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Abstract

This communication investigates the optimal control approach for the active control and drag opti-
mization of incompressible viscous flow past cylinders. The control function is the time harmonic angular
velocity of the rotating cylinder. The wake flow is solved in the laminar regime (Re = 200) with a finite
element method. Due to the CPU and memory costs related to the optimal control theory, a Proper

Orthogonal Decomposition (POD) Reduced Order Model (ROM) is used as the state equation. Since the
POD basis represents only velocities, we minimize a drag-related cost function characteristic of the wake
unsteadiness. The optimization problem is solved using Lagrange multipliers to enforce the constraints.
25% of relative drag reduction is found when the Navier-Stokes equations are controlled using the optimal
control function determined with the POD ROM. A cost reduction factor of respectively one hundred and
six hundred is obtained for respectively the CPU time and the memory.

1 Optimal control based on POD ROM

Different experimental or numerical approaches have been successfully employed for the control of a wake
flow but recently optimal control theory attracted increased attention. However the numerical costs (CPU
and memory) associated with the adjoint equation-based methods used to solve these optimization problems
are so important that the three-dimensional Navier-Stokes equations are rarely studied. For cutting down the
numerical costs different approaches are possible. One promising approach is to first use reduced order models
to approximate the fluid flow and then to optimize exactly the reduced models. In this study, a reduced
order model based on Proper Orthogonal Decomposition (POD) is developed. The velocity expansion on the
POD basis functions {φ(k)}NPOD

k=1 writes

u(x, t) = um(x) + γ(t)uc(x) +

NPOD
∑

k=1

a(k)(t)φ(k)(x) (1)

where um(x) is the mean velocity field obtained as an ensemble average of the flow realizations, γ is the
unsteady tangential velocity of the cylinder and uc(x) is an arbitrary control function satisfying homogeneous
boundary conditions. A convenient way to generate it is to take the solution for the steady cylinder rotation
with γ = 1. Inserting the expansion (1) into the Galerkin projection of the Navier-Stokes equations onto the
POD functions, the reduced order control model (POD ROM) is obtained:

d a(i)(t)

d t
= Ai +

Ngal
∑

j=1

Bij a(j)(t) +

Ngal
∑

j=1

Ngal
∑

k=1

Cijk a(j)(t)a(k)(t) + Di

d γ

d t
+



Ei +

Ngal
∑

j=1

Fij a(j)(t)



 γ + Giγ
2 (2)

The rotation rate γ(t) is then determined using an optimal control approach. Our first objective is to
minimize the flow drag. However, since only the flow velocities are directly represented by the POD basis
functions, we need to introduce a drag-related cost function. A natural control aim is the reduction of
the wake unsteadiness i.e. the energy of the wake. Mathematically, this goal is expressed as the following
functional

J (a, γ(t)) =

∫ T

0
J(a, γ(t)) dt =

α

2

∫ T

0

Ngal
∑

i=1

(

a(i)(t)
)2

dt +
β

2

∫ T

0
γ(t)2 dt. (3)

The optimality system composed by the state equation (2) and the equations (4) and (5) represent-
ing respectively the adjoint equation and the optimality condition is determined using Lagrange multiplier
methods:
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d ξ(i)(t)

dt
= −αa(i)(t) −

Ngal
∑

j=1



Bji + γ(t)Fji +

Ngal
∑

k=1

(Cjik + Cjki) a(k)(t)



 ξ(j)(t), ξ(i)(T ) = 0, (4)

δγ(t) = −

Ngal
∑

i=1

Di

dξ(i)

dt
+ βγ +

Ngal
∑

i=1



Ei +

Ngal
∑

j=1

Fija
(j) + 2Giγ(t)



 ξ(i). (5)

In this study, the POD low order model (2) is not reset during the optimization process. Clearly, it
corresponds to the assumption that one must be able to predict the system behaviour during the period
T of the optimization, hence the importance of developing accurate low order models. Hence, we derived
generalized POD basis functions by imposing slowly varying amplitude and frequency sinusoid as rotation
rate for the cylinder. This temporal excitation γe is mathematically represented by the function:

γe(t) = A1 sin(2πSt1 t) × sin(2πSt2 t − A2 sin(2πSt3 t))

where A1 = 4, A2 = 18, St1 = 1/120, St2 = 1/3 and St3 = 1/60.

The optimality system (2), (4) and (5) is then iteratively solved, from an initial guess γe with a conjugate
gradient method. After convergence corresponding to 40% of reduction for the wake unsteadiness, the optimal
control γopt (see figure (1)) is obtained. This optimal control law can be approximated by an harmonic
function γopt(t) = A sin(2πStt) with A = 2.2 and St = 0.53.

By definition of the optimization problem, the control function γopt is optimal for the POD ROM. However
there is no mathematical proof of optimality with respect to the Navier-Stokes model and the initial objective
of this study is the optimal reduction of drag. Therefore it is necessary to solve the Navier-Stokes equations
with a rotary control defined by γ(t) = γopt(t) to determine the effect of this control function on the drag
coefficient.
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Figure 1: Time history of the optimized control
function γopt.
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Figure 2: Comparison of the time evolution of drag
of the uncontrolled (blue) and controlled (green)
flow.

When the optimal control law γopt(t) is applied to the cylinder, the mean drag coefficient is reduced from
a value approximatively equal to 1.4 to a value equal to 1.04 (see figure (2)).

2 Conclusions

When the cylinder wake is controlled using the function γopt, an important relative drag reduction is obtained
(more than 25%). Comparing to studies where the two dimensional Navier-Stokes equations are used to solve
the optimal control problem, slightly lower value of drag reduction is found (25% compared to 30%). The
main advantage of our approach is that the numerical costs (CPU and memory) are negligible (of the order
of 1%).

2


