier-Stokes model. If it was found
that the optimized control function reduces the wake
unsteadiness, the initial objective of this study is the
optimal reduction of drag. Therefore it is necessary
to solve the Navier-Stokes equations with a rotary
control defined by () = ~opt(t) to determine the
effect of this control function on the drag coefficient.

Figure 12 represents a comparison of the time evolu-
tion of drag of the uncontrolled (v = 0, blue) and con-
trolled (¥ = Yopt, green) flow. The drag reduction was
found to be on the order of 25% (from approximately
an average value of 1.4 to an average value of 1.04).
In figure 13 we show the comparison of the variation
versus time of the lift coefficient for the uncontrolled
(blue) and controlled (green) flow. We observe that
the amplitude of the lift oscillations is substantially
reduced (from 1.38 to 0.34). These behaviour are syn-
thesized in figure 14 where the polar curves (time evo-
lution of the drag coefficient versus the lift coefficient)
are represented for the uncontrolled (blue) and con-

3The step determined by the backtracking Armijo method is
not too small and for this reason verifies the Goldstein condi-
tion [18].

4The value of 7 is 9.81 at the beginning of the iterative pro-
cess and 5.63 when convergence is obtained. To be used as a
reference value, J is approximately equal to 10 for an uncon-
trolled flow.
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Figure 10: Time history of the optimized control function
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Figure 11: Spectra (in arbitrary units) of the optimized
control function v,p¢-

trolled (green) flow. The limit cycles appearing in this
figure are well defined because each aerodynamic coeffi-
cient oscillates with one frequency. The power spectral
density of the aerodynamic coefficients represented in
figure 15 demonstrates that the controlled flow now os-
cillates at the frequency of the optimal control function
(St = 0.53). Finally in figures 16a) and 16b) we show
snapshots of the uncontrolled flow and of the optimally
controlled flow (dashed lines represent negative vor-
ticity). The significant vortex-shedding phenomenon
observed in figure 16a) has been substantially reduced
and the flow has been quasi-symmetrized. This is qual-
itatively similar to the effects observed by [22, 13].

6.4 Discussion
The numerical results obtained here with the POD
ROM as state equation agree to a large extent to re-
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Figure 12: Comparison of the time evolution of drag of
the uncontrolled (blue) and controlled (green)
flow. Forcing was started at time t = 0.
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Figure 13: Comparison of the time evolution of lift of
the uncontrolled (blue) and controlled (green)
flow. Forcing was started at time ¢ = 0.

sults obtained in other numerical approach where the
optimal control theory is applied for the same flow con-
figuration to the Navier-Stokes equations. Protas and
Wesfreid [19] obtain a drag reduction of about 15%
for a Reynolds number equal to 150, presenting a less
significant controllability. The research of He et al.
[13] shows a 30% drag reduction if one uses a sinu-
soidal rotating cylinder with the amplitude A = 3 and
the forcing Strouhal number S; = 0.75. These opti-
mal amplitude and forcing Strouhal number differ from
the values found with our approach. As suggested by
Homescu et al. in [15], these difference appear to be due
to the formulation of the cost functionals used in our
research and those in [13]. The objectives, while being
physically identical, are mathematically different.
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Figure 14: Polar curves: evolution of the drag coefficient
versus the lift coefficient. In blue the uncon-
trolled flow and in green the controlled flow.
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Figure 15: Power spectral density in log-scale of the aero-
dynamic coefficients for the controlled flow.
— drag, - -- lift.

