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Abstract

In this paper we investigate the optimal control approach for the active control and drag opti-

mization of incompressible viscous flow past circular cylinders. The control function is the time

angular velocity of the rotating cylinder. The wake flow is solved in the laminar regime (Re = 200)

with a finite element method. Due to the CPU and memory costs related to the optimal control

theory, a Proper Orthogonal Decomposition (POD) Reduced Order Model (ROM) is used as the

state equation. The key enablers to an accurate and robust POD ROM are the introduction of a

time dependent eddy-viscosity estimated for each POD mode as the solution of an auxiliary opti-

mization problem and the use of a snapshot ensemble for POD based on chirp-forced transients.

Since the POD basis represents only velocities, we minimize a drag-related cost functional charac-

teristic of the wake unsteadiness. The optimization problem is solved using Lagrange multipliers to

enforce the constraints. 25% of relative drag reduction is found when the Navier-Stokes equations

are controlled using an harmonic control function deduced from the optimal solution determined

with the POD ROM. Earlier numerical studies concerning mean drag reduction are confirmed: it

is shown in particular that without a sufficient penalization of the control input, our approach is

energetically inefficient. The main result is that a cost reduction factor of one hundred and 760 is

obtained for the CPU time and the memory respectively. Finally, limits of the performance of our

approach are discussed.

PACS numbers: 47.62.+q;02.60.Pn;47.27.Vf

Keywords: active flow control ; optimal control ; Proper Orthogonal Decomposition ; Reduced Order Model

; Wake flow.
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I. INTRODUCTION

The general aim of active flow control is to alter a natural flow state into another state

with more desired properties. Naturally, in order to achieve energetic efficiency of the

process, the power needed to control the flow has to stay as low as possible compared to

the power saved by the action of control. Flow control has a long history since Prandtl’s

early experiments for delaying boundary layer separation1. However, the recent invention of

Micro-Electro-Mechanical Systems2, the maturity of control theory and the possible saving

of energy52 that can be offered by an efficient flow control have generated a renewal of

interest in active control of fluid dynamical systems3–5.

A. Use of approximation models in optimization

Even with recent progress of Computational Fluid Dynamics capability, controlling a fluid

flow through a computational approach still remains a formidable endeavor. Due to the non

linear character of the Navier-Stokes equations, "real-time" simulation of a fluid system

corresponding to a three-dimensional turbulent configuration is unreachable. This situation

is even worse in an optimization setting where the large-scale systems (thousands or even

millions of degrees of freedom occur frequently in engineering computations) obtained by

spatial discretization of the governing equations need to be solved repeatedly. Furthermore,

to develop feedback control of complex systems, real-time state solves are necessary6. Clearly,

reducing the costs of the nonlinear state solutions by some kind of surrogate models7 of the

systems to be controlled is required in flow control. As a result, there have been many

studies devoted to the development of Reduced-Order Models (ROM) that serve as low-

dimensional approximation models to the large-scale discretized state equations. Some of

the reduced-order modelling techniques are restricted to linear systems, other approximation

methods can be applied for reducing both linear and nonlinear systems (see Ref. 8 for

a review). The model reduction method discussed in this paper fall in the category of

reduced basis approaches. This approach consists of seeking an approximation to the state

in the form of a linear combination of the so-called reduced basis functions. The coefficients

appearing in the linear combination is generally determined through a Galerkin projection

of the state equations into the reduced basis space. Ideally, we would like to obtain accurate
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approximation of the state with only very few degrees of freedom in the development. To

do so, the reduced basis cannot be determined a priori as it is the case with the finite

element method for example. Conversely, the reduced basis is determined a posteriori using

experimental or numerical data previously obtained for a given flow configuration, generally

for an uncontrolled flow (see Ref. 9 for the consequences in terms of flow control).

For the reduced bases, a number of choices exist (see Ref. 10 for a presentation): La-

grange basis, Hermite basis, Taylor basis, Proper Orthogonal Decomposition (POD) basis,

Centroidal Voronoi Tessellations (CVT) basis11, etc. Today, the most popular reduced-order

modelling approach for complex systems in fluid mechanics is based on POD. Therefore, we

will restrict our study to this case and consider that the unsteady non-linear dynamics of

the flow is modelled via a reduced order model based on POD (POD ROM). Naturally, the

generation of this POD ROM involved an additional numerical cost. First, we need to collect

the snapshot ensemble used to determine the POD basis, then we have to solve the corre-

sponding eigenvalue problem and finally to estimate the POD ROM coefficients. Mainly two

approaches exist to determine these coefficients. The first, the traditional approach, called

POD Galerkin, consists in numerically calculating the coefficients of the system starting

from their analytical expression obtained by Galerkin projection. The second, introduced

more recently, consists in identifying whole or part of the coefficients of the POD ROM as

solutions of minimization problems, one then speaks of calibration procedure or calibrated

models (see Ref. 12 for an example). Our hope is that this perhaps large off-line cost can

be amortized over several optimization calculations. If the reduced-order modelling is really

effective for the controlled flow i.e. if the CPU time necessary to solve the reduced-order

model is negligible (of the order of the percent) compared to the corresponding time nec-

essary to solve the high-dimensional model, then optimizing a POD ROM should lead to

an important reduction of the computational costs. Moreover, in order to reduce as much

as possible this overhead cost, we are interested to use as few runs of the high-dimensional

simulation code as possible (ideally one run) in order to generate the snapshots.

The POD (and other similar techniques of ROM) can be viewed as a method of informa-

tion compression. Essentially, the POD algorithm try to remove "redundant" information

(if any) from the data base. As a consequence, the ability of POD modes to approximate

any state of a complex system is totally dependent of the information originally contained

in the snapshot set used to generate the POD functions. Thus, a POD basis cannot con-
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tain more information than that contained in the snapshot set. The generation of "good"

snapshot set is then crucial to the success of use of POD ROM approach in a bifurcation

analysis or more generally in an optimization setting. Since the POD basis is intrinsic to a

particular flow, we need to give special attention to adapt the POD ROM (and the POD

basis naturally) to changes in physics when the flow is altered by control (control parameters

or control function). This central question is illustrated in Fig. 1. Figure 1(a) represents

the general configuration of a bifurcation analysis or an optimization problem defined in the

control parameter space. In the bifurcation setting, if we knew exactly the bifurcated states

then an intelligent sampling of parameter space would consist to take snapshots correspond-

ing to these new operating conditions. This is exactly the method which was used by Ma

and Karniadakis13 to derive a POD Galerkin model able to capture the three-dimensional

bifurcation of the wake flow. An equivalent approach consists in incorporating in the POD

basis additional vectors called ’shift modes’ which point in preferred directions of the phase

space. For example, it was shown in Noack et al.14 that the inclusion of shift modes signifi-

cantly improves the resolution of the transient dynamics from the onset of vortex shedding

to the periodic von Kármán vortex street. In the same paper, it was demonstrated that

the inclusion of stability eigenmodes further enhances the accuracy of fluctuation dynamics.

