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Modeling and simulation of two-dimensional flows past deformable bodies are considered.
The incompressible Navier–Stokes equations are discretized in space onto a fixed cartesian
mesh and the displacement of deformable objects through the fluid is taken into account
using a penalization method. The interface between the solid and the fluid is tracked using
a level-set description so that it is possible to simulate several bodies freely evolving in the
fluid. As an illustration of the methods, fish-like locomotion is analyzed in terms of propul-
sion efficiency. Underwater maneuvering and school swimming are also explored.
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1. Introduction

The simulation of complex flows such as fluid–structure interactions, freely moving objects or flapping wings necessitates
the development of ad hoc methods that bypass the complications induced by moving grids. These methods, such as the
immersed-boundary method (see for a review [1]) or the augmented Lagrangian approach [2,3] represent a compromise
between accuracy and actual feasibility of a simulation. Here we revisit the penalization method [4] and show how to couple
it with level sets to simulate a paradigmatic case of interaction between freely evolving objects and an incompressible flow:
fish-like swimming.

The modeling and simulation of fish-like swimming is of interest in life sciences as well as in engineering applications.
Understanding the mechanics of swimming can help in clarifying some aspects of the biological evolution and of the phys-
iology of aquatic organisms. In engineering the study and optimization of aquatic locomotion can improve the design of
underwater vehicles having superior maneuvering capabilities. More generally, many other technological applications rang-
ing from the sedimentation of granular flows to the simulation of a maneuvering aircraft can benefit from the efficient mod-
eling of the unsteady interaction between the flow and moving objects.

Among the first mathematical results concerning fish-like swimming were those reported by Lighthill in a series of papers
[5–8]. The main results were derived in the context of a linearized approach for an inviscid flow. Since then, many other
papers were dedicated to the study of inviscid flows and a complete survey of this literature is given in [9]. A more recent
example is presented in [10], where a numerical method for the dynamics of a flexible body in an inviscid flow is described.

For fish-like swimming in viscous flows less results are known and they are mainly experimental. In particular in [11] an
experimental set-up is designed to investigate the drag reduction mechanism in fish-like locomotion using a thunniform
robot. The most striking result is that the power that the robot needs to swim at a given speed is less than that required
to tow it at the same speed. Even more striking is the possibility of passively extracting energy from a vortex wake: in
[12] it is shown that a dead fish is propelled upstream by the coupling between the oncoming vortices and the flexible body.
. All rights reserved.
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Motivated by these examples, in this paper we study fish-like swimming in the two-dimensional low-Reynolds number
case. Even though the experimental results cited are relevant to three-dimensional flows at a Reynolds number such that the
flow is in the turbulent regime, the two-dimensional laminar case is of interest since numerical results for viscous flows are
scarce. This is mainly due to the fact that simulations performed with standard methods are costly in terms of computational
time and difficult to set up. Nevertheless, even at low Reynolds numbers three-dimensional wakes show some distinctive
features that can in principle affect the swimming mechanism.

Classical approaches to simulate moving bodies through fluids require body fitted meshes that must be deformed and
periodically rebuilt to cope with the body displacements. More recently, methods based on fixed cartesian meshes that avoid
these shortcomings were developed [13,4]. These methods are based on the idea of modeling the presence of a solid body by
appropriate volume forces. Other investigations in this sense have been recently carried out. In [3] the interaction between a
rigid body and an incompressible viscous flow is modeled by considering the actual fluid flow and the rigid body motion as a
single flow subject to a volume force acting in the domain occupied by the rigid body. This force is proportional to the local
deformation tensor so that a rigid displacement is imposed in the limit. Mathematically this approach can be interpreted as a
minimization of the residuals in an appropriate finite-element space with a penalization on the norm of the deformation
tensor in the region occupied by the rigid body. Moving bodies through a fluid flow are investigates also in [14]. A single
fluid approach is still used but in this work the penalization term acts on the velocity field in the region of the rigid body,
thus relaxing some numerical difficulties arising when penalizing the norm of the velocity gradient. Yet another approach,
developed in [2] is based on a fictitious domain formulation: the rigid bodies are filled by the surrounding fluid, and the con-
straint of rigid body motion is relaxed by introducing a distributed Lagrange multiplier. This method has been extended to
self-propelling bodies in [15,16], where the authors show examples of fully resolved three-dimensional simulations of fish-
like swimming.

The scope of the paper is therefore twofold. We present a simulation technique that is an extension to moving objects of
[4] and we apply it to the study of different swimming modes. In particular we are concerned with the power required for
swimming as a function of the swimming modes and eventually of the relative position of the swimmers.
2. Flow configuration and governing equations

Our objective is to study the two dimensional incompressible flow around Ns moving and deformable bodies. The entire
domain is noted X = Xf [Xi, where the domain Xf is filled with fluid of constant density q and dynamic viscosity l. The do-
mains Xi represent deformable moving bodies of densities qi. Let us denote the velocity of xi 2Xi by ui. Fig. 1 presents a
sketch of the flow configuration under consideration.

