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Summary
Despite being relevant in many natural and industrial processes, suspensions
of nonspherical particles have been largely underinvestigated compared with
the extensive analyses made on the gravity-driven motions of spherical parti-
cles. One of the main reasons for this disparity is the difficulty of accurately
correcting the short-range hydrodynamic forces and torques acting on com-
plex particles. These effects, also known as lubrication, are essential to the
suspension of the particles and are usually poorly captured by direct numeri-
cal simulation of particle-laden flows. In this article, we propose a partitioned
volume penalization-discrete element method solver, which estimates the unre-
solved hydrodynamic forces and torques. Corrections are made locally on the
surface of the interacting particles without any assumption on the particle global
geometry. Numerical validations have been made using ellipsoidal particles
immersed in an incompressible Navier-Stokes flow.
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1 INTRODUCTION

Sedimentation is a two-phase flow that appears in various industrial applications as well as in natural flows. For instance,
sediments transport in rivers or near-coast influences the flow. By understanding the dynamics of the bed-load transport,
the evolution of the river-stream can be forecast to prevent abnormal erosion or obstruction of waterways.1,2 Macroscopic
suspensions are also relevant in several industrial applications, such as nuclear waste processing, water treatment,3,4

slurry transportation,5 reinforced plastics manufacturing, or the animation industry.6,7 For dense mixtures, such as
uncured solid rocket fuel or concretes,8 a high concentration of solid particles is desired without compromising the rhe-
ological properties and the flowing behavior of the mixture. Accurate numerical methods are then valuable supports to
optimize manufacturing processes.

Most of the numerical methods developed over the past decades focused on suspensions of spherical particles. Exten-
sive experimental and numerical studies of suspensions have highlighted the particle dynamics sensitivity to short-range
hydrodynamic interactions also known as lubrication effects.9 Often, the particles of interest are nonspherical (ellipsoidal
or rod-like, for instance). Furthermore, anisometric solid inclusions interact hydrodynamically much more strongly than

Abbreviations: CLM, Costa's lubrication model; DEM, discrete element method; DNS, direct numerical simulation; LLCM, local lubrication
correction model; VP, volume penalization method.
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F I G U R E 1 Sketch of the computational the domain. The whole D is
divided into a fluid domain Df and solid particles domain Ds

spheres do at the same volume fraction.10 Therefore, specific numerical methods need to be developed to accurately
simulate lubrication effects, especially in dense suspensions.

The first attempts to simulate nonspherical suspensions used microscale methods without proper lubrication
corrections,11 which limited their application to diluted suspension. A simple approach to correct lubrication forces is to
model a nonspherical particle as an agglomerate of spherical particles (multiblob).7 Hence, nonspherical particle-laden
flows can be simulated using robust and efficient solvers initially developed for spherical particles. As the true particle
surfaces are not represented, the particle hydrodynamics are roughly approximated. Therefore, lubrication models specif-
ically designed for nonspherical particles are needed to improve the correction accuracy. In the limit where the Reynolds
number tends to zero, adaptations of the Stokesian dynamics12 can be made using theoretical lubrication forces given
locally by Cox.13 The resulting methods10,14 take also into account the many-body interactions, which are nonneglectable
in dense particle flows. However, the accuracy of this approach comes with a high computational cost and can require the
tabulation of several parameters. An alternative to bypass these additional costs is to approximate the surfaces of inter-
acting particles around their contact points by the surfaces of virtual spheres. Lubrication corrections are then estimated
using the virtual spheres.15,16

In this article, we extend our local lubrication correction model (LLCM)17 to non-Brownian suspensions of ellipsoidal
particles. This lubrication model uses virtual spheres to evaluate local lubrication corrections instead of the global correc-
tions found in the classical lubrication theory.15,16 This article is organized as follows. In Section 2, we present the volume
penalization (VP) method used to solve the incompressible Navier-Stokes equations. Section 3 details the resolution of
the particle dynamics using the discrete element method (DEM). Finally, our LLCM is compared with other lubrication
models and validated numerically on several benchmarks in the last section. Currently, there is to our knowledge a lack
of experimental or numerical data estimating quantitatively the behavior of lubrication forces in the case of ellipsoidal
particles. Consequently, we do not dispose of references to compare our numerical results. This fact also enhances the
need for accurate models to simulate these phenomenons.

2 NUMERICAL RESOLUTION OF THE GOVERNING EQUATIONS

The governing equations considered are the incompressible Navier-Stokes equations for a viscous fluid:

⎧⎪⎨⎪⎩
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𝜕ui

𝜕xi
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(1)

where (i; j) = {1, 2, 3}2, ui are the velocity components and p is the pressure field. The density and dynamic viscosity
of the Newtonian fluid are denoted by 𝜌 and 𝜇, respectively. The system (1) is solved in the three-dimensional domain
D = Df ∪ Ds using a uniform Cartesian mesh, where N spherical particles Pi form the solid domain Ds = ∪N

i=1Pi with
Pi ∩ Pj = ∅ for i ≠ j and Df = D ∖ Ds is the fluid domain (Figure 1). The interface between the solid and fluid phases is
denoted Γs = ∪N

i=1Γi. Each particle Pi is assumed to be homogeneous with a density 𝜌p,i.
A no-slip boundary condition is implicitly imposed at the interface Γs, by the penalty term 𝜒𝜆

(
u𝜏,i − ui

)
, where 𝜆 is

the porosity and 𝜒 is the particle characteristic function (see Section 3.1). Indeed, as reminded by Angot et al,18 solving
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the penalized Equation (1) is equivalent to solve the incompressible Navier-Stokes equations in the fluid domain and
to enforce a no-slip boundary condition at the boundary Γs when 𝜆 → +∞. After the penalization step, solid velocity is
enforced on all grid elements fully included inside particles while the velocity on fluid grid elements is not modified.

