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A quadtree-based fully Eulerian finite volume approach for the simulation of fluid-structure 
interaction problems is presented. Both fluid and structure phases, which are assumed 
to be incompressible and viscous, are solved monolithically on the whole computational 
domain. The discretization stencils are limited to the first layer of neighbors thus enhancing 
the efficiency of the parallel computations while limiting the numerical order of the 
finite volume discretizations that can be reached. The behavior of hyperelastic structures 
is described with the non-linear Mooney-Rivlin model. The simulation of several two 
dimensional test cases is performed on uniform and quadtree grids and results are 
compared with the literature. To illustrate the versatility of the numerical model presented, 
a biomedical application, the axisymmetric simulation of a blood flow in a cardiac pump, 
is presented.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The numerical simulation of fluid-structure interactions (FSI) with large deformations has several significant applications 
in engineering, biology and medicine. For instance, the flow around offshore wind turbines involves large displacements 
and large deformations caused by the slender structure of the blades and by the strong wind-floating-mooring coupling. In 
biology, there is more and more interest in studying flight or swim strokes at all scales from ciliated bacteria to whales. In 
medicine, besides the classical application of the pulsatile flow inside large vessels, there is now increasing concern about 
bio-mimetic, low-impact, blood-pumping devices exploiting large deformations of oscillating membranes. In all these cases, 
accurate FSI simulations provide an essential enabler to understand these complex phenomena from a quantitative point of 
view.

To solve this type of FSI problems, different numerical methods are developed depending on the severity of solid defor-
mations. In the case of small or moderate interface deformations, body-fitted (or interface-tracking) methods are particularly 
efficient to reproduce accurately the behavior of elastic materials. Among others, the Arbitrary Lagrangian-Eulerian (ALE) 
[33,54] or Deforming Spatial-Domain/Space-Time (DSD/ST) [51,52] methods are commonly used in the literature. They 
ensure a precise representation of the geometry and the imposition of transmission conditions at the interface is straight-
forward since the fluid-structure interface is explicitly tracked. However, when the deformations become large, or there are 
topological variations (splitting, fusion) or surface contacts (collisions), these formalisms become challenging because of grid 
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deformation and distortions. If re-meshing techniques are classically employed to regularize the mesh, we can also mention 
the deformation/swapping approach [2] which avoids re-meshing. For the resolution of this type of problems, approaches 
that combine the Eulerian formalism in the fluid and the Lagrangian formalism in the solid are more appropriate. The Fic-
titious Domain, Immersed Boundary and Embedded Boundary methods (see, e.g., [5,9,18,23,36,37] and references therein) 
are based on non body-fitted meshes, in which the fluid–structure interface is deformed independently of the fluid mesh. 
However, these methods require additional care to take into account wall and transmission conditions at the fluid-structure 
interface.

In this work, we consider a fully Eulerian approach to FSI modeling. The fully Eulerian approaches, which are based 
on interface-capturing methods, are potentially less accurate than body fitted approaches, but they are more versatile and 
provide a more transparent handling of the mesh, if the structure is not too thin. Moreover, this type of methods enables 
a wide range of simulations to be performed, including all kinds of complex geometries, with limited offline geometrical 
modeling. The fluid and the structure are considered as a multi-phase incompressible viscous material governed by the same 
set of equations. The constitutive law differs nevertheless in the fluid and in the elastic medium and the transmission con-
ditions are imposed in a weak form. The novelty of this paper is the discretization of this model which is performed on an 
hierarchical adaptive grid that is not necessarily body-fitted. Hierarchical Cartesian schemes allow the multi-scale resolution 
of PDEs on non body-fitted meshes with a drastic reduction of the computational setup overhead since the mesh generation 
step is simplified. These methods are easily parallelizable and they can efficiently be mapped to high-performance computer 
architectures. Moreover, coupled with an Eulerian model, they avoid dealing with grid remeshing, a prohibitive task when 
the boundaries are moving and the topology is complex and unsteady. In turn, transmission conditions require more care. 
In order to simplify this step, we employ a diffuse-interface method in which the discontinuous properties of the medium 
are smoothed across the interface and the boundary conditions are satisfied by continuity of the fluxes and of the solution. 
The fluid-structure interface itself is captured using an Eulerian level-set function defined as the signed Euclidean distance 
to the interface.

In the past decades, Eulerian FSI models have been proposed by various authors [11,17,39,41,47,55]. In this approach, 
the deformation of the material is generally followed using a vector field called backward characteristics, representing the 
inverse mapping of the deformation vector. These functions, connecting the current position of a particle to its initial 
position in the undeformed configuration of the material, are transported over time according to the velocity, and are 
used to determine the deviatoric elastic stress tensor. With a different perspective, in Sugiyama et al. [47] it is suggested to 
follow the evolution of the symmetrical left Cauchy-Green tensor via an inhomogeneous advection equation which explicitly 
depends on the velocity gradient.

In this paper, we consider the unified Eulerian model proposed by Cottet et al. [11]. It has been more recently employed 
by Deborde et al. [14] for the simulation of the interaction between a solitary wave and series of immersed elastic structures. 
Using a fully uniform Cartesian method, the authors highlight the phenomenon of wave damping in coastal areas. For the 
resolution of this Eulerian model, we propose a fully finite-volume method on hierarchical Cartesian grids, through the 
open-source Bitpit/PABLO1 library. This library gives the user the opportunity to perform massively parallel computations, 
while maintaining an optimal scalability of the parallelism. However, the numerical order of accuracy is limited since only 
compact stencils, i.e. the first layer of neighbors, are involved in the discretization schemes.

The resolution of the model equations is performed in the whole computational domain, i.e. both inside the materials 
and inside the fluid. When the fluid is subjected to high shear deformations, the elongation of the backward characteristics 
can become critical. It leads to a steep growth of some components of the stress tensor in the vicinity of the interface, 
which can induce large oscillations, especially when the material is stiff or when the deformation is very large. To overcome 
this problem, authors in the literature adopt different strategies. In the work of Sugiyama et al. [47], the Cauchy-Green 
tensor is continuously reset to the zero tensor inside the fluid in order to avoid the generation of instabilities close to the 
interface. A second approach is based on the Initial Position Set (IPS) method. On the one hand, Dunne and Rannacher [17]
propose to define the advection velocity inside the fluid by harmonic continuation of the structure via an IPS function. On 
the other hand, Rannacher and Richter [39] use a technique that is closer to ALE approaches, for which the fluid velocity is 
updated by solving a Laplace problem in the fluid, with respect to the boundary conditions at the interface on which the 
velocity is well-defined. In the idea of generalizing these IPS methods, Richter [41] introduce a new approach, based on an 
extension of the solid deformation on a small layer of cells outside the elastic structure. To this end, a constant extension is 
performed. Recently, Deborde et al. [14] have proposed an improvement of this method by using a linear extrapolation [4]
of the backward characteristics inside the fluid. In our study, this extrapolation technique is also employed, coupled with a 
Fast-Marching method to update the level-set function in order to recover a suitable computation of the elastic forces.

The paper is organized as follows: in Section 2, the Eulerian FSI model is described. Section 3 is devoted to the numerical 
method employed to simulate FSI problems. To validate this FSI approach, numerical tests are then outlined in Section 4. 
In particular, we evaluate the accuracy and efficiency of the method with respect to the literature. Finally, we conclude and 
give some possible perspectives of this work in Section 5.

1 https://optimad .github .io /bitpit.
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Fig. 1. Sketch of the fluid-structure interaction configuration.

2. Flow configuration and governing equations

The flow configuration under consideration is depicted in Fig. 1. The computational domain � ⊂ R2 is divided into tree 
distinct subdomains related to each medium such that � = � f ∪ �s ∪ �e . The domain filled by the fluid is � f , the domain 
covered by the elastic material is �e , and the non-deformable solid domains are �s . In that multi-material system, the 
elastic materials can move and deform according to some deformation laws, whereas for a non-deformable rigid structure, 
the position and motion are known beforehand. In what follows, the rigid domains �s can be either included in an elastic 
material or included in the fluid. The inclusion in the elastic material can be used to induce a certain deformation, it is 
hence called a holder. The inclusions in the fluid are obstacles and can represent immersed boundary conditions defining 
complex flow geometries. The interface between the elastic material and the fluid is �e , and the interfaces between the 
solid and another phase (elastic or fluid) is �s . Except the whole domain �, all other subdomains and interfaces can evolve 
in time.

We consider an incompressible fluid flow and a material with incompressible elasticity. All material properties like dy-
namic viscosity or density are denoted with appropriate subscripts ( f , e or s) corresponding to each material. The unknown 
velocity and pressure fields are defined by u and p indifferently in each phase. An Eulerian description is adopted to model 
both the fluid and the elastic material.

• The fluid flow is governed by the incompressible Navier-Stokes equations:

ρ f

(∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · σ f in � f (t),

∇ · u = 0 in � f (t),
(1)

with σ f = μ f (∇u + ∇uT ) the viscous stress tensor for a Newtonian fluid.
• The incompressible elastic material is governed by similar equations which derive from the Navier equation:

ρe

(∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · σ e in �e(t),

∇ · u = 0 in �e(t),
(2)

with σ e the deviatoric elastic stress tensor which will be defined later.
• Both velocity and normal components of the stress tensor σ̃ = −pI + σ are continuous across the interface �e(t), i.e.

the jumps [·]�e across the interface are equal to zero:

[u]�e = 0,

[σ̃ ]�e · ne = σ̃ f · ne − σ̃ e · ne = 0,
(3)

where ne is the normal vector to the interface �e , arbitrarily pointing towards the fluid.
• Finally, the effect of rigid bodies is taken through no-slip boundary conditions on �s(t):

u = us on �s(t). (4)

Note that several rigid bodies can be considered and we have thus u = u(i)
s on �(i)

s for the ith body. In this study, the 
rigid body velocity on �s will be imposed, and is thus defined as an external data.
3
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One difficulty in the numerical resolution of system (1)-(4) is the imposition of boundary conditions (3) and (4). One 
way would be to use a computational mesh that fits the interfaces �e and �s . Among the body-fitted methods, we can 
mention the work of Bathe [33], Turek [54], or Tezduyar [51,52]. The main advantage of this approach is that conditions (3)
and (4) can be imposed in an accurate way on the interface-fitted mesh nodes. The main drawback, however, is that lots 
of remeshing steps have to be performed to follow the interface deformation, especially for soft materials inducing large 
deformations.