Clearly, some a priori knowledge about the states likely to be represented by the approxima-

tion model improves the robustness of the POD ROM. Without any additional information

of the different states to be modelled by the POD ROM, the snapshot ensemble for POD

should be uniformly distributed in the control parameter space. Then, a lot of runs of the

high-dimensional code would be necessary to generate the snapshots and specific methods

like the Sequential Proper Orthogonal Decomposition (SPOD) introduced in Ref. 15 would

be necessary to develop an accurate model of a controlled transitional flow. In the optimiza-

tion setting, the problem is almost the same. If we knew at least approximately the path

to the optimizer then an intelligent sampling of the parameter space would consist to take

snapshots along the path (see Fig. 1(b)). In this interpolatory setting, i.e., if the optimal

solution and the path to the optimal solution can be well approximated in the space spanned

by the POD basis functions, then it is clear that a POD ROM approach should work. Of

course neither the optimized parameters nor the optimal path are known in advance. Then,

if we don’t have any additional information on the optimal path, there is a high probability

that the sampling in parameter space would be unsuitable to approximate correctly the
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different controlled states encountered by the flow along the optimal path (see Figs. 1(c)

and 1(d)). As a consequence, two strategies are conceivable for use of POD ROM in an

optimization setting. For lack of systematic, rational, justifiable and effective methodolo-

gies for generating good snapshot set (recent work11 seems to demonstrate that Centroidal

Voronoi Tessellations could be one method of intelligent sampling in parameter space), a

first approach consists of generating generalized POD functions by forcing the flow with an

ad-hoc time-dependent excitation that is rich in transients. The corresponding POD ROM

optimization method is schematically described in Fig. 2 where γ(t) denotes the control

function defined for the cylinder wake in Sec. II A. The second approach consists of an

adaptive method in which new snapshots are regularly determined during the optimization

process when the effectiveness of the existing POD ROM to represent accurately the con-

trolled flow is considered to be insufficient. The main drawback of this second approach is

that for adaptively updating a reduced basis during an optimization process, new solves of

the high-dimensional approximations of the Navier-Stokes equations need to be done. Since

these simulations are costly, this approach is not appropriate for real-time control flow. The

adaptive method is illustrated in Fig. 3.

B. A prototype of separated flow: cylinder wake

Due to its simple geometry and its representative behavior of separated flows16, the

viscous flow past a circular cylinder has been extensively used in the past decade as a

test-bed to develop methodologies that can be used later to control more complex flows.

Different experimental or numerical approaches have been successfully employed for the

control of a wake flow but recently optimal control theory attracted increased attention in

flow control setting5,17,18. For example, He et al.19, Homescu et al.20, Protas and Styczek21

used the optimal control theory with the two-dimensional Navier-Stokes equations as the

state equation to control by rotary oscillation the unsteady wake of the cylinder (see table I

for the characteristics of these approaches). An attractive element of the optimal control

approach is the introduction of a cost functional which provides a quantitative measure of

the desired objective. However the numerical costs (CPU and memory) associated with the

adjoint equation-based methods used to solve these optimization problems are so important

that the three-dimensional Navier-Stokes equations are rarely studied53. For cutting down
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the numerical costs different approaches are possible (see Gunzburger22 for a review). One

promising approach is to first develop POD ROM to approximate the fluid flow and then

to optimize exactly the reduced models as it was already discussed in Sec. I A. A general

discussion of the use of approximation models in optimization can be found in Ref. 23. In

this study, we want to develop a low-cost optimal control approach for drag minimization

of the cylinder wake with rotary motion for control function (see Fig. 4). Then, to reduce

as much as possible the computational costs associated to the present study, the flow is

considered two-dimensional and in the laminar regime. However, the methodology presented

here that consists of combining the optimal control approach and a POD ROM should easily

be expanded to three-dimensional and turbulent flows.

This investigation of drag reduction by unsteady rotary oscillation of the cylinder was

motivated in part by the experiments of Tokumaru and Dimotakis24 where 80% of relative54

mean drag reduction was empirically found (Re = 15, 000). Recently, Protas and Wesfreid25

argued (see Sec. II B for numerical evidence and more explanations) that in the supercritical

regime of the wake flow, the effectiveness of the control in terms of drag reduction increases

with the Reynolds number. Therefore, since the wake flow remains two-dimensional up to

a value of the Reynolds number approximately equal to 190 where a spanwise supercritical

Hopf bifurcation occurs and where the three-dimensional effects appear26,27, the "optimal"

value of the Reynolds number for our two-dimensional study is slightly lower than 200.

However for facilitating the comparisons with the results of the literature, a Reynolds number

of 200 is considered. According to the observations of He et al.19, the control minimizing the

drag generates vortices that are less energetic than those produced by the stationary cylinder.

An energetic criterion seems to be well adapted to the investigation of drag reduction.

Therefore, due to the energetic optimality of convergence of the POD basis28,29, the choice

of POD to develop a reduced order model of the controlled unsteady flow seems to be well

adapted. A similar approach was already considered in Graham et al.30, 31 to control the

wake flow at a supercritical Reynolds number of 100.

Finally, we need to choose between the two opposite strategies discussed at the end of

Sec. I A. If we want to develop active flow control method that can be used for real-time,

on-line feedback control, our interest is to include in the snapshot set all the information

needed during the optimization process or at least as much information as we can, and

then to generate the reduced order basis. Following this approach the POD functions are
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determined once for all at the beginning of the optimization process and no refresh is

realized. This is the specific method that will be used in this paper. The adaptive method

has been already tested for the same flow configuration32 and the results will be published

in a subsequent paper.

The main objective of this paper is to emphasize the computational savings of POD ROM

based optimal control with respect to more "classical" Navier-Stokes based optimal control

as it was already developed for the wake flow in the literature19–21. So in this study our main

concern is not to determine the control law with the maximum energetic efficiency as it can

be characterized for example by the Power Saving Ratio (PSR) (see Protas and Styczek21

for a definition or hereafter in Sec. VI D) but rather to demonstrate that coupling an optimal

control approach and a POD ROM can be successful at least to determine the "optimal"

solution corresponding to the open-loop control approach. As far as we know (see table I),

the work presented in Ref. 21 is the only one which considers for cost functional the sum

of the drag power and the control power thus making it possible to determine an optimal

solution that is by construction energetically efficient. In the other works, the cost of the

control is not considered or at best as a regularization parameter. This discussion will be

developed in Sec. VI D where we compare the energetic efficiency of the different approaches.