The flow is governed by the incompressible Navier–Stokes equations
q
@u
@t
þ ðu � rÞu

� �
¼ �rpþ lDu in Xf ; ð1aÞ

$ � u ¼ 0 in Xf ; ð1bÞ
u ¼ ui on @Xi; i ¼ 1;Ns ð1cÞ
with initial condition in X and boundaries conditions on oX. The velocity ui in Eq. (1c) will result from the interaction
between the fluid and the body deformation as explained in the next sections.
Fig. 1. Sketch of the flow configuration.
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2.1. Penalization model and level set functions

The whole system is described as a single fluid flow of density q where the bodies past which the flow is computed are
modeled using the so-called penalization method [4]. This approach consists in considering the regions corresponding to Xi

as a porous media with a very small permeability K� 1.
Let vi denote the characteristic function for the ith body, so that
viðx; tÞ ¼ 1 if x 2 Xi; ð2Þ
viðx; tÞ ¼ 0 elsewhere: ð3Þ
In the limit of K ? 0 it can be shown, see [4], that system (1) can be written on the whole domain X as follows:
q
@u
@t
þ ðu � rÞu

� �
¼ �rpþ lDuþ q

K

XNs

1¼1

viðui � uÞ in X; ð4aÞ

$ � u ¼ 0 in X; ð4bÞ
with initial conditions in X and boundaries conditions onto oX. The velocities at the boundaries of the immersed objects are
imposed through the penalization terms 1

K

PNs
1¼1viðui � uÞ. Eqs. (4a) and (4b) can be discretized onto cartesian grids, avoiding

the use of body fitted meshes.
The flow depends explicitly on both the body positions and velocities via the penalization term. However, in the study of

self propulsion these velocities are not imposed and depend in turn on the flow field. Additional equations for ui and vi must
be provided to close system (4a) and (4b). The first relationship can be formally written as:
_ui ¼ Fðu; p;P1; . . . ;PNs Þ; i ¼ 1; . . . ;Ns; ð4cÞ

where F (Newton’s laws of motion) denotes a function to be specified in Section 4, and P is a control vector that defines the
shape and deformation speed of the ith body. The detailed description of the deformation is the purpose of Section 5.

The final equation to close the system describes the displacement of vi by the advection velocity u:
@vsi

@t
þ ðu � rÞvsi

¼ 0; i ¼ 1; . . . ;Ns; ð4dÞ
where u = ui for x 2 oXi. For later convenience we introduce a level set function /i that represents the signed distance func-
tion of a given point to oXi [17]. It is negative if x 2Xi and positive elsewhere. The level set /i = 0 is the interface between the
fluid and the bodies immersed in the flow. The characteristic function can be deduced from ith distance function as
vi = 1 � H(/i) where H is the Heaviside function. The level set functions satisfy the same advection equation as the charac-
teristic functions
@/i

@t
þ ðu � rÞ/i ¼ 0; i ¼ 1; . . . ;Ns: ð5Þ
3. Numerical solution

The equation are discretized in non-dimensional form. The dimensionless system is obtained using as a reference length L
the chord of the immersed body, the reference velocity U0, time L/U0, density q and pressure p0 ¼ qU2

0L. The Reynolds num-
ber is defined in accordance.

3.1. Solution of the fluid–body interaction

The main idea is to decouple the flow solution from the motion of the immersed bodies. At iteration n the velocity and
pressure fields un, pn are given as well as the positions and velocities of the immersed bodies vn

i and un
i , respectively. The flow

solution at the next time step un+1 and pn+1 is found by assuming that vn
i and un

i stay constant over Dt. Let NSðu; pÞ be the
Chorin–Temam discrete Navier–Stokes operator defined in the next section.

The time integration scheme for the fluid–body interaction is the following:

(1) compute the flow field un+1 given un and the positions and velocities of the immersed bodies at iteration n
unþ1 � un

Dt
¼ NSðun;pnÞ þ 1

K

XNs

1¼1

vn
i ðun

i � unþ1Þ in X; ð6aÞ

$ � unþ1 ¼ 0 in X; ð6bÞ
(2) compute the positions and velocities of the deformable objects at iteration n + 1:
unþ1
i ¼ un

i þ DtFðunþ1;pnþ1; cnþ1
i Þ; ð6cÞ

vnþ1
i ¼ vn

i � Dt unþ1
i � r

� �
vn

i : ð6dÞ
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This scheme is consistent and first order time accurate. Function F is detailed in (Section 4).

The penalization error ku � uik, i.e., the error in the Dirichlet boundary condition on the ith body, is inversely proportional
to the penalization parameter K. An explicit penalization scheme is stable if K 6 1/Dt, where Dt is the time step used to dis-
cretize the Navier–Stokes equations, so that ku� usi

k ¼ OðDtÞ. Therefore, in order to increase K and to keep reasonable time
steps, an implicit scheme must be employed [14]. In what follows an implicit penalization is thus used with K = 10�8.

3.2. Time integration

We now focus on the time discretization of system (6a) and (6b). We use a predictor–corrector fractional step method
based on the Chorin–Temam schemes [18,19]. The prediction step consists in solving a first fractional step to get u*, where
an initial guess for the pressure field, p*, is given:
u� � un

Dt
¼ �ðun � rÞun �rp� þ 1

Re
Dun þ 1

K

XNs

1¼1

vn
i ðun

i � u�Þ in X: ð7Þ
In general this velocity field does not satisfy the continuity Eq. (6b). Hence, the correction step consists in solving a second
fractional step:
unþ1 � u�

Dt
¼ �ðrpnþ1 �rp�Þ in X: ð8Þ
Since we want r � un+1 = 0, taking the divergence of Eq. (8) we have
D Dtðpnþ1 � p�Þ
� �

¼ r � u� in X: ð9Þ
The Laplace operator on the left-hand side is discretized on the uniform cartesian mesh. The discrete divergence operator on
the right-hand side regularizes the Dirac mass on the fluid–body interfaces resulting from the gradient of vn

i .
Let us denote / = Dt(pn+1 � p*) = D�1(r � u*) the solution of the Poisson Eq. (9), the correction step leads to:
pnþ1 ¼ p� þ /
Dt
; ð10aÞ

unþ1 ¼ u� � r/: ð10bÞ
The Poisson equation is solved with homogeneous Neumann boundary conditions on oX by a fast Poisson solver thanks to
the uniform grid. The Neumann boundary conditions ensure that in the correction step the normal velocity at the boundary
is not perturbed.