The approach considered in this study is to employ non body-fitted grids. The main advantage is that no remeshing steps 
are needed, but a special treatment is necessary at the boundary since no grid points are located on the interfaces (see [19]
for instance). In the context of Immersed Boundary Methods (IBM) [7,30], the position of the boundary is reconstructed to 
impose precisely the boundary conditions. This strategy requires the construction of discretizations adapted to the geometry 
close to the interface, which implies the redefinition of specific stencils. However, the construction of high-order one-sided 
discretizations on quadtree meshes is very challenging, above all if we take into account the parallelism constraint, namely 
the exclusive use of compact stencils. As a consequence, we adopt a diffuse-interface formulation, in which the interfaces 
are represented in an implicit way using level-set functions.

2.1. Fluid-elastic structure coupling

Equations (1) and (2) differ only with material quantities such as density ρ and deviatoric stress tensor σ . Let χe be the 
mask function such that χe(x) = 1 if x ∈ �e and χe(x) = 0 elsewhere. A multi-material quantity η can generally be written 
as η = (1 − χe)η f + χeηe . Thus, we have the following mixed quantities:

ρ = (1 − χe)ρ f + χeρe in �,

σ = (1 − χe)σ f + χeσ e in �.
(5)

According to this monolithic formulation (5), Equations (1) and (2) can be recasted as a single set of equations as:

ρ
(∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · σ in [0, Tmax] × � f ∪ �e,

∇ · u = 0 in [0, Tmax] × � f ∪ �e.

(6)

This system is then completed with conditions (3). These conditions could be imposed in a sharp way by modifying the 
stencil and algorithms near the interface. However, our goal is to keep as far as possible the same stencils and discretizations 
inside the whole computational domain. In the diffuse-interface approach we choose, the interface is then smoothed by 
regularizing the mask function χe . This approach gives rise to a continuous problem across the interface, thus conditions (3)
are naturally satisfied by continuity. As a counterpart, the accuracy in the vicinity of the interface is reduced since the 
position of the interface is taken into account only implicitly. The regularization of the mask function is performed using a 
regular level-set function. Here we chose the signed distance function φ arbitrarily defined to be negative in �e . The mask 
function is hence smoothed on a narrow band of width 2δ:

χe(φ) =
⎧⎨⎩

1 if φ < −δ

0 if φ > +δ

1 − 1
2

(
1 + φ

δ
+ 1

π sin(π φ
δ
)
)

else.

(7)

The width of the narrow band is usually limited to very few grid points, and we will choose δ = min(3hmin, δmin), hmin being 
the minimum characteristic size of the grid cells located near the interface �e . Beyond a certain degree of grid refinement, 
i.e. when hmin → 0, the regularization parameter is assumed to be constant (δ = δmin), the equilibrium conditions at the 
interface are hence ensured by the continuity of mass and momentum flows at order δmin .

The level-set function φ is transported using the following equation:

∂φ

∂t
+ u · ∇φ = 0 in [0, Tmax] × �. (8)

Since the velocity is solenoidal in the whole domain � f ∪ �e , we can use the conservative form of Equation (8):

∂φ

∂t
+ ∇ · (uφ) = 0 in [0, Tmax] × �. (9)

The regularization (7) is based on Euclidian distance information. Since we have no guarantees that the level-set function φ
is still a sign distance function after applying (9), reinitialization iterations have to be used (see [48]). Extension to several 
elastic bodies is straightforward introducing multiple level-set functions.
4
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2.2. Volume penalization for rigid bodies

The previous sections have described a numerical modeling of system (1)-(3). These equations have been recasted in a 
simpler set of equations, based on the monolithic formulation (6). The last condition to close system (1)-(3) is thus the 
interaction of fluid and elastic materials with rigid bodies (4).

As previously done for the elastic structure, we aim to avoid meshing and remeshing the whole computational domain 
when the rigid bodies move across this domain. The rigid bodies will be then represented in an implicit way using a mask 
function. In this study, we chose the Volume Penalization originally introduced by Angot et al. [3], or more precisely its 
second order extension proposed in [7]. This method has been validated in several previous studies [6,8].

The main idea of this approach is to consider the whole system as a porous medium, with a variable permeability 
ε. In that regard, a rigid structure has a very low permeability, ε � 1. The system (1)-(3) can be solved adding extra 
penalization terms to the momentum equation in (6). We obtain the following equations in the whole domain �, written 
the conservation form:

ρ
(∂u

∂t
+ ∇ · (u ⊗ u)

)
= −∇p + ∇ · σ + χs

ε
(us − u) in [0, Tmax] × �,

∇ · u = 0 in [0, Tmax] × �,

(10)

where the mask function χs related to the rigid solid is

χs(x) =
{

1 if x ∈ �s,

0 else.

In case of multiple bodies, the last term of equation (10) is 
∑Nb

i=1
χ

(i)
s
ε (u(i)

s − u) with Nb bodies. The solution of the system 
(10) converges towards the solution of the original decoupled system (see [3]) as 

√
ε tends to zero [27]. In this study, we set 

ε = 10−10h2, where h refers to a characteristic length of the mesh which will be introduced later. This parameter is defined 
proportional to the volume of the smallest cell to be consistent with the other finite volume discretizations (in 1/|�i |), and 
small enough that the term χs

ε (us − u) becomes predominant over all other terms.

2.3. Definition of the deviatoric elastic stress tensor

The last point is the definition of the deviatoric elastic stress tensor σ e . Let �0 be the initial or reference configuration 
of �e at time t = 0 and �t its deformed configuration at time t .

• Backward characteristics

In a Lagrangian framework, the deformation of a structure is followed according to the reference configuration �0 using the 
direct (or forward) characteristics

X : [0, Tmax] × �0 −→ �t ,

(t, ξ) �−→ X(t, ξ).

In this context, at time t , a Lagrangian particle initially located at ξ = X(0, ξ ) has moved from ξ to x = X(t, ξ ) according to 
the velocity field. The deformation is hence described through the equation:

∂X

∂t
(t, ξ) = u(t,X(t, ξ )), X(t = 0, ξ) = ξ . (11)

In an Eulerian framework, the continuous medium is described through the deformed configuration �t . To find the initial 
position ξ ∈ �0 of a particle x ∈ �t , we introduce the backward characteristics

Y : [0, Tmax] × �t −→ �0,

(t,x) �−→ Y(t,x).

By definition, the backward characteristics are the inverse of the forward characteristics, i.e. X = Y−1 (see Fig. 2) since we 
have the relations:

X(t,Y(t,x)) = x and Y(t,X(t, ξ)) = ξ . (12)

Differentiating the second equation of (12) with respect to time, we get a transport equation:⎧⎨⎩
∂Y

∂t
(t,x) + u(t,x) · ∇xY(t,x) = 0,

Y(t = 0,x) = x.

(13)
5
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Fig. 2. Forward and backward characteristics are used to describe the deformation of a continuous medium.

This Eulerian relation is equivalent to the Lagrangian formulation (11). Moreover, differentiating one of the relations of (12)
with respect to ξ or x, the deformation tensor F can be expressed in the sense of both formalisms as

F := [∇ξ X] = [∇xY]−1. (14)

Under the assumption of incompressibility, we have the relation:

J := det(F) = 1. (15)

In the Eulerian framework, the backward characteristics Y are considered to describe the deformation of an elastic material 
represented by �e . The evolution in time of Y is followed by solving the transport problem (13). The deformation tensor F
can be computed as a function of Y using relation (14).

• Hyper-elastic model

In the general case, linear elastic models are unable to predict correctly the behavior of materials which undergo from 
moderate to large deformations. In order to simulate properly the deformation of elastomeric membranes, it is appropriate 
to opt for a hyper-elastic model. This section is closely inspired by the theory of hyper-elasticity, as stated among others by 
Ogden [22,34].

The properties of a hyper-elastic material are traditionally expressed in terms of a strain-energy function, called W =
W (F), depending on the deformation tensor. The internal energy per mass unit E related to the material is defined from 
this strain-energy function as:

E =
∫
�0

W (F(t, ξ))dξ . (16)

It can be shown that, under the assumptions of objectivity and isotropy, E can be written as a function of the invariants ıC

of the right Cauchy-Green tensor C = FT F (which are also the invariants ıB of the left Cauchy-Green tensor B = FFT ):

E =
∫
�0

W̃ (ıC)dξ =
∫
�t

W̃ (ıB) J−1 dx, (17)

where the invariants are ıC = ıB := (I1, I2, I3) =
(
Tr(B), Tr(Cof(B)), det(B)

)
. For an isotropic incompressible material, the 

internal energy depends only on the first two invariants, since I3 = J 2 = 1 according to the incompressibility constraint 
(15). In this context, it is hence possible to prove that the deviatoric elastic stress tensor σ e can be expressed as:

σ e = −p∗I + 2
∂W

∂ I1
B − ∂W

∂ I2
B−1, (18)

where p∗ refers to an arbitrary hydrostatic pressure. This Eulerian formulation shows that the deviatoric elastic stress tensor 
depends on the left Cauchy-Green tensor B = [∇Y]−1[∇Y]−T and its invariants.