2.1 Discretization of the governing equations

The Navier-Stokes Equation (1) are discretized on a uniform Cartesian mesh using a cell-centered collocated arrangement
of the primitive variables (p,ui). Face-centered velocities vi are also introduced in addition to the cell-centered velocities
ui, to eliminate odd-even decoupling, which can lead to large pressure variations in space.19 The equations are integrated
in time using a classical projection scheme introduced by Chorin20 and Temam.21 The detailed numerical resolution of
the system of Equation (1) can be found in our previous works.17,22

3 DYNAMICS OF THE PARTICLES

The particle dynamics is solved by a DEM, which is primarily devoted to multicontact interactions for a large suspension.23

The dynamics of each rigid particle is obtained by the Newton-Euler equations:

mi
dU i

dt
= Fhyd

i + Fcoll
i + Fext

i , (2)

dJi𝛀i

dt
= Thyd

i + Tcoll
i , (3)

for a given particle Pi of mass mi, inertia matrix Ji, linear velocity U i of the mass center and rotational velocity Ωi. The
hydrodynamic forces and torques are respectively, denoted Fhyd

i and Thyd
i (see Section 3.3). Nonhydrodynamic forces like

gravity (which is the only external force considered here) are denoted Fext
i . The force Fcoll

i and torque Tcoll
i represent the

effects of solid contacts of Pi with obstacles (see Section 3.5). The position of the mass center and the orientation angle of
the particle are given by X i and 𝚯i and are simply computed from the velocities U i and Ωi.

An ellipsoidal particle surface is defined by all (x, y, z) ∈ R3 such that:

x2

a2 +
y2

b2 + z2

c2 = 1, (4)

where a, b, and c are the three semiaxes of the ellipsoid (Figure 2). The particle is called a spheroid when b = c. For
spheroidal particles, the particle aspect ratio is defined as AR = a∕b. The spheroid is an oblate if AR < 1, a prolate if
AR > 1 and a sphere otherwise. The equivalent sphere, of diameter Deq = 2 3

√
abc, is the sphere with the same volume as

the particle.

F I G U R E 2 Representation of the particle with surface mesh in coordinate
system

(
e′x , e′y, e′z

)
[Color figure can be viewed at wileyonlinelibrary.com]
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The surface of each particle is meshed with Np elements (Figure 2). These meshes are used to compute the level-set
function and the hydrodynamic forces acting on the particle (Section 3.3).

Before going into detail on how each force and torque acting on the particles are computed, two nontrivial problems
need to be addressed, since the particles are not necessary spherical. First, the global level-set function needs to be com-
puted to locate the particles on the background grid and perform the penalization. Subsequently, the distance between
a particle to an obstacle (wall or particle) has to be accurately and efficiently computed for the lubrication and collision
models.

3.1 Computation of the global level-set

The global level-set function  is defined on all cells of the background grid (where the penalized Navier-Stokes
equations are solved) as the minimal signed distance of the given cell center to the particle surfaces. The level-set is
positive on fluid cells and negative on solid cells.

For spherical particles, the level-set at the cell center X is given by

(X) = min
i∈⟦1,N⟧ (||X − X i|| − ai) . (5)

Unfortunately, the ellipsoid surfaces are not easily characterized in the global coordinate system. Therefore, the
level-set is computed via the particle surface mesh. The level-set at a given cell center x is computed as follows:

1. The closest particle surface element is found among all the particles of the system.
2. The position x is projected on the closest particle surface element. This orthogonal projection is denoted XΓ.
3. The level-set (x) is then given by ||x − XΓ|| and the sign of (x) is positive if x is inside the particle. Otherwise,

the sign of (x) is negative.

The particles are located on the grid by the characteristic function 𝜒 = 1Ds . Hence, 𝜒 is defined on each cell center
location x such that 𝜒(x) = 1 if (x) ≤ 0, and 𝜒(x) = 0 otherwise. Simulations could be made more cost-efficient by
implementing a method, which would balance computation and transport of the level-set.

3.2 Computation of the minimal distance between two bodies

When all the particles are spherical, the computation of the minimal distance between a particle and a wall or another
particle is straightforward.17,24 However, the problem becomes more complex if ellipsoidal particles are considered. The
localization of the contact points for a pair of particles can be efficiently computed by the following iterative procedure25

(see Figure 3):

1. The search algorithm starts from two arbitrary points
(

Xc,i,Xc, j
)k on the surface of the two particles. These two points

are assumed to be the nearest points to the other particle surface.

F I G U R E 3 Two-dimensional sketch of the iterative method of
Lin and Han25 used to compute the distance between two ellipsoids
[Color figure can be viewed at wileyonlinelibrary.com]
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2. Two spheres are constructed completely inside the ellipsoids such that the sphere and ellipsoid surfaces are tangent
at the current nearest points

(
Xc,i,Xc, j

)k.
3. A new guess of the contact points

(
Xc,i,Xc, j

)k+1 is then found by the intersection of the line generated by the centers
of the two spheres and the ellipsoid surfaces.

4. If not converged, go back to step 2. Convergence is obtained when the line generated by the centers of the two spheres
is colinear with the ellipsoid surface gradients at the contact points

(
Xc,i,Xc, j

)k+1.

The procedure converges faster as the radius of the virtual spheres increases, and the initial guesses of
(

Xc,i,Xc,j
)k are

close to the contact points.
The computation of the minimal distance for a pair particle-wall is more straightforward than for a pair of particles.

Indeed, the outgoing normal unit vector of Γi at the contact point Xc,i is colinear and has an opposite sign to the wall
outgoing unit surface vector. Hence, the contact point Xc,i =

(
xc,i, yc,i, zc,i

)
is given by

⎧⎪⎪⎨⎪⎪⎩
xc,i = −xw

a2
i

2
,

yc,i = −yw
b2

i
2
,

zc,i = −zw
c2

i
2
,

(6)

with ew = (xw, yw, zw) the wall outgoing unit surface vector in the particle coordinate system.
For nonspherical particles, the collision model (Section 3.5) and lubrication correction models (Sections 3.4.1 and

3.4.2) are evaluated indirectly via virtual spheres. These virtual spheres are defined such that the sphere surfaces fit as
much as possible the true particle surfaces at the contact points. For ellipsoids Pi, the radius of the virtual sphere Rvs,i is
given by the Gaussian radius of curvature15 at the contact point Xc,i =

(
xc,i, yc,i, zc,i

)
:

R2
vs,i =

(
a4

i b4
i + b4

i

(
c2

i − a2
i

)
x2

c,i + a4
i

(
c2

i − b2
i

)
y2

c,i

)2

a6
i b6

i c2
i

. (7)

Subsequently, the center of the virtual sphere Xvs,i, in the particle coordinate system, is defined as

Xvs,i = Xc,i − Rvs,iNc,i, (8)

where Nc,i is the outgoing normal unit vector of Γi, in the particle coordinate system, at the contact point Xc,i. The
coordinates of the virtual sphere center are then projected in the global coordinate system using the particle rotation
matrix.

