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This paper focuses on improving the stability as well as the approximation properties of
reduced order models (ROMs) based on proper orthogonal decomposition (POD). The
ROM is obtained by seeking a solution belonging to the POD subspace and that at the same
time minimizes the Navier–Stokes residuals. We propose a modified ROM that directly
incorporates the pressure term in the model. The ROM is then stabilized making use of a
method based on the fine scale equations. An improvement of the POD solution subspace
is performed, thanks to a hybrid method that couples direct numerical simulations and
reduced order model simulations. The methods proposed are tested on the two-dimen-
sional confined square cylinder wake flow in laminar regime.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Reduced order models based on proper orthogonal decomposition

In the last decades, the conception and the optimization of the aerodynamics/aeroacoustics of ground vehicles and air-
planes have been pursued by numerical simulation. The applications mainly concern unsteady turbulent flows that develop
at high Reynolds numbers. The numerical simulation of such flows, as well as their control, requires massive computational
resources. Indeed, after discretization of the governing equations, i.e. the Navier–Stokes equations in fluid mechanics context,
one must then solve a system of equations whose complexity algebraically grows with the number of degrees of freedom of
the system to be solved. Now, and despite the considerable progress made in the numerical field (power of the computers,
new and more efficient algorithms), it is still very difficult to solve such large problems for complex flows in real time, that is,
in fine, a major stake for industrials. To overcome this difficulty, it is possible to determine a reduced order model of the flow
dynamics keeping only few adapted modes. The choice of these modes is not unique, and it strongly depends on the char-
acteristics of the flow that one wants to approximate, or even might depend on some expected outputs (goal-oriented mod-
els [1]). Several methods are commonly used, among them are proper orthogonal decomposition (POD) [2–4], balanced
truncation [5–7], global eigenmodes [8], Galerkin modes [9], etc. Due to the energetic optimality of its basis, the POD is cho-
sen in this study. By this technique, it is possible to extract the dominant characteristics (POD modes) of a given database,
and the ROM is then obtained thanks to a Galerkin projection of the governing equations onto these modes. Although this
method for reducing the order of a system can be very efficient in some flow configurations, it also presents several
. All rights reserved.
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Fig. 1. Flow configuration and vorticity snapshot at Re ¼ 200.
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drawbacks. Besides the possible inherent lack of numerical stability of POD/Galerkin methods, even for simple systems [10],
the main shortcomings are the following:

� Since in most of the POD applications for incompressible flows the POD ROM is built from a velocity database,1 it is nec-
essary to model the pressure term. Usually, in many closed flows, the contribution of the pressure term formally drops out
due to fortunate choices of boundary conditions in the POD ROM. However, for convectively unstable shear layers, as the
mixing layer or the wake flow, it was proved in [11] that neglecting the pressure term may lead to large amplitude errors
in the Galerkin model. Therefore, to accurately model such flows, the pressure term [11,12] must be modeled. To over-
come this difficulty, a pressure extended reduced order model is introduced in Section 3, so that the pressure term can
be directly approximated using the pressure POD mode.

� Due to the energetic optimality of the POD basis functions, few modes are sufficient to give a good representation of the
kinetic energy of the flow.2 For model reduction purpose, we only keep these few modes that are associated to the large
eddies of the flow (as the vortices of the Von Kármán street that usually develop behind bluff bodies). But since the main
amount of viscous dissipation takes place in the small eddies represented by basis functions that are not taken into
account, the leading ROM is not able to dissipate enough energy. It is then necessary to close the ROM by modeling
the interaction between the calculated modes and the non-resolved modes. This problem is similar to that of large eddy
simulation (LES) [13] of turbulent flows. In this study, the ROM is closed using Navier–Stokes equations residuals and
exploiting ideas similar to streamline upwind Petrov–Galerkin (SUPG) and variational multiscale (VMS) methods [14].

� Since POD basis functions are optimal to represent the main characteristics included in the snapshot database of the flow
configuration used to build them, the same basis functions are a priori not optimal to efficiently represent the main char-
acteristics of other flow configurations. Indeed, for flow control purpose, it was demonstrated [15–17] that POD basis
functions built from a flow database generated with a given set of control parameters is not able to represent the main
features of a flow generated with another set of control parameters. To overcome this problem, we propose to derive
methods allowing to adapt the POD basis functions at low numerical costs. This is the central question of Section 5.
1.2. Flow configuration

In this study, the confined square cylinder wake flow (Fig. 1) is chosen as a prototype of separated flow. This flow is inter-
esting since it presents detachments of the boundary layer, wake and vortices interactions with walls. The Navier–Stokes
equations, written in their dimensionless and conservative form, are written as
1 In a
2 Thi

flow.
@u
@t
þ ðu � $Þu ¼ �$pþ 1

Re
Du; ð1aÞ

$ � u ¼ 0; ð1bÞ
where Re ¼ U1L=m denotes the Reynolds number, with U1 ¼ uð0;H=2Þ the maximal inflow velocity, L the length of the side of
the square cylinder and m the kinematic viscosity. In what follows, we consider Re ¼ 100 and Re ¼ 200, that is to say, the
laminar regime. Otherwise, the same parameters as those introduced in [12] are used in this study, i.e. the blockage ratio
b ¼ L=H is equal to 0.125 and the domain X is ð0;4HÞ � ð0;HÞ. The same numerical method as that described in [12] is used.
A vorticity representation of a flow snapshot is presented in Fig. 1 (dashed lines represent negative values). The boundary
layer detachment, the wake and the vortex interactions with top and bottom walls are visible.

This paper is organized as follows. Section 2 presents the proper orthogonal decomposition (POD, Section 2.1) and the
standard velocity POD/Galerkin reduced order model (POD ROM, Section 2.2) for incompressible flows. A pressure extended
reduced order model is introduced in Section 3. Different stabilization methods of the POD ROM are presented in Section 4. A
residuals-based stabilization method (Section 4.1), and streamline upwind Petrov–Galerkin (SUPG) as well as the variational
lmost all the experimental works, the pressure field is unavailable.
s is true for 2-D periodic laminar flows, but thousands of POD modes could be necessary to describe the fluctuation energy of a fully developed turbulent
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multiscale (VMS) methods (Section 4.2) are introduced. Section 5 presents methods to adapt the functional subspace when
input system parameters change. A Krylov-like method (Section 5.1) and a hybrid DNS/POD ROM method (Section 5.2) are
presented. Finally, Section 6 is dedicated to conclusions.

2. Standard reduced order model based on proper orthogonal decomposition

2.1. Proper orthogonal decomposition

The proper orthogonal decomposition (POD) was first introduced in turbulence by Lumley [18] in 1967 as an unbiased
definition of the coherent structures widely known to exist in a turbulent flow. A comprehensive review of the POD can
be found in Refs. [2–4]. The POD, also known as Karhunen–Loéve decomposition, principal component analysis or empirical
eigenfunctions method, consists of looking for the deterministic function UðxÞ that is most similar in an average sense to the
realizations Uðx; tÞ. For instance, the realizations Uðx; tÞ can be velocity fields, pressure fields, temperature fields, etc. Since in
this study the data are issued from numerical simulations, the method to compute POD modes introduced by Sirovich [3] is
adopted (see [4] for justifications). In this case, the constrained optimization problem reduces to the following Fredholm
integral eigenvalue problem
Z T

0
Cðt; t0Þanðt0Þdt0 ¼ knanðtÞ; ð2Þ
where the temporal correlation tensor Cðt; t0Þ is defined by
Cðt; t0Þ ¼ 1
T

Uðx; tÞ;Uðx; t0Þð ÞX: ð3Þ
The inner product ð:; :ÞX between two fields (U and V is computed as
ðU;VÞX ¼
Z

X
U � Vdx ¼

Z
X

Xnc

i¼1

UiVidx;
where Ui represents the ith component of the vector U with dimension nc .
The eigenvalues kn (n ¼ 1;2; . . .) determined in (2) are all real and positive, and form a decreasing and convergent series.