In this work, we consider the two-parameter Mooney-Rivlin model [31,42], for which the strain-energy function is de-
fined (in three dimensions) as:

W = c1(I1 − 3) + c2(I2 − 3), (19)

where c1, c2 ≥ 0 are the empirical parameters of the material related to the shear modulus through the consistency relation 
G = 2(c1 + c2). From Equations (18) and (19), the Mooney-Rivlin deviatoric stress tensor is consequently:

σ e = −(2c1 I1 − 2c2 I2)I + 2c1B − 2c2B−1. (20)

This kind of model is particularly adapted to rubber-like materials which undergo moderate deformations (200%-250%), as 
reported by [29]. Some more complete hyperelasticity models, such as the Ogden or van der Waals models, could also have 
been chosen, but they depend generally on more parameters and are thus more difficult to calibrate.
6
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2.4. The Eulerian single-continuum model

This unified model has recently been studied by [11], and then used by [14]. In the latter paper, the numerical method 
relies on the use of fully uniform Cartesian meshes whereas here we rely on new quadtree-based discretizations on compact 
stencils.

We solve the whole fluid-structure system with a monolithic model, in contrast to the partitioned approaches where the 
models and the schemes for the fluid and the structure are distinct. Here, the model and the scheme are the same on the 
whole domain �, without making any distinction between the different media.

The single-continuum model in the entire computational domain reads:

ρ
(∂u

∂t
+ ∇ · (u ⊗ u)

)
= −∇p + ∇ · σ (u,Y, φ) + χs

ε
(us − u) in [0, Tmax] × �,

∇ · u = 0 in [0, Tmax] × �,

(21a)

∂Y

∂t
+ ∇ · (u ⊗ Y) = 0 in [0, Tmax] × �,

∂φ

∂t
+ ∇ · (uφ) = 0 in [0, Tmax] × �,

(21b)

where the deviatoric stress tensor is defined as:

σ (u,Y, φ) = σ f (u) + χe(φ)σ e(Y), (22)

with σ f = μ(∇u + ∇uT ) and σ e = −(2c1 I1 − 2c2 I2)I + 2c1B − 2c2B−1. Using this formulation, the deviatoric stress tensor 
(22) and the pressure are regularized across the interface, which guarantees the compliance with the transmission boundary 
conditions (3).

To improve the regularity of the results and to simplify the model, both the fluid and elastic materials are chosen to be 
viscous. In this work, we impose that the viscosities are identical, i.e. μ = μ f = μe . This system is closed using appropriate 
initial and boundary conditions for u, p Y and φ.

A mathematical analysis of this Eulerian model has been proposed by Cottet et al. [11]. In this study, they proved notably 
the local existence of strong solutions, in the case of a membrane immersed in a viscous fluid.

3. Numerical method

This section is dedicated to the time and space discretizations of the monolithic model (21). This model has already 
been studied by Deborde et al. [14] in the context of fully uniform Cartesian meshes. The originality of this paper lies in 
the use of quadtree-based hierarchical Cartesian meshes. Indeed, this kind of mesh is particularly interesting due to the 
multi-physics nature of the problem.

In order to solve numerically the model (21), a versatile cell-center finite volume approach is preferred. This choice 
is motivated by two main arguments. On the one hand, in order to get an efficient and automatic management of the 
quadtree data structure, we use the Bitpit/PABLO library, developed by the company Optimad Engineering Srl (Torino). Based 
on a Z-order filling curve, the access to the data related to a grid cell (and its neighbors) is natural and cost-optimized. 
It also provides a transparent and automatic handling of the connectivity and intersections, which is necessary for the 
computations of numerical fluxes. On the other hand, a cell-centered finite difference scheme on quadtree grids has been 
proposed recently by Raeli et al. [38] for the resolution of anisotropic elliptic problems. In that work, a local study of the 
configuration of each stencil is performed to consistently discretize the differential operators. The finite-volume approach 
proposed in the present work does not need a study of the local configuration of the stencil, at the price of being less 
accurate at the level jumps although the order of convergence is preserved.

3.1. Time integration

Let 
t := tn+1 − tn be the time step and ϕn := ϕ(tn) be the discrete value of a function ϕ at time tn . This time step is 
chosen in order to respect the stability conditions, relative to the chosen time discretization, such as the classical Courant-
Lax-Friedrichs (CFL) condition induced by explicit convective schemes. It is based on the sum of the maximum convection 
speed ||u||L∞ and the speed of linear elastic waves cwave propagating inside the structure. In the incompressible regime, this 
former speed satisfies the relation c2

wave = E/ρ = 3G/ρ where E and G refer to the Young and shear modulus respectively. 
In our simulations, the maximum CFL number has been chosen by trial and error to ensure the stability of the numerical 
method and set to 0.25.

Since the time step might change at each iteration, the linear systems to solve are hence different from one iteration 
to another but the matrix coming from the discretizations in space can be stored in memory once and for all. To simplify 
the description of the numerical schemes, the time step is assumed to be constant in the remainder of this section. The 
generalization to a variable time step is straightforward.
7
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One of the main difficulty in solving system (21) is the numerical discretization of the elastic part of the deviatoric 
stress tensor in (21a). Indeed, σ e depends on B = [∇Y]−1[∇Y]−T and is thus nonlinear in Y. The system (21) could be 
solved implicitly in a coupled way using Newton’s iterations. An implicit formulation would be particularly valuable to get 
rid-off the time step restriction due to elastic materials. The drawback is however the large computational cost to build 
and solve the non-linear system. In this work, we chose an iterate approach to couple the fluid and the elastic material by 
solving alternatively in time Equations (21a) and (21b).

Provided that the velocity field u is solenoidal at time iteration n (to be discussed in Section 3.2), we solve the transport 
equations (21b) as a first step. The level-set function φ is transported from time tn to tn+1 using the classical second-order 
TVD Runge-Kutta scheme as:

φ∗ = φn − 
t∇ · (uφ)n,

φn+1 = 1

2
φn + 1

2
φ∗ − 
t

2
∇ · (uφ)∗.

(23)

The same numerical scheme is used for the transport of the backward characteristics.
Then, system (21a) is solved using the fractional time step method introduced by Chorin [10] and Temam [50]. We first 

compute a velocity field u∗ from a pressure guess q with a second-order Gear scheme applied to the momentum equation:

3u∗ − 4un + un−1

2
t
+ (

2∇ · (u ⊗ u)n − ∇ · (u ⊗ u)n−1)
= 1

ρ

(
− ∇q + ∇ · σ (u∗,Yn+1, φn+1) + χn+1

s

ε
(un+1

s − u∗)
) (24)

Since the backward characteristics and the level-set function have already been advected in time, the quantities Yn+1 and 
φn+1 are known and the elastic part of the deviatoric stress tensor can be finally computed in an explicit way. Also, since 
un+1

s and thus χn+1
s are imposed, they can be considered as source terms. The only implicit terms related to u∗ are in the 

viscous part of stress tensor and in the penalization term, resulting in a classical linear system to be solved.
The velocity field u∗ is a priori not solenoidal. A projection onto the divergence-free subspace is hence performed. Ap-

plying the divergence operator to equation

un+1 − u∗


t
= − 1

ρ

(∇pn+1 − ∇q
)
, (25)

and imposing that ∇ · un+1 = 0, we obtain a Poisson Equation:


p′ = ∇ · u∗, (26)

where p′ := (
t/ρ)(pn+1 − q) is the pressure increment. Homogenous Neumann boundary conditions are imposed in order 
to ensure that there is no perturbation at the boundaries for the normal component of the velocity. In a FSI problem, the 
pressure is in general discontinuous across the fluid-solid interface. However, in our model the interface is regularized and 
hence the pressure is continuous even if it has a steep gradient. Once the pressure increment p′ is computed, a correction 
step is performed:⎧⎨⎩ pn+1 = q + ρ


t
p′, (a)

un+1 = u∗ − ∇p′. (b)

(27)

In this study, we use the incremental version of the projection method proposed by Goda [24] for which q := pn .

3.2. Spatial discretizations

In this work, the monolithic model (21) is solved numerically using quadtree-based cell-centered finite volume schemes.

3.2.1. Quadtree
We use a Cartesian hierarchical data structure, called quadtree, to represent the spatial partitioning of the physical 

domain. As depicted in Fig. 3, a quadtree grid is composed of square cells with different levels of refinement. Starting from 
the root of the tree (level 0), which represents the whole computational domain, the grid is recursively refined to a desired 
level of refinement. When refining, a parent cell of level p is divided into four children of level (p + 1). Inversely, four 
children can merge into a single parent when coarsening. If a cell has no child, which means it is located at the treetop, the 
cell is called leaf.

Thanks to the library PABLO, which is a part of Bitpit library, we get use of an efficient tool to store the data structure. 
The library relies on the linear Z-order indexing proposed by Morton [32] in 1966, which enables the manipulation of the 
8
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Fig. 3. Global Z-order indexing for a two-dimensional graded quadtree grid. The domain decomposition is depicted with colors. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

2D grid data from a 1D vector structure. We can thus access all the information coming from neighboring cells in a cost-
optimized way, from the point of view of computational time and memory. Here, the quadtree grid is defined graded, which 
means that the level difference between a cell and all its adjacent cells (by face) is at most one; and linear, which means 
that only the data related to the leaves are kept in memory.

This Adaptative Mesh Refinement (AMR) procedure offers the opportunity to dynamically adapt the mesh to the flow 
configuration. By refining locally where the solution varies significantly (e.g. in the vicinity of interfaces and in the wake 
of structures), and by coarsening where the solution is more regular, the number of degrees of freedom can be drastically 
reduced while preserving a desired accuracy for our simulations. This strategy is even more interesting when it comes to 
taking into account structures that can move or be deformed. For the domain decomposition, the number of communica-
tions between processors is restricted to a single layer of ghost cells. If this constraint guarantees a high efficiency of the 
parallelism, the spatial discretizations involve compact stencils only and thus, this constraint limits the order of accuracy of 
the numerical method.