3.3 Particle hydrodynamics

To numerically compute the hydrodynamic force and torque acting on the particle Pi, the surface Γi is meshed using Np,i
elements. The kth element of the mesh of Γi is denoted Pk

i and sk is its surface. The set L(Pk
i ) is defined as all the particles

Pj, j ≠ i such that the distance between the surface of Pj and the center of Pk
i is lower than a𝜖lub. The distance a𝜖lub is

defined as the narrowest gap width between the center of the Pk
i and a potential nearby obstacle for the solver to fully

resolve hydrodynamic interactions.
The total hydrodynamic force and torque on the particle Pi are given by{

Fhyd
i = Fsolv

i + Fdeg
i ,

Thyd
i = Tsolv

i + Tdeg
i .

(9)

The force Fdeg
i and torque Tdeg

i are defined as:⎧⎪⎪⎨⎪⎪⎩
Fdeg

i = ∫ p∈Γi,
L(p)≠∅

(𝜎 ⋅ n) dS,

Tdeg
i = ∫ p∈Γi,

L(p)≠∅
ain × (𝜎 ⋅ n) dS.

(10)
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These two components of the hydrodynamics are underestimated by the numerical simulation due to the insufficient
number of grid elements in the gap between the particle Pi and its surrounding obstacles to properly capture the fluid
flow. Mesh refinement techniques could be considered to improve the resolution of the interstitial flow. However, these
methods have a nonnegligible computation cost and cannot provide a grid element small enough to accurately solve the
interstitial flow down to the potential collision of the particle with the obstacle. Therefore, a lubrication correction model
is introduced to balance the degraded hydrodynamics (see Section 3.4). Lubrication correction on the force and torque
are denoted Flub

i and Tlub
i .

The remaining of the hydrodynamics, Fsolv
i and Tsolv

i are obtained via the flow solver, as follows:

⎧⎪⎪⎨⎪⎪⎩
Fsolv

i = ∫ p∈Γi,

L(p)=∅

(𝜎 ⋅ n) dS,

Tsolv
i = ∫ p∈Γi,

L(p)=∅

ain × (𝜎 ⋅ n) dS.
(11)

The resolved hydrodynamics are computed by numerical integration of the fluid stress 𝜎 acting on all elements Pk
i far

enough to nearby obstacles: ⎧⎪⎪⎨⎪⎪⎩

Fsolv
i ≈

∑
k∈⟦1,Np,i⟧,

L(Pk
i )=∅

(𝜎 ⋅ n) sk,

Tsolv
i ≈

∑
k∈⟦1,Np,i⟧,

L(Pk
i )=∅

ain × (𝜎 ⋅ n) sk,
(12)

The fluid stress 𝜎 is interpolated from the pressure and velocities (p,ui), using a second-order Lagrange scheme at the
center of Pk

i .

3.4 Lubrication correction models

The accuracy of the computed hydrodynamic forces acting on a particle directly depends on the accuracy of the compu-
tation of the fluid flow surrounding the given particle. In dense suspensions, interstitial flows are often poorly resolved
by the direct numerical resolution of the Navier-Stokes equations as the gap between interacting particles can be smaller
than the grid resolution. To balance the unresolved hydrodynamics, lubrication correction models are introduced. In this
section, two methods to approximate Fdeg

i and Tdeg
i are described.

3.4.1 Costa lubrication correction model

The Costa lubrication correction model (CLM)26 is a two-parameter model, which corrects the normal component
of the lubrication force on a spherical particle. The correction is made by adding ΔFlub

i = ΔFlub
i en to the computed

hydrodynamic force:

ΔFlub
i

6𝜋𝜇aUsq
i

=
⎧⎪⎨⎪⎩
𝜆(𝜖Δx) − 𝜆(𝜖), 𝜖col ≤ 𝜖 < 𝜖Δx,

𝜆(𝜖Δx) − 𝜆(𝜖col), 0 ≤ 𝜖 < 𝜖col,

0, otherwise,
(13)

where en is defined as represented in Figure 4. The Stokes amplification factor27 𝜆 is defined for the lubrication interaction
between a sphere and a wall as 𝜆pw, and for interaction between two spheres as 𝜆pp:{

𝜆pw (𝜖) = 1
𝜖
− 1

5
ln(𝜖) − 1

21
𝜖 ln(𝜖) + O (1) ,

𝜆pp (𝜖) = 1
2𝜖

− 9
20

ln(𝜖) − 3
56
𝜖 ln(𝜖) + O (1) .

(14)

Hence, the total hydrodynamic force is given by

Fhyd
i = ∫Γi

(𝜎 ⋅ n) dS + ΔFlub
i . (15)
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F I G U R E 4 Sketch of the two interacting particles with the
notations used to evaluate Flub

i, j and Tlub
i, j [Color figure can be

viewed at wileyonlinelibrary.com]

By this approach, only the dominant component of the lubrication force is corrected, which does not create any torque.
Hence, Tlub

i = 0 and Tdeg
i is assumed neglectable.

The value of the parameter 𝜖Δx is determined by simulating the slow approach of a sphere toward a wall or a second
particle, for a given grid cell resolution h. Simulations without lubrication correction are compared with the analytical
solutions given by Brenner28 and Cooley and O'Neill.29 The parameter 𝜖Δx is defined as the largest value of 𝜖 such that
for 𝜖 ≤ 𝜖Δx the hydrodynamic force from the simulation without lubrication correction no longer matches the analytical
solution. The CLM parameter is 𝜖Δx = 0.06 for h = 1∕40 grid resolution.17 The CLM has been initially designed for spher-
ical before being extended to spheroidal suspensions by Ardekani et al.15 Their works have shown that the extended CLM
balances correction accuracy and computation cost, making one of the most reliable lubrication model for large-scale
simulations of nonspherical particle-laden flows.30

3.4.2 The local lubrication correction model

As previously mention, the LLCM has already been introduced in our former publications17,22 limited to spherical par-
ticles. The LLCM relied on a local description of the classical lubrication theory, which is independent of the particle
global geometry. Hence, local expressions of the lubrication corrections are identical for spherical and nonspherical parti-
cles. However, the latter geometry requires the approximation of the particle surface around the contact points by virtual
spherical cap in order to evaluate the lubrication corrections.

