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Abstract
A computational model is used to examine the effect of caudal fin flexibility on the propulsive
efficiency of a self-propelled swimmer. The computational model couples a penalization method
based Navier–Stokes solver with a simple model of flow induced deformation and self-propelled
motion at an intermediate Reynolds number of about 1000. The results indicate that a significant
increase in efficiency is possible by careful choice of caudal fin rigidity. The flow-physics
underlying this observation is explained through the use of a simple hydrodynamic force model
and guidelines for bioinspired designs of flexible fin propulsors are proposed.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Investigation of swimming hydrodynamics can on the one
hand provide insights into biological evolution and physiol-
ogy, and on the other, lead to new bioinspired designs of
underwater vehicles. Quantitative evaluation of the mechan-
ical and fluid dynamical characteristics of swimming in
experiments is challenging (Triantafyllou et al 2000, Wen and
Lauder 2013). In particular, precise control of the kinematics
and dynamics of the experimental model is difficult; harder
still is the accurate measurement of forces and power of a
freely swimming model. In this regard, computational mod-
eling and simulation is well suited for such investigation.
However, three-dimensional numerical simulation of swim-
ming modes have only become viable in the last decade
(Mittal et al 2008, Shirgaonkar et al 2009, Curet et al 2010,
Hieber and Koumoutsakos 2008, Gazzola et al 2011) due to
the significant complexity and computational expense
involved in such simulations.

The bending of biological propulsive structures is well
known (McCutchen 1970). Here, we thus use numerical
simulation to study this specific aspect of fish-like swimming:
the influence of caudal fin flexibility on the swimming per-
formance of the so called ‘carangiform’ mode of swimming
(Sfatiotakis et al 1999). A number of past numerical (Dong

et al 2010, Ramamurti et al 2002) and experimental (Lauder
et al 2006, Esposito et al 2011) studies have examined the
effect of pectoral fin deformation on labriform propulsion.
However, there have been few examinations that have
quantified the degree of flexibility with increase in efficiency
(Bose 1995, Prempraneerach et al 2003, Vermeiden
et al 2012, Katz and Weihs 1978, Heathcote et al 2008).
Esposito et al (2011) found that there exist optimal fin flex-
ural rigidity for maximizing thrust at fixed point, i.e., for a
flapping fin that is not displacing. Thiria and Godoy-Diana
(2010) have also shown that flexible wings can lead to sub-
stantial reduction in the consumed power and to an increment
of the propulsive force, also for a fixed point. Marais et al
(2012) observed a thrust enhancement by a factor three for a
fixed flexible pitching foil compared to the rigid case. Vanella
et al (2009) have used a simple two-link model to investigate
the potential benefits of flexibility and highlighted the
importance of considering nonlinear resonances for enhan-
cing aerodynamic performance.

Recent literature, see for example (Spagnolie et al 2010,
Masoud and Alexeev 2010), suggests that resonance play an
essential role in determining optimal propulsion efficiency.
Experimental and numerical evidence presented in these
papers support the conclusion that optimal flapping perfor-
mance is obtained for foil flexibility maximizing tip
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deformation for given forcing. Hence, resonance determines
optimal lift and efficiency characteristics for given flapping
kinematics. On the other hand, Ramananarivo et al (2011)
experimentally show that aerodynamic flow optimization may
prevail on resonance considerations in selecting optimal wing
shape and hence optimal flexibility. Also Liu et al (2013)
investigated power efficiency modification for flapping wing
energy devices. They found that the flexible structure of a
wing is beneficial to enhance power efficiency of tidal energy
harvesting devices. Finally, Young et al (2009) have exam-
ined the influence of insect wing deformation on the flight
efficiency thanks to both numerical and experimental studies,
highlighting the role of curvature on efficiency.