This article is organized as follows: Sec. II introduces the flow configuration and describes

the numerical method used to simulate the flow. In the next two sections, the Proper Or-

thogonal Decomposition is first introduced (Sec. III), then we outline the control function

method used to develop a POD ROM of the controlled flow (Sec. IV). The optimal con-

trol problem is stated in Sec. V which includes the definition of the cost functional and a

description of the Lagrange multiplier method used to solve the constrained optimization

problem. Finally, before to present the results of the POD ROM based control in Sec. VI B

and the drag reduction obtained with the Navier-Stokes equations when the optimal control

function determined with the POD ROM is used (Sec. VI C), we describe in Sec. VI A how

to determine generalized POD basis functions.
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II. PROBLEM FORMULATION AND SIMULATION METHOD

A. Flow configuration, governing equations and numerical method

Let Ω be a two-dimensional bounded region filled with a Newtonian incompressible viscous

fluid of kinematic viscosity ν. We denote by Γ the boundaries of Ω and we note U∞ the

uniform velocity of the incoming flow (see Fig. 4). Wake flows dynamics are characterized16

by the Reynolds number Re and by the natural Strouhal number Stn at which vortices

are shed in the wake of the cylinder. Traditionally, the Reynolds number is defined as

Re = U∞D/ν where D is the cylinder diameter (R is the corresponding radius) and the

natural Strouhal number as Stn = f D/U∞ where f is the fundamental frequency. The

rotary control is characterized by the instantaneous rotation rate θ̇(t). Equivalently, we can

specify the tangential boundary velocity VT (t) = Rθ̇(t) or the non dimensional velocity γ(t)

defined as the ratio of the tangential velocity VT (t) to the upstream velocity U∞ where,

here, for numerical convenience, U∞ is supposed to be equal to unity. Hereafter, the control

function γ(t) is sought using the optimal control theory in order to minimize the mean drag

coefficient of the wake flow.

The flow of viscous incompressible fluid is governed by the Navier-Stokes system that

can be expressed (u ⊗ v denotes the dyadic product of the two vectors u and v, i.e.,

(u ⊗ v)ij = uivj) in non dimensional55 form as

∇ · u = 0 in Ω × (0, T ),

∂u

∂t
+ ∇ · (u ⊗ u) = −∇p +

1

Re
∆u in Ω × (0, T ),

(1)

with an initial condition defined as

u|t=0 = u0 with ∇ · u0 = 0, (2)

where u = {ui(x, y, t)}2
i=1 is the two-components fluid velocity vector, p = p (x, y, t) the

pressure field and t the time. In the above equations (0, T ) is the time interval during which

the flow is considered.

The problem specification is now completed by the boundary conditions. At the left

boundary, an inflow boundary condition is applied:

(u1, u2) = (1, 0) on Γi × (0, T ). (3)
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At the transverse boundaries, zero shear stress conditions are imposed:

∂u1

∂y
= 0, u2 = 0 on Γb × (0, T ) and Γt × (0, T ). (4)

At the outflow boundary, a non-reflecting boundary condition is considered. The velocity

field is deduced on Γo as the solution of a wave-like equation32:

∂u

∂t
+ u1

∂u

∂x
−

1

Re

∂2u

∂y2
= 0 on Γo × (0, T ). (5)

When this artificial boundary condition is used, no spurious reflections from the downstream

boundary are observed thus making it possible to reduce the computational domain in the

cylinder wake.

Finally, on the cylinder surface the velocity is equal to the tangential boundary velocity.

Since U∞ = 1, this condition becomes

u(x, t) = γ(t)eθ(x) on Γc × (0, T ), (6)

where eθ is the unit tangent vector on Γc.

The partial differential equations (1) are discretized in time by a three steps projection

method and in space using a Galerkin finite element approximation (P1, P1). This numerical

method is classic and the details that can be found in Cordier and Bergmann33 will not

be discussed here. The discrete equations are numerically solved on an unstructured mesh

with the Partial Differential Toolbox of Matlab. The accuracy of the numerical code was

extensively tested in Bergmann32 for different time steps, mesh sizes and Reynolds numbers

varying from Re = 4 (creeping flow) to Re = 1000. The dependence of the mean drag

coefficient and the natural Strouhal number on the Reynolds number were evaluated by

comparison of reference results available in the literature. In particular, the well-known

over-prediction of the drag coefficient for two-dimensional simulations16 was observed at

Re = 1000. Numerically, it was found that for a time step equal to ∆t = 1.5 10−2 and

a finite element mesh consisting of 25, 000 triangles and 12, 686 vertices (see Fig. 5), the

present simulations described accurately the dynamics of the uncontrolled and controlled

flows (in appendix B are presented typical results of an open-loop control study of the

cylinder wake). Therefore, in the following, we describe only the results of the simulations

performed at Re = 200.
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B. Results of the simulation at Re = 200

The objective of this section is to demonstrate that for the laminar regime considered in

this paper, the two-dimensional numerical simulation discussed previously can be viewed to

represent correctly the dynamics of the cylinder wake flow. The well-known Von Kármán

street, characteristic of the cylinder wake, is clearly visible in Fig. 6(a). Moreover, since non

reflective boundary conditions have been considered on Γo, no spurious reflections from the

downstream boundary occur (see Fig. 6(b)).

In a viscous flow the total forces acting on a body are contributed by the pressure and

skin friction terms. Let Kp be the pressure coefficient defined by Kp = 2(p − p∞) where

the subscript ∞ denotes quantities evaluated on the inflow boundary Γi. The aerodynamic

coefficients can then be calculated as:

C(t) = −

∫

Γc

Kpn dΓ +
2

Re

∫

Γc

∂u

∂n
dΓ = CD(t) ex + CL(t) ey (7)

where CD and CL represent respectively the drag and lift coefficients and n is the outward

unit normal at the boundary surface.

The time histories of the lift and drag coefficients after the long term behavior has been

established are represented in Fig. 7. The time mean value of CD is 1.39 and the unsteady

amplitudes of CL and CD are 0.0921 and 1.38 respectively (see table II). The periodic regime

which is reached asymptotically, when the non linear saturation is observed, is character-

ized by the natural Strouhal number Stn that can be estimated by a spectral analysis of

the aerodynamic coefficients. On Fig. 8, it can be observed that the drag force consists

only of contributions from the even harmonics, and the lift force of contributions from the

odd harmonics only. This well-known empirical fact was recently explained in Protas and

Wesfreid34 by considering the symmetry properties of the global modes known to exist in

periodic wake flows. In table II, the natural Strouhal number and the time-averaged drag

coefficient are compared to reference results available in the literature. The agreement with

all the previous experimental and computational data is very good. Similarly (not shown

in table II), the time-averaged lift coefficient is seen to be in very good agreement with the

results obtained previously.

We conclude our presentation of the results obtained at Re = 200 by a discussion of the

base flow (the unstable symmetric state). Recently, Protas and Wesfreid25 argued that the
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mean drag CD consists of the contribution of two terms: the drag Cbase
D of the basic flow

(i.e., the unstable, steady, symmetric flow) which at a given Reynolds number remains fixed

and the drag C0
D of the mean flow correction which is due to the vortex shedding:

CD = Cbase
D + C0

D. (8)

As it can be viewed in Fig. 9, when the Reynolds number increases, the relative contribu-

tion of the unsteady part of the flow to drag becomes more significant. At a given Reynolds

number, the contribution of the base flow to drag cannot be modified. Then controlling

the wake flow by rotary oscillation can only reduced the contribution of the unsteady part.