The lubrication force Flub
i and torque Tlub

i acting on Pi are given by

Flub
i =

∑
j∈⟦1,N⟧∖{i}

Flub
i, j + Flub

i,wall,

Tlub
i =

∑
j∈⟦1,N⟧∖{i}

Tlub
i, j + Tlub

i,wall, (16)

where Flub
i, j and Tlub

i, j are the lubrication force and torque acting on Pi, created by the interaction of Pi and Pj. The lubrication
force and torque created by the interaction of the particle Pi with a wall are denoted Flub

i,wall and Tlub
i,wall, and are equivalent

to the asymptotic case 𝛽 → +∞.
From the lubrication theory,17,22 Flub

i, j and Tlub
i, j are given by

⎧⎪⎨⎪⎩
Flub

i, j =
(

Flub,sq
i, j + Flub,sh

i, j

)
1[𝜖col,𝜖lub](𝜖),

Tlub
i, j = Tlub,sh

i, j 1[𝜖col,𝜖lub](𝜖),
(17)

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Flub,sq
i, j

𝜋𝜇aUsq
i, j
= − 6R4

0
4H2

0

1
𝜖

en,

Flub,sh
i, j

𝜋𝜇aUsh
i, j
= ∫ R0

0 [−P0R + 𝜕ZV0 − 𝜕ZU0]RdR et,

Tlub,sh
i, j

𝜋𝜇a2Ush
i, j
= ∫ R0

0 [𝜕ZU0 − 𝜕ZV0]RdR en × et,

(18)

http://wileyonlinelibrary.com
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and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Usq
i, j = Usq

i − Usq
j ,

Ush
i, j = Ush

i − Ush
j +

(
𝜔i − 𝜔j𝛽

)
a,

H0 = 1 + 1
2

a𝛼R2
0,

𝛼 = 𝛽+1
a𝛽

,

R0 = 1√
𝜖

√
1 − (1 + 𝜖 − 𝜖lub)2.

(19)

The projected relative velocities of the two particles on the directions en and et are Usq
i, j and Ush

i, j (see Figure 4). The
indicator function 1[𝜖lub,𝜖col](𝜖) is nonzero and equal to 1 only if 𝜖col ≤ 𝜖 ≤ 𝜖lub. Hence, the lubrication model is switched
off when the hydrodynamics is fully resolved (𝜖 ≥ 𝜖lub), and when the gap disappears (𝜖 ≤ 𝜖col).

The analytic expressions of Flub,sh
i, j and Tlub,sh

i, j are not as simple as the expression of Flub,sq
i, j . Therefore, we choose to

compute the shearing components by a numerical integration. Furthermore, numerical integration will be necessary if
we want to add lower orders of the lubrication forces and torques. The force Flub,sh

i, j and the torque Tlub,sh
i, j are integrated

on nlub subsets of the lubrication region [0,R0] as follows

Flub,sq
i, j

𝜋𝜇aUsq
i, j

=
nlub∑
k=1

∫Rk

[−P0R + 𝜕ZV0 − 𝜕ZU0]RdR et,

Tlub,sh
i, j

𝜋𝜇a2Ush
i, j

=
nlub∑
k=1

∫Rk

[𝜕ZU0 − 𝜕ZV0]RdR en × et, (20)

where Rk =
[

k−1
nlub

R0,
k

nlub
R0

]
.

he LLCM is then built such that the total hydrodynamic force and torque acting on Pi are approximated by{
Fhyd

i ≈ Fsolv
i + Flub

i ,

Thyd
i ≈ Tsolv

i + Tlub
i .

(21)

As the lubrication corrections Flub
i, j and Tlub

i, j are the dominant orders of the hydrodynamics acting on the inner region
of Pi, when the flow in the gap is in the Stokes regime, Flub

i and Tlub
i are not identical to the degraded hydrodynamics Fdeg

i
and Tdeg

i . Nevertheless, we have shown17 that the approximation Fdeg
i ≈ Flub

i can be made as long as the gap Reynolds
numbers

Regap
i, j =

𝜌ai𝜖||Ui − Uj||
𝜇

remains small for all Pj in interaction with Pi (ai the radius of Pi), during the simulations. In particular, the Reynolds
number Relub needs to be moderate (typically Relub < 103):

Relub = 𝜌𝜖lubQmax

𝜇
, (22)

with Qmax = max
t

(
max

(i, j)∈⟦1,N⟧2

(
ai||Ui(t) − Uj(t)||)) .

This constraint also underlines the limitation of the LLCM to moderate Reynolds number flows. Indeed, inertia effects
of the fluid in the gap are not corrected by the LLCM. Another limitation of the LLCM concerns the many-body interac-
tions, which refer to the hydrodynamics action on a particle generated by nearby particles in interaction. As the lubrication
corrections are made in an additive pairwise-fashion (see Equation (16)), the only many-body interactions, present in the
simulated flow, are the ones resolved by the numerical method (included in Fsolv

i ).
For ellipsoidal particles, the lubrication corrections are evaluated on the virtual spheres introduced in Section 3.2. The

approximation of the particle surfaces by the spheres is an additional source of uncertainty from the LLCM. Therefore,
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the size of the grid elements might need to be reduced for ellipsoidal particles with extreme aspect ratios to limit the
lubrication area to contact point neighborhoods where the virtual spheres fit the most the particle surfaces.

3.5 The soft-sphere collision model

The collision model chosen here is based on the soft-sphere approach used by Costa et al.26,31,32 The deformation of
particles during contact is modeled by the overlap between a particle and an obstacle (particle or wall). From the
overlap measurement, normal and tangential contact forces are computed using a mass-spring-dashpot system and a
Coulomb-type threshold for the tangential component. For a given particle Pi, collision forces Fcoll

i and torque Tcoll
i are

decomposed as ⎧⎪⎨⎪⎩
Fcoll

i =
∑
j≠i

Fi, j + Fi,wall,

Tcoll
i =

∑
j≠i

Ti, j + Ti,wall,
(23)

where Fi,j is the collision force of the interacting particles Pi and Pj, Fi,wall is the collision force of Pi with a wall. Ti,j
and Ti,wall are the corresponding collision torques. The force and the torque on Pi resulting from the particle-particle
interactions between Pi and Pj are defined using a local system of coordinates (en, et) (Figure 5):{ Fi, j = Fn + Ft,

Ti, j = aen × (Ft) ,
(24)

with {
Fn = −𝜹nkn − 𝛾n

(
U i, j ⋅ en

)
en,

Ft = min
(|| − 𝜹tkt − 𝛾t

(
U i, j ⋅ et

)
et||, ||𝜇cFn||) et,

(25)

where a is the radius of Pi, 𝜹n (respectively, 𝜹t) is the normal (respectively, tangential) overlap, kn (respectively, kt) is the
normal (respectively, tangential) stiffness, 𝜇c is the coefficient of sliding friction, and 𝛾n (respectively, 𝛾t) is the normal
(respectively, tangential) damping coefficient of the spring-dashpot model. The relative velocity of the two particles U i,j
at the contact point is given by U i, j = U i + a𝝎i × en −

(
U j − a𝛽𝝎j × en

)
.