Similar studies have not been undertaken for caudal-fin
propulsion of a self-propelled swimmer. The vast majority of
fishes and marine mammals (especially those that can swim
fast) employ their caudal fin for propulsion and it is therefore
expected that an analysis of this propulsion mode will yield
useful insights for the design of bioinspired swimming
vehicles. It is well known that flow patterns over the body as
well as in the wake significantly influence swimming per-
formance (Fish and Lauder 2006, Zhu et al 2002). These
patterns are in turn influenced by the geometry of the body as
well as its kinematics. A number of past studies have exam-
ined these effects of body geometry as well as prescribed
body and/or fin kinematics (Mittal et al 2008, Borazjani and
Sotiropoulos 2008, Shirgaonkar et al 2009, Curet et al 2010,
Hieber and Koumoutsakos 2008, Borazjani and Sotir-
opoulos 2009, Gazzola et al 2011). In the current study we
focus on the efficiency improvement in a self-propelled ‘fish’
obtained by a simple and local modification of the flexural
rigidity of the caudal fin. We evaluate the swimming effi-
ciency by employing a non-dimensional index that takes into

account the total mechanical power acting on the fluid, the
modeled fish velocity and the force exerted in the direction of
locomotion (von Loebbecke et al 2009, Borazjani and
Sotiropoulos 2008). We concentrate on locomotion at low
Reynolds numbers so that all the relevant scales of the flow
are well resolved in these three-dimensional simulations.

2. Numerical modeling

The modeling of the flow past a deformable body and the
numerical method employed (§2.1) are basically the same as
those described in Mittal et al (2008) and Bergmann and Iollo
(2011) and we only provide a brief description of the salient
features.

2.1. Flow around deformable bodies

The flow is modeled by the incompressible Navier–Stokes
equations. The kinematics of the deforming body are pre-
scribed. The kinematics of the caudal fin can either be pre-
scribed or computed from a unidirectional flow-induced
deformation model. The trajectory of the modeled fish is
computed from the integral force and torque exerted on the
swimmer surface. The displacement of the swimmer across
the domain is implemented via Lagrangian markers that are
attached to the swimmer surface. The domain under con-
sideration is a three-dimensional box ∪Ω Ω Ω= f s (the
‘aquarium’), where Ωf is the domain filled by fluid, and Ωs is
the domain defined by the swimmer. The outer boundary and
the swimmer surface are denoted by Ω∂ f and Ω∂ s respec-
tively. Given this, the governing incompressible Navier–-
Stokes equations are given by

⎜ ⎟⎛
⎝

⎞
⎠ρ μΔ Ω∂

∂
+ = − + 

u
u u u

t
p( · ) in , (1)f

Ω= u· 0 in , (2)f

with initial conditions Ω=u x u x( , 0) ( ) in f0 , boundary
conditions Ω= ∂u x t 0( , ) on f and

Ω= ∂u x u xt t( , ) ( , ) ons s. Equations (1) and (2) are dis-
cretized in time with a second-order projection scheme
(Chorin 1968) and spatially discretized on a fixed Cartesian
mesh with grid spacing of Δ Δ Δ= = =x y z h. Since the
swimmer boundary ∂Ωs is curvilinear the Cartesian mesh
does not conform to this boundary; the boundary conditions

Ω= ∂u x u xt t( , ) ( , ) ons s are therefore imposed using a
discrete forcing immersed boundary method and penalization
(Mittal and Iaccarino 2005, Mittal et al 2008, Bergmann and
Iollo 2011).

2.2. Modeled fish geometry and deformation

We consider a prototype swimmer of unit length, =ℓ 1 m. At
rest, the midline (backbone) of the fish-like geometry coin-
cides with ⩽ ⩽x0 1, = =y z 0. This backbone is then dis-
cretized by ‘vertebra’ located at xi for =i N1 ,.., . The three-
dimensional fish-like shape is reconstructed using N ellipses
with minor-axes y x( )i and z x( )i . These axes lengths are found

Figure 1. Representation of the elliptical axes y(x) and z(x) defining
the fish shape.
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using B-splines (see figure 1). The maximum transverse
dimensions are =y2 0.17 and =z2 0.24 and the caudal fin
has a maximal vertical span =z2 0.25. These values are
chosen to approximately mimic the MIT robot bluefin tuna
(Barrett et al 1999). The final swimmer geometry is presented
in figure 1.

The shape of the swimming body is obtained by
deforming the body midline in the plane z = 0 as a function of
time while keeping each elliptic cross section to be orthogonal
to the midline during deformation. The body surface is dis-
cretized as ∪Ω Ω∂ = ∂=s i

N
s
i

1
s , where Ns denotes the number of

surface sections and ∂Ωs
i defines a covering space of the

surface. The velocity of each surface element, noted u x t( , )s i ,
is then computed by tracking the Lagrangian markers corre-
sponding to each surface element for =i N1 ,.. s.