In this section, we detail the finite volume discretizations of the differential operators involved in the multi-material 
model. To describe these discretizations, we get use of arbitrary quantities, namely a scalar function ϕ and a vector field 
v ∈R2. The square domain � is decomposed into a quadtree partition of Ncells small square cells �i of level Li (being the 

leaves of the tree) such that � =
·⋃

i�i . By convention, the grid configuration is identified by its minimum and maximum 
levels of refinement Lmin and Lmax . In other words, for a Lmin − Lmax grid, the characteristic length hi of �i is between 
hmax = D/2Lmin and hmin = D/2Lmax , where D refers to the characteristic size of the computational domain �. We denote by 
xi the center of the cell �i and ϕi := ϕ(xi) the discrete value of a quantity ϕ evaluated at the cell center xi . Depending 
on the configuration, the area of the cell is |�i | = h2

i for a 2D simulation whereas |�i | = 2πrih2
i for a 2D axi-symmetric 

simulation, ri being the radial component of xi .
For a finite volume method, the discrete operators are computed as face contributions called fluxes. Let f be the inter-

secting face of two cells called �out and �in and x f c be the coordinates of the face center. As a convention, the normal 
vector n f of f is pointing from �in to �out . The discrete values of ϕ in �in and �out are denoted by ϕin and ϕout respec-
tively. The area of the face is | f | = h f for a 2D simulation while | f | = 2πr f ch f for a 2D axi-symmetric simulation, where 
h f = min{hin, hout} refers to the characteristic length of f and r f c is the radial component of the face center.

3.2.2. Cell-center and face-center velocities
It is well known that if the collocated cell-center velocity u∗ is used to compute ∇ · u∗ in the Poisson equation (26), 

spurious grid-to-grid oscillations may occur due to the odd-even decoupling between velocity and pressure. This is one of 
the main drawbacks of non-staggered variable arrangements. As shown by Ferziger and Peric [20], traditional collocated 
methods cannot simultaneously guarantee pressure regularity and mass conservation. One way to overcome this problem 
has been proposed by Patankar [35] and consists in adopting a fully staggered arrangement of variables. For this Marker-
And-Cell (MAC) method, the prediction step (24) and the Poisson equation (26) are solved at different locations, leading to 
distinct spatial discretizations. In this sense, staggered arrangements become more challenging for non-uniform Cartesian 
methods.

In order to stabilize the method, the collocated approach introduced by Rhie and Chow [40], and employed later by 
Mittal et al. [30], is chosen. An auxiliary face-center velocity, U∗

f c , is introduced:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ũ = u∗ + 
t

ρ
(∇pn)cc (a)

Ũ f c = F(ũ) (b)

U∗
f c = Ũ f c − 
t

(∇pn) f c (c)

(28)
ρ

9
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Fig. 4. Pattern of the velocity arrangement on quadtree grids.

Fig. 5. Pattern of the face stencil considered to compute ϕ f c and (∇ϕ) f c for a level jump configuration. The red quadrilatera represents the diamond cell 
used to interpolate (∇ϕ) f c .

where subscripts cc and f c refer to cell-center and face-center locations respectively, and F denotes a cell-center to face-
center operator. The computation of this operator F is discussed at the end of the section. This velocity arrangement is 
illustrated in Fig. 4.

The face-center velocity U∗
f c is now used to compute the right hand side of the Poisson equation (26):


p′ = ρ


t
∇ · U∗

f c. (29)

Once the pressure increment p′ is obtained, both cell-center and face-center velocities are finally corrected independently:⎧⎨⎩ un+1 = u∗ − (∇p′)cc, (a)

Un+1
f c = U∗

f c − (∇p′) f c. (b)
(30)

If the face-center velocity Un+1
f c satisfies the discrete mass conservation within the limit of the Poisson solver tolerance ε


(which can be set to machine precision), i.e.∑
f ⊂∂�i

Un+1
f c | f | = O(ε
) � 1, ∀�i ⊂ �,

the interpolation F(un+1) does not. Consequently, both cell-center u and face-center U f c velocities need to be stored to 
ensure mass conservation. However, only one component of the velocity is needed on each face, leading to a limited increase 
in the memory cost.

In order to compute a face centered quantity ϕ f c from cell-center values, a second order face-center interpolator I is 
introduced. Fig. 5 illustrates the stencil used for this interpolation. First, if the face configuration is uniform, which means 
10
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Fig. 6. L1 and L∞ truncation errors ||∇ · vnum − ∇ · vex|| obtained for the divergence operator on uniform and quadtree meshes. The analytical solution is 
vex(x, y) = (−y, x)T f /(0.385R) in � = [−2, 2]2 with R = √

x2 + y2 and f = tanh(R)/ cosh2(R). Dirichlet boundary conditions are prescribed on ∂�. Tests 
are performed on uniform and quadtree grids (which rely on a refinement by boxes, see Fig. 7) for a same minimum level of refinement Lmin .

that the two cells �in and �out have a same level of refinement, ϕ f c is naturally defined as the average of ϕout and ϕin . 
Otherwise, ϕ f c is computed as the average of ϕT and ϕB for a level jump configuration. Since these quantities are unknown, 
they are approximated using a 3-point linear or 4-point bilinear interpolation, depending on the number of neighboring cells 
located respectively around the lower (B) and upper (T) nodes of the face.

In the computation of the normal face-center velocity U f c (see Equation (28b)), a cell-center to face-center operator 
F was mentioned. This operator was firstly defined as the second order interpolator, i.e. F := I . But in practice, we have 
noticed the apparition of some spurious oscillations at level jumps within the limit of small time steps 
t . We also observed 
that, the smaller the time step, the larger the amplitude of these oscillations.

This oscillatory behavior is caused by the inaccurate computation of ∇ · U ∗
f c at level jumps. Indeed, to construct a 

discretization scheme for the divergence operator, we have to choose between conservativity and accuracy. Since we expect 
the schemes to be conservative in this work, we lose a fortiori one order of accuracy at level jumps, as illustrated by the 
convergence study reported in Fig. 6.

To limit the impact of these numerical inaccuracies, Ũ f c is computed as:

Ũ f c = F (̃u) :=
{
I(ũ) if the stencils of the two cells are both uniforms,
Un

f c + I(ũ − un) else. (31)

3.2.3. Discretization of the involved operators
• Laplacian operator

We use a simplified version of the Discrete Duality Finite Volume (DDFV) method proposed by [12,15]. This method, called 
diamond method, is based on the choice of artificial diamond-like polygons, as depicted in Fig. 5. The finite volume formu-
lation of the Laplacian operator is discretized using a mid-point formula:

(
ϕ)i = 1

|�i |
∫

∂�i

∇ϕ · n ds =
∑

f ⊂∂�i

(∇ϕ) f c · n f
| f |
|�i | +O(h2

i ). (32)

The normal face-center derivative (∇ϕ) f c · n f is computed as a linear combination of two directional derivatives:

∇ϕ · η = ϕout − ϕin, (33a)

∇ϕ · τ = ϕT − ϕB , (33b)

following the direction of vectors η = xout −xin and τ = xT −xB respectively. For a uniform face configuration, vectors η and 
n f are collinear, Equation (33a) thus matches the classical second order centered approximation of the normal derivative. 
For a level jump configuration, the normal vector n f can be expressed as a linear combination of vectors η and τ , i.e.
∃cτ , cη ∈R : n f = cττ + cηη. The face-center normal derivative can be hence approximated as:

(∇ϕ) f c · n f = cτ (ϕT − ϕB) + cη(ϕout − ϕin). (34)

The unknown values ϕT and ϕB are interpolated from grid points data in a linear or bilinear sense, according to their 
respective number of neighboring cells.
11
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grid uniform by-boxes AMR pseudo-random AMR

Lmin L1 q1 L∞ q∞ L1 q1 L∞ q∞ L1 q1 L∞ q∞
5 4.96e-3 / 1.24e-2 / 1.48e-3 / 1.45e-2 / 7.62e-4 / 1.38e-2 /
6 1.17e-3 2.08 3.12e-3 1.99 4.05e-4 1.87 3.48e-3 2.06 1.83e-4 2.06 3.44e-3 2.00
7 2.85e-4 2.04 7.88e-4 1.99 9.52e-5 2.09 8.56e-4 2.02 4.53e-5 2.01 8.53e-4 2.01
8 7.01e-5 2.02 1.98e-4 1.99 2.29e-5 2.06 2.12e-4 2.01 1.11e-5 2.03 2.15e-4 1.99
9 1.74e-5 2.01 4.96e-5 2.00 5.77e-6 1.99 5.27e-5 2.01 2.79e-6 1.99 5.47e-5 1.97

Fig. 7. Convergence of the Poisson solver on uniform and quadtree meshes. The Poisson equation 
ϕ = f is solved in the domain � = [0, 2π ]2. The 
analytical solution is ϕ(x, y) = cos(x + y) sin(x − y) and Dirichlet boundary conditions are prescribed on ∂�. Two kinds of AMR have been tested, which 
rely on a refinement by boxes (on the left) and a pseudo-random refinement (on the right). Results have been obtained for a same minimum level of 
refinement Lmin (with Lmax = Lmin + 3) and show that the Poisson solver is second order accurate.

The Poisson matrix resulting from this diamond discretization is not symmetric and positive definite. Guittet et al. [25]
proposed a formulation that gives rise to a symmetric positive definite system. Numerical experiments show that the di-
amond discretization of Poisson solver is second-order accurate on both uniform and quadtree grids for different types of 
refinement, see Fig. 7. The resolution of all linear systems involved in this method is performed using the PETSc library.

• Discretization of advection terms

The transport equations for both the level-set function φ and the backward characteristics Y (see Equations (21b)) are 
solved using a second-order finite volume scheme. A similar scheme is also used to compute the convective terms during 
the prediction step (24). The conservative form of the transport equations is used since the mass conservation is precisely 
recovered after the projection step, i.e. (u · ∇)ϕ = ∇ · F(ϕ). The second-order finite-volume discretization reads:∫

�i

∇ · F(ϕ)dx =
∫

∂�i

F(ϕ) · n ds =
∑

f ⊂∂�i

F(ϕ f c) · n f | f |, (35)

where the flux is defined by F(ϕ) := Uϕ . Since the normal face-center velocity U f c is directly computed from equa-
tion (30b), it is only required to reconstruct the function ϕ to approximate the numerical flux.