The normal overlap distance 𝜹n is given by

𝜹n = max
(
0, a (1 + 𝛽) + 𝜖col (a + 𝛽a) − ||X i − X j||) en, (26)

where en = X i−X j||X i−X j|| as shown Figure 5. The tangential overlap distance 𝜹t is obtained by integrating the relative tangential

velocity at the point of contact while the Coulomb's law is verified. Therefore, the tangential overlap distance 𝜹t
n+1 at the

time step n + 1 is obtained by

F I G U R E 5 Contact of two particles with notations associated to the
soft-sphere model [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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𝜹t
n+1 = 1

kt

(
−𝜇c||Fn||et − 𝛾t

(
U i, j ⋅ et

)
et
)
, (27)

when the particle is sliding (ie, ||Ft|| > 𝜇c||Fn||), and by

𝜹t
n+1 = R𝛿t ⋅ 𝜹t

n + ∫
tn+1

tn

(
U i, j ⋅ et

)
etdt, (28)

when the particle is sticking to the obstacle (ie, ||Ft|| ≤ 𝜇c||Fn||). The rotation tensor R𝛿t moves 𝜹t
n to the new local

coordinate system at the state n + 1, and

et =
−𝜹tkt − 𝛾t

(
U i, j −

(
U i, j ⋅ en

)
en
)

|| − 𝜹tkt − 𝛾t
(

U i, j −
(

U i, j ⋅ en
)

en
) || .

The parameters of the spring-dashpot model 𝛾n, 𝛾t, kn, and kt are calculated from the coefficient of normal (respectively,
tangent) restitution 𝜉max,n (respectively, 𝜉max,t) of dry collision and the contact time 𝜏c, as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

kn = m∗(𝜋2+ln2(𝜉max,n))
𝜏2

c
,

𝛾n = − 2m∗ ln(𝜉max,n)
𝜏c

,

kt =
m∗

t (𝜋2+ln2(𝜉max,t))
𝜏2

c
,

𝛾t = − 2m∗
t ln(𝜉max,t)

𝜏c
,

(29)

with the effective mass

m∗ =
mimj

mi + mj
,

and

m∗
t = m∗ K2

K2 + 1
,

with K2 = 2∕5 the normalized radius of gyration for spherical particles.
The characteristics of the elastic properties of the particles are 𝜉max,n, 𝜉max,t, and 𝜏c. As noticed by Izard et al,23 the

relation between 𝜏c and kn is unusual, but several studies show that the normal stiffness can be underestimated without
modification of the dynamics of a dry system. Such an assumption allows to reduce the simulation time since the collision
characteristic time will be larger than the particle characteristic deformation time.

To ensure the stability of the model and the conservation of the momentum, Costa et al26 advised that the time step
of the overall numerical algorithm Δt has to be chosen as a multiple of the contact time 𝜏c (at least during the collision).
This condition guarantees a zero overlap at the end of the collision and allows the fluid to adapt itself to sudden changes
in velocity of the colliding particles.

The force Fi,wall and the torque Ti,wall are assumed to be equivalent to the asymptotic case 𝛽 → +∞ and mPj → +∞.
For nonspherical particles, the ellipsoids are approximated as spherical particles with the same mass as the whole

particles and with a radius corresponding to the local Gaussian curvature at the contact point.15,33 During collisions,
the radii of the approximating spheres remain constant simplifying the problem to the collision between two unequal
spheres. The centers of the approximating colliding spheres are stored at the time step before the gap width becomes
negative (particles overlap) and updated during the collision using the particle velocity and the rotation matrix intro-
duced above. These constraints prevent potential nonconverged computations of the virtual spheres to destabilize the
collision model.
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3.6 Numerical resolution of the particle dynamics

Among the forces acting on the particle, the short-range hydrodynamics (lubrication) and collision forces have time
scales smaller than the time scale associated with fluid flow. The particle dynamics is therefore computed at a
smaller time step 𝛿t = Δt

nt
, with nt arbitrary chosen large, to accurately integrate (in time) short-range interaction

forces. Numerical simulations have shown that changing nt between 102 and 103 does not affect significantly the
results.

Since the motion of the particles occurs at a time step smaller than Δt, it is not necessary to recompute the resolved
hydrodynamic forces Fsolv

i at each subtime step 𝛿t. Hence, particle dynamics is solved at each subtime step 𝛿t with updated
short-range interactions and “frozen” resolved hydrodynamics.

The Newton Euler equations of conservation (2) and (3) are discretized using a semiimplicit Euler scheme as follows:

Um+1
i = Um

i + 𝛿t
mi

[
Fsolv

i
]n+1 + 𝛿t

mi

[
Fcoll

i + Fext
i + Flub

i
]m

. (30)

𝛀m+1
i =

(
Jm+1

i

)−1
(

Jm
i 𝛀m

i + 𝛿t
([

Tsolv
i

]n+1 +
[
Tcoll

i + Tlub
i

]m
))

, (31)

where m denotes the “substate” of the system at the time t = tn + m𝛿t with tn the time at the state n of the system. Since
the particle dynamics are solved after the correction step, but before the penalization, the force

[
Fsolv

i
]n+1 and torques[

Tsolv
i

]n+1 are computed from the fields
(

pn+1, ũ
)
, and not

(
pn+1,un+1).

Position and orientation are then integrated implicitly as follows:{
Xm+1

i = Xm
i + 𝛿t Um+1

i ,

𝚯m+1
i = 𝚯m

i + 𝛿t 𝛀m+1
i .

(32)

Higher order integration schemes than the semiimplicit Euler scheme would be preferable for practical industrial
applications where accuracy and efficiency are critical. Nevertheless, the Euler scheme provides a simple numerical
framework to test the lubrication models, which are the focus of our works.