Since the contribution C0
D increases with the Reynolds number, the controllability of the

flow is more important for higher Reynolds numbers as it was announced in Sec. I B. This

discussion points out a fundamental question already arisen in Ref. 25: is it possible to

assert that the minimal value of drag that can be obtained under periodic forcing conditions

and, at a given value of the Reynolds number, corresponds to the base flow solution? In

other words, is it possible to obtain a mean flow correction with negative drag? Certainly,

this question deserves more study from the computational and theoretical points of views.

However, we report in Bergmann32 that when the rotation is applied only on a limited part

of the cylinder boundary, a mean drag coefficient lower than the corresponding base flow

solution was obtained.

Finally, in Fig. 10 we represent the streamlines of the base flow obtained at Re = 200. In

order to determine this unstable flow with (almost) the same numerical code used to obtain

the unsteady flows, we impose symmetry conditions in the wake at every time step of the

simulation, inhibiting in such a way the growth of any symmetry-breaking perturbations.

This kind of method was already used in Ref. 25 for the same purpose.

III. PROPER ORTHOGONAL DECOMPOSITION (POD)

This method was introduced in turbulence by Lumley in 1967 as an unbiased definition

of the coherent structures widely known to exist in a turbulent flow. Starting with a set

of realizations of the velocity fields u(X) where X = (x, t) ∈ D = Ω × R
+, a coherent

structure is defined as the deterministic function Φ(X) which is most similar on average
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to the realizations u(X). Mathematically, the notion of most similar corresponds to the

solution of the following constrained maximization problem:

max
Φ

〈|(u,Φ)|2〉 subject to ‖Φ‖2 = 1 (9)

where (., .) denotes a scalar product in the Hilbert space of square-integrable functions

L2, ‖.‖ is the corresponding norm and the brackets 〈.〉 denote an averaging operation, which

may be a time or space average. More details on POD and all the justifications can be found

in Cordier and Bergmann29.

From variational calculus it can be shown that the problem (9) is equivalent to a Fredholm

integral eigenvalue problem:

∫

D

Rij(X,X ′)Φj(X′) dX ′ = λΦi(X) (10)

where Rij(X,X ′) is the two-point space-time correlation tensor (here and in the fol-

lowing, i and j vary from 1 to nc where nc is the number of velocity components). Since

Rij is self-adjoint and non-negative definite, it follows from the Hilbert-Schmidt theory that

equation (10) has a denumerable infinite number of eigenvalues λn and eigenfunctions Φi
n

(n = 1, . . . , +∞). These eigenvalues are all real and positive and form a decreasing and

convergent series. Each eigenvalue represents the contribution of the corresponding modes

Φn to the total kinetic energy. The associated eigenvectors Φn (also called empirical eigen-

functions) form a complete orthogonal set and have been normalized, so that they verify

(Φn,Φm) = δnm. Moreover, it can be demonstrated29 that they are optimal in an energetic

sense (for a given number of modes N , the projection on the subspace spanned by the N

leading eigenfunctions will contain the greatest possible kinetic energy on average).

Depending on the choice made for the average operator 〈 . 〉 appearing in (9), two equiv-

alent formulations of POD can be found29. When the average is estimated in time, the

first approach called classical POD or direct method and originally introduced by Lumley

is obtained. In this case, the kernel Rij of the Fredholm equation (10) is replaced by the

two-point spatial correlation tensor rij(x,x′) and the eigenfunctions Φ(X) by φ(x). In

the second case suggested by Sirovich35 and called snapshot POD, the average operator is

evaluated as a space average over the domain in interest. The Fredholm equation to be
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solved is then defined by: ∫

T

C(t, t′)an(t′) dt′ = λnan(t) (11)

where C(t, t′) is the temporal correlation tensor constructed as

C(t, t′) =
1

T
(u(x, t),u(x, t′)) (12)

where the outer parentheses (., .) represent the inner product defined as

(u,v) =

∫

Ω

(u,v)2 dx =

∫

Ω

nc∑

i=1

uivi dx.

In Eq. (11), an are the time-dependent POD eigenfunction of order n. These modes form

an orthogonal set, satisfying the condition:

1

T

∫

T

an(t)am(t) dt = λnδnm. (13)

The spatial basis functions φi
n can then be calculated from the velocities ui and the

coefficients an with:

φi
n(x) =

1

T λn

∫

T

ui(x, t)an(t) dt. (14)

Since the POD eigenfunctions can be represented as linear combinations of the velocity

fields, they inherit all the properties of the original data that are linear or homogeneous.

Hence the eigenfunctions are divergence free for an incompressible fluid (∇ · φn = 0) and

verify automatically the homogeneous boundary conditions of the numerical simulation used

to determine the flow realizations.

For reasons of statistical convergence of the average operator, the snapshot POD is more

appropriate when data issued from numerical simulations are used. Hence, this method was

adopted in this work.

Finally the set of POD modes {φn}
+∞

n=1 is complete in the sense that any velocity field

u(x, t) can be expanded in the eigenfunctions as

ui(x, t) =

NPOD∑

n=1

an(t)φi
n(x) (15)

where NPOD is equal to the number of flow realizations used to solve the POD prob-

lem (11).
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IV. POD ROM OF THE CONTROLLED CYLINDER WAKE

When the rotary control is applied, the boundary conditions on the cylinder become

inhomogeneous and time-dependent. As a consequence, the POD basis functions used in

the Galerkin projection have not homogeneous boundary conditions and extra terms appear

in the POD ROM (see the pressure term in Eq. 21). To address this situation, the control

function method introduced in Graham et al.30 is used.

A. The control function method

Here, we decide to justify the introduction of a suitable "control function" uc to remove

the inhomogeneous boundary conditions on Γ in the general context of boundary control

problem for fluid flows33. So, we consider the Navier-Stokes system (1) completed with the

Dirichlet boundary conditions:

u(x, t) = h(x, t; U(t)) on Γ × (0, T ), (16)

where U is the control input.

Finally, we assume that the boundary of the domain, Γ, can be split into two parts such

that Γc denotes that part of the boundary where the control is applied and Γ \ Γc is the part

of the boundary that is not controlled. More precisely, in the case of the controlled cylinder

wake flow that is considered, the boundary conditions can be written as (see Eq. 6):

h(x, t; U(t)) =





γ(t)eθ(x) on Γc × (0, T ),

c(x) on Γ \ Γc × (0, T ).
(17)

Since the boundary conditions h depend on time, the velocity expansion is now defined

as

u(x, t) = um(x) + γ(t) uc(x) + ũ(x, t) (18)

with

ũ(x, t) =

NPOD∑

k=1

ak(t)φk(x) (19)

where um(x) is the mean velocity field obtained as an ensemble average of the flow

realizations contained in the snapshot set and where uc(x) is a reference flow field, called
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control function, that describes how the control action γ(t)eθ(x) influences the flow. This

control function satisfies the following boundary conditions:

γ(t)uc(x) =





γ(t)eθ(x), on Γc × (0, T ),

0 on Γ \ Γc × (0, T ).
(20)

A convenient way to generate it is to take the solution of the governing equations (1) for

the steady cylinder rotation corresponding to γ = 1 and homogeneous boundary conditions

for the uncontrolled part of Γ (see Fig. 11 for an illustration).