We finally obtain
unþ1 � un

Dt
¼ NSðun;pnÞ þ 1

K

XNs

1¼1

vn
i ðun

i � unþ1Þ in X; ð11Þ
where
NSðun; pnÞ ¼ �ðun � rÞun �rp� þ 1
Re

Dunþ1 � rpnþ1 �rp�
� �

: ð12Þ
As for space discretization, since we used a penalty model, it is performed on a cartesian grid. We use a centered second
order finite-difference approximation for the diffusive term and an upwind third-order scheme for the convective terms. This
scheme results in very simple coding for which a parallel implementation is feasible with a reduced development effort. Also
grid partitioning is a trivial issue in this context.

4. Laws of motion of the deforming bodies

4.1. Translation and rotation velocities

The velocity of each immersed body can be decomposed into a translation velocity ui relative to the center of mass, a rota-
tion velocity uh

i about this point and a deformation velocity u0i. In the following the deformation velocity is imposed, whereas
the translation and rotation velocities are computed using Newton’s laws.

Noting Fi and Mi the forces and the torques exerted by the fluid onto the ith body, the translation velocity ui and the
angular velocity Xi are obtained by integrating the following equations
mi
dui

dt
¼ F i; ð13aÞ

dJiXi

dt
¼Mi; ð13bÞ
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with mi the mass of the ith body and Ji its inertia matrix. Given the angular velocity, the rotation velocity is given by
uh

i ¼ Xi ^ ri where ri ¼ x� xG
i and xG

i is the center of mass.
Introducing the dimensionless stress tensor Tðu; pÞ ¼ �pI þ 1

Re ðruþruTÞ and ni the unit outward vector to oXi, the
forces and the torques exerted by the fluid onto the bodies are:
F i ¼ �
Z
@Xi

Tðu;pÞnidx; ð14aÞ

Mi ¼ �
Z
@Xi

ri ^ Tðu;pÞnidx: ð14bÞ
Since the mesh nodes do not fit the body geometries, and because of the order one accuracy, the computation of (13a) and
(13b) cannot be performed in this form.

Instead, we consider a time dependent arbitrary domain Xfi only surrounding Xi (see Fig. 2) such that the force expression
becomes:
F i ¼ �
d
dt

Z
Xfi
ðtÞ

udV þ
Z
@Xfi
ðtÞ

Tþ ðu� uiÞ � uð ÞnidS�
Z
@XiðtÞ

ðu� uiÞ � uð ÞnidS: ð15aÞ
A similar equation can be derived for the torque:
Mi ¼ �
d
dt

Z
Xfi
ðtÞ

ri ^ udV þ
Z
@Xfi
ðtÞ

ri ^ Tþ ðu� uiÞ � uð ÞnidS�
Z
@XiðtÞ

ri ^ ðu� uiÞ � uð ÞnidS: ð15bÞ
Note that the integrals on oXi in Eqs. (15a) and (15b) vanish in many applications (u = ui), except for the particular case of
transpiration boundary conditions, as in the case of blowing and suction at the border. In the following computations the
control volumes Xfi

are small rectangles surrounding the bodies and fitting the mesh nodes.

4.2. Numerical validation

4.2.1. Space and time accuracy
We compute the L2 norm, E, of the difference between the numerical velocity field u and the exact one ue for the Green–

Taylor vortex at Re = 100. The computational domain is D ¼ fðx; y; tÞ 2 ½0;p� � ½0;p� � ½0; T�g and the error is computed at the
final time T = 1. The interior scheme space and time accuracy are computed imposing ue(x, t) on the exterior boundary oX. As
expected, the numerical scheme is first order in time and second order in space (see Fig. 3). We now focus on the penaliza-
tion order. The Green–Taylor test case is not trivial since the penalized velocity will depend on both time and space. A cyl-
inder centered in (p/2,p/2) with diameter D = 1 is considered. It is immersed in the fluid region where we impose the exact
velocity on oX. If ui(x, t) = ue(x, t) inside the circle, then second order in space is recovered. The penalized velocity ui(x, -
t) = ue(x/=0, t) is now imposed, where x/=0 denotes the closest point to x onto the cylinder boundary. The penalization scheme
then leads to first order space resolution (see Fig. 3(a)). It is possible in principle to improve the penalization order using both
velocity gradients and level set information as done in [20].

4.2.2. Force and torque computation
A two-dimensional flow around a circular cylinder is considered, see Fig. 4. We are interested in computing and validating

the aerodynamic coefficient C ¼ F=ðqu2
r D=2Þ, where ur = jus � u1j is a reference velocity and u1 the velocity at the infinity of

the body. For the following test case, the mesh is of NX = 900 and NY = 600 nodes uniformly distributed between x = �6 and
Fig. 2. Sketch of domain used to computed the forces. All geometries and velocity fields are given arbitrarily.



Fig. 3. Numerical scheme accuracy order. Left: the CFL is fixed. Right: Dt = 10�2ReDx2

Fig. 4. Sketch of the flow around a circular cylinder.

Fig. 5. Temporal evolution of the lift (dashed line) and the drag (solid line) at Re = 200.
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x = 12 and between y = �6 and y = 6, respectively. The time step is Dt = 0.002. We define the drag and lift coefficients as
CD = C � ex and CL = C � ey, respectively.



Fig. 6. Spectrum (DFT) of the lift (dashed line) and the drag (solid line) at Re = 200.

Table 1
Comparison of the Strouhal number and the mean drag coefficient at Re = 200.

Authors St CD

Braza et al. [21] 0.2000 1.4000
Henderson [22] 0.1971 1.3412
He et al. [23] 0.1978 1.3560
Bergmann et al. [24] 0.1999 1.3900
Present study 0.1980 1.3500

Fig. 7. Drag coefficient for an impulsively started cylinder at Re = 550.
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In the first test case, we take Re = 200, us = 0, u1 = ex and the cylinder is centered in x = 0. The temporal evolution of the lift
and drag coefficients is presented in Fig. 5. The amplitudes of lift and drag are approximately equal to 1.6 and 0.1, respec-
tively, and the mean drag and the Strouhal number (Fig. 6) are in good agreements with those obtained in previous studies
(see Table 1).