3.6.1 Numerical stability: Time step adaptation

To ensure the stability of the whole numerical method, the time step Δt is adapted such that the Courant-Friedrichs-Lewy
condition is satisfied: Δt = 𝛽𝜏Δx∕Vmax where 𝛽𝜏 ≤ 1 is chosen arbitrarily, Δx is the characteristic length of the grid cells
and Vmax is the maximum of the velocity absolute value computed on the grid cells.

When particles are near contact, the time step Δt has to satisfy the stability condition of the collision model (see
Section 3.5). Therefore, when lubrication corrections are active (ie, collision might occur)Δt is chosen such that 𝜏c = NtΔt
(with 𝜏c the contact time) and Δt ≤ 𝛽𝜏

Δx
Vmax

, where Nt > 0 an integer (Nt = 8, if not explicitly stated otherwise).

4 NUMERICAL SIMULATIONS

As long as ellipsoidal particles remain far away from each other, accurate numerical simulations of particle-laden flows
can be run without introducing additional models. Hence, we will focus in this section on evaluating the accuracy of
lubrication models, as unresolved hydrodynamics between bodies in close interaction are critical to simulate suspension
and are often overlooked for nonspherical particles. Even if the numerical method described above can handle any kind
of particle geometry as long as the surfaces of interacting particles are convex around their contact points, we choose to
limit our validation to ellipsoidal particles for the sake of simplicity.

After checking that the numerical method can accurately simulate the motion of an isolated ellipsoid in a sheared
flow, the LLCM is tested in depth on a prolate particle moving toward a planar wall.
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F I G U R E 6 Evolution of the normalized rotation velocity Ωz of a prolate
(red) and oblate (blue) in a shear flow. Simulation results (dashed lines), using
h = 1∕30 grid resolution, are compared with Jeffrey solutions34 [Color figure can
be viewed at wileyonlinelibrary.com]

4.1 Single particle in a sheared flow

Before looking at the lubrication correction, the numerical method has been tested with an isolated spheroidal particle in
a simple shear flow. Nonslip boundary conditions are assumed on the top and bottom faces of the domain while periodic
boundary conditions are considered on the all others faces. The neutrally buoyant particle is place in the middle of the
domain with Θz =Θy = 0, and is initially at rest.

The analytical solution for the angular velocity Ωz is given34 in the inertialess regime (Reeq = 0) by

Ωz = − 𝛾̇

a2 + b2

(
b2cos2(Θz) + a2sin2(Θz)

)
, (33)

where 𝛾̇ is the imposed shear rate, and the semi axes a and b are the polar and the equatorial radius of the spheroid
(Figure 2).

Simulations are performed with two spheroids with aspect ratios AR = 2 and AR = 1∕3. Horizontal velocity of the top
and bottom walls are set such that the Reynolds number is

Reeq =
𝜌𝛾̇D2

eq

𝜇
= 0.1,

where Deq is the particle equivalent diameter. The computational domain of size
[
10Deq

]3 is mapped with a uniform
Cartesian mesh. No-slip boundary conditions are assumed on the particle and wall surfaces. Figure 6 shows that the
simulation results, obtained with a grid spacing of Δx =Δy =Δz = Deq∕30, are in good agreement with the analytical
solutions Equation (33). The particle tumbling period around the spanwise axis is given by

T = 2𝜋
𝛾̇

(
AR + 1

AR

)
.

4.2 Sedimentation toward a planar wall

A single particle is immersed in a domain
[
2Deq

]3, with Deq the particle equivalent diameter, uniformly meshed with cubic
elements of size Δx =Δy =Δz = hd. No-slip boundary conditions are imposed on every face of the domain. The fluid is
initially at rest and the particle is dropped without initial velocity such that the gap size from the top wall is given by dinit
as shown Figure 7. The gravity field g acts on the y-direction.

If not explicitly stated otherwise, all simulations were performed using the particle and fluid properties contained in
Table 1. The Reynolds number

Reeq =
𝜌UtDeq

𝜇
∈ [20, 40],

http://wileyonlinelibrary.com
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F I G U R E 7 Sketch of the simulation domain with the particle
initial position [Color figure can be viewed at
wileyonlinelibrary.com]

T A B L E 1 Particle and fluid properties
Fluid density 𝜌 1000 kg ⋅ m−3

Fluid dynamic viscosity 𝜇 1 Pa ⋅ s

Equivalent diameter Dep 10 cm

Particle density 𝜌p 8000 kg ⋅ m−3

Initial position dinit 1.25 cm

Initial orientation Θz,init 0 rad

Particle aspect ratio AR 2

Galileo number Ga 262

and Stokes number

Steq =
𝜌pUtDeq

9𝜇
∈ [16, 36],

are a posteriori estimated with Ut the particle impact velocity, for all considered particle aspect ratios. At very low Reynolds
and Stokes number (Reeq ≪ 10 and Steq ≪ 10, typically) the particle settling above the wall can be qualitatively achieved
by any lubrication model, and might even be done without corrections. Due to the lack of measurements and the high cost
of direct numerical simulation (DNS) of the whole particle trajectory, the accuracy of the lubrication models will be not
quantitatively assess in this fully viscous regime. We choose to focus our investigation on the transition regime between
the Stokes and fully inertial regime as performance differences between lubrication models are easier to highlight.

DNS simulations are performed using h = 1∕200 and the particle trajectories are only computed for gap sizes ranging
from dinit to d = 2.5 mm. Hence, DNS simulations can be considered as references with at least five grid elements in the
gap at all times (ie, no collision or lubrication corrections are made).

Numerical experiments have shown that the number of particle surface mesh elements (starting from about three
thousand elements) has a limited impact on the solution, for all particle aspect ratio considered. Therefore, all simulations
have been performed using Np = 7200.

4.2.1 Grid sensitivity

In order to estimate the rate of convergence of the numerical method, five simulations using background grid resolutions
h ∈ [1∕120, 1∕40] are compared with a DNS solution (h = 1∕200, without lubrication corrections). For all simulations,
the LLCM parameter is 𝜖lub = 0.05 and a constant arbitrary time stepΔt = 2.5 × 10−5s is used for all simulations including
the DNS.