Based on previous work, the deformation of the midline
is based on a traveling wave with a space-dependent

amplitude (Barrett et al 1999, Bergmann and Iollo 2011) as

ω= −y x a x kx t( ) ( ) sin ( ), (3)mid

where π λ=k 2 denotes the wave number associated with a
wavelength λ and ω π= f2 denotes the pulsation of the
oscillations associated with frequency f. The amplitude
envelope = + +a x c c x c x( ) 0 1 2

2 is usually defined by three
parameters c0, c1 and c2 that can be adjusted. There is one
constraint (the back bone length) and four independent
parameters: c0, c1, c2 and the abscissa of the tail extremity.
Therefore we have the possibility of choosing three of these
parameters and to determine the last thanks to the constraint.
We reach a desired maximal tail excursion denoted by A,
while the backbone length remains =ℓ 1 m. In what follows
we will take = =c c 00 2 and c1 = 0.1. These values corre-
spond to a linear growth of the backward traveling wave and
result in a swimming law that qualitatively agrees with those

Figure 2. Deformation of the swimmer over one swimming stroke T (corresponding to a frequency =f 2.0 Hz). The same sinusoidal
swimming law is applied on the whole shape except between the black section and the tail extremity where an elastic model is applied in the
blue and red case. The black shape corresponds to an imposed tail deformation, the blue shape corresponds to a rigid tail and the red shape
corresponds to a flexible tail. The bottom figure represents position and vertical velocity of the section marked in black.
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observed in Trachurus. However, these are not the values
necessarily observed in a specific actual fish swimming.

Without action of external forces the center-of-mass of
the swimmer should not move. To respect this constraint,
after deforming the swimmer as explained above, we subtract
the motion of the center-of-mass from the displacement of
each Lagrangian marker on the fish surface.

2.3. Caudal fin modeling

The primary objective here is to assess the effect of caudal fin
flexibility on swimming performance. To this end, the
deformation can be either imposed on the whole midline
length including the caudal fin (black shape shown in
figure 2), or only on the portion excluding the caudal fin
(which extends over the last 20% of the midline, see red or
blue shapes in figure 2). For these latter cases, we model the
fin by a lumped parameter elastic medium, similarly to what
is done in (Wiens and Nahon 2012) for snake-like swimmers.
The elastic caudal tail is composed by rigid struts joined by
elastic links. Each link is subject to a couple Ci that is pro-
portional to the square of the local tangential speed +Vi 1 of the
next junction. This couple is a crude approximation of the
hydrodynamic local force exerted by the fluid on the struc-
ture. In section 4 we will show that this hypothesis is
approximatively verified in our simulations.

To further simplify the model, we assume that the angles
are small and the inertia and hydrodynamic forces balance for
the struts following the one considered. Then, we have

θ βθ θ+ + = = −k C i N¨ ˙ , 1 ,.. 1,i i i i L

where θi is the rotation angle with respect to the previous
strut, α= − + +C V V| |i i i1 1, NL is the number of links,

θ θ= + + ∑ =V V i l ( ˙ ˙ )i k
i

k0 0 1 , l is the length of the struts.
The point i = 0 corresponds to 0.8 of the midline and is the
last point where the deformation is explicitly imposed by (3),
so that V0 and θ̇0 are given functions of time. This equation
corresponds to a classical spring-damper system with a for-
cing term that couples the system. The angular acceleration of
a strut with respect to the previous is proportional to the sum
of the couple exerted on the strut, the elastic force and the
damping force. The initial condition is θ = 0i , ∀i . In the
following examples we let β = 1, ⩽ ⩽k10 103 4,

α⩽ ⩽ × −0 16 10 2 and NL = 60. These parameters were
selected to obtain a realistic deformation of the tail, as in
figure 2. The effect of elastic recoil and energy storage in the
tail trajectory can be observed: the elastic tail is always lag-
ging behind the rigid tail as expected, whereas it can either
overcome or lag behind the imposed motion tail.