Each eigenvalue represents the contribution of the corresponding mode Un to the information content of the original data.
Note that if U are the velocity fields, the information content reduces to the kinetic energy.

In Eq. (2), an are the time-dependent POD eigenfunctions of order n. These modes form an orthogonal set, satisfying the
condition
1
T

Z T

0
anðtÞamðtÞdt ¼ kndnm: ð4Þ
The associated eigenvectors Un (also called empirical eigenfunctions) form a complete orthogonal set and are normalized, so
that they verify ðUn;UmÞX ¼ dnm.

The spatial basis functions Ui
n can then be calculated from the realizations Ui and the coefficients an with
Ui
nðxÞ ¼

1
Tkn

Z T

0
Uiðx; tÞanðtÞdt: ð5Þ
Since the POD eigenfunctions can be represented as linear combinations of the realizations, they inherit all the properties of
the original data. For instance, the eigenfunctions are divergence free for incompressible flows. Moreover, the eigenfunctions
verify the boundary conditions of the numerical simulation used to determine the flow realizations.

The set of POD modes fUngNPOD
n¼1 is complete in the sense that any realization Uðx; tÞ contained in the original data set, can

be expanded with arbitrary accuracy (in function of NPOD P 1) in the eigenfunctions as
Uðx; tÞ ’ bU ½1;...;NPOD �ðx; tÞ ¼
XNPOD

n¼1

anðtÞUnðxÞ: ð6Þ
For later convenience, the estimation bU ½1;...;NPOD � of U is introduced, where the brackets contain the indices of all employed
modes. Hereafter, we consider that the ensemble used to determine the POD modes consists of Ns flow realizations (called
time snapshots) Uðx; tiÞ; x 2 X, taken at ti 2 ½0; T�; i ¼ 1; . . . ;Nt .

The energetic optimality of the POD basis functions suggests that only a very small number of POD modes may be nec-
essary to describe efficiently any flow realizations of the input data, i.e. Nr � Ns. In practice, Nr is usually determined as the
smallest integer M such that the relative information content, RICðMÞ ¼

PM
i¼1ki=

PNs
i¼1ki, is greater than a predefined percent-

age of energy, d. So that NPOD ¼ Nr , and the approximation (6) becomes
Uðx; tÞ ’ bU ½1;...;Nr �ðx; tÞ ¼
XNr

n¼1

anðtÞUnðxÞ: ð7Þ
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2.2. Classical reduced order model and drawbacks

To derive a classical reduced order model only the velocity fields are used, so that Uðx; tÞ � uðx; tÞ. Thus, decomposition
(7) becomes
3 Onl
uðx; tÞ ’
XNr

n¼1

anðtÞ/nðxÞ; ð8Þ
where /n denote the velocity POD basis functions. A low dimensional dynamical system is obtained via a Galerkin projection
of the Navier–Stokes equations (1). The Galerkin projection formally is written as
/i;
@u
@t
þ ðu � $Þu

� �
X

¼ � /i;$pð ÞX þ /i;
1
Re

Du
� �

X

: ð9Þ
Note that since the pressure term ð/i;$pÞX cannot be evaluated using the standard velocity POD formulation, it is usually
neglected (see discussion below). After some algebraic manipulations using decomposition (8), the reduced order model
can be written as (see [19] for more details)
daiðtÞ
dt

¼ Ai þ
XNr

j¼1

BijajðtÞ þ
XNr

j¼1

XNr

k¼1

CijkajðtÞakðtÞ; i ¼ 1; . . . ;Nr : ð10aÞ
with initial conditions
aið0Þ ¼ uðx; 0Þ;/iðxÞð ÞX; i ¼ 1; . . . ;Nr : ð10bÞ

It is well known that when Eqs. (10) are integrated in time a gradual drifting from the full-state solution to another errone-
ous state may arise after several vortex shedding periods, precluding a correct description of the long-term dynamics [20].
Even worse, in some cases, is that the short-term dynamics of the POD ROM may not be sufficiently accurate to be used as a
surrogate model of the original high-fidelity model. Essentially, three sources of numerical errors can be identified. As it was
already mentioned, the POD/Galerkin method can first present a lack of inherent numerical stability even for very simple
problems [10]. Secondly, the pressure term is often neglected in the POD ROM. It is possible to model this term, but to avoid
this modelisation, a pressure extended reduced order model is introduced in Section 3. The third source of instability is the
truncation involved in the POD–Galerkin approach. Indeed, since only the most energetic POD modes are kept, the POD ROM
is not sufficiently dissipative to prevent erroneous time amplifications of its solution. This problem is similar to that of large
eddy simulation, where the energy transfers between the resolved scales and the subgrid scales have to be modelled [13]. For
instance, 4 modes are sufficient to restore more than 99% of the kinetic energy of the circular cylinder wake flow (2D, laminar
regime), but the solution of the such reduced order model does not converge towards the numerical solution of the Navier–
Stokes equations [21]. It is thus necessary to stabilize the POD ROM. In this study, thanks to the pressure extended reduced
order model, the POD ROM can be stabilized using the Navier–Stokes operator residuals evaluated with the POD flow fields
reconstructions (Section 4).

3. A pressure extended reduced order model

It is demonstrated that the contribution of the pressure term vanishes in many closed flows. However, Noack [11] proved
that neglecting the pressure term for convectively unstable shear layers (as the mixing layer or the wake flow) can lead to
large amplitude errors in the Galerkin model. A solution is to model this pressure term [11,12]. One aim of this study is to
invoke the least modelisation as possible. The purpose of this section is thus to derive a pressure extended reduced order
model, i.e. a ROM that allows to build both the velocity and the pressure fields. The pressure term can thus be easily calcu-
lated using p ¼ ~p (see decomposition (11b)). Another key issue is that knowing the pressure field, it is possible to evaluate
the Navier–Stokes residuals.3 Indeed, the Navier–Stokes residuals will be used to both stabilize (Section 4) the ROM and im-
prove (Section 5) the POD subspace.

3.1. Construction of the pressure extended POD ROM

As it was mentioned in Section 2.2, reduced order modeling is based on the restriction of the weak form of the Navier–
Stokes equations to the subspace SPOD

Nr
spanned by the first Nr spatial eigenfunctions Ui. Here, we develop a global basis for

both the velocity and pressure fields (see [22] for justification and numerical demonstration). The exact flow fields u and p
are then approximated by
~uðx; tÞ ¼
XNr

i¼1

aiðtÞ/iðxÞ; ð11aÞ

~pðx; tÞ ¼
XNr

i¼1

aiðtÞwiðxÞ: ð11bÞ
y the velocity field is necessary to evaluate the residuals of the Navier–Stokes operator written in its vorticity formulation.
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The velocity and the pressure basis functions, /i and wi, respectively, are determined using Uðx; tÞ ¼ ð~uðx; tÞ; ~pðx; tÞÞT to cal-
culate the temporal correlation tensor (3). The basis functions /i and wi are determined as Uðx; tÞ ¼ ð/ðx; tÞ;wðx; tÞÞT , Uðx; tÞ
being obtained from (5).

