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Summary. This study focuses on stabilizing reduced order model (ROM) based
on proper orthogonal decomposition (POD) and on improving the POD functional
subspace. A modified ROM that incorporates directly the pressure term is proposed.
The ROM is stabilized using Navier-Stokes equations residuals and exploiting ideas
similar to the variational multiscale method. The POD functional subspace is im-
proved thanks to an hybrid method that couple DNS and POD ROM. Results are
shown for a 2D confined cylinder wake flow.

1 Introduction

This paper focuses on improving reduced order modeling (ROM) based on
proper orthogonal decomposition (POD). Besides the possible inherent lack
of numerical stability of POD/Galerkin methods [10], the main shortcomings
are the following. Firstly, since in most of the POD applications the ROM is
built from a velocity database it is necessary to model the pressure term [8, 5].
To overcome this difficulty, a pressure extended ROM is introduced in §2,
so that the pressure term can be directly approximated using the pressure
mode. Secondly, due to the energetic optimality of the POD basis, only few
modes are sufficient to give a good representation of the flow kinetic energy.
However, the viscous dissipation mainly takes place in the small unresolved
eddies. A ROM built with very few modes is thus not able to dissipate enough
energy. It is then necessary to close the ROM by modeling the effects of the
unresolved modes. In this study, we use the residuals of the Navier-Stokes (NS)
equations (§3) and exploit ideas similar to the variational multiscale method
(VMS) [1]. Finally, since POD basis functions are optimal to represent the
main characteristics of the flow configuration used to build them, the same
basis functions are not optimal to represent the main characteristics of other
flow configurations [9, 7, 3]. To overcome this problem, we propose an hybrid
method that couples DNS and ROM to adapt the POD basis functions at low
numerical costs (§4).
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Fig. 1. Flow configuration and vorticity snapshot at Re = 200.

Our paradigm is the confined square cylinder wake flow (figure 1) in lam-
inar regime, i.e. at Reynolds number Re = U∞L/ν ≤ 200, with U∞ =
u(0, H/2), L the lenght of the side of the square cylinder and ν the kine-
matic visosity. We use the same parameters as those introduced in [5].

2 A pressure extended Reduced Order Model

It has been proven [8] that neglecting the pressure term can lead to large
ROM errors. One solution is to model this pressure term [8, 5]. The pressure
term can also be calculated using a pressure extended ROM with p = p̃.
Indeed, the POD flow fields write ũ(x, t) =

∑Nr

i=1 ai(t)φi(x) and p̃(x, t) =∑Nr

i=1 ai(t)ψi(x), see [2] for more details. Moreover, it is possible to evaluate
the Navier-Stokes residuals (§3). The ROM, noted A[Nr], is:

Nr∑

j=1

Lij

daj

dt
=

Nr∑

j=1

Bijaj +

Nr∑

j=1

Nr∑

k=1

, Cijkajak (1)

where the ROM coefficients are given in [2]. The A[Nr] model is tested at
Re = 200. The POD snapshot method introduced by Sirovich [11] was used.
Here, only the first 5 modes are sufficient to represent more than 98% of the
kinetic energy. As it is shown in figure 2, the solution of model (1) built with
5 modes reaches erroneous limit cycles, and can even diverge with 3 modes.

3 Stabilization of reduced order models

The aim of this section is to derive stabilization methods that involve very
few empirical parameters. The two kinds of stabilization methods presented
in what follows use the residual of the Navier-Stokes operator evaluated with
the POD flow fields ũ and p̃. These residuals, called POD-NS residuals, are:

RM (x, t) =
∂ũ

∂t
+ (ũ · ∇)ũ + ∇p̃−

1

Re
∆ũ, (2a)

RC(x, t) = ∇ · ũ. (2b)
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Fig. 2. Comparison of the NS ♦ and the ROM −−− limit cycles.

We look for the missing scales u′(x, t) = u(x, t) − ũ(x, t) and p′(x, t) =
p(x, t) − p̃(x, t), where u and p denote the exact fields. Since the resolution
of the fine scales equations requires high computational costs, the objective is
to derive stabilization methods based on approximations of these fine scales.

3.1 Residuals based stabilization method: model B[Nr;K]

The goal of this method is to approximate the fine scales u′ and p′ onto some
adapted basis functions. The method is the following.

1. Integrate the ROM A[Nr] to obtain Ns coefficients ai(tk), k = 1, . . . , Ns.
2. Compute the fields ũ(x, tk) and p̃(x, tk), and then RM (x, tk) andRC(x, tk).
3. Compute the POD modes φ′

i(x) and ψ′

i(x) of RM (x, tk) and RC(x, tk) .
4. Add theK first residual modes φ′

i and ψ′

i to the existing POD basis φi and
ψi (using Gram-Schmidt process) and build a new ROM, noted B[Nr;K].