In the following we will study the effect of the model
parameters k and α on swimming efficiency. By varying k we
modify the rigidity of the springs and hence the characteristic
frequencies of the whole structure. When α is modified, we
increase or decrease the intensity of the source term so that
the structure deformations are increased or decreased by
keeping the same characteristic frequencies of the structure.
This will allow us to select an optimal k corresponding to
maximum tail amplitudes for given forcing. For fixed k a

similar effect on flexibility is obtained by varying α, keeping
the ratio of inertia to rigidity (and hence the structure char-
acteristic frequencies) constant.

In summary, this crude model keeps the essential features
of a viscoelastic structure, such as elastic recoil and velocity
damping, mimicking the feed-back effects of actual fluid
forces via the terms Ci.

2.4. Force, torque and power

Let the dimensionless stress tensor
 τ= − + + = − + u I u u Ip p p( , ) ( )T1

Re
and n the unit

outward vector to Ω∂ s, then the forces and the torques exerted
by the fluid onto the bodies are





∫
∫

= −

= − ∧

Ω

Ω

∂

∂

F u n x

M r u n x

p

p

( , ) d ,

( ( , ) )d , (4)

s

s G

s

s

with = −r x xG G (xG center of mass). Since the boundary
∂Ωs does not fit the computational mesh that will be
employed, u and p are obtained using Lagrange interpolation.
These forces and torques are used to compute the swimmer
displacement. The velocity at the swimmer surface is

= + + ∼θu u u u, (5)s

where ∼u is the imposed deformation velocity, u is the trans-
lation velocity and θu is the rigid rotation velocity. The
translation velocity can be computed from the forces Fs by

= Fm
u

t s
d

d
s , m being the body mass. The rotation velocity is

given by Θ= ×θu rs s G. The angular velocity Θs is obtained

from the torques Ms by solving =Θ MJ

t s
d

d
s , where J denoted

the body inertia matrix.
The force exerted by the fluid on the body surface seg-

ment ∂Ωs
i is

∫= = −
Ω∂

( )F u n xF F F p, , ( , ) · d ,i
x
i

y
i

z
i T

s
i

where n the unit outward vector to Ω∂ s
i. The total work done

over one stroke T is then

∫ ∑=
=

F uW t· d , (6)
T

i

N
i i

total

1

s

where ui is the average velocity on the surface Ω∂ s
i. The

useful work is defined as the part of the total work that is done
by the hydrodynamic force exerted in the direction of
swimming (von Loebbecke et al 2009). For instance, if the
swimmer velocity is positive in the x-direction, >U 0x , then
the useful work is given by

∫ ∑=
− + −

=

( )
W

F p n F p n
U t

2
d . (7)

T
i

N
x
i

x x
i

x

x
i

useful

1

0 0
s

where p0 is the reference static pressure used to compute 
and hence Fi. The propulsive efficiency can then be defined
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as

η =
W

W
. (8)useful

total

The definition of efficiency is not unique, according to
possibly different specific propulsion objectives. A definition
that is closer to classic Froude propulsive efficiency is pro-
posed for example in Borazjani and Sotiropoulos (2008)

η =
+

T U

T U P
, (9)f

x x

x x l

where

∫

∫

∑

∑ τ τ

= −
− +

−
+

=

=

T
p n p n

t

n n
t

2
d

( ) ( )

2
d ; (10)

x
T

i

N
x x

T
i

N
x x

1

1

s

s

and Pl is the power of the forces in the lateral direction. We
will see that in this context the results provided by these two
definitions are similar in terms of optimality of caudal fin
flexibility.

3. Numerical validations

The numerical method employed has been extensively vali-
dated for several 2D test cases in Bergmann and Iollo (2011).
In what follows, 3D validations are presented. We first study
the terminal velocity of a sphere falling under gravity. Then
we perform a convergence study of the terminal velocity of a
swimming fish with respect to spatial discretization. Finally,
we show that the assumption α= − + +C V V| |i i i1 1 is reasonably
verified for swimming laws similar to those investigated later
in this paper.