The substitution of Eqs. (11) in the Navier–Stokes momentum equations (1a) leads to
4 In a
XNr

j¼1

daj

dt
/j þ

XNr

j¼1

aj/j � $
 !XNr

k¼1

ak/k ¼ �
XNr

j¼1

aj$wj þ
1
Re

XNr

j¼1

ajD/j; ð12Þ
that is
XNr

j¼1

/j
daj

dt
þ
XNr

j¼1

XNr

k¼1

/j � $
� �

/kajak ¼ �
XNr

j¼1

$wjaj þ
1
Re

XNr

j¼1

D/jaj: ð13Þ
A Galerkin projection of the momentum equations (13) yields
/i;
XNr

j¼1

/j
daj

dt
þ
XNr

j¼1

XNr

k¼1

/j � $
� �

/kajak þ
XNr

j¼1

$wjaj �
1
Re

XNr

j¼1

D/jaj

 !
X

¼ 0: ð14Þ
The reduced order model is then
XNr

j¼1

LðmÞij

daj

dt
¼
XNr

j¼1

BðmÞij aj þ
XNr

j¼1

XNr

k¼1

CðmÞijk ajak; ð15Þ
where the coefficients4 Lm
ij ; Bm

ij and Cm
ijk are given by
LðmÞij ¼ þ /i;/j

� �
X
; ð16aÞ

BðmÞij ¼ � /i;
1
Re

D/j � $wj

� �
X

; ð16bÞ

CðmÞijk ¼ � /i; /j � $
� �

/k

� �
X
: ð16cÞ
Here, the superscript m stands for momentum equations.
In this reduced order model we used global basis functions built by POD, but this methodology could be transposed to

other modal decompositions such as decomposition onto stability modes [8]. Moreover, it could be interesting to use non-
divergence free modes, as Navier–Stokes residuals modes. Such modes can be used to stabilize (Section 4) and improve (Sec-
tion 5) the POD ROM. Hence, if model (15) is built using nondivergence free modes, it does not satisfy the continuity equation
(mass conservation). It is thus necessary to add a constraint in the reduced order model.

A modified ROM that satisfies both momentum and continuity equations can be obtained starting from the weak form of
the Navier–Stokes equations
wi;
@u
@t
þ $ � ðu	 uÞ þ $p� 1

Re
Du

� �
X

þ qi;$ � uð ÞX ¼ 0; ð17Þ
where wi and qi belong to appropriate functional spaces. The velocity and pressure fields are expanded onto the POD basis
functions f/ig

Nr
i¼1 and fwig

Nr
i¼1 using Eqs. (11a) and (11b), respectively.

One approach is then to use a Galerkin projection where wi ¼ /i and qi ¼ wi as done before (Eq. (14)). Another approach is
to use wi ¼ /i and qi ¼ að$ � /iÞ

T . This choice would correspond to the minimization of the continuity residuals,
PNr

j¼1aj$ � /j,
in a least squares sense, so that in limit of large a we have
XNr

j¼1

Bc
ijaj ¼ 0;
where BðcÞij ¼ ð$ � /iÞ
T$ � /j and the superscript c stands for continuity equation. Numerically, this second approach gives bet-

ter results, and the modified ROM that we use is thus
XNr

j¼1

LðmÞij

daj

dt
¼
XNr

j¼1

BðmÞij þ aBðcÞij

� �
aj þ

XNr

j¼1

XNr

k¼1

CðmÞijk ajak; ð18Þ
where the weight a has to be fixed. In this study, we chose a ¼ 10�2.
Since we use the flow-field decompositions (11), the mean flow is solved by the reduced order model. The mean flow is

then Uðx; tÞ ¼ a1ðtÞU1ðxÞ. It is well known that a small drift of the first temporal coefficient a1 can occur. The flow rate is thus
general way, we have ðUi;UjÞX ¼ dij , but not ð/i;/jÞX ¼ dij . So, LðmÞij –dij .
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modified. In order to keep the flow rate as constant, another constraint must be enforced in the reduced order model (18).
For the 2D confined flow, the conservation of flow rate is written as
5 If o
the flow
Z
S

uds ¼ c; ð19Þ
where S is a cross-section of the channel and c is a constant. For instance, S could be the inflow or outflow height H of the
channel, or, at the abscissa of the cylinder with height L;S ¼ H � L (see Fig. 1). Numerically, the flow rate has to be constant
over each slice Sl � SðxlÞ;1 6 l 6 NX , where NX is the number of discretisation points in the x-direction (a cartesian mesh is
used).

Denoting / ¼ ð/u;/vÞT and using (11a), condition (19) is approximated by5
XNr

i¼1

ajðtÞ
Z
Sl

/u
j ds ¼ c: ð20Þ
The constant is initially evaluated by projection of a given snapshot onto the basis functions /. Numerically, in this study we
have c � 1. The flow rate conservation is written as
XNr

j¼1

daj

dt

Z
Sl

/u
j ds ¼ 0:
Denoting by f j the vector with components f l
j ¼

R
Sl

/u
j ds, the flow rate conservation over the whole domain X is written as
XNr

j¼1

daj

dt
f j ¼ 0:
These additional constraints are now taken into account by enlarging the projection space with bf i. In the limit of large b we
have in a least square sense
XNr

j¼1

Lr
ij

daj

dt
¼ 0;
where Lr
ij ¼ f T

i f j. The superscript r stands for flow rate conservation. Then, the reduced order model writes
XNr

j¼1

LðmÞij þ bLðrÞij

� � daj

dt
¼
XNr

j¼1

BðmÞij þ aBðcÞij

� �
aj þ

XNr

j¼1

XNr

k¼1

CðmÞijk ajak ð21aÞ
with initial conditions
aið0Þ ¼ Uðx;0Þ;UiðxÞð ÞX; i ¼ 1; . . . ;Nr ; ð21bÞ
where the weight b has to be fixed. In this study, we chose b ¼ 102. This reduced order model satisfies the momentum equa-
tions, the continuity equation as well as the conservation of the flow rate, even for nondivergence free modes.

3.2. Numerical results of the pressure extended POD ROM

The reduced order model (21) is tested on a 2D confined square cylinder wake flow in laminar regime (Re ¼ 200). In this
section, the POD basis U is built following the POD snapshot method introduced by Sirovich [3]. Here, 80 snapshots uni-
formly distributed over one vortex shedding period are used to compute the discrete form of the temporal tensor (3). The
corresponding eigenvalues spectrum is presented in Fig. 2. This spectrum is degenerate presenting pairs of identical eigen-
values for the fluctuating modes (the mean flow is indexed by 1). The POD basis functions are obtained via a projection of the
temporal tensor eigenvectors on the whole set of snapshots. Some of them are presented in Fig. 3 in terms of iso-vorticity
(noted $^/i, for velocity modes /i) and isobars (for pressure modes wi). The evolution of the RIC introduced in Section 2.1 is
presented in Fig. 4. Only the first 5 modes are sufficient to represent more than 98% of the total kinetic energy. However,
another 5-modes reduced order basis containing approximatively the same percentage of energy could be derived using
modes 6 and 7 instead of 4 and 5. Indeed, even if these two pairs of modes are very different (see, for instance, the topological
differences between /5 and /7 in Fig. 3), they have approximatively the same energetic contribution as one can see in Fig. 5
where the individual energetic contribution (IEC) is presented. Thus, a judicious choice of the POD modes is not so evident in
this case. Instead of using the RIC criterium, one can decide to keep all the fluctuating modes presenting an energy contri-
bution greater than a given threshold (see Fig. 5). Here, all the modes with an energy contribution greater than 10�2 are kept.
This corresponds to 10 fluctuating modes plus the mean flow mode, i.e. Nr ¼ 11 modes.
ne uses only POD modes, we can take Nr ¼ 1 since the flow rate is only given by the mean flow. However, using other modes that do not respect a priori
rate conservation (as the residual modes), Nr–1.