3.2 SUPG and VMS methods: models C[Nr]
and D[Nr]

The streamline upwind Petrov-Galerkin (SUPG) method is a simplified ver-
sion of the complete variational multiscale (VMS) method [1]. The main idea
of both methods is to approximate the fine scales by u′ ≃ −τM RM and
p′ ≃ −τC RC . The SUPG and VMS ROMs can be formally written:

Nr∑

j=1

Lij

daj

dt
=

Nr∑

j=1

Bijaj +

Nr∑

j=1

Nr∑

k=1

Cijkajak + Fi(t). (3)

• For the SUPG reduced order model, noted C [Nr], we have:

FSUPG
i (t) = (ũ·∇φi+∇ψi, τM RM (x, t))Ω+(∇·φi, τC RC(x, t))Ω . (4)
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• For the VMS reduced order model, noted D[Nr], we have:

FV MS
i (t) = FSUPG

i (t) + (ũ · (∇φi)
T , τM RM (x, t))Ω

− (∇φi, τM RM (x, t) ⊗ τM RM (x, t))Ω

(5)

In this study parameters τM and τC are determined using optimization.

3.3 Results of stabilization methods

The limit cycles, over 1000 vortex shedding periods, obtained with models
B, C and D are represented in figure 3 for Nr = 5 and Nr = 3 respectively
and K = 2. These limit cycles are compared to exact ones obtained by DNS.
Excellent agreements are observed, thus validating our stabilization methods.
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Fig. 3. Comparison of the NS ♦ and the stabilized ROM −−− limit cycles.

4 Improvement of the functional subspace

The main drawback of the POD basis is that it is only able to give an optimal
representation of the snapshots set from which it was derived [9, 7, 3]. To
overcome this drawback, a solution is to use a database composed by several
dynamics [3, 6, 4], but we privilege the idea of updating the POD basis during
the simulation. Since each actualization requires a large computational effort
(DNS), the aim of this section is to present efficient methods to actualize
the functional subspace when input system parameters change. For simplicity
reasons, we only focus on Reynolds number, but the forthcoming process is
transposable to other input parameters. Our goal is to obtain the target basis
at Re2 = 200 starting from the initial basis at Re1 = 100. The idea is to
actualize the snapshots database replacing older snapshot with new one. A
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new snapshot is available after few DNS iterations. The corresponding POD
basis, Φ(n), is computed using an efficient method (see [2]). All the ROM
coefficients are built using Φ(n), and the integration is performed using Re ≡
Re2. A schematic representation of the algorithm is presented in figure 4.
Figure 5 presents the evolution of the convergence criterion Φ(n) · ΦRe2 for

ROMROMROM DNSDNS DNS

U (x, tk−1) U (x, tk) U (x, tk+1)

Time

Fig. 4. Schematic representation of the hybrid DNS/ROM method.

different percentages of DNS. Denoting TNS and TROM the time intervals
where we use either DNS or ROM respectively, the percentage of DNS is
PNS = TNS/(TNS + TROM ). It can be seen that 10 vortex shedding periods
are necessary to converge towards the target basis using only DNS (PNS =
100%). Same results can be obtained with PNS = 90%, PNS = 80% and with
70% DNS. However, no convergence is obtained with PNS ≤ 70%. Hence, a
sufficient amount of DNS is necessary to converge toward the target basis.
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Fig. 5. Evolution of the convergence criterion for the hybrid method.

5 Conclusions

The objective of this paper is to improve reduced order modeling based on
POD. We have built a pressure extended ROM, so that it is not necessary to
model the pressure term. Although this model gives very good results, it is still
necessary to model the effects of the unresolved fines scales. In this respect, we



6 M. Bergmann, C.-H. Bruneau, and A. Iollo

propose stabilization methods that consist in modeling the effect of the fine
scales using residuals of Navier-Stokes operator evaluated from POD fields.
The first method proposed consists in enlarging the POD subspace with few
residuals modes. No empiric parameter has to be estimated in this approach.
The second approach proposed relies on an approximation of the fine scale
equation. Both SUPG and VMS methods give good results. In this approach,
only two parameters have to be estimated. Finally, our aim is to derive an
efficient method to adapt the POD basis when input parameters change. An
hybrid method that couples DNS and ROMs is proposed. The idea is to update
the database when dynamical evolution occurs. This method works very well
if a sufficient amount of DNS is performed. Approximatively 20% of the total
numerical costs can be saved using such an hybrid method.
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