For the second test case, we consider an impulsively started cylinder at Re = 550 and we compare the force acting on the
cylinder in two equivalent situations. In one configuration, the force is computed when the flow at infinity is impulsively
started and the cylinder is steady, i.e., us = 0 and u1 = ex. Fig. 7 present the evolution of the drag coefficient for a short time
integration, i.e., 0 6 t 6 0.25. The qualitative and quantitative behavior of the curve compares favorably with the curve ob-
tained in [25], Fig. 8. Next, we consider the invariant configuration where the cylinder is impulsively started and its speed is
set to us = �ex and u1 = 0. The cylinder is now crossing the grid as it is translating toward the left. In Fig. 8 we compare the
aerodynamic coefficients obtained for the two configurations. It is seen that the overall behavior of the two curves is similar



Fig. 8. Drag coefficient for an impulsively started cylinder at Re = 550.
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and that they compare well with [25] Fig. 8, although the one relative to the translating cylinder is affected by small ampli-
tude oscillations. This is due to the fact that in Eq. (15a) the discrete time derivative is taken over an integral whose support
is varying discretely in time, and since the accuracy of the scheme is only first order, this results in oscillations of the force on
the time scale of h/kusk, where h is the grid size. We checked that these oscillations decrease when h ? 0.
4.2.3. Rigid body motion
In order to further investigate the accuracy of the results obtained for a moving body, we study the sedimentation of a

two dimensional cylinder in a cavity (see Fig. 9). We consider the same geometry and flow parameters as those used in
[2,14], i.e. the dimension of the cavity is [0,2] � [0,6], the viscosity is 0.01, the density inside and outside the cylinder is
1.5 and 1.0, the cylinder radius is 0.25 and its initial position is (1,4). The time step used for the numerical simulations is
Dt = h/20, where h = Dy = Dx = 1/256 and h = 1/384.

In Fig. 10 the vertical velocity profile on the horizontal line passing through the center of the cylinder at t = 0.1 is shown.
Inside the cylinder the vertical velocity is constant at about 10.8. Fig. 11 presents the vertical cylinder velocity and the ordi-
nate of cylinder center as a function of time. The bottom of the cavity is reached at t ’ 0.37. These results are very close to
those obtained in Refs. [2,14].
5. Low-order parametric modeling of fish-like swimming

5.1. Relative deformation

In this study the self-propelling objects (swimmers) have an imposed relative deformation, regardless of the force nec-
essary to impose such relative movement. It is important to remark that since we assume that no external force is imposed,



Fig. 9. Sketch of the flow configuration for the sedimentation of a the cylinder in a cavity.

M. Bergmann, A. Iollo / Journal of Computational Physics 230 (2011) 329–348 337
the relative deformation must be such that the linear and angular momentum will only change due to flow induced forces. In
other words, the class of admissible swimmer deformations u0i must be such that
Z

Xi

u0iðx; tÞdx ¼ 0; ð16ÞZ
Xi

x ^ u0iðx; tÞdx ¼ 0; ð17Þ
where we assume that the swimmer density is constant.
Fish-like swimming can be classified based on both body shape and locomotion modes. Three categories are described in

[26]: the first is the body and caudal fin (BCF) periodic, the second is the BCF transient (turns, sudden starts, etc.), and the last
one is the median and paired fin (MPF). In this study we will focus on both periodic and transient BCF modes, that can be
further decomposed into four sub-categories, i.e. anguiliform, subcarangiform, carangiform and thunniform shapes
[27,28]. After having defined the steady shape, Section 5.2, we will model the BCF periodic, Section 5.3 and then the BCF tran-
sient for turns, Section 5.4.

5.2. Modeling of the swimmer steady shape

We start with a steady symmetric shape. The swimmer shape is described by an airfoil. The most simple way to paramet-
rize an airfoil shape is the Joukowsky transform, that transforms a circle with radius rc = 1 defined by the complex number
f = g + ih to an airfoil profile defined by the complex number z = xs + iys in the transformed plane. The transform is the
following:
n ¼ fþ 1
f
: ð18Þ



Fig. 10. Vertical velocity profile at the cylinder height at t = 0.1. Solid line for h = 1/256, dashed line for h = 1/384.
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Since this airfoil presents a cusped trailing edge, the Karman–Trefftz transform (see Fig. 12) is further applied to retrieve
more realistic shapes
z ¼ n
1þ 1

f

� �n
þ 1� 1

f

� �n

1þ 1
f

� �n
� 1� 1

f

� �n ; ð19Þ
where the trailing edge angle is a = (2 � n)p. A translation, contraction or extension of the plane z is then applied to obtain
0 6 x 6 ‘, ‘ being the length of the fish. At this stage the steady fish shape is defined by four parameters defining the origin of
the circle (gc and hc), the tail angle (a) and the body length (‘). Since a symmetric steady shape is desired (hc = 0), we take
gc < 0,a > 0 and ‘ P 0 to parametrize the shape. Different fish thicknesses can be obtained varying gc. For instance, while
gc = �0.01 approximates an anguiliform shape, gc = �0.04 approximates a thunniform shape, and �0.05 < gc < �0.01 approx-
imate carangiform and subcarangiform shapes.

5.3. Modeling of BCF periodic modes

Let us now define the periodic swimming law. The idea is to deform the backbone of the steady fish (defined by 0 6 x 6 ‘
and y = 0) to fit a given curve y(x, t) keeping the backbone length fixed. Let s be the curvilinear coordinate of the deformed
backbone (0 6 s 6 ‘). We fix s = 0 at x = x0. For a given coordinate s, the abscissa x(s) is found by inverting
sðxÞ ¼
Z x

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @yðx0; tÞ

@x0

� �2
s

dx0:
The corresponding deformation y(x(s), t) can then be computed. As described in [11], a natural imposed body periodic motion
y(x, t) is
yðx; tÞ ¼ aðxÞ sinð2pðx=kþ ftÞÞ; ð20aÞ



Fig. 11. Sedimentation of a two dimensional cylinder in a cavity. The simulations were stopped when the bottom of the cavity is reached at t ’ 0.37. Solid
lines for h = 1/256, dashed lines for h = 1/384.