Fig. 2. Eigenvalues spectrum.
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After having computed once the operators of the reduced order model (21) using these Nr ¼ 11 modes, a long-time flow
prediction over more than 1000 vortex shedding periods is performed. Fig. 6 presents the temporal evolution of the set of
coefficients faigNr

i¼1, solution of the system (21), over the 40 vortex shedding periods. Since the temporal tensor eigenvalues
spectrum is degenerate (it presents pairs of eigenvalues), only the odd-indexed coefficients are presented (the even ones
have the same behavior). It is noticeable that no divergence occurs for the long-time prediction. A comparison of the pro-
jected (projection of the Navier–Stokes solution onto the POD basis) and the predicted (solutions of the ROM (21)) limit cy-
cles over 1000 vortex shedding periods is presented in Fig. 7. The predicted limit cycles perfectly match the projected ones
even for small scales (high order modes), where the high-frequency dynamics is more complex. The good accuracy for all
limit cycles also indicates that no spurious dephasing occurs between modes. The system (21) with 11 modes is numerically
Fig. 3. Representation of some POD modes. Iso-vorticity (left) and isobars (right). Dashed lines represent negative values (the pressure reference is
arbitrarily chosen to be zero).



0 5 10 15 20

50

60

70

80

90

100

Fig. 4. RIC of fluctuating modes.

0 5 10 15 20
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

Fig. 5. Eigenvalues spectrum.

M. Bergmann et al. / Journal of Computational Physics 228 (2009) 516–538 523
stable for short- and long-time predictions so that no calibration procedures are needed. We want to highlight that a small
gradual drifting could be observed using classical POD reduced order model where the pressure term remains unmodeled. It
is thus important to calculate, or at least to model, the pressure term.

As it was already mentioned (Section 2.2), when system (21) is integrated in time a gradual drifting from the full-state
solution to another erroneous state may arise after several vortex shedding periods if only a very small number of modes
are kept. Indeed as it was shown in Figs. 8 and 9, the solution of model (21) built with 5 modes reaches erroneous limit cy-
cles, and can even diverge with 3 modes (see Figs. 10 and 11). In this simple test case, only Nr ¼ 11 modes are sufficient to
build a stable ROM. However, in many practical applications (three-dimensional flows, turbulent regimes, complex geome-
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tries, etc.) the number of POD modes that represent 99% of the total kinetic energy is large. Usually, approximatively 60–80%
of the kinetic energy can be retained, so that reduced order models are unstable. The following section presents methods
based on the Navier–Stokes residuals to stabilize reduced order models built with a very low number of modes (namely
3 or 5 modes in our case).

4. Stabilization of reduced order models

To overcome errors due to the truncation involved in the POD–Galerkin approach, different kinds of POD ROM/Galerin
stabilization methods are commonly used.

The first class of stabilization methods uses eddy viscosity. Since the early works on POD ROM, it was shown that artificial
viscosity can help stabilization [23]. A natural way is to add a constant viscosity acting the same way on all POD modes: this
is called Heisenberg model [24,25]. The global dimensionless viscosity 1=Re is thus replaced by another one defined as
ð1þ cÞ=Re. The problem is then to determine or to adjust the constant c > 0 in order to obtain a better accuracy for the
POD ROM. Rempfer and Fasel [26] and Rempfer [27] have improved this idea by supposing that the dissipation is not iden-
tical on each of the POD modes. Thus, the global viscosity could be replaced by modal viscosities 1=Rei ¼ ð1þ ciÞ=Re on each
POD mode Ui. It is then necessary to determine a set of correction coefficients spanned by ci for i ¼ 1; . . . ;Nr . In [27], it is
argued that these eddy viscosities are a function of the coupled modes index j ¼ 1; . . . ;Nr=2. The coefficients cj are such that
cj ¼ K � j, where K is the unique constant to determine or to adjust. More recently, Karniadakis employed a dissipative model
called spectral vanishing viscosity model (SVVM) to formulate alternative stabilization approaches [28] and to improve the
accuracy of POD flow models [20]. In this spirit, an optimal spectral viscosity model based on parameters identification tech-
nique has been proposed [29].

The second class of stabilization methods consists in calibrating the polynomial coefficients of the POD model [12,30–32].
All the coefficients of tensor B are determined using a least square or an adjoint method so that the predicted coefficients
aiðtÞ are as closed as possible to the eigenvectors of the temporal correlation tensor (see Eq. (2)). These calibration methods,
based on system identification, are very similar to spectral viscosity closures. However, calibration methods allow such a
representation of the inter-modal transfers.

The third class of stabilization methods uses a penalty term. This consists in introducing a new term in the reduced order
model. Cazemier [33] and Cazemier et al. [34] used modal kinetic equations to determine viscosities to be added on each
POD mode. Cazemier [33] supposes that the lack of interaction between the calculated and the nonresolved modes is respon-
sible of a linear divergence of the temporal POD coefficients. To solve this problem, another artificial linear coefficient is
introduced in the POD dynamical system. The POD ROM is then written as
dai

dt
¼ Ai þ

XNr

j¼1

Bijaj þ
XNr

j¼1

XNr

k¼1

Cijkajak þHiai;
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-200 -150 -100 -50 0 50 100 150 200
-200

-150

-100

-50

0

50

100

150

200

Fig. 11. Comparison of the projected (NS: }) and the predicted (ROM: –) limit cycles over 1000 vortex shedding periods. Three modes model.
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Fig. 9. Comparison of the projected (NS: }) and the predicted (ROM: –) limit cycles over 1000 vortex shedding periods. Five modes model.
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where, after some manipulations based on energetic conservation (see [35] for the derivation of the energetic residual),
Hi ¼ �
1
ki

XNr

j¼1

XNr

k¼1

Cijkhaiajaki � Bii:
For a compressible flow, Vigo [36] proposed a stabilisation method based on a cubic penalization term in order to prevent a
nonlinear amplification. This method seems to give good results, but the construction of this cubic term and the resolution of
the POD ROM induces high numerical costs. A linear penalty term can also be added to model the pressure term. The draw-
backs of all penalization methods are the numerical costs involved in computing the penalization term.

Finally, the last class of stabilization methods that can be found in the literature introduces dissipation directly in the
numerical schemes used to build the POD ROM [37]. Instead of using the standard L2 inner product in the POD, the Sobolev
norm H1 is used [38]. However, the level of dissipation has also to be fixed.

The main drawback of all the previous stabilization methods is that there are always a lot of parameters to fix or to opti-
mize. The aim of this section is to derive stabilization methods that involve less empirical parameters.

Let A½Nr � be the model defined by (21) and derived using with Nr modes. Unstable models correspond to Nr ¼ 3 or Nr ¼ 5.
The two kinds of stabilization methods presented in what follows use the residual of the Navier–Stokes (NS) operator

evaluated with the POD flow fields. These residuals, called POD-NS residuals, are
RMðx; tÞ ¼
@~u
@t
þ ð~u � $Þ~uþ $~p� 1

Re
D~u; ð22aÞ

RCðx; tÞ ¼ $ � ~u; ð22bÞ
where the POD flow fields ~u and ~p are given by decompositions (11).
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We showed that the POD ROM is stable if a sufficient number of modes is taken into account in the model. For instance,
model A½11� is stable. Thus, the POD ROM is stable if the POD flow fields get close enough to the exact flow field. The exact flow
field is written as
uðx; tÞ ¼ ~uðx; tÞ þ u0ðx; tÞ; ð23aÞ
pðx; tÞ ¼ ~pðx; tÞ þ p0ðx; tÞ; ð23bÞ
where u0 and p0 denote the fine scales that are not resolved by the POD ROM. Unfortunately, the exact resolution of the fine
scales equations (with solutions u0 and p0) requires computational costs similar to those required for solving the complete
Navier–Stokes equations. The objective of the following section is thus to derive stabilization methods that make use of
approximations of these fine scales.

