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Abstract: This study focuses on stabilizing Reduced Order Model based on Proper Orthogonal Decom-
position (POD) and on improving the POD functional subspace. A modified reduced order model (ROM)
that incorporates directly the pressure term is proposed. The ROM is obtained by seeking a solution
that lives in the POD subspace and at the same time minimizes the Navier-Stokes residuals. Both ROM
stabilization and POD subspace adaptation make use of methods based on the fine scale equation that is
approximated using the residuals of the Navier-Sokes equations. Results are shown for the 2D confined
cylinder wake flow.

These last decades, the conception and the op-
timization of the aerodynamics of ground vehicles
and airplanes has been considered using detailed
numerical simulations. Now, and despite of the
considerable progress made in the numerical field,
it is still very difficult to solve this kind of prob-
lems for complex flows in real time, that is, in
fine, a major stake for industrials. To undergo
this difficulty, it is possible to approximate the de-
tailed model of flow dynamics by a Reduced Order
Model (ROM). In this study we use ROM based on
the Proper Orthogonal Decomposition (POD, see
Sirovich (1987) or Cordier and Bergmann (2002).
for more details). The main drawbacks of POD
ROM are:

1. Only the coarse scales are solved. Since the
main part of dissipation takes place in the fine
scales, which are not solved, the POD ROM
is not able to dissipate a sufficient amount of
energy. During the POD ROM integration,
some spurious divergences can occur.

2. A POD basis is only optimal to represent the
dynamics included in the database used to
build it. This same basis is not optimal
to represent other dynamics (Prabhu et
al., 2001).

The main objective of the present work is to
report recent improvements on the two points
raised just before, i.e. derive a low cost strategy
(1) to stabilize the POD ROM and (2) to adapt
the functional subspace SPOD

N , spanned by the

first N eigenfunctions Φi, to capture other
dynamics than that used to build the basis.
These strategies will be tested onto a paradigm of
separated flow, the 2D confined square cylinder
wake flow in the laminar regime.

Pressure extended ROM After having com-
puted a basis {Φ}Ns

k=1
extended to the pressure, a

robust and precise ROM can be obtained by seek-
ing a solution that both lives in the POD subspace
and minimizes the residuals of the Navier-Stokes
equations (NSE). The pressure term is directly
evaluated from the pressure mode. A robust ROM
has to satisfy the momentum equations, the con-
tinuity equation as well as the flow rate conserva-
tion. The continuity equation is always satisfied
using divergence free modes (POD), but it is not
the case using non-divergence free modes (residu-
als). This kind of ROM writes:

N∑

j=1

Lij

d aj

dt
=

N∑

j=1

Bijaj +

N∑

j=1

N∑

k=1

Cijkajak. (1)

Coefficients L, B and C have momentum, con-
tinuity and flow rate contributions. The coarse
scales are computed using the POD expansion

U(x, t) =
∑N

i=1
ai(t)Φi(x), where N is a given

cutoff threshold. For latter convenience, we note
U(x, t) the numerical solution of the full Navier-
Stokes equations, and U ′(x, t) the correction
term such that U(x, t) = U(x, t) + U ′(x, t).



Figure 1: Norm of POD modes φk, k = 2, . . . , 5.

Figure 2: Norm of residual modes φ6, and φ7.

Residual-based Stabilization method of the
POD ROM The idea is to model the fine scale
equation, that is equal to the NSE residuals ob-
tained from the coarse scales. This method is in-
spired by the variational multiscale residual-based
turbulence modeling (for instance, see Bazilevs et
al., 2007). During the integration of the POD
ROM we compute the coarse scales U(x, t) and
evaluate the NSE residuals, denoted L(U(x, t)) =
R(x, t). Starting from a NSE residuals database,
we compute POD residual basis. We then add
a few POD residual modes to the original POD
basis (Gram-Schmidt) to model the interaction
with non-resolved modes. For our test case at
Re = 100, two reduced order models are built:
the first one, named A, uses only a 5 POD basis
functions, and the second one, named B uses 2 ad-
ditional residuals modes (i.e. 7 basis functions).
These POD and residual modes are presented in
Fig. 1 and 2. It is noticeable in Fig. 3 that while
the solution of system A diverges from the exact
limit cycle to reach an erroneous one after few vor-
tex shedding periods, solution of system B stays
on the exact limit cycle, i.e. the Navier-Stokes
attractor. Modes 1 to 5 model the coarse scales,
and residual modes 6 and 7 model the fine scale
equation. Model B is then a better approxima-
tion of the full NSE (coarse and fine scales) than
model A, which approximates an erroneous model
(uncomplete NSE). As shown in Fig. 4, both the
norms of reconstruction error, U(x, t) − U(x, t),
and of the NSE residuals are lower for model B.

Functional subspace adaptation Let U(x, t)
be the solution of NSE for a given dynamics (for
instance, at Reynolds number ReNS), and U(x, t)
be the solution obtained minimizing NSE residuals
onto a POD subspace that corresponds to an other
dynamics (at Reynolds number RePOD 6= ReNS).

The goal is to give an approximation Ũ ′(x, t)
of the error U(x, t) − U(x, t) in order to im-
prove the POD subspace. A new POD is per-
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Figure 3: POD ROM limit cycles (a2, a3). Left,
system A; right, system B.
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Figure 4: Temporal evolution of L2 norms: left,
”error” U ′(x, t); right, NS residual L(U(x, t)).

formed from a database of the field Ũ(x, t) =

U(x, t) + Ũ ′(x, t). This process is iterated sev-
eral times until convergence, for instance when

Ũ ′(x, t) is minimized. Our method consits in ex-
panding the error (that is the sum of all missing
scales) onto the ”coarse scales” residuals basis,

i.e. Ũ ′(x, t) = M(t)R(x, t) with M ∈ IRnc×nc ,
where nc denotes the number of Navier-Stokes
components (here nc = 3 for u, v and p). The
unknown matrices M(t) are determined using a
Galerkin projection of the ”fine scale” equations
onto the NSE residual basis. First results, for
ReNS = 200 and RePOD = 100, show that the
functional subspace can be improved. Indeed, a
30% error reduction is obtained.
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