Figure 8 compares the evolution of the total hydrodynamic force obtained with the LLCM to the DNS results. Strong
oscillations (noises) observed on coarse meshes are due to high Δx∕Δt ratios.35 When the particle enters the lubrication

http://wileyonlinelibrary.com
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F I G U R E 8 Evolution of the total hydrodynamic force,
according to the y-direction during the approach phase. For all
curves, the lubrication corrections are activated in the lubrication
area (𝜖 ≤ 𝜖lub) [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 Evolution of the total hydrodynamic force,
according to the y-direction during the approach phase for the
critical lubrication distance Deq𝜖lub equal to 3Δy, 2Δy, 1.5Δy , 4Δy,
and 1Δy (by increasing value of Fhyd at the last time). The grid
resolution is h = 1∕40 and AR = 2 for all curves [Color figure can be
viewed at wileyonlinelibrary.com]

area, hydrodynamic forces drop compared with DNS results. This difference is due to the lubrication model. As the min-
imal gap in Figure 8 is still large (𝜖 = 0.033), results could be improved by correcting lower order in 𝜖 of the theoretical
lubrication force22 Flub. This could also explain the apparent underestimation of the hydrodynamics compared with the
DNS solution when the LLCM is active (as seen in Figure 8), since the hydrodynamic forces acting around the contact
point are substituted by lubrication corrections where lubrication forces are not yet predominant. The observed behavior
of the LLCM is likely transitional, but DNS at higher resolutions would be needed to confirm it.

The rate of convergence on velocity decreases as the particle aspect ratio increases. Indeed, for spherical particles
the rate of convergence is 0.83 while this rate is equal to 0.58 and 0.41 for particle aspect ratios AR = 1.5 and AR = 2,
respectively. This trend can be explained by the fact that the errors due to the approximation of the particle surface at the
contact point by the surface of a virtual sphere increase when the aspect ratio increases (see Section 4.2.3). As underlined
in our previous article,17 the lubrication parameter 𝜖lub is originally defined in the LLCM as a function of the grid spacing.
For instance, the numerical velocities obtained with 𝜖lub = 2∕h should have a higher rate of convergence than results
obtained with 𝜖lub = 0.05 fixed, since the solutions rely more (as h decreases) on the numerical method without lubrication
correction, which is second-order accurate.

4.2.2 Sensitivity to the LLCM parameter 𝝐lub

The LLCM is a model using a single parameter 𝜖lub, which sets the minimal gap length below which lubrication corrections
are needed. Several simulations have been made for different 𝜖lub with a grid resolution set as h = 1∕40. Figure 9 represents
the evolution of the total hydrodynamic force acting on an AR = 2 particle.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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T A B L E 2 Relative L2 error
compared with the DNS velocity

AR Dvr∕Deq 𝝐lub = 1∕h (%) 𝝐lub = 1.5∕h (%) 𝝐lub = 2∕h (%) 𝝐lub = 3∕h (%) 𝝐lub = 4∕h (%)

1 1 +0.78 +0.72 +0.58 −0.53 −0.74

1.5 1.32 +0.86 +0.77 +0.59 −0.66 −1.13

2 1.58 +1.02 +0.91 +0.70 −0.80 −1.35

2.5 1.86 +1.05 +0.97 +0.75 −0.73 −1.08

Note: A positive error indicates an overestimation of the velocity. The grid resolution is h = 1∕40 for all cases. The
average diameter of the virtual sphere when lubrication correction are applied is denoted Dvr.
Abbreviation: DNS, direct numerical simulation.

T A B L E 3 Signed relative L2
error compared with the DNS
particle velocity for AR = 2.

𝚯z,init Dvr∕Deq 𝝐lub = 1∕h (%) 𝝐lub = 2∕h (%) 𝝐lub = 3∕h (%) 𝝐lub = 4∕h (%)

0 1.58 +1.02 +0.70 −0.80 −1.35

𝜋∕6 0.92 +0.92 +0.81 −0.30 −0.50

𝜋∕4 0.64 +0.87 +0.69 −0.18 −0.39

𝜋∕3 0.49 +0.71 +0.58 −0.15 −0.36

𝜋∕2 0.4 +0.51 +0.35 −0.13 −0.23

Note: A positive error indicates an overestimation of the velocity. The grid resolution is h = 1∕40 for all cases.
The average diameter of the virtual sphere when lubrication correction are applied is denoted Dvr.
Abbreviation: DNS, direct numerical simulation.

F I G U R E 10 Evolution of the total hydrodynamic force acting
along the y-direction. Simulations without lubrication correction,
with LLCM and CLM are performed using h = 1∕40 grid resolution
and AR = 2. LLCM and CLM parameters are 𝜖lub = 2∕h and
𝜖Δx = 0.06 (see Section 3.4 for details). CLM, Costa's lubrication
model; LLCM, local lubrication correction model [Color figure can
be viewed at wileyonlinelibrary.com]

For spherical particles, the lubrication parameter 𝜖lub ∈ [2∕h, 3∕h] gives accurate corrections17 as long as the Reynolds
number in the gap is small (Relub < 103, see Equation (22)). Similarly to the case of spherical particles, numerical simula-
tions with 𝜖lub ∈ [2∕h, 3∕h] give hydrodynamic forces closer to the hydrodynamic force obtained by the DNS, as shown in
Table 2. Numerical experiments have shown that 𝜖lub ∈ [2∕h, 3∕h] remains the best choice independently of the particle
aspect ratio (Table 2) and also independently of the particle orientation (Table 3). Hence, no tabulation of 𝜖lub is needed
as 𝜖lub is invariant with respect to particle orientation and aspect ratio.

4.2.3 Lubrication models comparison and influence of the aspect ratio

In Section 3.4, we recalled the lubrication correction model (CLM) based on the works of Ardekani et al.15 The CLM model
uses the lubrication forces acting on the whole surface of the virtual sphere as corrections instead of a local correction as
performed by the LLCM. Figure 10 shows the evolution of the total hydrodynamic force on a prolate particle (AR = 2)
using the CLM, LLCM, or no lubrication correction. Numerical simulations were performed using an identical numerical
framework (aside from the lubrication model) with a grid spacing h = 1∕40.

http://wileyonlinelibrary.com


16 LAMBERT et al.

AR LLCM (%) CLM (%) No Correction (%)

1 0.58 0.79 0.78

1.25 0.50 0.74 0.72

1.5 0.59 0.90 0.86

1.75 0.67 1.04 0.96

2 0.70 1.16 1.02

2.5 0.75 1.22 1.06

Note: Grid resolution is h = 1∕40 and Θz,init = 0 for all aspect ratio. LLCM and
CLM parameters are 𝜖lub = 2∕h and 𝜖Δx = 0.06.
Abbreviations: CLM, Costa's lubrication model; DNS, direct numerical
simulation; LLCM, local lubrication correction model.