Fig. 12. Sketch of the Karman–Trefftz transform. In this example the z space is transformed to fit 0 6 xs 6 ‘.
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where the curve envelope is given by
aðxÞ ¼ c1xþ c2x2: ð20bÞ
While the length of the fish is always equal to ‘, the cartesian abscissa is x(‘) < ‘, except for the steady configuration where
x(‘) = ‘. This motion is defined by a constant phase speed cp = kf, where k and f denote the wavelength and the frequency of
the oscillations, respectively. Note that the wavelength k is not necessarily equal to the body length as in Ref. [29]. The wavy
motion affects the swimmer from the head to the tail and can be centered on the nose of the fish [29] or at a predefined
percentage d of the body length [30]. The parameters c1 and c2 can thus be adjusted in order to impose a maximal tail ampli-



Fig. 13. Sketch of swimming and maneuvering shape.
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tude A/2, which is an important parameter for the locomotion efficiency [7]. Note that in practice a transition during a short
period T = 0.2 is performed from the initial body shape (y(x, t) = 0) to the full swimming law y(x, t) = a(x) sin (2p(x/k + ft)). A
swimmer typical configuration is given in Fig. 13(a).

Since the shape is characterized by three parameters (denoted by b) and the swim is characterized by the 5 parameters
s = (c1,c2,k, f,d)T, 8 parameters define the shape and swimming law. The unsteady swimming body profile is denoted P(b,s, t).
Finally, the algorithm to define the swimmer deformation is

– generate a desired deformation of the swimmer centerline (fish backbone);
– perform an homothety for mass conservation;
– subtract the center of mass displacement, so that Eq. (16) is satisfied;
– subtract a rigid rotation, so that Eq. (17) is satisfied.

5.4. Modeling of BCF transient for turns

Since the swim motion defined in the previous section is periodic with zero mean deformation (we have
R tþ2p=f

t y
ðx; t0Þdt0 ¼ 0), maneuvers are difficult. To improve the maneuverability we introduce a different strategy to modify the swim-
ming law y(x, t) to get non zero mean deformation. We chose a transform R : Pðb; s; tÞ#Prðb; s; tÞ such that the swimming
body profile P(b,s, t) rolls up onto a circle with radius r to give a new profile Pr(b,s, t) (see Fig. 13(b)). We have
P1(b,s, t) = P(b,s, t). The minimal turning radius r can vary in function of the fish considered [31]. For instance r = 0.47‘ for
yellowfin tuna [32], r = 0.13‘ for dolphin fish Corypaena hippurus [33] and even r = 0.065‘ for angelfish Pterophyllum eimekei
Ahl (MPF) [34].

The final swimmer deformation shape is re-centered and rotated to avoid introducing additional forces and torques. An
example of shape Pr(b,s, t) is given in Fig. 13(c).

6. Numerical survey of fish-like locomotion

This section is devoted to the investigation of fish like swimming employing the numerical tools presented in the previous
sections. In the following simulations we used h = Dx = Dy = 5Dt. The retained space resolution is determined on the basis of
a convergence study detailed in the next section.
Fig. 14. Convergence of fish swimming versus the mesh size.



Table 2
Evolution of the limit average velocity u, relative deviation d and computational time tCPU as a function of h.

h u d (%) tCPU (min)

1/32 �0.62 50 8
1/64 �0.81 14.8 42
1/128 �0.9 3.3 298
1/256 �0.93 0 2552

Table 3
Parameters used to model four different ‘‘fish modes”.

Fish Shape Swimming law

Fi gc a ‘ c1 c2 k f d

F1 �0.04 5 1 0.1 0.9 1.25 2 0
F2 �0.03 5 1 0.4 0.6 1.00 2 0
F3 �0.02 5 1 0.7 0.3 0.75 2 0
F4 �0.01 5 1 1.0 0.0 0.50 2 0
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6.1. Grid convergence

The motion of rigid bodies, including force and torque computation, has already been validated (Section 4.2). We are now
interested in grid convergence for the motion of deformable bodies. For a convergence study the limit velocity uh is
particularly pertinent since it involves the computation of both the forces and the torques acting on the swimmer. A fish with
given shape b and swimming law s is chosen (this is fish F1 of next Section 6.2). Computations using different values of h
are performed at Re = 1000. The fish swims over a distance equal to 9 and the evolution of the velocities uh for 0 6 t 6 10
are presented in Fig. 14. The finest mesh used corresponds to h = 1/256, so that in a computational domain of
[ � 10,2] � [2,2] we have 3072 � 1024 ’ 3.1 millions of mesh nodes. We take this solution as the reference solution u256.
The relative deviation of the limit velocity uh is then defined as dðhÞ ¼ kuh � u256k2=kuhk2. The limit velocity uh, the relative
deviation d(h) and the computation time tCPU are reported in Table 2. The relative deviation is approximately divided by a fac-
tor of 4 when h is divided by a factor 2. Table 2 shows that h = 1/128 is a good compromise between the deviation (only 3.3%)
and the computational time (8 times smaller than for h = 258). We thus chose h = 1/128 for all the following simulations at
Re = 1000.
6.2. Body and caudal fin modes (BCF)

The aim of this section is to present a study of body and caudal fin (BCF) swim modes and the influence of such modes on
the energetic efficiency of the motion. We initially only consider the maximal velocity attained, without any power consid-
erations. BCF movement can be decomposed into anguiliform, subcarangiform, carangiform and thunniform modes [27].
While the anguiliform mode presents large oscillations onto the whole thin body, the thunniform mode presents only lim-
ited oscillations of the tail of a blunt shape. Subcarangiform and carangiform modes present intermediate oscillations and
shapes, between anguiliform and thunniform modes. These kind of BCF modes are modeled using the parametric represen-
tation of Section 5. The overall swimmer displacement is strongly influenced by the initial tail stroke, i.e., the mean lateral
velocity is non zero if special care is not taken for the initial tail transient. In order to obtain a zero mean lateral velocity we
use the transient introduced in Section 5.4 where the radius r is proportional to the vertical deviation of the center of mass
DyG, i.e. r / DyG, being yG(t = 0) = 0.