The drag reduction found with the Navier-Stokes equa-
tions as state equation is only slightly higher than
the one found with our approach but the numerical
costs (CPU and memory) associated to their control
are much more important. Using a POD ROM the
costs of the flow solves necessary at each iteration of
the optimizer are greatly reduced. In our study, the
CPU time necessary to obtain with the POD ROM the
flow dynamics over one natural vortex shedding period
represents 1% of the time necessary to solve the Navier-
Stokes equations with the finite-element approach. In
first approximation® the same gain is obtained for the

5Contrary to the Navier-Stokes equations, the adjoint and
optimality equations are linear in the adjoint variables and hence
easier to solve.



adjoint equations and the optimality conditions. The
total CPU cost is thus drastically reduced (approxi-
mately a factor equal to one hundred). With regard to
memory cost, note that we need to store the latest state
approximation for all space-time to solve the adjoint
equations and all the adjoint variables to estimate the
optimality conditions. When the finite element simula-
tion is used to solve the optimal control problem over a
time horizon T, we need to store the state and adjoint
variables (two velocity component and the pressure) at
each time-step and for each vertice of the mesh. When
the POD ROM is used, we only need to store the time
evolution of the state variables a and of the adjoint
variables £ for Ny, POD modes plus the coefficients
appearing in the state equation (8). The parameters
used in this study are 7. = 20 for the time horizon
(approximately four times the natural vortex shedding
period), At = 0.01 for the time-step, N, = 12,000 for
the number of vertices and Nyq; = 40 for the number
of POD modes kept in the ROM. Here we found that
the memory cost of the POD ROM approach is 600
times lesser than for the Navier-Stokes model. The re-
duction of the numerical costs offered by our approach
is so important that the study of three-dimensional un-
steady complew flows by the optimal control theory is
now possible. However, as it was suggested by Gun-
zburger in [12], the success of our approach depends on
the ability of the POD basis to well approximate the
optimal solution and the path to the optimal solution.
Using a POD ROM to solve an optimization problem in
the extrapolary regime is not so clear. Certainly, some
updating of the POD basis would be necessary during
the optimization process like in the Trust Region POD
method introduced by Fahl [8]. Theoretical work are
still necessary to determine if the reduced order model
approach is really useful in the flow optimization set-
ting.

7 Conclusions

The objective of this study was to illustrate the poten-
tial gain that can be offered by the use of the Proper
Orthogonal Decomposition for optimal control of fluid
flows. Our methodology was presented for the un-
steady rotary control of the cylinder wake in the lami-
nar regime (Re = 200). Defining a cost function repre-
sentative of the wake unsteadiness, the optimal control
problem was solved with a POD ROM of the controlled
flow as the state equation. The solution of the opti-
mization process was then used to control numerically
the wake flow with the Navier-Stokes equations as flow
model. Finally, a significant reduction (25%) of the
amplitude of the drag coefficient was found. These
numerical results agree to a large extent to results
obtained by other researchers [13, 15, 19] using the
two-dimensional Navier-Stokes equations to solve the

(a) Uncontrolled flow (v = 0).

(b) Controlled flow v = vopt-

Figure 16: Vorticity contour plot of the wake of the
uncontrolled (a) and controlled (b) flow at
t = 150.

optimal control problem. Comparing to those stud-
ies, the main advantage of our approach is that the
numerical costs (CPU and memory) are negligible (of
the order of 1%). The conceptual drawback is that
there is no mathematical assurance that the solution
of the optimization algorithm working with the approx-
imation models will correspond to the solution of the
optimization problem for the original dynamical sys-
tem. As it was suggested by Alexandrov et al. in [1],
a possible way to be assured that the solution of the
optimization problem for the reduced order model is
likely to yield at least to a local optimum for the orig-
inal high fidelity problem, is to use the general trust
region framework®. Therefore are the POD ROM ap-
proach useful in the flow optimization setting ? A pos-
sible answer may be given by quoting Gunzburger [11]
“without an inexpensive method for reducing the cost
of flow computations, it is unlikely that the solution of
optimization problems involving the three dimensional,

6The trust region mechanism gives a measure of how well
the approximation model is predicting improvement in the high-
fidelity model and thus suggests criteria for automatically chang-
ing or improving the reduced model when poor or incorrect pre-
diction of improvement is obtained. Fahl presents in [8] an algo-
rithm that implements the combination of POD based reduced
order modelling and trust region methods, the TRPOD (Trust
Region Proper Orthogonal Decomposition).



unsteady Navier-Stokes system will become routine”.
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