When the snapshot POD approach is considered for deriving a POD based reduced order

model, the input ensemble used to determine the POD modes consists of Nt flow realizations

called time snapshots u(x, ti), x ∈ Ω, taken at time instants ti ∈ (0, T ) , i = 1, · · · , Nt. In

case of time-dependent boundary conditions, the procedure for computing the POD basis

can be formulated as follows33. A mean velocity um(x) is first computed as the ensemble

average of the modified input data defined as U ′ = {u(x, t1) − γ(t1)uc(x), · · · ,u(x, tNt
) −

γ(tNt
)uc(x)}. Afterward, the POD basis functions φk are estimated with the input collection

U ′′ = {u(x, t1) − γ(t1)uc(x) − um(x), · · · ,u(x, tNt
) − γ(tNt

)uc(x) − um(x)}.

Since (u(x, ti) − γ(ti)uc(x))|Γc
= 0 and um(x) matches all other non homogeneous

boundary conditions, the POD basis functions φi satisfy homogeneous boundary condi-

tions on the whole domain. As a consequence, there is no contribution of the pressure term

in the POD ROM. Due to the non reflecting boundary conditions (5) used in the outflow

boundary, the contribution of the pressure term in Γo is not exactly zero for the cylinder

wake. However, for this flow configuration, the Galerkin projection of the pressure term is

found to be negligible (see Noack et al.14 and the discussion in Appendix A 1).

B. Derivation of the POD ROM

The weak form of the Navier-Stokes equations is restricted to the POD subspace SPOD
Ngal

spanned by the first Ngal spatial eigenfunctions φi. The energetic optimality of the POD

basis functions suggests that only a very small number of POD modes may be necessary to

describe efficiently any flow realizations of the input data. The dimension Ngal ≪ NPOD of

the subspace SPOD
Ngal

is the smallest integer M such that the Relative Information Content

(RIC) defined as the ratio
∑M

i=1 λi/
∑NPOD

i=1 λi is greater than δ% where δ is a predefined
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percentage of energy (here δ = 99 and M = Ngal = 4 for the uncontrolled flow, see Fig. 18).

The Galerkin projection yields33:

(
φi,

∂u

∂t
+ (u · ∇)u

)
= (p, ∇ · φi) − [p φi]

−
1

Re

(
∇φi, (∇u)T

)
+

1

Re

[
(∇u)T φi

] (21)

with [u] =

∫

Γ

u · n dx and
(
A, B

)
=

∫

Ω

A : B dx =
nc∑

i, j=1

∫

Ω

AijBji dx.

Inserting the expansion (18) into the Galerkin projection (21) of the Navier-Stokes equa-

tions, we obtain after some algebraic manipulations the reduced order control model:

d ai(t)

d t
=Ai +

Ngal∑

j=1

Bij aj(t) +

Ngal∑

j=1

Ngal∑

k=1

Cijk aj(t)ak(t)

+ Di

d γ

d t
+


Ei +

Ngal∑

j=1

Fij aj(t)


 γ + Giγ

2 i = 1, · · · , Ngal.

(22)

The coefficients Ai, Bij, Cijk, Di, Ei, Fij and Gi depend explicitly on φ, um and uc.

Their expressions are given in Appendix A.

The system of equations (22) is then integrated in time with a fourth order Runge-Kutta

scheme from a given set of initial conditions

ai(0) = (u(x, 0), φi(x)), i = 1, · · · , Ngal (23)

yielding a set of predicted time histories for the mode amplitudes ai(t) which can be com-

pared with the POD temporal eigenfunctions.

Due to the truncation involved in the POD-Galerkin approach, the higher POD modes

corresponding to the dissipative scales of the flow are not explicitly taken into account in the

POD ROM. As a consequence, when the equations (22) are integrated in time, numerical

instabilities arise after a few vortex shedding period (see Ref. 36 for example) and the

model is no longer sufficiently accurate. This problem is similar to that of Large Eddy

Simulation where we have to model the energy transfers between the Fourier modes lower

than a given cutoff value that are simulated and those higher than this cutoff value that are

not explicitly simulated. Recently, Karniadakis employed the same dissipative model called
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Spectral Vanishing Viscosity Model (SVVM) to formulate alternative LES approaches37

and to improve the accuracy of POD flow models38. Here, the low-dimensional Galerkin

model (22) is stabilized by a time dependent eddy-viscosity estimated for each POD mode

as the solution of an auxiliary optimization problem described in Bergmann32.

As shown in Fig. 12 for an uncontrolled flow (γ = 0), when the POD ROM is stabilized

numerically, excellent qualitative and quantitative agreements are found between the inte-

grated time histories of the POD modes kept in the truncation (predicted modes) and the

results obtained by the numerical simulation (projected modes). For a controlled flow, an

accurate description of the dynamical behavior is still possible (see Fig. 13). However, if

the objective is to use the POD ROM in an optimization process, special care is needed

to collect the set of snapshots used to determine the reduced basis (see the discussion in

Sec. I A). This point is particularly described in Sec. VI.

V. OPTIMAL CONTROL APPROACH

In this section we discuss how the optimal control approach can be used to determine the

rotation rate γ(t). The aim is to minimize a cost functional J , which incorporates the control

goal and some measure of the control effort, over a certain period of time To corresponding

to few periods of the Von Kármán street (To is generally referenced as the optimization

horizon). Here we envisage employing the POD ROM of Sec. IV for model-based control of

the vortex shedding flow. Therefore, since only the flow velocities are directly represented

by the POD basis functions and since the pressure drag represents about 80% of the total

drag, our objective is to minimize a drag-related cost function. A natural control aim is

the reduction of the wake unsteadiness i.e. the energy contained in the wake as defined in

Ref. 31. Mathematically, this goal is expressed as the following functional

J (ũ, γ(t)) =

∫ To

0

∫

Ω

J(ũ(x, t), γ(t)) dxdt

=
ℓ1

2

∫ To

0

∫

Ω

‖ũ(x, t)‖2
2 dxdt +

ℓ2

2

∫ To

0

γ2(t) dt

where the first term represents the control goal and the second a penalization term. In

this formulation ℓ1 and ℓ2 are two positive regularization parameters that can be empirically

chosen to limit the size of the control. This formulation is equivalent to the introduction in

front of the cost control term of a tuning parameter ℓ defined as the ratio of ℓ2 to ℓ1 as can
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be found for example in Ref. 39. If ℓ is chosen to be large, the control is "expensive", if it is

small, the control is "cheap". In other words, the parameter ℓ weighs the control cost with

respect to the state energy.