3.1. Sedimentation of a sphere

Both experimental (Clift et al 1978) and numerical (Glo-
winski et al 2001, Coquerelle and Cottet 2008) results are
found in the literature for the sedimentation of a sphere under
the gravity. The sketch of the configuration is given in
figure 3. We chose the same non-dimensional parameters as
Coquerelle and Cottet (2008), the sphere (diameter D) falls
under gravity in an vertical cylinder (diameter L = 1) filled
with a fluid of viscosity ν under the gravity = −g 980. We
model an infinite cylinder and impose homogeneous Neu-
mann boundary conditions ( =∂

∂ 0u
n

, where n is the outward
normal unit vector) at the top and bottom boundaries,
respectively ΓT and ΓB. No slip boundary conditions, =u 0,
are imposed on the cylinder lateral boundary, ΓL, using
penalization (Angot et al 1999). Table 1 presents a compar-
ison between terminal velocities for various diameters and
viscosities. The terminal velocity, U, computed in this study
is compared with experimental results UE obtained by Clift
et al (1978) and numerical results UG and UC obtained by
Glowinski et al (2001) and Coquerelle and Cottet (2008)

respectively. The results reported in table 1 are computed with
a spatial discretization =h 1 100. Our results are comparable
to those in the literature. These are typical results for several
computational set up parameters.

Figure 3. Sketch of a sphere sedimentation, with an example of iso-
vorticity representation.

Table 1. Comparison between terminal velocities for spheres falling
in a fluid for various diameters and viscosities.

D ν UE UG UC U

0.2 0.10 0.2571 0.2567 0.256 0.266
0.2 0.05 0.4603 0.4844 0.475 0.497
0.2 0.02 0.9129 0.9480 0.937 0.953
0.3 0.10 0.4047 0.4072 0.401 0.420
0.3 0.05 0.7493 0.7599 0.748 0.764
0.3 0.02 1.4359 1.3920 1.390 1.472

Figure 4. Convergence study of the swimmer velocity 〈 〉V the
efficiency η〈 〉 versus the grid size ( h1 ). The brackets denote an
averaging operator.
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3.2. Swimming velocity convergence

We perform a convergence study for a unitary length swim-
mer with respect to the grid size. The kinematic viscosity is
set to 10−3 −m s2 1. The two quantities under consideration are
the forward velocity 〈 〉V and the efficiency η〈 〉 (〈 〉· denotes
an averaging operator acting on a given number of periods
when asymptotic velocity is reached). Figure 4 shows the
evolutions of the swimmer velocity norm and efficiency
(averaging on the last stroke period) versus the grid size h1
(here, we have Δ Δ Δ= = =h x y z). The swimming law (3) is
imposed on the whole body with c1 = 0.1, = =c c 00 2 ,

λ = 1 m and =f 2 Hz. Both velocity and efficiency tend to
converge toward limit values for fine meshes. Obviously,
accuracy is improved with mesh size. However, the case

=h 1 120 is a good compromise between accuracy and
computation costs. Indeed, the errors between =h 1 120 and

=h 1 160 are about 2% and =h 1 120 requires half CPU
time than =h 1 160. We then set our spatial resolution to

=h 1 120 for the following simulations. The domain under
consideration is ∈ −x [ 2, 6], ∈ −y [ 2, 2] and ∈ −z [ 2, 2].
The finest mesh is then composed by

× × × ≈ ×8 4 4 160 5 103 8 mesh nodes. We considered the
physical domain as an aquarium and imposed thus

Figure 5. Force Fn on a tail section at abscissa s compared to γ=∼
F V V| |n n n, where Vn is the normal velocity of the swimmer center line (the

backbone). The parameter γ is adjusted to scale
∼
Fn with Fn. Top picture row, Vn is the local tangential velocity. Bottom row, Vn is taken at

section Δ =s 0.05 upstream.
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homogeneous boundary condition on all boundaries. In all the
following simulations we used the same domain ∈ −x [ 2, 6],

∈ −y [ 2, 2] and ∈ −z [ 2, 2] with =h 1 120 and the mesh is
composed by × × × ≈ ×8 4 4 120 2.2 103 8 mesh nodes.