T A B L E 4 Relative L2 error compared with the DNS velocity
for simulations using LLCM, CLM, or no lubrication correction

On the small interval 𝜖 ∈ [0.033, 0.05] where the lubrication corrections are applied and a DNS solution is avail-
able (see Figure 10), two clear behaviors of the two lubrication models are observed. compared with the DNS, LLCM
tends to underestimate the particle hydrodynamics while CLM overestimate these effects. Table 4 contains the relative
error of simulated velocities compared with the DNS solutions for several aspect ratios. According to values in Table 4,
there is no significant difference between velocities obtained with or without lubrication corrections, which seems con-
tradictory to results obtained in our previous works17 with spherical particles. However, the velocities used to evaluate
the errors are obtained for 𝜖 ≥ 0.033, which is still far from the wall. As described in further detail in Section 4.2.4,
the hydrodynamic force typically saturates at smaller values of 𝜖 without lubrication corrections. This creates larger
behavior differences between solution with and without lubrication, which justify the use of lubrication correction
models.

Table 4 shows mainly the velocity errors increase with the particle aspect ratio for all cases at different rates.
For both lubrication models, this observation underlines the influence of the approximation of the particle surface
at the contact point by the surface of a virtual sphere. Similarly, the simulation accuracy decreases with the incom-
ing angles Θz (see Table 3). For Θz = 𝜋∕2, the two main curvatures at the contact point are identical. Therefore, the
virtual sphere surface fits the particle surface with a minimal error, which reduces the errors of the lubrication cor-
rections. The LLCM errors are the smallest for all aspect ratios and increase with the lowest rate. However, the LLCM
is about 10% more expensive than the CLM, and 10%-15% more expensive than without corrections. The additional
cost comes from the search of the particle surface grid elements in the lubrication area. Therefore, a large Np leads
to a higher cost of the LLCM compared with CLM. Despite the extra computational cost, the LLCM is the most
reliable method for nonspherical particles as it provides higher accuracy and does not require to perform expensive
tabulations.

4.2.4 Particle collision with a wall

In this section, simulations are run until the particle reaches an equilibrium. As the particle goes closer than d = 2.5 mm
from the wall, DNS simulations of the whole trajectory are not possible (there cannot be enough grid elements in the
gap to properly capture the flow around the particle). Figures 11 and 12 show the evolution of the hydrodynamic force
and particle vertical velocity around the first impact with the wall. The Reynolds number Reeq ≈ 35 and Stokes number
Steq ≈ 31 are estimated a posteriori with the particle maximal particle velocity (ie, impact velocity). The Galileo number
is Ga = 264.

Two motions of the particle are observed in Figure 12. The particle is colliding with the wall for the simulations
using LLCM or no lubrication corrections while it is maintained in suspension above the wall if the CLM is considered.
Experimental recordings22 of the trajectory of an identical prolate (AR = 2) approaching a planar wall at low Stokes
number (Steq ≥ 30) and Θz ∈ [−5◦, 5◦] have shown that the particle collides with the wall. Therefore, lubrication forces
are overestimated with the CLM leading to an unrealistic suspension of the particle above the wall, while LLCM preserves
the physics of the system. Due to the lack of analytical or accurate experimental trajectory, a quantitative accuracy of the
LLCM cannot be properly assessed.
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F I G U R E 11 Evolution of the total hydrodynamic force acting
along the y-direction. Simulations without lubrication correction,
with LLCM and CLM are performed using h = 1∕40 grid resolution
and AR = 2. LLCM and CLM parameters are 𝜖lub = 2∕h and
𝜖Δx = 0.06 [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 12 Evolution of the particle vertical velocity.
Simulations without lubrication correction, with LLCM and CLM
are performed using h = 1∕40 grid resolution and AR = 2. LLCM
and CLM parameters are 𝜖lub = 2∕h and 𝜖Δx = 0.06 [Color figure can
be viewed at wileyonlinelibrary.com]

5 CONCLUSION AND OUTLOOK

A numerical method for particle-laden flows of ellipsoidal solid particles using a LLCM has been presented and validated.
Interactions between a particle and an obstacle (another particle or a wall) can be decomposed into three types: long-range
hydrodynamics, short-range hydrodynamics also known as lubrication effects, and mechanical solid-solid contacts.

Long-range hydrodynamic interactions are fully resolved by the numerical solver based on the VP method. The incom-
pressible Navier-Stokes equations have been discretized in time using a scalar projection method and in space with a full
second-order penalty method.

Due to unresolved scales associated with the grid, short-range hydrodynamic interactions are only partially captured.
Therefore, a local lubrication model is introduced to approximate the unresolved component of the hydrodynamics.
This correction is based on asymptotic expansions of analytical solutions of particle-particle or particle-wall interactions,
assuming that the flow within the gap between the particle and the obstacle is in the Stokes regime. Lubrication forces
and torques are corrected in a neighborhood of the contact point of two interacting particles where lubrication is poorly
captured, as long as the normalized gap width 𝜖 is smaller than a critical length 𝜖lub (a model parameter).

Finally, solid contacts are modeled using a linear soft-sphere collision model. This model, widely used in the
literature,23,26 represents mechanical contacts as two spring-dashpot systems connected at the contact point. The model
allows to stretch the collision time, to avoid computational overhead in the calculation of the collision force, making the
method computationally efficient.

Our LLCM has been validated on several benchmarks for spherical particles in one of our previous works.17 In this
article, the method is tested for spheroidal particles with two cases. First, the accuracy of DNS using our numerical
framework is evaluated by comparing numerical solutions of isolated spheroids in a sheared flow to analytical solu-
tions. Subsequently, the slow motion of a prolate toward a planar wall is simulated and compared with DNS solution to

http://wileyonlinelibrary.com
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assess LLCM accuracy. Numerical experiments have shown the LLCM provides more accurate solutions than a similar
lubrication model, with a low additional cost (∼10%). Qualitative comparisons of simulated trajectories with preliminary
experimental observations have also shown the LLCM better preserves the physics of the flow compared with existing
virtual-sphere-based methods. Due to the lack of analytical or accurate experimental data about the trajectory of the par-
ticle, the accuracy of the LLCM could not be quantitatively assessed when the particle collides with a wall. We are looking
to address this issue in the future.
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