Hereafter, let a be the vector containing the first Ngal time-dependent expansion coeffi-

cients ai (a =
(
a1, a2, · · · , aNgal

)
). Introducing the POD expansion (19), the functional J

becomes:

J (a, γ(t)) =

∫ To

0

J(a, γ(t)) dt

=
ℓ1

2

∫ To

0

Ngal∑

i=1

ai
2(t) dt +

ℓ2

2

∫ To

0

γ2(t) dt.

(24)

The flow control problem is then expressed as:





min
γ(t)

J (a, γ(t))

subject to

N (a, γ(t)) = 0

(25)

where the constraints N (a, γ(t)) = 0 correspond to the POD ROM (22).

The constrained optimization problem (25) is solved using the Lagrange multiplier

method as described in Gunzburger40. The constraints are enforced by introducing the

Lagrange multipliers or adjoint variables ξ and the Lagrangian functional

L(a, γ, ξ) = J (a, γ(t)) − 〈(ξ, N (a, γ))2〉t (26)

= J (a, γ(t)) −

Ngal∑

i=1

∫ To

0

ξi(t)Ni(a, γ) dt.

The solutions (states a, co-states ξ and control γ) of this new unconstrained optimization

problem are such that L(a, γ, ξ) is rendered stationary:

δL =

Ngal∑

i=1

(
∂L

∂ai

δai

)
+

∂L

∂γ
δγ +

Ngal∑

i=1

(
∂L

∂ξi

δξi

)
≡ 0

where δa, δγ and δξ are arbitrary variations.

Considering56 that each argument of L is independent of the others, the optimality system

is determined by setting the first variation of L with respect to ξ, a and to γ to be equal to

zero.
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Setting the first variation of L with respect to the Lagrange multiplier ξ equal to zero,

we recover the state equation N (a, γ(t)) = 0.

We now set to zero the first variation of L with respect to the state variable a. After

integration by parts, the adjoint equations

d ξi(t)

dt
= −ℓ1ai(t)

−

Ngal∑

j=1


Bji + γ(t)Fji +

Ngal∑

k=1

(Cjik + Cjki) ak(t)


 ξj(t) i = 1, · · · , Ngal

(27)

with the terminal conditions:

ξi(To) = 0, i = 1, · · · , Ngal (28)

are derived.

Finally, setting the first variation of L with respect to the control γ equal to zero yields

the optimality conditions

δγ(t) = −

Ngal∑

i=1

Di

dξi

dt
+ ℓ2γ

+

Ngal∑

i=1


Ei +

Ngal∑

j=1

Fijaj + 2Giγ(t)


 ξi.

(29)

Since the optimal control is the control that minimizes J , i.e. that nullifies the gradient

of the cost functional with respect to the control variable ∇γJ , it can be shown40 that

imposing ∇γJ = 0 is equivalent to solving the optimality conditions (29), therefore

∇γJ (t) = δγ(t).

The first-order necessary conditions yield a system of coupled ordinary differential

equations (state equation 22, adjoint equations 27 and optimality condition 29) called

optimality system. Due to large storage and CPU costs that system is rarely solved without

iteration. Instead a simple iterative process can be effected as follows (in this algorithm

and in Fig. 14, the superscripts (n) denote the iteration number):
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Start with an initial guess γ(0)(t) for the control function γ(t). For n = 0, 1, 2, · · · ,

1. Solve the POD ROM (22) forward in time to obtain the corresponding mode ampli-

tudes a(n)(t).

2. Use a(n)(t) computed in step 1 to solve the adjoint equations (27) backward in time

for the adjoint variables ξ(n)(t).

3. Use the state variables a(n)(t) computed in step 1 and the adjoint variables ξ(n)(t) com-

puted in step 2 to estimate the optimality condition (29) and determine the functional

gradient ∇γJ
(n)(t) on the interval [0; To].

4. Use this estimation of gradient to update the control γ(n+1)(t) = γ(n)(t) + α(n) d(n)(t).

Here d(n) is a direction of descent estimated with one’s favorite optimization method

using the gradient of the functional ∇γJ
(n)(t) and α(n) is the length step in that

direction.

5. If some stopping criterion is satisfied, stop; otherwise, return to step 1.

Figure 14 represents schematically the above algorithm.

VI. POD ROM BASED CONTROL

In Sec. IV, it was demonstrated that at least at the design conditions the stabilized

POD ROM (22) represents accurately the dynamics of the controlled flow. Therefore in this

section, we use the results of the optimal control theory presented in Sec. V to determine a

model based control function γ(t).

A. Generalized POD basis functions

In this paper we make the choice to not refresh the POD ROM (22) during the optimiza-

tion process (see Sec. I B). Clearly, it corresponds to the assumption that the path to the

optimal solution and the optimal solution can be well approximated by the original POD

basis, hence the importance of generating "good" snapshot sets. Here, we follow the method
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introduced in Graham et al.30 and derived generalized POD basis functions that correspond

to an ad-hoc forcing term rich in transients. More exactly, we impose as rotation rate for

the cylinder a slowly varying amplitude and frequency sinusoid or ’chirp’ function. This

temporal excitation γe shown in Fig. 15 is mathematically represented by the function:

γe(t) = A1 sin(2πSt1 t) × sin(2πSt2 t − A2 sin(2πSt3 t))

where A1 = 4, A2 = 18, St1 = 1/120, St2 = 1/3 and St3 = 1/60.

Although there is some arbitrariness involved in the choice of the parameters in the

definition of γe, the use of a snapshot ensemble based on chirp-forced transient represents an

attractive compromise between the number of high-dimensional runs necessary to generate

the snapshots (one) and the robustness of the POD basis. However, we can hardly imagine

that the generalized POD basis functions derived with these values of the parameters can

accurately reproduce the controlled dynamics corresponding to an important penalization

of the control input (parameter ℓ2 in Eq. 24) i.e. to low amplitudes of the forcing (for

comparison in Ref. 21, where the sum of the work needed to resist the drag force and the

work needed to control the flow was considered as cost functional, the optimal amplitude A

is always found lower than 0.5). This behavior will be illustrated in Sec. VI B.

In Fig. 16 the spectrum of the excitation function γe is represented. The frequencies vary

continuously from St = 0.15 to St ≃ 0.65 and the spectrum presents a weak dominating

mode for St ≃ 0.4.

The Navier-Stokes equations are then solved with γe for boundary conditions on the

cylinder. During the course of the excitation 600 snapshots are taken uniformly over one

period Te = 60 of excitation. These snapshots are used to form the temporal correlation

matrix for the Fredholm equation (11).