4.1. Residuals-based stabilization method: model B½Nr ;K�

The goal of this method is to approximate the fine scales u0 and p0 onto some adapted basis functions. The exact flow field
is hence approximated as
uðx; tÞ ¼
XNr

i¼1
aiðtÞ/iðxÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
~uðx;tÞ

þ
XNrþK

i¼Nrþ1
aiðtÞ/0iðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

u0 ðx;tÞ

; ð24aÞ

pðx; tÞ ¼
XNr

i¼1
aiðtÞwiðxÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
~pðx;tÞ

þ
XNrþK

i¼Nrþ1
aiðtÞw0iðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p0 ðx;tÞ

: ð24bÞ
If the basis functions /0i and w0i are, respectively, equal to /i and wi, the energetic representation is improved. Indeed, the
more POD modes are retained, the better is the energetic representation. This is a classical remark of POD. However, it is not
granted that POD modes are optimal to stabilize the ROM. If we suppose that a sufficient amount of energy is captured with
Nr modes, it is not necessary to add any more energy in the POD ROM, but rather some viscous dissipation. For instance,
model A½5�, i.e. model B½3;2� with U0 � U in (24), is not stable. However, it will be demonstrated that another 5-modes model
with Nr ¼ 3 and K ¼ 2 are stable using different modes U0. It is well known that the residuals of the governing equations play
a major role to stabilize dynamical systems [14]. The leading idea of this section is thus to take /0i and w0i as being the POD
basis functions of the POD-NS residuals defined by (22). The method is the following.

Algorithm 1 (Residuals-based stabilization).

(1) Integrate the ROM A½Nr � to obtain aiðtÞ and compute Ns coefficients aiðtkÞ; k ¼ 1; . . . ;Ns.
(2) Compute the POD flow fields ~uðx; tkÞ ¼

PNr
i¼1aiðtkÞ/iðxÞ, ~pðx; tkÞ ¼

PNr
i¼1aiðtkÞwiðxÞ, and then the POD-NS residuals

RMðx; tkÞ and RCðx; tkÞ.
(2) Compute the POD modes /0iðxÞ and w0iðxÞ of the POD-NS residuals RMðx; tkÞ and RCðx; tkÞ.
(3) Add the K first residual modes /0i and w0i to the existing POD basis /i and wi (using Gram–Schmidt process) and built a

new ROM (here the mass and flow rate constraints are important).

The reduced order model obtained with this algorithm is noted as B½Nr ;K�, where Nr is the number of initial POD basis func-
tions and K is the number of POD residuals modes. The results of this model are presented in Section 4.3.

4.2. SUPG and VMS methods: models C ½Nr �and D½Nr �

The streamline upwind Petrov–Galerkin (SUPG) and the variational multiscale (VMS) methods are devised to provide
appropriate modeling and stabilizations for the numerical solution of the Navier–Stokes equations. The SUPG method is a
simplified version of the complete VMS method, and the main steps leading to these models are described in [14].

The main idea of both SUPG and VMS methods is to approximate the fine scales by
u0 ’ �sMRM ð25aÞ
p0 ’ �sCRC ; ð25bÞ
where sM and sc denote some constants to be fixed.
The SUPG and VMS reduced order models can be formally written as
XNr

j¼1

LðmÞij þ bLðrÞij

� �daj

dt
¼
XNr

j¼1

BðmÞij þ aBðcÞij

� �
aj þ

XNr

j¼1

XNr

k¼1

CðmÞijk ajak þ FiðtÞ; ð26Þ
where the ‘‘penalization” term FiðtÞ is defined as follows:

� For the SUPG reduced order model, noted as C½Nr �, we have
FSUPG
i ðtÞ ¼ ð~u � $/i þrwi; sMRMðx; tÞÞX þ ð$ � /i; sCRCðx; tÞÞX: ð27Þ



Table 1
Brief description of the different ROMs. Nr denotes the number of the retained POD modes.

ROM Method

A½Nr � No stabilization
B½Nr ;K� Stabilization with K residuals POD modes
C½Nr � SUPG stabilization
D½Nr � VMS stabilization
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� For the VMS reduced order model, noted as D½Nr �, we have
Fig. 1
FVMS
i ðtÞ ¼ FSUPG

i ðtÞ þ ð~u � ð$/iÞ
T
; sMRMðx; tÞÞX � ð$/i; sMRMðx; tÞ 	 sMRMðx; tÞÞX: ð28Þ
The parameters sM and sC can be found using some scaling arguments (see [39] for more details), so that no modelisation is
required. This can lead to an universal POD ROM closure model. However, in what follows, parameters sM and sC are deter-
mined using an optimal formulation, so that the temporal coefficients aiðtÞ fit as best as possible the eigenvectors of the cor-
relations tensor (3).

For clarity reasons, Table 1 summarizes the different ROMs introduced above, where Nr denotes the number of POD
modes used to compute the ROMs.

4.3. Results of stabilization methods

In this section, we take exactly the same configuration and parameters than those used in Section 3.2. The confined square
cylinder wake flow for Re ¼ 200 and the ROMs are built using Ns ¼ 80 snapshots uniformly distributed over one vortex shed-
ding period. The model based on residual modes, B½Nr ;K�, is integrated following Section 4.1. The SUPG model, C½Nr �, and the
VMS model, D½Nr �, are integrated using (27) and (28), respectively. The unstable configurations observed in Section 3.2 are
studied, i.e. Nr ¼ 5 and Nr ¼ 3. Moreover, for model B½Nr ;K�, only K ¼ 2 residual modes are used. These two additional modes
present a different behavior than POD modes 4 and 5 used to build model A½5� (see Fig. 12).

The temporal evolutions of the predicted POD coefficients aiðtÞ obtained with models B;C and D, over 40 vortex shedding
periods, are presented in Figs. 13 and 15 for Nr ¼ 5 and Nr ¼ 3, respectively. The three reduced order models provide an accu-
rate description of the asymptotic attractor (compared with the results in Fig. 6), and results are indistinguishable between
models B; C and D. The limit cycles obtained with models B; C and D are represented in Figs. 14 and 16 for Nr ¼ 5 and Nr ¼ 3,
respectively. These limit cycles represent 1000 vortex shedding periods. There are no differences between the results ob-
tained from the three models. These limit cycles are compared to the exact ones obtained by DNS (projection of the snap-
shots onto the POD basis) in the figures. Excellent agreements are observed between all these limit cycles, thus validating all
the stabilization methods described in Sections 4.1 and 4.2.

In order to highlight the differences between the stabilization methods presented above, we study the L2 norm of the
POD-NS residuals introduced in (22). Figs. 17(a) and 18(a) show the temporal evolutions of the L2 norms of the POD-NS resid-
uals obtained initial model A (obtained from (21) or (26) with Fi ¼ 0) with Nr ¼ 5 and Nr ¼ 3, respectively. For the sake of
clarity, only 20 vortex shedding periods are represented. An initial growth and then an asymptotic limit is reached with
Nr ¼ 5. This can be explained by the fact that the dynamic converges towards another attractor (see Fig. 7). On the contrary,
an exponential divergence occurs with Nr ¼ 3 (see also the divergence in Fig. 11). We compare the effectiveness of models
B;C and D in Figs. 17(b) and 18(b). All stabilized reduced order models are accurate (low values of the POD-NS residuals
norm). For Nr ¼ 5 or Nr ¼ 3, models C and D are more accurate than model B (lower residuals). Moreover, the VMS model,
2. Comparison between original POD modes (left, model A½5�) and residuals modes (right, model B½3;2�). Dashed lines represent negative values.
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Fig. 13. Temporal evolutions of the predicted POD coefficients over 40 vortex shedding periods. Five modes model with stabilization. (Indistinguishable
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Fig. 14. Comparison of the projected (NS: }) and the predicted (ROM: –) limit cycles over 1000 vortex shedding periods. Five modes model with
stabilization. (Indistinguishable difference between models B½5;2�;C½5� and D½5� .)
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Fig. 15. Temporal evolutions of the predicted POD coefficients over 40 vortex shedding periods. Three modes model with stabilization. (Indistinguishable
difference between models B½3;2�; C½3� and D½3� .)
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D, is better than the SUPG one, C, but without significant differences between them. In our reduced order modeling, the SUPG
method seems to be sufficient to obtain an accurate POD ROM. However, the numerical costs required for both SUPG and
VMS methods are similar. To conclude on the first stabilization method, it is noticeable that although models B½3;2� and
A½5� used 5 modes, only model B½3;2� is stable. It is thus not necessary to include a lot of modes in the POD basis in order to
obtain a stable model, but only to add some appropriate ‘‘damping” modes (see Fig. 12).