Each swim mode is modeled using a different body shape and swimming law. As described in Section 5, the modes are
defined by 8 parameters in this study. We chose four sets of parameters that correspond to swimming modes and shapes
called F1, F2, F3 and F4, representing thunniform, carangiform, subcarangiform and anguiliform modes, respectively. All
the parameters defining both shapes and swimming laws are reported in Table 3. Note that we chose to use the same tail
angle a = 5, length ‘ = 1, frequency f = 2 and d = 0. Only the shape thickness (defined by g), the swimming law envelop (de-
fined by c1 and c2) as well as the wavelength k are modified. Note that c1 and c2 are rescaled to obtain a tail displacement
amplitude A = 0.4. All the simulation are performed independently, and each simulation is stopped when the fish has trav-
elled a distance equal 9 times the body length. The associated time is noted T9. An isovorticity representation of each wake is
given in Figs. 15 and 16 for Re = 103 and Re = 104, respectively. Inverted Karman streets can be observed (more pronounced at
Re = 103 than at Re = 104).

Table 4 summarizes the results in terms of time T9 to reach the distance d = 9, exit velocity Umax, maximum acceleration
cmax and average velocity U at Re = 103 and Re = 104. The maximum acceleration is however dependent on the (linear)
transient we imposed from t = 0 to t = 0.2.



Fig. 15. Vorticity representation of the wakes generated by some BCF like swimming movements at Re = 103. All the figures are plotted for
�100 6xz 6 100.

Fig. 16. Vorticity representation of the wakes generated by some BCF like swimming movements at Re = 104. All the figures are plotted for
�100 6xz 6 100.
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6.3. On the power required to swim

An important issue is to classify the four swimmers introduced in the above section in terms of efficiency. We denote r
0

the dimensionless viscous stress tensor, so that r0ij ¼ 1
Re ð

@uj

@xi
þ @ui

@xj
Þ. In dimensionless form, the power required for the swim is:
PðtÞ ¼ �
Z
@Xi

pu � ndSþ
Z
@Xi

ðr0 � nÞ � udS: ð21Þ
Since the mesh is not body fitted, P(t) cannot be computed using Eq. (21). By integrating on the fluid domain Xf the scalar
product of the momentum equations and the velocity vector, the power can be written as:
PðtÞ ¼ @

@t

Z
Xf

u2

2
dXþ 1

Re

Z
Xf

r0ij
@ui

@xj
dX: ð22Þ
The power required to swim is equal then to the temporal variation of the kinetic energy in the flow domain plus the power
dissipated by viscosity. We denote Tk the time required to reach a distance equal to d = 9 unit lengths. The energy required
for fish Fk to travel the distance d is EðkÞ ¼

R
Tk

PðkÞdt. However, the amount of energy spent per unit time is of course a function
of velocity. If all the swimmer have the same velocity Ur of the slowest (F4), we can classify the swimmers for maximum
endurance. The maximum tail amplitude A is hence modified such that at each iteration, if U > Ur we decrease A proportion-
ally, and vice versa. We call Fr

1; Fr
2 and Fr

3 the swimmers corresponding to F1, F2 and F3 with velocity regulator. Table 5 pre-
sents the energy required to displace the swimmers of a given distance. The most efficient swimmer is Fr

1 for both Reynolds
numbers.

In the well known study of Gray in 1936 [35] it was observed that some aquatic vertebrates (dolphins) are able to swim at
surprisingly high speeds. In order to investigate the swimming efficiency, the approximate power required to tow the dol-
phin at such speed was compared to an estimate of the available muscular power. Gray argued that the power required for a
dolphin of length 1.82 m to swim at a speed of 10.1 m/s is about seven times the muscular power available for propulsion.
Some of the assumptions made to get to these conclusions appear now to be flawed [36]. It is interesting, therefore, to



Table 4
Maximal velocity jUmaxj, maximal acceleration jcmaxj and average velocity jUj at Re = 103 and Re = 104.

Fish Re = 103 Re = 104

jUmaxj jUj jcmaxj T9 jUmaxj jUj jcmaxj T9

F1 0.91 0.83 3.3 10.81 1.42 1.22 3.4 7.37
F2 0.97 0.93 4.6 9.70 1.39 1.27 4.9 7.06
F3 0.92 0.89 7.5 10.13 1.18 1.14 8.0 7.88
F4 0.65 0.63 9.5 14.2 0.81 0.79 10.4 11.4

Table 5
Comparison of the energy E(k) required to travel the distance d = 9 at Re = 103 and Re = 104.
Fishes Fr

1 ; Fr
2 ; Fr

3 regulated the maximal tail amplitude to swim at the velocity of F4.

Fish Re = 103 Re = 104

Fr
1 0.64 0.24

Fr
2 0.66 0.26

Fr
3 0.77 0.28

Fr
4 0.77 0.30

Table 6
Propulsive indexes Ip evaluated for fishes F1,F2,F3 and F4 at Re = 103 and Re = 104.

Fish Re = 103 Re = 104

F1 0.26 0.31
F2 0.26 0.21
F3 0.24 0.17
F4 0.17 0.14
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compare the power necessary to tow a swimmer to the one actually developed by the deformable body to swim at the same
speed.