The POD eigenvalues for the uncontrolled flow (γ = 0) and controlled flow (γ = γe) are

shown in Fig. 17 on a semi log-scale. For the uncontrolled flow, the set of eigenvalues fall-off

rapidly, and hence a low number of POD modes is necessary to represent accurately any

velocity field. Clearly for the controlled flow the spread of energy is much more uniform and

many more degrees of freedom than for the uncontrolled flow are excited. As a consequence

for a given number of modes kept in the POD expansion, the projection error of the snapshots

on the POD basis functions is greater for the controlled flow than for the uncontrolled flow.
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To make this idea more precise, one can study the relative information content as defined in

Sec. IV. This quantity is represented in Fig. 18 for the uncontrolled (γ = 0) and controlled

(γ = γe) flows. It is found that two modes are sufficient to represent 98% of the total kinetic

energy in the uncontrolled case and that it is necessary to keep 40 modes (less than 7%

of all the POD modes) to capture the same percentage of energy when the excitation γe

is applied. Therefore the state equation (22) used in the iterative optimization process of

Sec. V correspond to Ngal = 40.

Velocity contours for the first six POD eigenfunctions are plotted in Fig. 19. A striking

feature is the pairing (mode 1 and 2, mode 4 and 5) of similar patterns, shifted spatially,

a result of the convective nature of the flow. This behavior can be noticed in Fig. 17

where the corresponding eigenvalues occur in pairs of almost equal values. Clearly, mode

3 is localized around the cylinder and corresponds to the action of the control on the flow.

In first approximation, this boundary-layer mode is comparable to the control function uc

determined previously (see Fig. 11 for comparison).

B. Results of the POD ROM based control

In this section and in the rest of this paper, we consider the results of the optimal control

approach described in Sec. V for two couples of regularization parameters (see Eq. 24) i.e.

(ℓ1 ; ℓ2) = (1 ; 0) and (ℓ1 ; ℓ2) = (1 ; 1). When ℓ2 = 0, it corresponds to the case where

the cost of the control is neglected. Since, our main concern in the present study is not

the energetic efficiency of the control procedure, only this case will be discussed in details.

Of course, as it can be expected and obtained (see Sec. VI D), when the control input is

penalized, the energetic efficiency of the algorithm improves considerably and lower values

of the amplitude A and the forcing Strouhal number Stf are found (see hereafter). For

higher values of the penalization parameter ℓ2, the optimization process does not converge

any more. This divergence has certainly to be related to the choice of the parameters used

to define the temporal excitation γe. The robustness of the POD basis functions determined

with this specific excitation is not sufficient to describe the controlled dynamics for rather

small amplitudes of the control parameters.

Since the excitation function γe is symmetric with respect to t = 30, the optimization

horizon To is restricted to To = 30. This value corresponds to 5 times the maximum op-
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timization horizon considered in Ref. 21 where an optimal control approach based on the

Navier-Stokes equations is developed to control almost the same configuration of wake flow.

The control function γ is determined as a converged solution of the iterative process intro-

duced at the end of Sec. V. As an initial guess for the control function the excitation γe is

selected (see Fig. 14). In step 4 of the iterative method the Fletcher-Reeves version of the

Conjugate Gradient Method (see Ref. 41 for example) is used. In every iteration the control

function is updated according to

γ(n+1)(t) = γ(n)(t) + α(n) d(n)(t), (30)

where d(n) represents the conjugate direction given by

d(n)(t) = −∇γJ
(n)(t) + βnd

(n−1)(t), d(0)(t) = −∇γJ
(0)(t) (31)

with βn a coefficient given by

βn =

(
∇γJ

(n),∇γJ
(n)

)

(∇γJ (n−1),∇γJ (n−1))
. (32)

The linear search parameter α(n) is computed at each iteration by the backtracking Armijo

method42, an algorithm that assures that the corresponding step is not too small and verifies

the Goldstein condition. The iterative method is stopped when two following values of the

functional J are sufficiently close i.e. when |∆J (a, γ)| = |J (n+1)(a, γ)−J (n)(a, γ)| < 10−5.

Once this criterion of convergence is reached, the relative reduction of the cost functional

J characterizing the wake unsteadiness is equal57 to 69% for ℓ2 = 0. Figure 20 represents

the variation of the corresponding cost functional J with respect to the iteration number n

during the optimization process. The decrease of the cost functional is very rapid: though

a number of 600 iterations is necessary to obtain the above mentioned value of relative

reduction, 60% of decrease is already obtained for the first 30 iterations. The time evolution

of the corresponding wake unsteadiness as defined by Eq. (24) is represented in Fig. 21. An

important decrease of the wake unsteadiness is observed when the optimal control function

γopt is applied. The same observation can be realized by comparing the time evolution of

the first six POD modes predicted by the POD ROM (22) when the control function is

equal to γe (Fig. 22) and when the optimal control function γopt is used (Fig. 23). Clearly,

the amplitudes of the temporal POD functions are considerably reduced. Finally the time

evolution of the optimized control function γopt corresponding to ℓ2 = 0 is shown in Fig. 24.
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Reduction of the mean drag coefficient using time harmonic rotary oscillation was re-

ported in Refs. 19,20,24,25,43. Therefore, if we want to compare our results with those of

the literature, we need to determine the amplitude A and the forcing Strouhal number Stf

such that the optimized control function writes γopt(t) = A sin(2πStf t). A time average

amplitude A ≃ 2.2 is easily determined. In Fig. 25 we show the spectrum of the control

function γopt obtained for ℓ2 = 0: a main peak appears corresponding to Stf ≃ 0.53 and

two other peaks much less energetic are also clearly visible. According to He et al.19 the

contributions of these lower modes are negligible for the drag. Here, this point was checked

by using this sinusoidal law as an open-loop control function. The relative reduction of

the wake unsteadiness J varies from a value equal to 69% when no particular assumption

is done on the variation of the control function to a value equal to 52% when the control

function is considered sinusoidal. The relative reduction is still consequent. Therefore the

two other peaks are neglected in the following and the optimal control γopt is supposed to

be sinusoidal with an amplitude A = 2.2 and a Strouhal number Stf = 0.53 when ℓ2 = 0.

When ℓ2 = 1, exactly the same numerical procedure was adopted. As it can be intuitively

expected, we obtain lower values for the amplitudes of the control parameters, respectively

A = 0.75 and Stf = 0.33.

C. Drag reduction for the Navier-Stokes model

By definition of the optimization problem (25), the control function γopt is optimal for

the POD ROM and not necessary for the Navier-Stokes model. More exactly, with this

particular approach, there is no mathematical assurance that the iterates produced by

the optimization algorithm will converge to a local optimizer for the high-fidelity original

problem (certainly the trust region idea from nonlinear programming44 would be fruitful

to circumvent this difficulty). Of course, it was found in Sec. VI B that the optimized

control function γopt reduced considerably the wake unsteadiness, but the initial objective

of this paper is the drag minimization. Therefore it is necessary to solve the Navier-Stokes

equations with a rotary control defined by γopt(t) to determine the effect of this control

function on the drag coefficient.