5. Improvement of the functional subspace

Since the POD was first introduced in turbulence by Lumley [18] in 1967 as an unbiased definition of the coherent struc-
tures in a turbulent flow, POD was used to analyze physical characteristics of turbulent flows. More recently, reduced order
models based on POD are found as being an efficient tool for flow control purpose (see [40–42,29,17] for examples). Indeed,
the use of POD ROM allows to reduce significantly the CPU time during numerical simulation and also to reduce the memory
storage, an essential feature when adjoint-based optimal control methods are used. Different optimization methods that
couple POD ROM and optimal control have been taken under consideration. The main drawback for flow control is that
the POD basis is only able to give an optimal representation of the snapshots set from which it was derived. The approxima-
tion properties of the basis can be greatly degraded under variation of some input system parameters values, as control
parameters [15–17]. For flow control purposes, some special care has to be taken to build the POD basis functions. One solu-
tion is to use an a priori global database composed of several dynamics. For example, it is possible to use a database com-
posed by snapshots that correspond to different control laws [17] or different Reynolds numbers [43]. One efficient way
to do that is either by Centroidal Voronoi Tessellations (CVT) [44] or by using an ad hoc time-dependent control law that
generates a flow representing a large band of dynamics [45,42,29]. We privilege the idea of updating the POD basis during
the simulation. Trust Region proper orthogonal decomposition originally introduced by Fahl [46] is an example of such ideas
(see Refs. [47,17]). The main drawback of the TRPOD method is that the POD basis has to be re-actualized. Each actualization
requires a large computational effort since it involves DNS.
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Fig. 18. Temporal evolution of the L2 norm of the Navier–Stokes residuals computed using a 3-modes ROM.
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Fig. 19. Comparison of the iso-vorticity representation of some POD modes. The initial POD basis at Re1 ¼ 100 (left) and the target POD basis at Re2 ¼ 200
(right). Dashed lines represent negative values.
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The aim of this section is thus to present efficient methods to improve – or actualize – the functional subspace. As it was
mentioned, the underlying idea is to adapt the basis when input system parameters change (Reynolds number, control
parameters, etc.). For simplicity reasons, we will only focus on Reynolds number modifications, but the forthcoming process
is easily transposable to other parameters modifications. Here, for instance, our goal is to obtain the target basis built at
Re2 ¼ 200 starting from the initial basis built at Re1 ¼ 100. These two basis are quite different, especially for the mean flow
mode /1 (see Fig. 19).

In what follows two methods are considered.

� The objective of the first method is to improve the basis using residuals-based approximations of the missing fields u0 and
p0. This is exactly the same idea that was used in (Section 4.1), applied iteratively (Section 5.1).

� The aim of the second method is to modify the POD database by means of DNS simulations (Section 5.2).

These two methods are based on an iterative process. The current POD basis obtained during the actualization process is
simply denoted by U � UðnÞ where n is the number of iterations considered (number of POD basis actualization cycles). Obvi-
ously, Uð0Þ ¼ URe1 , and we expect at least that Uðþ1Þ ¼ URe2 . The convergence criterion tested in this study is the best projec-
tion of UðnÞ onto URe2 , noted U �URe2 . For our Navier–Stokes test case with Re1 ¼ 100 and Re2 ¼ 200, the initial value of the
convergence criterion is URe1 �URe2 
 0:5. The expected final value is naturally UðnÞ �URe2 
 1, with the smallest possible
number of iterations n.

5.1. A Krylov-like method

The first method used to improve the functional subspace uses successive application of the Navier–Stokes operator on
the residuals. This method is nothing but an iterative version of the stabilization process introduced in Section 4.1. We have
seen that this method does a good job to stabilize POD ROM, so it is reasonable to investigate its performance to improve the
functional subspace. This subspace adaptation is described by the following algorithm, and is schematically represented in
Fig. 20. The numerical integration of the ROM (21) is always performed at the target Reynolds number Re � Re2 (the Rey-
nolds number Re is required to evaluate BðmÞ, see equation (16b)). Otherwise, all the POD coefficients, i.e. LðmÞ; LðrÞ;BðmÞ,
BðcÞ;CðmÞ, are built using the current updated POD basis, U ¼ UðnÞ, following (16c).



Fig. 20. Schematic representation of the functional adaptation process based on a Krylov-like method.
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Algorithm 2 (Krylov like adaptation method). Start with the POD basis to be improved, Ui with i ¼ 1; . . . ;Nr (in our case built
for Re ¼ Re1). Let N0 ¼ Nr and T ¼ ½0; T� be an observation period.

(1) Build and solve the corresponding ROM over T with Re ¼ Re2 to obtain aiðtÞ and extract Ns snapshots aiðtkÞ with
i ¼ 1; . . . ;Nr and k ¼ 1; . . . ;Ns. Compute the flow fields ~uðx; tkÞÞ; ~pðx; tkÞ from (11).

(2) Compute the POD-NS residuals Rðx; tkÞ ¼ ðRMðx; tkÞ;RCðx; tkÞÞT from (22).
(3) Compute the POD modes ~UðxÞ ¼ ð~/ðxÞ; ~wðxÞÞT from the POD-NS residuals database Rðx; tkÞ, k ¼ 1; . . . ;Ns.
(4) Add the K firsts residual modes ~UðxÞ to the existing POD basis UiðxÞ (using Gram–Schmidt process)
6 Thi
� U UþW
� Nr  Nr þ K
� If Nr is below than a threshold, Nmax, return to 1. Else, go to 5.

Do step (1). From fields ~u and ~p, perform a new POD compression from with Nr ¼ N0.
� If a convergence criterion is satisfied, stop. Else, return to 1.
(5)

This algorithm is a simplified version of a generalized minimal residual (GMRES) algorithm for linear system (see [48] for
more details about GMRES method).

Before testing this adaptation method on the two-dimensional confined square cylinder wake flow governed by the
Navier–Stokes equations (Section 5.1.2), a simple one-dimensional test case is performed on the Burgers equation (Section
5.1.1).

5.1.1. A one-dimensional test case: the Burgers equation
The Burgers equation, in its dimensionless form, is written as
LBðuÞ ¼
@u
@t
þ 1

2
@u2

@x
� 1

Re
@2u
@x2 ¼ 0; ð29Þ
with an initial condition6
uðx;0Þ ¼ sin p tanðcsð2x� 1ÞÞ
tanðcsÞ

� �
and cs ¼ 1:3 ð30Þ
and boundary conditions
uð0; tÞ ¼ 0;
uðL; tÞ ¼ 0:

ð31Þ
This equation is solved onto the domain D defined by
D ¼ fðx; tÞ 2 ½0;1� � ½0;1�g:
s value of cs is chosen to obtain a shock wave in the domain D.
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Fig. 21. Comparison of few POD basis functions obtained for Re1 ¼ 50 (—) and Re2 ¼ 300 (---).
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We chose the initial and target POD basis, URe1 and URe2 , such that URe1 �URe2 
 0:5, i.e. Re1 ¼ 50 and Re2 ¼ 300 in this con-
text. We used 40 snapshots uniformly distributed over the whole observation domain T ¼ ½0;1�. Fig. 21, shows a comparison
between few POD basis functions obtained for Re1 and Re2. Significant differences are observable. Results of the adaptation
process are presented in Fig. 22 which shows the evolution of the convergence criterion versus the number of iterations.
Convergence is obtained in less than 6 iterations. In other words, the POD basis at Re2 is obtained from that at Re1 using only
6 integrations of the POD ROM, without any DNS. The POD basis functions at Re2 can even be determined starting from one
mode (the normalized initial condition), or from any given basis. This represents a very efficient method to actualize a POD
basis for the 1D Burgers equation. It is then of interest to see if this adaptation method can provide as good results for the
Navier–Stokes equations.