We denote Psps the mean power required for a given a steady periodic swimming at a velocity U, and Ptow the mean power
need to tow the same rigid body at the same velocity U. Powers Psps and Ptow are computed from (22). Following [11], we
defined the propulsive index Ip as being the ratio Ptow and Psps,
Ip ¼
Ptow

Psps
: ð23Þ
Drag reduction is achieved if Ip > 1. The propulsive indexes evaluated for swimmers F1, F2, F3 and F4 at Re = 103 and Re = 104

are reported in Table 6. In our laminar two-dimensional configuration we do not obtain any drag reduction (Ip is always be-
low unity). The power required to swim is three to eight times higher than that required to tow the rigid bodies. The results
that we obtain are of course not conclusive since we develop our simulations in a two-dimensional setting in a laminar flow
regime. Also, we do not model fins or other appendages that are crucial in actual fish swimming.

It is also of interest to investigate if burst-and-coast swimming can lead to energetic advantages [37,38]. The process we
employed is similar to that described in Ref. [37]. We assume that at t = t0 the rigid fish body has a velocity equal to Ui. A
swimming period starts from t = t0 until t1 = t0 + Tb that correspond to the time when fish reached a given maximal velocity
Uf. Then a new period starts and the propulsive motion of the fish stops. The fish glides as a rigid body and the velocity de-
creases from Uf at t1 to its minimal velocity Ui at t2 = t1 + Tc. A new burst-and-coast period T = Tb + Tc starts again. The swim-
ming efficiency depends a priori on the choice of Uf and Ui [37,38].

In what follows we will study swimmer F1 at Re = 103 and Re = 104. At each Reynolds number four test cases are consid-
ered. We denote Uf = afUmax and Ui = aiUmax, where Umax is the maximal velocity reached by F1 using steady periodic swim-
ming with A/2 = 0.2 (see Table 4). We initially consider a relevant difference between Uf and Ui, i.e. we chose af = 0.8 and
ai = 0.2. Then, we investigate smaller differences for high velocities (af = 0.8 and ai = 0.6), medium velocities (af = 0.6 and
ai = 0.4) and small velocities (af = 0.4 and ai = 0.2). For burst and coast swimming, the amplitude grows linearly until the limit
A/2 = 0.2 in the burst period, and then the amplitude decrease linearly to zero for coast period. Following previous studies
[39], we denote R ratio between burst and coast swimming mean power Pbac (with average velocity U) and steady swimming
mean power Psps (at same velocity U using regulation of the tail amplitude):
R ¼ Pbac

Psps
: ð24Þ



Table 7
Efficiency R of burst and coast swimming for fish F1 at Re = 103 and Re = 104 using different
couples of Uf = afUmax and Ui = aiUmax.

(ai,af) Re = 103 Re = 104

(0.2,0.8) 0.77 0.85
(0.6,0.8) 1.02 1.00
(0.4,0.6) 0.85 0.81
(0.2,0.4) 0.63 0.71

344 M. Bergmann, A. Iollo / Journal of Computational Physics 230 (2011) 329–348
Note that in both cases we also impose deformation such that the swimmer follows a straight trajectory (the center of mass
is approximately kept at a fixed coordinate y). Both parameters used and results are shown in Table 7. For almost all cases
considered, the burst and coast swimming is more efficient than steady periodic swimming. The efficiency of burst and coast
swimming increases when the average swimming velocity decreases. The results are in good agreements with [39].

6.4. Turns and maneuvers

In this section we explore the maneuverability of swimmers. It is of interest to study how swimmers can turn abruptly in
some direction. The objective is not for the moment to understand complex real fishes motion but only to study a prototype
motion for robots. We show the effectiveness of a simple control based on both the deformation introduced in Section 5.4
and the angle of vision hf. This angle is arbitrarily defined as being the oriented angle between the line passing through the
center of mass of the fish and leading edge and the line passing through the leading edge and the objective (food), see Fig. 17.

If hf = 0 (objective straight forward), we want to recover Pr(b,s, t) ? P(b,s, t), i.e. r ?1. Note that in practice we do not
impose r ?1, but we shift from profile Pr(b,s, t) to profile P(b,s, t). For physical reasons we have to impose jrjP r. We choose
r ¼ 0:5 that is approximately the turning radius for tuna [32]. We suppose that this limit can be reached for any jhf jP hf . In
this study we choose h ¼ p=4. We have also to impose a a relation r(hf) for jhf j 6 hf . We choose rðhf Þ ¼ rð h

hf
Þ2;80 < jhf j < hf
rðhf Þ ¼

1 if hf ¼ 0;

r if hf P hf ;

�r if hf 6 �hf ;

r h
hf

� �2
otherwise:

8>>>>><
>>>>>:

ð25Þ
The results are illustrated in Fig. 18 for swimmer F1 at Re = 103. The initial positions of the leading and trailing edge are (0,0)
and (‘,0), respectively, and the food is located at (2,�1). The initial angle of vision is then hf = 2p � arctan1/2 	 0.85p so that
rðt ¼ 0Þ ¼ r. Note that a transition during a short time T = 0.2 is performed for the deformation from r ?1 (initial position)
to r = f(hf).

6.5. Influence of group swimming on the locomotion efficiency

It was demonstrated that fishes can exploit the vortices present in the flow to reduce the energy required for the loco-
motion (see for instance [40]). More surprisingly, even dead fish can exploit vortex wakes [12] to swim. The aim of this sec-
tion is thus to study the interactions between several swimmer wakes and to understand how a fish school can organize
itself to improve performance or to decrease the power spent for the locomotion [41]. In what follows, all swimmers are sup-
posed to have the same swimming law and shape. Let D be the lateral distance between two swimmers. This distance tends
to decrease due to Venturi-like effect. We therefore use the deformation introduced in the previous section in order to keep
approximately constant the horizontal distance between the swimmers by taking a curvature of the swimmer that is pro-
portional to the horizontal distance between the swimmers.
Fig. 17. Sketch of the oriented food angle of vision.