3.3. Force on caudal fin section

In the one-way elastic model that we have set up the force
acting on the struts as γ=∼

F V V| |n n n, where Vn is the normal
speed of the swimmer centerline (the backbone). We compare
the actual force Fn obtained for a self-propelling swimmer on
a given section to

∼
Fn. The force Fn is computed from

equation (4) on the same section as
∼
Fn. The computational set

up corresponds identically to that of maximum efficiency of
the next section. Three different sections are considered and
the results are presented in figure 5. The top picture row
shows the actual force computed on the given section versus
the model force

∼
Fn on the same section. The model force is

smoother but it is in substantial agreement with the actual
force. The phase error is limited. The bottom picture row
shows the same comparison for a model force

∼
Fn computed

considering the normal velocity of a section that is Δ =s 0.05
upstream. The overall deformation of the backbone will be
modified and the swimming law will consequently vary. The
phase error between the actual force experienced by each
section considered and

∼
Fn increases, confirming the hypoth-

esis the normal force locally scales like V V| |n n. We conclude
that the simplified force model is a reasonable approximation
of the actual force experienced by the swimmer. With this
model the fluid–structure interaction is one way and this
significantly simplifies the computational set up.

4. Efficiency

We set the kinematic viscosity ν = −10 3 −m s2 1. The swimmer
is of unitary length =ℓ 1 m and hence the swimming Rey-
nolds number is 1000 V, where V the average swimming
velocity. Such low Reynolds numbers are chosen so as to
enable high resolution of the flow. We note that a swimmer
swimming at a velocity of around one body-length per time
unit, =Re 103 can be correlated to a small swimmer of 3 cm
long.

4.1. Tail rigidity

As a first step in the analysis, for a given value of α = 0.1, we
have investigated how η varies as a function of k. By doing
so, we modify the caudal fin flexibility and its characteristic
frequencies. In the range ⩽ ⩽ ×k10 8 103 3 maximum effi-
ciency is obtained for = ×k 4 103, see figure 6. Indeed, for
this value of k the tail amplitude oscillation for given forcing,
is the largest compared to other values of k as seen in figure 6.
This suggests that setting a value of k close to the structural
model resonance leads to highest efficiencies. However,
suboptimal values of k in terms of efficiency also lead to tail
oscillation amplitudes that are very close to the largest.

We now explore, for given k, how efficiency varies as a
function of α. We keep = ×k 4 103 and we consider a range
of the rigidity parameter α from 0.02 (low-flexibility tail) to
0.16 (high-flexibility tail). The parameter α is not directly

Figure 6. Evolution of the efficiency η and maximum tail amplitude
A2 versus k.

Figure 7. Evolution of the efficiency η, the useful work Wuseful and
the total work Wtotal versus the rigidity parameter α. The dotted line
in the top figure corresponds to the imposed tail deformation.
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related to the elasticity modulus of a given material, that
would be rather modeled by k. However, varying α we
modify the structural model rigidity by keeping a fixed ratio
between inertia and elastic forces so that the characteristic
frequencies are unchanged. The variation of efficiency versus
the parameter α for =f 2 Hz is shown in figure 7(a). We
found that a value of α = 0.1maximize the efficiency and that
the flexible tail increases the efficiency by about 25% in
comparison to the case where the deformation is prescribed
for the whole body. Figure 8 shows snapshots of the same
vorticity field isocontours generated by the swimmer with
maximum efficiency (α = 0.1) and minimum efficiency (
α = 0.16). The swimmer generates a vortex street composed
of two oblique rows of vortex rings, similar to that generated
by a flapping foil (Dong et al 2006). This is characteristic of
the wake generated for higher values of the swimming
Strouhal number =St f A

V
(Dai et al 2012), typically for

⩾St 0.3 (Borazjani and Sotiropoulos 2009). However, the
wakes generated with α = 0.1 and α = 0.16 are qualitatively
different. Indeed, the wake for α = 0.1 presents a smaller
angle between the two vortex rows, that can at least partially
explain the production of reduced lateral forces (Wen and
Lauder (2013) and references therein) in comparison with
α = 0.16. Here, the minimum swimming Strouhal number
obtained for the swimming law considered is approxi-
mately 0.5.

A different definition of efficiency leads to similar
results. As an example, we have employed the efficiency
criteria in equation (9) introduced in Borazjani and Sotir-
opoulos (2008). This definition of efficiency results in the
black curve depicted in figure 9. These results are compared
to those obtained with the definition of this paper. It can be
observed that optimality is reached for values of α that are
close although the maximum is less pronounced.