5.1.2. The confined square cylinder wake flow
For the confined square cylinder wake flow (2D Navier–Stokes equations), we take Re1 ¼ 100; Re2 ¼ 200 and we also use

40 snapshots distributed uniformly over one vortex shedding period T, so that T ¼ ½0; T�, of the 2D confined square cylinder
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Fig. 22. Evolution of the convergence criterion versus the number of iterations for the 1D burgers equation.
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Fig. 23. Evolution of the convergence criterion versus the number of iterations for the 2D Navier–Stokes equations.
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wake flow. During the adaptation process, the vortex shedding period T has to be actualized in consequence. Results are pre-
sented in Fig. 23. Unfortunately, no convergence is obtained. The algorithm is stopped when the computational costs were
estimated to be larger than those necessary using only DNS. Same results are obtained using 400 snapshots uniformly dis-
tributed over an observation period T ¼ ½0;10T�, not presented here. The information contained into the Navier–Stokes
residuals are not sufficient to improve the POD basis functions for a dynamical change, but they are sufficient to stabilize
the ROM for a given dynamic (see Section 4.1). One possible explanation is that the approximation of the missing scales,
u0ðx; tÞ ¼ �sMRMðx; tÞ and p0ðx; tÞ ¼ �sCRCðx; tÞ, is only valid for fine scales, i.e. the ones that are not represented due to
the truncation of the POD basis. Residual modes have just dissipative behavior. We can ask if it is possible to find good values
for parameters sM and sC for ‘‘quite large” missing scale. The answer is not so clear yet. One solution could be to look for
U 0ðx; tÞ ¼ MðtÞRðx; tÞ, where M 2 R3�3 for the 2D Navier–Stokes equations.

A step toward the full GMRES algorithm was also made. Few Arnoldi modes, U00n ¼ AU0n, U000n ¼ AU00n,. . ., have been added to
the initial basis. The operator A denotes the linear operator obtained after an adapted discretization of the Navier–Stokes
equations, so that AU ¼ bðUÞ. The results have not been really improved. A large Arnoldi basis should be certainly necessary,
but the numerical costs required to generate (and to solve) the POD ROM become prohibitive.

The following section presents another kind of algorithm that couples POD ROM with DNS. If the Navier–Stokes solution
lives on the same attractor (no dynamic change), the DNS can be greatly accelerated using POD basis functions. Indeed, a
Galerkin free reduced order model is recently used as DNS accelerator [49].

5.2. A hybrid DNS/POD ROM method

It has been demonstrated that the percentage of the reconstruction energy decreases rapidly outside the temporal inter-
val defined by the snapshots database for three-dimensional flows [30]. Thus, the aim of the present methodology is to up-
date the database statistics when time evolves. By doing this, the POD basis is actualized and represents with high fidelity
the current flow. The main idea is to implement a process allowing to replace older snapshots with new ones at low numer-
ical costs. These new snapshots can be obtained using few DNS iterations. Once a new POD basis is available, a new ROM is
constructed and integrated until a new snapshot is needed. Then, the process is repeated. We chose to take snapshot
periodically. A schematic representation of the algorithm is presented in Fig. 24. Let us denote Re1 the Reynolds number used
to build the initial POD subspace, and Re2 the Reynolds number associated to the new desired dynamic. All the simulations
(ROM and DNS in Fig. 24) are performed at Re2. After few DNS iterations, a new snapshot is available. To build a new POD
subspace, we have to update the database (Section 5.2.1) to compute the correlations tensor (Section 5.2.2) and to compute
the new POD basis (Section 5.2.3). All the coefficients of the ROM (21), i.e. LðmÞ, LðrÞ;BðmÞ;BðcÞ;CðmÞ, are built using the current
POD basis (corresponding to the modified database), and the integration is performed using Re � Re2. Indeed, the Reynolds
number Re is required to evaluate BðmÞ (see(16b)). In order to obtain a ‘‘real time” POD basis actualization, efficient methods
are developed for each step.
Fig. 24. Schematic representation of the hybrid method DNS–POD ROM to improve the POD subspace.
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5.2.1. Database modification
Following equation (7) each snapshot included in the POD database can be approximated by
bU ½1;...;Nr �ðx; tkÞ ¼
XNr

n¼1

anðtkÞUnðxÞ: ð32Þ
Using one new snapshot, the POD database is modified either by adding this new snapshot, or by replacing the older snap-
shot by this new one. The position of the new snapshot in the database is denoted by s. The number of snapshots included in
the new database is thus N ¼maxðs;NsÞ. The snapshot Us can be written as the sum of its projection onto the POD basis plus
its orthogonal part as
eUðx; tsÞ½1;...;Nr � ¼ bU ½1;...;Nr �ðx; tsÞ þ U?s ðx; tsÞ:
Therefore, in general, each snapshot is
eUðx; tkÞ½1;...;Nr � ¼ bU ½1;...;Nr �ðx; tkÞ þ dksU
?ðx; tsÞ;
where d represents the Kronecker symbol.

5.2.2. Evaluation of the temporal correlation tensor
In order to reduce the computational costs, the temporal correlation tensor C is calculated using the snapshots decom-

position eU ½1;...;Nr �
k .
Cðtk; tlÞ ¼ eUðx; tkÞ½1;...;Nr �; eUðx; tlÞ½1;...;Nr �
� �

X
¼

XNr

i¼1

aiðtkÞ/iðxÞ þ dksU
?ðx; tkÞ;

XNr

j¼1

ajðtlÞ/jðxÞ þ dlsU
?ðx; tlÞ

 !
X

¼
XNr

i¼1

XNr

j¼1

aiðtkÞajðtlÞ /iðxÞ;/jðxÞ
� �

X|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼dij

þdksdls U?ðx; tkÞ;U?ðx; tlÞ
� �

X þ dls

XNr

i¼1

aiðtkÞ /iðxÞ;U?ðx; tlÞ
� �

X|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ dks

XNr

j¼1

ajðtlÞ U?
Tðx; tkÞ/jðxÞ

� �
X|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

:

Hence, the approximation of the temporal correlation tensor is simply written as
Cðtk; tlÞ ¼
XNr

i¼1

aiðtkÞaiðtlÞ þ dksdls

Z
X

Xnc

i¼1

U?
iðx; tkÞU?

iðx; tlÞdx: ð33Þ
The evaluation of this matrix is very fast. Indeed, it is not necessary to calculate snapshots correlations on the whole mesh,
but only correlations on the retained temporal coefficients. Other than that, it is only necessary to evaluate one auto-corre-
lation with U?s to evaluate the component Css.

5.2.3. Actualization of the POD basis
All the quantities evaluated before the calculation of the temporal correlation tensor (33) are superscripted by ðnÞ. The

actualized POD basis could be evaluated from (see [3] for more details)
/
ðnþ1Þ
k ðxÞ ¼ 1

kðnþ1Þ
k

XNr

j¼1

eU ðnÞðx; tjÞaðnþ1Þ
k ðtjÞ ¼

1

kðnþ1Þ
k

XNr

j¼1

XNr

i¼1

aðnÞi ðtjÞ/ðnÞi ðxÞ þ djsU
?ðnÞðx; tjÞ

 !
aðnþ1Þ

k ðtjÞ

¼ 1

kðnþ1Þ
k

XNr

i¼1

XNr

j¼1

aðnþ1Þ
k ðtjÞaðnÞi ðtjÞ/ðnÞi ðxÞ þ

1

kðnþ1Þ
k

U?
ðnÞðx; tsÞaðnþ1Þ

k ðtsÞ:
Introducing the modal correlation tensor Kðnþ1Þ 2 RNs�Ns between old and new time-dependent POD eigenfunctions,
Kðnþ1Þ
ki ¼ 1

kðnþ1Þ
k

XNr

j¼1

aðnþ1Þ
k ðtjÞaðnÞi ðtjÞ;
and the vector
Sðnþ1Þ
k ðxÞ ¼ 1

kðnþ1Þ
k

U?
ðnÞðx; tsÞaðnþ1Þ

k ðtsÞ;
we have
/
ðnþ1Þ
k ðxÞ ¼

XNr

i¼1

Kðnþ1Þ
ki /

ðnÞ
i ðxÞ þ Sðnþ1Þ

k ðxÞ: ð34Þ
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Using the matrix Sðnþ1Þ with elements Sðnþ1Þ
ij ¼ Sj

i

ðnþ1Þ
, the new POD basis can be obtained from the old one using the linear

application u : Rn � Rn # Rn � Rn defined as follows:
Fig. 25.