Fig. 18. Snapshots of the fish maneuvers to reach the gray circle ‘‘food” at Re = 103. All the figures are plotted for �100 6xz 6 100.

Fig. 19. Wakes generated by to frontal fishes F1 at Re = 103 with D = 0.5. Left and right pictures correspond to phase and anti-phase fishes, respectively.
�100 6xz 6 100, �1.1 6 u 6 0.7.
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We first study the wake generated by a pair of swimmers initially located at points (0,�D/2) and (0,D/2), respectively.
Both in-phase and anti-phase swimming laws are considered and Fig. 19(a) and (b) shows an isovorticity representation



Table 8
Percentage of energy saved for the three-swimmer school in comparison with three independent swimmers. Re = 103.

LD Phase Anti-phase

0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7

1.5 15.0 16.3 11.1 7.1 6.8 6.9 9.8 7.1
2.0 10.1 14.5 9.8 6.0 6.8 6.1 9.8 6.0
2.5 8.4 13.6 9.0 5.1 6.7 5.3 9.0 5.1
3.0 15.0 15.1 6.9 5.0 5.2 5.1 7.0 3.2
3.5 5.2 13.2 6.2 2.2 4.9 5.0 6.2 0.5

Fig. 20. Vorticity representation of the wake generated by a jellyfish like swimming at Re = 103. All the figures are plotted for �100 6xz 6 100.

Fig. 21. Temporal evolution of the vertical velocity and position for the jellyfish at Re = 103.
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of the wake generated by two swimmers separated by a distance D = 0.5. The isovalues of horizontal velocity are plotted in
Fig. 19(c) and (d). In both cases a zone of negative velocity exists in the wake of the two swimmers. In what follows we de-
note L the longitudinal distance between a third swimmer and the leading swimmers pair. The amplitude of the caudal
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movement of the swimmer in the wake is regulated so that it cannot overcome the first two. Hence L and D are approxi-
mately constant all along the swim. Table 8 summarizes the energy savings that can be obtained by a three-swimmer school-
ing for different value of 0.3 6 D 6 0.7 and 2 6 L 6 3.5 at Re = 103. The most efficient configuration is obtained with in-phase
swimming. For the anti-phase configuration the results weakly depend on D and L. In fact, the third swimmer has to be in
phase with the wake generated by the first two swimmers and not necessarily in phase with the two swimmer deformation.
Of course in the limit D ?1 and/or L ?1 there is no interaction between the swimmers and so no energy can be saved.

6.6. Another example: jellyfish-like swimming

The jellyfish like swimming is the final example of bio-locomotion we present. The jellyfish shape is modeled using a
modified Karman–Trefftz transform. We start with an ellipse center at (0,0) in the complex plan (gc,hc) to get a symmetric
lentil like profile, rescaled to fit a length ‘. We slightly deform this profile at the ‘‘tails” using frequency f = 1. We then roll up
this new profiles onto circles with radius rc(t). In this study rc(t) oscillates periodically between circles with radius rmin

c ¼ 0:75
and rmax

c ¼ 1:5 with frequency f = 1.
The vortex street generated by this jellyfish like swimming is similar to that observed experimentally in Ref. [42], espe-

cially the pairing of two opposite sign vortices (see Fig. 20). Our results are also in qualitative good agreements with numer-
ical results recently obtained for hydromedusa Aequorea victoria (see [43]). The temporal evolutions of vertical velocity and
position are presented in Fig. 21. The simulation is stopped when the jellyfish reached y = 5 (the initial position was y = 0).
The mean velocity is 0.5 and the propulsive index is Ip = 0.58. This quite high value (in comparison with fishes values, see
Table 6) comes from the fact that the power required to tow vertically the mean jellyfish profile (rc ¼ ðrmin

c þ rmax
c Þ=2) reaches

also a quite high value.

7. Conclusions

In this paper we employed a simple and fast method to solve the two-dimensional laminar flow around moving and
deformable bodies. Instead of body fitted meshes, we used cartesian meshes and penalization to take into account boundary
conditions at solid walls. The fluid–solid interfaces are tracked using level-set functions and the motion of the bodies are
computed from Newton’s laws. The main advantage of this approach is its simplicity in dealing with moving bodies, the pos-
sibility of exploiting fast numerical solvers and a straight forward parallelization. The disadvantages are mainly linked to the
possibility of resolving thin boundary layers and the implementation of turbulence modeling. Octree mesh adaptation or
multigrid are possible improvements in these directions.

In order to illustrate the effectiveness of the numerical modeling proposed, we investigated the two-dimensional laminar
flows pertinent to fish-like swimming. The swimmers are modeled using Karman–Trefftz airfoil profiles and periodic defor-
mation laws are imposed to mimic self-propulsion. It was shown that swim modes affect energetic efficiency and that the
swimmers can exploit upstream wakes to decrease the effort and to indefinitely track a prey [40]. As an additional demon-
stration of the versatility of the method, a jellyfish like swimming is modeled. The results obtained are in qualitative accor-
dance with experimental visualizations [42].

The conclusions about efficiency of swimming laws that we investigated or about maneuvering cannot be extrapolated to
three-dimensional fish-like swimming. Among the reasons for that is the characteristic nature of the vortex pattern in two
dimensions. In three-dimensional flows instabilities in the transverse direction rapidly lead to annular vortex structures (see
for example [15,16]) that disrupt the ordered succession of vortices observed in two-dimensional flows. Indeed, preliminary
three-dimensional results obtained by the present approach show that the maneuvering strategies devised in two-dimen-
sional configurations are much less effective in three dimensions.

The present study represents a step in the direction of simulating complex three-dimensional flows past moving elastic or
visco-elastic bodies. A variety of flow patterns can result from the passive interaction of elastic appendages and the fluid. It
will be possible in particular to model flexible fish fins and their interaction with the flow during sharp movements, with the
objective for example of unveiling the mechanisms at the base of fish-locomotion efficiency.
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