In this paper, we use a second-order extension of the Godunov upwind scheme. The accuracy is limited to the second 
order since the quadrature rule, related to the velocity arrangement with U f c , involved in the discretization is only second 
order accurate. To that end, the linear reconstruction of ϕ in each cell �i is performed using the cell-center gradient as:

ϕ
∣∣
�i

(x) = ϕi + (x − xi)
T (∇ϕ)i, (36)

for any point x ∈ �i . The value of the gradient (∇ϕ)i is approximated using a quadratic least-square interpolation in the 
compact stencil of �i . This interpolation is always possible since the size of this stencil is at least 6 for a graded quadtree 
grid. To guarantee that the advection scheme is stable under the CFL condition formulated in Section 3.1, the computation 
of the flux is performed using the Rusanov (or Local Lax-Friedrichs) numerical flux, which reads:

F̃O 2(ϕ
+,ϕ−) = 1

2
U f c(ϕ

+ + ϕ−) − 1

2
|U f c|(ϕ+ − ϕ−), (37)

where ϕ− = ϕ
∣∣
�in

(x f c) and ϕ+ = ϕ
∣∣
�out

(x f c) refer to the reconstruction of ϕ f c from both sides of the face f .
The discretization scheme outline above, called FV2, is not monotone. However, since the solution remains regular enough 

in our incompressible framework, a priori or a posteriori limiting techniques, such as WENO or MOOD, are not necessary. For 
the validation of the finite volume discretization, the reader can refer to Appendix A.
12
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3.3. Re-initialization and extrapolation algorithms

In this study, the level-set function φ is used to both capture the multi-material interface φ = 0 and to define the 
regularized mask function χe ≡ χe(φ) involved in (22) and introduced in the previous sections. A common and natural 
choice for the level-set function is the signed distance function. The signed distance behavior can however be lost when the 
level-set function is transported using the fluid velocity in the whole domain. Severe stretching of the distance function near 
the interface can lead to numerical inaccuracies on the interface position. When dealing with level-set based methods, the 
mass of each phase cannot be properly conserved, which is a key requirement to get a realistic simulation of multimaterial 
problems. This loss of mass cannot be fully removed but it can be significantly reduced. A wide range of strategies, called 
reinitialization algorithms, have been proposed in the literature to recover the distance behavior. First of all, we can mention 
the relaxation method proposed by Russo and Smereka [43] and its extensions to high-order precision by [16,28] among 
others. A high-order reinitialization scheme would be computationally challenging in this work since we are limited to 
compact stencils for our discretization schemes. In addition, fast-sweeping methods [53,56] are not suitable either because 
the Z-order indexing does not provide an efficient and low-cost sweeping direction to solve the Eikonal equation. The fast-
marching methods introduced by Sethian [44,45] remain more interesting in our case. A third order accurate fast-marching 
method (see for instance [1]) is employed to limit this variation of mass.

In addition, we can not guarantee the regularity of the backward characteristics Y near the interface. Indeed, the fluid 
can be subjected to large shear deformations, which can cause the explosive growth of some components of the mixed 
deviatoric stress tensor σ . These distortions of the backward characteristics can lead to numerical instabilities, especially 
when dealing with very stiff materials. In the approach of Sugiyama et al. [47], the irregularity of the stress tensor is 
eliminated in a more direct way by enforcing σ e = 0 in the fluid where χe = 0. This extrapolation technique is hence not 
needed but this approach leads to other drawbacks, in particular, the equations to be solved to follow the evolution of the 
left Cauchy-Green tensor B are more complex.

Since we want to keep as far as possible the same stencils and discretization schemes in the whole computational 
domain, the characteristics are frequently reset inside the fluid using the linear extrapolation introduced by Aslam [4] and 
employed recently by Deborde et al. [14]. The two transport equations are solved using a semi-Lagrangian scheme based on 
(bi-)linear upwind interpolations.

The reset of the level-set and backward characteristics function could in principle be done at each time step but it is 
necessary only when the regularity degrades. The extrapolation of the backward characteristics relies on the normal vector, 
computed from the level-set function. For regularity reasons, we thus chose to update the level-set function immediately 
before the extrapolation step.

3.4. Low-dispersion finite volume method

Although the upwind discretization scheme FV2 presented previously is consistent and stable, it turns out to be a source 
of numerical instabilities when solving the FSI model. In practice, the numerical solution tends to be oscillatory, especially 
in the vicinity of the interface. These oscillations are critical for highly stiff materials since the computation can become 
unstable after some time iterations. However, the amplitude of these oscillations remains consistent in the sense that it 
decreases with a more refined mesh. To give some explanations of this phenomenon, a stability analysis in one dimension 
of space (1D) has been performed.

To that end, the 2D FSI model is simplified into a system of two nonlinear PDEs:

∂t u = F(u, Y ) := −u∂xu + ∂xσe(Y ), (38a)

∂t Y = G(u, Y ) := −u∂xY , (38b)

where the unknowns are the velocity u and the backward characteristic Y . This simplified model is chosen since it best 
inherits the characteristics of the 2D FSI model. Without loss of generality, the neo-hookean model is chosen, the elastic 
stress tensor can hence be written as:

σe(Y ) = G[(∂xY )−2 − 1]. (39)

Here, the computational domain is purely elastic, i.e. � = �e , the level-set function φ is thus not taken into account.

3.4.1. Numerical test in 1D
A preliminary one-dimensional test is performed. The computational domain � = [−0.03, 0.03] is uniformly discretized 

into N = 200 cells of size 
x. As depicted in Fig. 8a, a discontinuous Heaviside function is prescribed as an initial condition:

u(t = 0, x) =
{

1 if |x| < 0.003,

0 else,
(40)

to enable the apparition of numerical instabilities. The shear modulus is set to G = 1 MPa to simulate a stiff material. The 
1D model (38) is integration in time using a first-order linear multi-step method:
13
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Fig. 8. One-dimensional numerical test: initial condition and solutions obtained using FD2 and FV2 schemes as a discretization of the advective term A(Y ).

Y n+1
i − Y n

i


t
= Gi(un+1, Y n), with un+1 = 2un − un−1,

un+1
i − un

i


t
= Fi(un, Y n+1).

(41)

The advection operator A(Y ) = u∂xY = ∂x(uY ) − Y ∂xu is discretized in space using both finite volume and finite difference 
methods. A first test is performed using the analogous 1D version of the FV2 scheme presented in Section 3.2.3, which can 
be written as (provided u > 0):(

Ã F V 2(Y )
)

i =
ui+ 1

2

4
x
(Yi+1 − Yi−1) −

ui− 1
2

4
x
(−3Yi + 4Yi−1 − Yi−2). (42)

As a comparison, a second test is proposed by considering a second order finite difference scheme, called FD2, which reads 
(provided u > 0):(

Ã F D2(Y )
)

i = ui

4
x
(Yi+1 + 3Yi − 5Yi−1 + Yi−2). (43)

For both numerical tests, the convective term A(u) is discretized using the FV2 scheme. The solutions obtained at time 
t = 0.5 ms are displayed in Fig. 8b. The oscillatory behavior seems thus to be caused by the finite volume discretization 
scheme we employ to advect the backward characteristics. It is however possible to get rid of these instabilities with a finite 
difference method.

3.4.2. Asymptotic behavior of advection schemes
In what follows, the asymptotic convergence of the numerical schemes FV2 and FD2 in the limit of small perturbations is 

investigated. This asymptotic analysis is intended to provide an explanation of the results in Fig. 8. In this context, a scheme 
is called Linearity Preserving (LP) if the limit discrete scheme, obtained from linearization, is consistent with the linearized 
continuous operator.

As a linearization, the solution (u, Y ) is decomposed into the sum of a non-perturbed solution (u0, Y0) and a small 
perturbation homogeneous to (̃u, ̃Y ) as:

u(t, x) = u0(t, x) + εũ(t, x), (44a)

Y (t, x) = Y0(t, x) + εỸ (t, x). (44b)

Since Y (t = 0, x) = x, Y can be interpreted as a perturbation of the identity by imposing Y0(t, x) := x. Introducing the 
decomposition (44) into the 1D model (38), we have u0 ≡ 0 and we obtain the following linearized model:

∂t ũ = −2G∂2
xxỸ , (45a)

∂t Ỹ = −ũ. (45b)

Differentiating Equations (45) with respect to time, these equations can be recasted into wave equations for which the 
propagation speed is a = √

2G .
14
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Fig. 9. Asymptotic analysis of the model (38): amplification factors as a function of the frequency of a Fourier mode θ and the CFL number C = a
t/
x
obtained using ELP and non-ELP discretizations of the advective term A(Y ). Inside the white regions, the amplification factor is greater than 1.

We now compare the asymptotic behavior of the two advection schemes FV2 and FD2. From the discrete formulations 
(42) and (43), the linearization leads to:

(FV2): (∂t Ỹ )i = −ũi − 
x2

8
(∂2

xxũ)i +O(ε), (46a)

(FD2): (∂t Ỹ )i = −ũi +O(ε). (46b)

On one hand, according to Equation (45b), we observe that the asymptotic behavior is preserved exactly using the finite dif-
ference scheme FD2, the scheme is then said to be Exactly Linearity Preserving (ELP). On the other hand, the FV2 formulation 
is only second-order LP. Differentiating Equation (46a) with respect to time, we then obtain:

(∂2
tt Ỹ )i = a2(∂2

xxỸ )i + a2
x2

8
(∂4

xxxxỸ )i +O(ε). (47)

In the limit of small perturbations ε → 0, a dispersive term is consequently introduced by the finite volume formulation. 
This term depends both on the rigidity of the material (a2 = 2G) and the characteristic size of the mesh 
x. This result 
explains partially the oscillatory phenomenon previously stated.

To complete these observations, a Fourier analysis is performed. For more details related to this analysis, the reader 
can refer to the Appendix B. The amplification factors obtained from both discretizations of the advective operator A(Y )

are presented in Fig. 9. The high frequencies (for θ = ±π ) are not damped using the finite volume discretization of the 
advective term A(Y ). This study confirms the oscillatory behavior of the solution displayed in Fig. 8b. The next section is 
thus dedicated to the construction of an ELP finite-volume scheme in order to get closer to the asymptotic behavior given 
naturally by the finite difference framework.