Fig. 2
u : /ðnÞ # /ðnþ1Þ ¼ /ðnÞKðnþ1Þ þ Sðnþ1Þ: ð35Þ
The actualization of the POD basis is thus much faster than in the classical way (reconstruction of a new POD basis). Indeed, it
is not necessary to make a sum on the whole set of snapshots (N), but only to make a weighted sum on the Nr � N old POD
modes plus a part of the orthogonal contribution.

This process for the hybrid method can be applied at each new snapshot.

5.2.4. Numerical results
During the simulation of the confined square cylinder wake flow at Re1 ¼ 100;40 snapshots are uniformly taken over a

vortex shedding period to evaluate the temporal correlation tensor.
In the first phase, the method to evaluate the temporal correlation tensor introduced in Section 5.2.2 is tested. A compar-

ison between eigenvalues of the temporal correlation tensor evaluated from the exact field U and from a Nr-mode approx-
imated one, eU ½1;...;Nr �, is presented in Fig. (25). For this example, we set Nr ¼ 5 and Nr ¼ 11. In the two cases, the Relative
Information Content RICðNrÞ is greater than 99%. It can be seen that the Nr first eigenvalues computed from the Nr-approx-
imated temporal correlation tensor accurately fit the eigenvalues computed from the exact temporal correlation tensor. All
the other approximated eigenvalues for n > Nr are equal to zero except kNrþ1 which indicates a nonzero contribution of the
orthogonal part U?.

Then, the influence of the linear actualization of the POD basis is considered. Results of the linear actualization of the POD
basis functions introduced in Section 5.2.3 are presented in Fig. 26. Here, one step of the actualization of a transient flow
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Fig. 27. Evolution of the convergence criterion versus the number of vortex shedding periods.

Fig. 28. Schematic explanation for the convergence of the hybrid DNS–POD method. � � � exact ‘‘target”; -- - POD ROM: — DNS.
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from Re1 ¼ 100 to Re2 ¼ 200 is presented. As in the previous illustration, a 40 snapshots database is used to compute the
initial POD basis /ð0Þ.

We consider the results concerning the hybrid method. The initial and target POD basis, URe1 and URe2 , correspond to Rey-
nolds numbers Re1 ¼ 100 and Re2 ¼ 200, respectively. Fig. 27 shows the evolution of the convergence criterion U �URe2 ver-
sus the number of vortex shedding periods (and so versus the number of actualization iterations) for different percentages of
actual the DNS. Denoting TNS and TROM the time intervals where we use either DNS or POD ROM,7 respectively, the percentage
of DNS is defined as PNS ¼ TNS=ðTNS þ TROMÞ.
7 We do not use the number of iterations because the POD ROM allows to use greater time steps than the DNS.
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The simulation with PNS ¼ 100% does not involve any ROM. It can be seen that 10 vortex shedding periods are necessary
to converge towards the target POD basis using only DNS. This time corresponds to that required for perturbations, coming
from the dynamics changes Re1 ! Re2, to cross the whole simulation domain X and to reach an asymptotic behavior. The
same results can approximatively be obtained with PNS ¼ 90%; PNS ¼ 80% and with less accuracy 70% DNS. However, no con-
vergence is obtained with less than PNS ¼ 70%. Hence, a sufficient amount of DNS is necessary to converge toward the target
POD basis. An explanation of this phenomenon is given in Fig. 28. Since the POD basis is not well adapted to give a good
representation of the current flow (there is a delay in the adaptation process), the solution of the POD ROM moves away from
the exact ‘‘desired” solution. The DNS has to be able to correct this drift. If the DNS is able to correct the error made by the
POD ROM (see Fig. 28(a) and (b)), the convergence is obtained. However, if the DNS is not able to correct this error (see
Fig. 28(c)), it is not possible to converge toward the target basis.

A few comments about the numerical costs can be given. The computational cost due to the ROM is negligible in com-
parison with the DNS ones. Also, the POD basis update described in Sections 5.2.1, 5.2.2 and 5.2.3 generates very low numer-
ical costs. In practice, our estimation is that taking PNS ¼ 70%, which still gives good results in terms of approximation,
approximatively 20% of the total numerical costs can be saved as compared to DNS.

6. Conclusions

The objective of this paper was to improve reduced order modeling based on proper orthogonal decomposition. Indeed,
the proper orthogonal decomposition method is a viable technique to build low dimensional models, but it also presents sev-
eral drawbacks: (i) since usually only velocity fields are used to build the reduced order model, the pressure term has to be
modeled, (ii) it is necessary to model the effects of the fine scale that are not explicitly taken into account in the expansion
and that are responsible of the main part of the viscous dissipation, and (iii) the POD basis functions are only able to give a
good representation of the flow dynamics included in the given snapshots database.

We have shown how to build a pressure extended reduced order model at no additional cost in comparison with a stan-
dard velocity ROM. Using this pressure extended ROM, it is not necessary to model the pressure term. Since both the velocity
and pressure POD fields are available, it is possible to evaluate the Navier–Stokes operator residuals using these POD fields.
Although this model gives very good results in term of asymptotic solution, it is still necessary to model the effects of the
unresolved fines scales.

In this respect, different stabilization methods for the reduced order model were taken under consideration. The stabil-
ization we propose consists in modeling the effect of the missing fine scales. To this end, we made the choice of using resid-
uals of Navier–Stokes operator evaluated from POD fields. The first method proposed consists in enlarging the POD subspace
with few residuals modes. If the original number of modes is not large enough to provide appropriate dissipation, this meth-
od is able to stabilize the model. The stabilization is not due to the enlargement of the POD subspace, in fact an unstable
model can be stabilized replacing a few number of original POD modes with the same number of residual modes. No empiric
parameter has to be estimated in this approach. The second approach proposed relies on an approximation of the fine scale
equation. Both SUPG and VMS methods give good results. In this approach, only two parameters have to be estimated. In
some specific cases [39], these parameters can be approximated using some scaling arguments, leading to an universal mod-
el with no empiricism.

Finally, we have tried to improve the POD functional subspace. The goal was to derive efficient methods to adapt the POD
basis when dynamics changes (with control parameters). The first method is a Krylov-like method. This method is based on
iteratively including in the basis some POD-NS residuals (this is an iterative version of the first stabilization method). When
the size of the basis becomes too large, a new POD compression is performed. This method gives very good results for the 1D
Burgers equation, but convergence is too slow for the 2D Navier–Stokes equations, at least in our configuration. One expla-
nation is that the ‘‘missing” scales (when dynamics evolves) are not necessary ‘‘fine” scales, and thus the approximation
using POD-NS residuals is not good. The second method is a hybrid method that couples DNS and reduced order models.
The idea is to modify and update the database when dynamical evolution occurs, so that the leading basis functions always
represent the updated dynamics. This method, coupled with a fast method to actualize the POD basis functions using this
new database, gives good results if a sufficient amount of DNS is performed. Approximatively 20% of the total numerical
costs can be saved using such hybrid method.
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