In previous comparisons the swimmer velocity V was
allowed to vary with α which introduced potentially con-
founding effects in the Reynolds numbers. In order to elim-
inate these effects, we have investigated the variation of the
efficiency for a constant swimming velocity. In these cases,
the frequency is kept at =f 2.0 Hz and the tail amplitude A is
regulated by a proportional feed-back controller, see (Berg-
mann and Iollo 2011), to reach a target velocity of

= −V 0.4 m s 1, which is the minimum velocity obtained for
α = 0.16. It happens that the tail excursion A is

approximately constant for all values of α leading to a similar
swimming Strouhal number. Figure 10(a) presents the evo-
lution of the efficiency versus α and we find that α ⩾ 0.04
produces a higher efficiency compared to the rigid tail. In fact,
for α = 0.12 the efficiency is increased by 35%. This quite
high increase for α = 0.12 can be explained by the increase of
the useful work and the decrease of the total work over one
stroke (see figure 10(b)).

4.2. Influence of tail curvature

In this section we investigate the influence of tail curvature on
the swimming efficiency. We do that by varying the number of
links in the tail. In the previous simulation we employed NL = 60
links on the tail. In what follows, we take ⩽ ⩽N1 5L as pre-
sented in figure 11. The case NL = 60 corresponds to α = 0.12.
and the parameter α is modified for ⩽ ⩽N1 5L so that the
trajectory of the tail is as close as possible to the one for NL = 60
with α = 0.12. Note that the shape for NL = 5 is similar to that
with NL = 60. Figure 12(a) shows that efficiency is enhanced
when curvature is increased (NL is increased). The evolution of
the useful and total work versus the number of links NL in
presented in figure 12(b). While the value of the useful work is
almost constant with NL, the total work done by the swimmer

Figure 8. Vorticity snapshot of the wake generated by the modeled swimmer with α = 0.16 and α = 0.1 at =Re 103.

Figure 9. Efficiency curves as a function of α. The black curve
corresponds to the definition in equation (9) while the red curve
corresponds to the definition of efficiency adopted in this paper.
Dotted lines correspond to tail imposed deformation.
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over one stroke decreases with increasing NL and eventually
reaches the value obtained for our test case with NL = 60.
An optimal value of the flexural rigidity help to decrease the
work done by the swimmer, especially the contribution due to
the lateral motion. Indeed, when the swimmer velocity is con-
stant, the total work is equal to the work done by the lateral
motion.

5. A simple model for tail design

The largest forces and velocities on the swimmer are located
on the tail. Let us consider the local contribution of the useful
work W x( )useful relative to each section normal to the midline

at abscissa x. We define by =W 100x
W x

W

( )useful

useful
the percentage

Figure 11. Swimmer shapes for different values of the number of links (NL). The case NL = 60 correspond to α = 0.12.

Figure 12. Evolution of the efficiency η, the useful work Wuseful and
the total work Wtotal versus the number of links NL for

= −V 0.4 m s 1.

Figure 10. Evolution of the efficiency η, the useful work Wuseful and the
total work Wtotal versus the rigidity parameter α for = −V 0.4 m s 1. The
dotted line in the top figure corresponds to imposed tail deformation for

= −V 0.4 m s 1
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of the useful work generated between abscissa x and 1. In
figure 13 we see that 75% of the total useful work is con-
tributed by the caudal fin, i.e., the last 12% of the swimmer.
Hence, in order to obtain a simple interpretation of flow
physics underlying our observations of efficiency enhance-
ment, we now focus only on the tail segment, denoted by κ.
Let θe be the normal to κ as in figure 14. The relative velocity
of the mid point of κ with respect to swimmer velocity is
denoted by =v v v( , )x y and let the force exerted by κ on the
fluid be F. The normal component of this force is mainly
generated by the pressure jump, whereas the tangential force
is generated by viscous effects. As a first approximation, we
neglect the viscous contributions since the Reynolds number
is relatively high. In this limit, we model the force by

χ= =∼
θ θF e v v ef f( , ) ( · ) | |x y , where χ > 0 is areal constant.