3.4.3. An ELP FV2 scheme
It is useful to enforce the ELP property in order to enhance the damping of high frequencies, and therefore prevent the 

propagation of these oscillations. We do that comparing the truncation errors of the FD2 and FV2 discretization schemes, it 
is possible to highlight the dispersive term involved in Equation (47).

Under the assumption u > 0, the two discretization schemes for the advective operator are defined by Equations (42)
and (43). The truncation errors eF D2 and eF V 2, obtained from FD2 and FV2 schemes, can be respectively written as:(

eF D2
)

i =
[
− 1

12
ui(∂

3
xxxY )i

]

x2 +O(
x3), (48a)(

eF V 2
)

i =
[
− 1

12
ui(∂

3
xxxY )i + 1

8
(∂2

xxu)i(∂xY )i

]

x2 +O(
x3). (48b)

We thus define a source term, called S F V 2, which corresponds to the difference between the two truncation errors, namely:

(
S F V 2

)
i = (

eF V 2
)

i − (
eF D2

)
i +O(
x3) = 
x2

8
(∂2

xxu)i(∂xY )i . (49)

Hence, to describe the time evolution of backward characteristics, an inhomogeneous advection equation is considered:
15
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(∂t Y )i + ( Ã F V 2(Y ))i = (S F V 2)i . (50)

A consistent discretization of the source term (49) for the advection of backward characteristics helps thus enhancing the 
robustness of the numerical method since the non-oscillatory property is recovered.

The generalization in two dimensions is straightforward in the context of Cartesian meshes. As carried out in one di-
mension, the truncation errors are computed for both FD2 and FV2 schemes. We consider an uniform Cartesian mesh where 
the characteristic length of each cell �i j is h. Under the assumption u > 0, the second order FD2 and FV2 schemes in two 
dimensions can be respectively written as:(

u · ∇Y
)

i, j ≈ (
Ã2D

F D2(Y )
)

i, j = (ux)i, j

4h
(Yi+1, j + 3Yi, j − 5Yi−1, j + Yi−2, j)

+ (uy)i, j

4h
(Yi, j+1 + 3Yi, j − 5Yi, j−1 + Yi, j−2),

(51)

and: (∇ · (uY )
)

i, j ≈ (
Ã2D

F V 2(Y )
)

i, j

= 1

h

[
(ux)i+ 1

2 , j

(
Yi, j + 1

4
(Yi+1, j − Yi−1, j)

) − (ux)i− 1
2 , j

(
Yi−1, j + 1

4
(Yi, j − Yi−2, j)

)
+ (uy)i, j+ 1

2

(
Yi, j + 1

4
(Yi, j+1 − Yi, j−1)

) − (uy)i, j− 1
2

(
Yi, j−1 + 1

4
(Yi, j − Yi, j−2)

)]
,

(52)

for each component of the backward characteristics denoted by Y (Y = Yx or Y = Yy). The truncation errors e2D
F D2 and e2D

F V 2, 
obtained from Equations (51) and (52), are:

(
e2D

F D2

)
i, j = − h2

12

(
(ux)i, j(∂

3
xxxY )i, j + (uy)i, j(∂

3
yyy Y )i, j

)
+O(h3), (53)

and: (
e2D

F V 2

)
i, j = (

e2D
F D2

)
i, j + h2

8

(
(∂2

xxux)i, j(∂xY )i, j + (∂2
yyuy)i, j(∂y Y )i, j

)
︸ ︷︷ ︸

(S1)i, j

+ h2

24
Yi, j

(
(∂3

xxxux)i, j + (∂3
yyyuy)i, j

)
︸ ︷︷ ︸

(S2)i, j

+O(h3).

(54)

The truncation error e2D
F D2 and the term S1 correspond to the two-dimensional extension of truncation errors obtained 

previously in 1D (see Equations (48) and (49)). It can be proved that the last term S2 of Equation (54) is not responsible 
for the oscillatory behavior of the solution. Since the term S1 is the origin of the dispersive property, the evolution of the 
backward characteristics Y is carried out by means of the non-homogeneous advection equation

∂Y

∂t
+ ∇ · (u ⊗ Y) = S2D

F V 2, (55)

where SF V 2 refers to a source term defined by:

S2D
F V 2 = h2

8
(∂2

xxux, ∂
2
yyuy)

T [∇Y] =: h2

8
(∇ · [∇diagu])[∇Y]. (56)

Here, [∇diagu] correspond to the diagonal matrix obtained from the velocity gradient [∇u], i.e. [∇diagu]i j := [∇u]i jδi j . By 
adding this source term S2D

F V 2, the finite volume formulation becomes ELP and the numerical method hence benefits from 
the non-oscillation property.

3.5. Implementation of the method

To summarize this section, the numerical implementation of the method is detailed in the Algorithm 1. It provides a list 
and classification of the different steps.

The C++/MPI calculation code is based on the Bitpit/PABLO library for the generation and handling of AMR meshes. All 
functions and routines have been implemented using most of the built-in and optimized functions of this library in order 
to benefit from the quadtree vector data structure. The resolution of all linear systems is achieved using the BiCGStab solver 
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provided by PETSc2 library. To speed up the convergence of the iterative BiCGStab method, a restricted additive Schwarz 
method (PCASM) is used as a preconditioner.

Algorithm 1: Detailed implementation of the numerical method.

Data: Set up of the simulation test case
→ definition of the involved geometries;
→ definition of the adapted mesh;
→ initialization of variables;
while t < Tmax, do

→ definition of the time step 
t with respect to the CFL condition (see Section 3.1);
→ advection of backward characteristics and level-set φ functions Y and φ (Eq. (23)): TVD-RK2 scheme for the time discretization, FV2 scheme 

in space (see Section 3.2.3). For Y, the inhomogeneous advection equation (55) with source term (56) is considered;
→ eventual update of Y and φ , according to a given frequency (see Section 3.3): re-initialization of φ;
and linear extrapolation of Y inside the fluid;
→ prediction step (Eq. (24)): Gear scheme in time, finite volume schemes in space (Section 3.2.3);
→ computation of face-center normal velocity U f c (see Eqs. (28) and (31));
→ projection step: resolution of the Poisson equation (29);
→ correction step (Eq. (30));
→ update of variables;

4. Numerical validation and simulations

In what follows, we consider three test cases. First, the numerical method is validated over a reference test case on 
uniform grids for soft and stiff materials. In this configuration, the structure is driven by the fluid inside a cavity. The soft 
structure undergoes large deformation due to wall effects. In a second test case, we compare the results obtained on uniform 
and AMR grids, prescribing an identical mesh resolution close to the interface. This test involves the interaction between 
a rigid body immersed in an elastic structure. Finally, a realistic bio-medical simulation is proposed. In a 2D-axisymmetric 
complex geometry, mimicking a cardiac pump, a stiff elastomeric membrane is excited at the tip, at a given frequency, in 
order to reproduce a pulsatile blood flow.

In all simulations, the time step varies over time. To respect the CFL condition described in Section 3.1, the time step is 
defined as:


t := 0.25
hmin

||u||L∞ + cwave
(57)

where hmin is the minimum characteristic length of the mesh, ||u||L∞ is the maximum convection speed and cwave = √
3G/ρ

is the speed of linear elastic waves.

4.1. A solid deformation in a lid-driven cavity flow

We first study the deformation of an elastic structure immersed in a lid-driven cavity flow. This test has been studied 
in the literature using both Lagrangian and Eulerian formalisms [13,47,57]. An elastic cylinder is immersed in a cavity 
� = [0, 1]2 m filled with a fluid of density ρ f = 1 kg.m−3 and viscosity μ f = 10−2 Pa.s. Initially, the center of mass of 
the cylinder is xc(t = 0) = (0.6, 0.5)T m and its diameter is set to 0.4 m. The set-up is shown in Fig. 10. The properties of 
the elastic structure and the fluid are identical, i.e. ρe = ρ f and μe = μ f . The deformation of the neo-Hookean material 
(c1 = G/2, c2 = 0) is tested for two different shear modulus in order to consider both soft (G = 0.1 Pa) and stiff (G = 10 Pa) 
materials.

At time t = 0, the fluid and structure are at rest. The flow is then generated by imposing a horizontal velocity u =
(1, 0)T m on the upper wall while imposing no-slip boundary conditions on the other external boundaries. Numerical 
simulations are performed here using uniform grids. The level-set function φ and the backward characteristics Y are updated 
every 0.01 s, up to a maximum distance of dmax = 0.2 m.

The y-component of the velocity and z-component of the vorticity at time t = 4.69 s are presented in Fig. 11 for the soft 
material. The interface deformation, for both soft and stiff materials, is presented in Fig. 12. The interface evolution is in 
good agreements with reference results obtained by Zhao et al. [57].

Fig. 13 shows the temporal evolution of the centroid xc(t) of the material. The location of the centroid is approximated 
as:

2 https://www.mcs .anl .gov /petsc/.
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Fig. 10. Deformable solid in a lid-driven cavity flow: fluid-structure set-up.

Fig. 11. Deformable soft solid (G = 0.1 Pa) in a lid-driven cavity flow: snapshots at time t = 4.69 s. Left: y-component of the velocity; right: z-component 
of the vorticity with velocity field. The black and white lines represent the interface �e and the contours of the backward characteristics Y respectively. The 
discontinuity of the characteristics is due to the extrapolation process which is only performed up to a certain distance from the interface.

xc(t) ≈

Ncells∑
i=1

�̃e
i (t) xi

Ncells∑
i=1

�̃e
i (t)

, (58)

where �̃e
i is an approximation of the volume fraction of solid in cell �i , i.e. �̃e

i = χe(φi)|�i |. The results obtained on 
uniform grids are in good agreement with the results of Sugiyama et al. [47] and Deborde [13].

Finally, Fig. 14 presents the temporal evolution of the material volume

|�e(t)| ≈
Ncells∑
i=1

�̃e
i (t). (59)

These tests are performed to quantify the mass-conservation error usually observed [46] when dealing with level-set meth-
ods. For both rigidities, the relative loss of volume remains below 0.02%. As expected, using interface regularization, this 
error decreases with first order accuracy.

4.2. Solid deformation due to an immersed actuator

We are now interested in simulating the elastic deformation induced by a rigid displacement imposed inside the struc-
ture. The goal is here to compare the accuracy and the computational costs for simulations on uniform and dynamic AMR 
grids.
18
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Fig. 12. Deformation of soft (top range) and stiff (bottom range) solids immersed in a lid-driven cavity flow: interface location �e for various time instants, 
comparison with the work of Zhao [57] (black line). The blue-plus and red-cross markers refer to the results obtained on uniform L9 and L10 grids 
respectively.

Fig. 13. Deformable soft solid (G = 0.1 Pa) in a lid-driven cavity flow: approximated centroid position over time until t = 20 s. The simulations are run on 
L8 to L10 uniform grids. The centroid position is computed following Eq. (58).

An elastic cylinder is immersed in a cavity � = [0, 1]2 filled with viscous fluid as depicted in Fig. 10. The fluid and 
structure densities and viscosities are ρe = ρ f = 1 kg.m−3 and μe = μ f = 10−2 Pa.s. The deformable cylinder is defined as 
a neo-Hookean moderately stiff material with G = 1 Pa.

The fluid and structure are initially at rest and no-slip boundary conditions are applied on all external boundaries. 
A holder, defined by a small rigid cylinder with diameter equal to 0.12 m, is immersed inside the elastic cylinder. The 
imposed motion of the holder describes a circle around the center of the domain, with a radius rs = 0.15 m. The imposed 
velocity us is defined analytically as:

us(t) =
{
πrst

( − sin(πt2/2), cos(πt2/2)
)T

if t < 2s,

2πrs
( − sin(2πt), cos(2πt)

)T
it t ≥ 2s.

A transient velocity of the holder is imposed until t = 2 s to avoid heavy compression effects.
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level 8 9 10

soft material (G = 0.1)
maximum MCE 0.06268% 0.03489 % 0.01727%
rate / 0.845 1.015

stiff material (G = 10)
maximum MCE 0.04188% 0.01964% 0.01003%
rate / 1.092 0.969

Fig. 14. Two deformable solids in a lid-driven cavity flow: estimation of the relative mass-conservation error over time. At the top: time evolution of the 
relative variation of volume for both soft (left, G = 0.1) and stiff (right, G = 10) materials. At the bottom: convergence study on the maximum mass-
conservation error (MCE) for both materials. The simulations are run on L8 to L10 uniform grids. The volume of the structure is computed following 
Eq. (59).

Fig. 15. Solid deformation due to an immersed actuator at time t = 5. The thin and thick black lines represent the interfaces �s and �e respectively.

Numerical simulations are performed on both uniform and dynamic adaptive grids. Fig. 15a displays the x-component 
of the velocity at time t = 5 s obtained using the dynamic AMR grid with 2 level jumps (L7 − L9 configuration) shown on 
Fig. 15b.

For fair comparison between uniform and quadtree AMR grids, a same mesh resolution is imposed close to the interface 
�e . To this end, a geometrical criterion based on the level-set function φ is used. Up to a minimum distance Dmin from 
the structure, the refinement level is set to the maximum level Lmax . From this distance, the grid is progressively coarsened 
until the chosen minimum level Lmin . In these simulations, the maximum level and minimum distance are set to Lmax = 9
and Dmin = 10hmin respectively. The mesh adaptation procedure is activated each 0.05 s to precisely follow the structure 
over time. To define the new grid data from the previous mesh, the solution is linearly reconstructed (following Eq. (36) in 
20
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Fig. 16. Solid deformation due to an immersed actuator: position of the interface �e(t) at time t = 2 (left) and t = 5 (right). The comparison is performed 
between the L9 uniform grid and dynamic AMR grids for a same maximum level of refinement Lmax .

Fig. 17. Solid deformation due to an immersed actuator: estimation of the relative mass-conservation error over time. The comparison is performed between 
the L9 uniform grid and dynamic AMR grids for a same maximum level of refinement Lmax .

Section 3.2.3) according to the parent/children inheritance. Finally, the level-set function and the backward characteristics 
are updated 100 times per period T = 1 s.

In what follows, we investigate how the accuracy of the numerical solution is impacted by coarsening the grid in the 
fluid outside the narrow band. We compare the interface position for different numbers of coarsening (Lmax − Lmin), ranging 
from 1 to 3. The positions of �e at time t = 2 s and t = 5 s are presented in Fig. 16. Despite the large difference with regard 
to the number of grid points, we obtain similar deformations. Moreover, as shown in Fig. 17, the relative errors on mass 
remain of the same order of magnitude in all cases, thus showing that the coarsening in the fluid has a limited influence 
on the results. However, there is a significant difference between the four simulations in terms of computational costs. 
The average number of grid points Ncells and the computational time of each simulation Trun are reported in Table 1. The 
execution times presented here were obtained for a same number of processors N p = 64 and on the same supercomputer. 
The efficiency of the numerical method for different grids is evaluated with respect to the simulation on the L9 uniform 
mesh. AS expected, the CPU decrease with the number of grid cells. The AMR process is however impacted by the mesh 
adaptation. Indeed, it is thus necessary to update the solution data on the new grid and to modify the parallel partition.

4.3. Oscillating membrane immersed in a cardiac pump geometry

A 2D axi-symmetric test case in considered next. An elastic membrane is immersed in the closed circuit filled with 
a viscous and Newtonian fluid, mimicking blood. The computational domain is � = [0, 4] × [−2, 2] cm. This test case 
is designed to mimic a Left Ventricular Assist Device (LVAD) behavior. The immersed membrane is an elastic disc with 
variable thickness and a hole in its center. The motion of the membrane is driven by a holder, a rigid ring-shaped support, 
which oscillates up and down with an imposed amplitude and frequency. This FSI problem is stiff if we refer to the ratio 
21



Table 1
Solid deformation due to an immersed actuator: computational cost of simulations for 
different dynamic AMR grids and gain when compared to the L9 uniform simulation.

minimum level Lmin average Ncells gain execution time Trun (in s) gain

9 (uniform) 262144 / 13406 /

8 86909 -67% 5618 -58%
7 43016 -84% 3432 -74%
6 31882 -88% 3015 -78%

Fig. 18. Oscillating membrane immersed in a cardiac pump geometry: spatial set-up and properties of solid structures.

cwave/cmax,holder ≈ 168, where cwave and cmax,holder denote respectively the speed of elastic waves and the maximum speed 
of the holder. All the properties of the membrane and the holder are given in Table 18b.

The whole system is initially at rest. Axi-symmetric boundary conditions are imposed on the left boundary (i.e. ur = 0, 
∂uz/∂r = 0). The geometry of the pump (blank part in Fig. 18a) are taken into account using Volume Penalization. While 
the velocity of external boundary (pump) is zero, the motion of the holder is imposed following 18b.

The simulations are performed on AMR grids, with dynamic mesh adaptation based on two criteria. Firstly, a geometrical 
criterion based on the distance function φ is used to impose a maximum refinement (level Lmax) inside the membrane and 
in the vicinity of interfaces �s and �e . Secondly, the Hessian of the velocity Hu is chosen as an a posteriori estimator of 
the solution regularity. The optimal refinement is determined according to two threshold values, denoted by ηmin and ηmax . 
The refinement is imposed to be maximum if ||Hu||F > ηmax and minimum if ||Hu||F < ηmin where || · ||F refers to the 
Frobenius norm. Between these two threshold values, the refinement is smoothly regularized. The parameters used for this 
last criterion are set empirically to ηmin = 106 and ηmax = 107. Inside the steady pump geometry, the mesh is coarsened as 
much as possible to decrease the global mesh size. In addition, to ensure a suitable mesh resolution inside the membrane, 
the maximum level of refinement is initially set to Lmax = 10. The minimum level of refinement inside the fluid is set 
to Lmin = 8. The mesh adaptation is performed 100 times per period T = 1/ f . The level-set function and the backward 
characteristics are updated 500 times per period. Finally, c1 = c2 = G/4 are set in the Mooney-Rivlin model.

Snapshots of both the angular component of the vorticity and of the velocity magnitude are presented in Fig. 19 after 2, 
3, 4 and 5 periods of oscillation. Fig. 20 shows the temporal evolutions of the relative volume variation of the membrane 
and of the blood flow rate, for different oscillation frequencies. The volume of the membrane is well conserved with an 
error below 1%. As expected, at least in a given range, the mean flow rate increases with the holder frequency.

5. Conclusion and perspectives

We have presented a fully Eulerian method to solve FSI problems on hierarchical Cartesian meshes. The approach devel-
oped here turns out to be robust and versatile since it enables the resolution of a wide range of FSI problems, including 
different kinds of rigid solids and hyper-elastic materials with arbitrary and complex shapes. For many applications, espe-
cially when the deformations are large and when the geometries are regular enough, this Eulerian method is particularly 
adapted.

We have developed a quadtree-based finite-volume discretization scheme which is second-order accurate in space. A 
more extensive range of accuracy tests for the validation of this numerical method can be found in [21]. By considering only 
M. Bergmann, A. Fondanèche and A. Iollo Journal of Computational Physics 471 (2022) 111647
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Fig. 19. Oscillating membrane immersed in a cardiac pump geometry: angular component of the vorticity (on the left) and velocity magnitude (on the 
right). From top to bottom: solution at time t = 2T , 3T , 4T and 5T . The AMR mesh is displayed in the background.
23
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Fig. 20. Oscillating membrane immersed in a cardiac pump geometry : relative variation of the membrane volume and generated flow rate over time for 
different oscillation frequencies.

compact discretization stencils, the numerical method provides a suitable accuracy, while preserving a high efficiency of the 
numerical computations. Moreover, the dynamic AMR procedure is particularly interesting since we intend to guarantee a 
fine mesh resolution throughout the whole simulation where required, e.g. close to interfaces and where the regularity of 
the solution is low. Nevertheless, we have also highlighted that the precision of the discretization schemes can be degraded 
at level jumps. To compensate these inaccuracies, some stabilization techniques have been employed.