Thrust is generated when >f 0x . The useful work is then

∫=͠ +
W v td

T

f f
xuseful

| |

2
x x , the work generated by lateral motion

is ∫ f v td
T y y and the total work is ∫=͠ ∼

F vW t· d
Ttotal . The

efficiency resulting from this model is then η =∼ ͠
͠

W

W
useful

total
.

Figure 15(b) shows the evolution of W͠useful and W͠total
versus α. We scaled β as β = 0.06 so that the useful and total
work are in the same ranges as in figure 7(b). The tendencies
are similar to those obtained in figure 15(b), except for the
largest values of α. The plot of η∼ versus α is presented in
figure 15(a). Even if the values of η∼ are slightly different from
that of η obtained in figure 7(a), the overall trends are found to
be similar. Indeed, the maximum efficiency is obtained for the
same value of α ( = 0.12) in both cases.

In figure 16 we show the trajectory of κ and the corre-
sponding model forces as a function of the tail rigidity. For rigid
tails (α = 0.02) the forces are propulsive over the whole cycle
but they are small in intensity and have large vertical compo-
nents. For optimal rigidity (α = 0.10) the forces are propulsive
over most of the cycle; their modulus is comparatively large and
the vertical components are small. For high flexibility (α = 0.16)
the modulus of the vertical forces is large and the horizontal force
is drag-generating over nearly half of the cycle. For this last case,
the integral contribution over one period of the forces in the x
direction becomes negative. This simplified analysis is in

accordance with observations done for figure 8, where the angle
between the vortex rows is smaller in the most efficient swimmer.

6. Conclusions

The effect of tail flexibility on swimming performance has
been examined via Navier–Stokes simulations coupled with a

Figure 13. Evolution of the local useful work contribution along the
midline and and overall useful work generated starting from the
caudal fin.

Figure 14. Sketch of the tail in the simplified efficiency model.

Figure 15. Evolution of the efficiency η∼, the useful work W͠useful and
the total work W͠total versus the rigidity parameter α. The dotted line
corresponds to the imposed tail deformation.
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lumped-element model of the flexible caudal fin. Our results
show that allowing caudal fin deformation induced by a
simple elastic model has a marked influence on the propulsive
performance of the swimmer.

The one-way fluid–structure interaction model shows that
optimal efficiency is obtained for an intermediate flexibility of
the caudal fin and that neither excessive rigidity nor com-
pliance are conducive to efficient propulsion. We further
show that a limited number of links (≈3) in the tail is able to
generate tail curvatures sufficient to reach efficiencies
obtained with a larger number of links. Our investigation is
valid for low Reynolds number regimes and without taking
into account possible skin effects (like polymer release) or
small-scale compliant-tissue effects. Although these results
are obtained in the limits of a one-way coupling, it is expected
that they are not qualitatively affected by the simplifications
in the structural model. It is shown indeed that the actual force
experienced by the swimmer tail is reasonably approximated
by the model. Furthermore, an interpretation of these results is
given based on a purely kinematic model. We observe that
rigid caudal fins lead to excessive lateral forces that increase
power consumption without generating thrust, whereas highly
flexible caudal fins produces negative thrust during significant
portions of the stroke. These results may lead to significant
improvements in the design of underwater robots and suggest
bioinspired designs for flexible fin swimmers.

In this work, changing the caudal fin model parameters is
equivalent to changing the kinematics of the tail, mimicking
the effects of actual fluid forces. A precise study on the part of
performance improuvement due to kinematics optimization
versus elastic energy recoil could be shown by comparing a

two-way coupling with a flexible tail, to a similar prescribed
tail kinematics.

Analysis of the flow features in the wake of the swimmer
does not allow to uncover a mechanism which would clearly
explain the efficiency gain obtained when varying the struc-
tural model parameters. No evident phenomena occur in the
wake flow topology explaining this improvement. An expla-
nation proposed here is that the detailed kinematics of the
flapping tail explains, at least partially, this effect. With
respect to the literature, we also observe that resonance,
interpreted as configurations for which the largest tail
amplitudes are induced by the same forcing, only partially
explain the increase of efficiency. Indeed, a clear maximum in
efficiency is obtained for values of k that give very simular
maximum tail amplitudes. It is probably accurate to state that
optimum efficiency results from a careful combination of
resonance combined with an appropriate tail kinematics that
results in the most favorable hydrodynamic configuration for
propulsion.
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