When dealing with very stiff materials, we have also observed that the resulting solution tends to be oscillatory while 
employing a standard finite-volume method. According to the stability analysis performed in one dimension, we have proved 
that the oscillatory behavior is due to the FV2 scheme we employ to transport the backward characteristics. By enforcing 
the Exactly Linearity Preserving (ELP) property, we got rid of spurious oscillations that can lead to instabilities in the vicinity 
of interfaces. However, the computational cost of a FSI simulation remains critical since the formulation is explicit in time, 
leading to a significant elastic CFL constraint. To make the simulation more affordable, it would be necessary to consider an 
implicit formulation. For this purpose, one could investigate an iterative Newton method or draw on the implicit formulation 
introduced by Ii et al. [26].

The validity of the method has been verified firstly on uniform grids through the simulation of solid deformations in a 
lid-driven cavity flow. Both soft and stiff materials have been considered, which emphasizes the robustness of this method. 
In addition, mass conservation is effectively preserved, in a consistent way. Further, the interaction between a moderately 
stiff material actuated by a rigid non-deformable structure has been studied. The low impact of coarsening on the structure 
deformation has been confirmed and the results suggest that the numerical method offers a valuable trade-off between 
accuracy and feasibility of the computation. The simulation of a flow in a complex 2D axi-symmetric LVAD geometry is 
finally proposed as a bio-medical application. In particular, this numerical experiment shows the ability to reproduce a 
pumping flow thanks to the deformation of an oscillating rubber-like membrane. The generalization to 3D would not present 
major difficulties concerning the discretizations in space, as done for different models in [38,49]. However, the development 
of an implicit formulation, as previously mentioned, will be the next development in order to make the complete FSI 
simulation practicable from a computational time point of view.
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Fig. 21. Advection of a circle: contours of the level-set function (the interface is drawn in black) and the quadtree mesh L6 − L8 at time t = Tmax .
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Appendix A. Resolution of some transport problems

This section is dedicated to the validation of the finite volume discretization of the advection operator. We propose two 
different test cases including level-set functions. Some convergence studies are presented and a result comparison obtained 
on fully uniform and adapted quadtree meshes is provided in order to highlight the gain in computational time.

A.1. Advection of a circle

A circle of center (0, 1/2) and radius 0.15 is transported in a domain [−1, 1]2 via the rotating velocity field u =
2π(y, −x)T . During the simulation, the circle makes 3 complete rotations by choosing Tmax = 3. As shown in Fig. 21, the 
simulations are performed on quadtree meshes. The dynamic mesh adaptation is performed according to a time frequency 
f = 0.01 using the value of the signed distance function.

The simulations are performed on both uniform and quadtree meshes, for a same maximum mesh refinement Lmax . 
Table 2 presents the results obtained, namely the error in the sense of the L∞ norm, the relative loss of volume and the 
computational time. For each of the quantities reported in the table, the ratio corresponds to the ratio between the quantity 
obtained using the uniform mesh and the one obtained using the quadtree mesh. For a computation which is about 7 
times faster, the simulation carried out on the AMR mesh provides results that are comparable to those obtained on the 
corresponding uniform mesh.

A.2. The serpentine

This level-set test case is an efficient way to quantify the performance of an interface-capturing method. During the 
simulation, the interface stretches until it becomes a long filament, subjected to a large shear flow. In the domain � =
[0, 1]2, the interface is first defined as a circle centered at x0 = (1/2, 3/4) and of radius R = 0.15. The induced level-set 
function is deformed using a solenoidal velocity field

u(t,x) = sin
( 2πt )(

− sin2(πx) sin(2π y), sin2(π y) sin(2πx)
)T

,

Tmax
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Table 2
Advection of a circle: comparison in terms of accuracy, relative variation of mass (RVM) 
and computational time (in s) obtained on uniform and quadtree meshes (with Lmax −
Lmin = 2 level jumps) for a same maximum level Lmax . The simulations were performed 
with 24 CPUs.

Lmax 8 9 10 11
hmin 7.813E-03 3.906E-03 1.953E-03 9.766E-04

uniform
L∞ error 1.592E-04 1.959E-05 2.452E-06 3.072E-07
RVM 1.195E-03 1.458E-04 1.835E-05 2.299E-06
time 631.32 4936.48 41499.43 370285.71

quadtree
L∞ error 1.799E-04 2.167E-05 2.585E-06 3.280E-07
RVM 1.302E-03 1.517E-04 1.879E-05 2.354E-06
time 126.39 814.88 6142.61 51245.60

Comparison 
quadtree VS 
uniform

L∞ error + 12.51% + 9.61% + 5.15% + 6.34%
RVM + 8.20% + 3.87% + 2.36% + 2.30%
time - 80.0% - 80.2% - 85.2% - 86.2%

Fig. 22. The serpentine: position of the interface at times t = Tmax/2 (left) and t = Tmax (right). The simulation was run on a dynamic quadtree mesh with 
Lmax = 10.

Table 3
The serpentine: L1 and L∞ errors and relative variation of volume 
(RVV) at Tmax = 3.

Lmax 8 9 10 11
hmin 7.813E-03 3.906E-03 1.953E-03 9.766E-04

L1 error 3.434E-04 4.916E-05 1.123E-05 2.094E-06
q1 / 2.804 2.130 2.423
L∞ error 5.731E-03 7.905E-04 2.310E-04 5.658E-05
q∞ / 2.858 1.775 2.029
RVV 0.0365% 0.0242% 0.0098% 0.0021%
qR V V / 0.591 1.309 2.253

up to time Tmax = 3. Fig. 22 depicts the solution at time instants t = Tmax/2 and t = Tmax . The mesh inside the serpentine 
does exist but it is hidden for visualization purposes.

The simulations are performed on quadtree meshes with a dynamic mesh adaptation. The re-initialization procedure is 
triggered according to a frequency f = 0.05. Table 3 shows that the scheme is second order accurate in the L1 and L∞
sense, as well as on the relative variation of volume.
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Appendix B. Asymptotic analysis of the 1D discretization

This appendix details the Fourier analysis stated in Section 3.4.2. This analysis is intended to demonstrate how the 
space discretization scheme to transport backward characteristics can affect the stability of the numerical method for the 
resolution of the 1D model (38). The results obtained, namely the amplification coefficients, have been displayed in Fig. 9.

Under the assumption of periodic boundary conditions, the solution (̃u, ̃Y ) is decomposed in a Fourier series. To simplify 
the notation, this series is restricted to a single Fourier mode. The discrete values ̃un

j and Ỹ n
j are then expressed as:

ũn
j = U(ξ)ne2iπξ j
x,

Ỹ n
j = Y(ξ)ne2iπξ j
x,

or in a more appropriate way by defining θ := 2πξ
x ∈R:

ũn
j = U(θ)nei jθ ,

Ỹ n
j = Y(θ)nei jθ .

(60)

We recall here the different discretizations employed in Section 3.4. The 1D model (38) is integrated in time using a first-
order linear multi-step method:

Y n+1
j − Y n

j


t
= G j(un+1, Y n), with un+1 = 2un − un−1, (61a)

un+1
j − un

j


t
= F j(un, Y n+1). (61b)

The linearized discrete formulations of the FV2 and FD2 schemes can be written for equation (61a) respectively as:

Ỹ n+1
j − Ỹ n

j


t
=

⎧⎨⎩ − 1

2
ũ j − 1

4

(̃
u j+1 + ũ j−1

)
(FV2 scheme),

− ũ j (FD2 scheme),
(62)

in the limit of small deformations ε → 0. The linearization of Equation (61b) gives:

ũn+1
j − ũn

j


t
= −2G


t


x2
(Ỹ j+1 − 2Ỹ j + Ỹ j−1). (63)

We now apply the Fourier decomposition (60) to the linearized discretization of the model. Consequently, Equations (62)
and (63) become respectively:

Yn+1 =
{
Yn − 2
t cos2(θ/2) Un + 
t cos2(θ/2) Un−1 (FV2 scheme),

Yn − 2
t Un + 
t Un−1 (FD2 scheme),
(64)

and:

Un+1 =

⎧⎪⎪⎨⎪⎪⎩
4

C2


t
sin2(θ/2) Yn + (

1 − 2C2 sin2(θ)
)
Un + C2 sin2(θ) Un−1 (FV2 scheme),

4
C2


t
sin2(θ/2) Yn + (

1 − 8C2 sin2(θ/2)
)
Un + 4C2 sin2(θ/2) Un−1 (FD2 scheme),

(65)

where C = a
t/
x is a real positive number, and a = √
2G is the speed of elastic waves. In a more compact way, these two 

Equations (64) and (65) equations can be expressed using the following matrix form:⎛⎝Yn+1

Un+1

Un

⎞⎠ = A

⎛⎝ Yn

Un

Un−1

⎞⎠ , (66)

where A ≡ A(θ) represents the amplification matrix. With respect to Equations (64) and (65), the amplification matrices 
obtained using the FV2 and FD2 schemes are respectively:

AF V 2 =
⎛⎝ 1 −2
t cos2(θ/2) 
t cos2(θ/2)

4 C2


t sin2(θ/2) 1 − 2C2 sin2(θ) C2 sin2(θ)

0 1 0

⎞⎠ , (67)

and
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AF D2 =
⎛⎝ 1 −2
t 
t

4 C2


t sin2(θ/2) 1 − 8C2 sin2(θ/2) 4C2 sin2(θ/2)

0 1 0

⎞⎠ . (68)

In order to conclude on the asymptotic stability of the numerical methods, the amplification factor of the matrices must 
be determined. In other words, one numerical method is asymptotically stable if the amplification factor ρ(A) verifies:

max
p

{|λp|} ≤ 1, (69)

where the λp refer to the eigenvalues of A. The Fig. 9 shows the amplification factors obtained from both matrices AF V 2
and AF D2.
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