Figure 26 represents a comparison of the time evolution of drag for the uncontrolled and
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optimally controlled flow (γ = γopt) when ℓ2 = 0. The relative mean drag reduction was

found to be of the order of 25% (from approximately an average value of 1.4 to an average

value of 1.04). This reduction of mean drag coefficient is substantial but the optimal control

parameters A and Stf found by the optimization process based on the POD ROM and the

wake unsteadiness for cost functional (A = 2.2; Stf = 0.53), do not correspond to those of

the mean drag minimization that can be obtained by an open loop control study (Amin =

4.3; Stfmin
= 0.74), see Fig. 31 in Appendix B. However the wide "valley" corresponding to

the minimal mean drag is determined and 88% of the relative drag minimization that can be

numerically found for this flow configuration under rotary control is nevertheless obtained.

Now, in Fig. 27 we represent the comparison of the time evolution of the lift coefficient

for the uncontrolled and optimally controlled flow obtained when ℓ2 = 0. We observe that

the action of control reduces considerably the amplitude of the lift coefficient (from 1.38

to 0.34). These behavior are synthesized in Fig. 28 where the polar curves (time evolution

of the drag coefficient versus the lift coefficient) are represented for the uncontrolled and

optimally controlled flow (ℓ2 = 0). The limit cycles appearing in this figure are well defined

because each aerodynamic coefficient oscillates with only one frequency. The power spectral

density of the corresponding aerodynamic coefficients represented in Fig. 29 demonstrate

that the controlled flow now oscillates at the frequency of the optimal control function

(Stf = 0.53). Finally, in Figs. 30(a), 30(b) and 30(c) we represent the vorticity fields of

the uncontrolled flow, the optimally controlled flow (ℓ2 = 0) and the base flow respectively.

The significant vortex-shedding phenomenon observed in Fig. 30(a) has been substantially

reduced when the control is applied and the flow has been quasi-symmetrized. The resulting

flow approaches the symmetric state characteristic of the corresponding base flow as it can

be awaited from the discussion in Sec. II B. Our results are qualitatively similar to the

effects observed in Refs. 19,24 and confirm the arguments of Protas and Styczek21 that the

mean drag reduction is associated with control driving the mean flow toward the unstable

state. Here, when ℓ2 = 0 the optimal control γopt is able to annihilate about 77% of the drag

related to vortex shedding.

As it can be intuitively expected, when ℓ2 = 1 the relative mean drag reduction is found

to be lower than when ℓ2 = 0. The reduction is of the order of 8%, the mean drag coefficient

varies approximatively from a value equal to 1.4 for the uncontrolled wake to a value equal

to 1.29 when the flow is controlled with a sinusoidal rotation defined with A = 0.75 and
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Stf = 0.33.

D. Discussion

The numerical results obtained here with the POD ROM as state equation agree to

a large extent to results obtained in other numerical approach where the optimal control

theory is applied for the same flow configuration directly to the Navier-Stokes equations (see

table I for the characteristics of the different algorithms). However, quantitative comparisons

of the control algorithms are difficult because for the comparisons to be fair, it would be

necessary that the same actuation method and the same control objectives were used in the

various studies. Hereafter, we will see that the studies used for comparison (Refs. 19–21)

were performed with either a different actuation method, or a different control objective.

Therefore, only qualitative comparisons of the control methodologies are possible.

Protas and Styczek21 obtain, with a rather small magnitude of the control (γ(t) ≤ 0.2), a

drag reduction of about 15% for a Reynolds number equal to 150, presenting a less significant

controllability. Contrary to our findings, the time history of their optimal controls exhibit

spiky behaviors difficult to represent by an harmonic oscillation. The main reason is the

following. Due to the numerical costs related to the use of the Navier-Stokes equations,

Protas and Styczek were constrained to use a particular approach referred to as piecewise

optimal. In this approach, the optimization interval To is cut in a sequence of shorter

intervals where the optimization is independently performed. Simply, the state reached

by the optimized flow at the end of a given interval is taken as the starting point for the

optimization in the following interval. Of course, as it was already remarked by these authors,

optimal controls found by this approach does not necessarily correspond to the solution of

the optimization problem defined on the whole optimization time-span. However, they

presented results that indicate that an optimization horizon comparable to the length of

the natural vortex shedding period is sufficient to decrease the mean drag. In our case (see

Sec. VI B), the use of a POD ROM for state equation permits to consider an optimization

horizon equal to six times the natural vortex shedding. The research of He et al.19 shows

a 30% drag reduction if one uses a sinusoidal rotating cylinder with the amplitude A = 3

and the forcing Strouhal number Stf = 0.75. For the same flow configuration and only a

slightly lower value of the Reynolds number (Re = 100), Homescu et al.20 found that the
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optimal control parameters are A = 3.25 and Stf = 1.13. These optimal amplitude and

forcing Strouhal number differ considerably from the values found with our approach. As it

was already suggested by Homescu et al., these difference appear to be due to the different

formulations of the cost functionals used by the different authors. In Ref. 20, the main goal

was the suppression of the Kármán vortex shedding and the cost functional was chosen to be

of the flow tracking type (the "desired" flow correspond to a creeping flow at Re = 2), while

in Ref. 19, He et al. aimed to reduce the drag and minimize a drag-related cost function (see

their equation 9) and, while in Ref. 21, Protas and Styczek considered as cost functional

directly the sum of the work done against the drag force and the work needed to control the

flow.

Although the relative mean drag reduction obtained by Protas and Styczek21 is the

weakest among all that found by the different authors, we can note that from an energetic

point of view it is their approach which is the most effective. Indeed, the drag modifications

were obtained at different costs in the different approaches discussed above. Hence, for the

comparison of the relative drag reduction to be fair, one must take into account the costs

of the control. The energetic efficiency of the control is represented as the ratio of saved

power to input power. Following Protas and Styczek21, it can be characterized by the Power

Saving Ratio defined as:

PSR =
〈PD〉

uncontrolled
T − 〈PD〉

controlled
T

〈PC〉T
, (33)

where 〈PD〉T and 〈PC〉T represent respectively the mean of the instantaneous drag power

PD and control power PC estimated over a finite horizon T . In our configuration, the drag

power can be easily deduced from the drag coefficient CD since PD = FD U∞ where FD is the

drag force exerted on the cylinder. Moreover, it can be shown (see Protas and Styczek21)

that PC = Mz θ̇ where Mz is the torque applied to the cylinder and θ̇ the angular velocity.

In the present study, the PSR are found equal to 0.25 when ℓ2 = 0 (of the same order of the

value obtained in the open-loop control study of Protas and Wesfreid25) and to 0.86 i.e. still

lower than unity when ℓ2 = 1. So an harmonic rotary control with the control parameters

found in our approach is energetically inefficient. In their papers, He et al.19 and Homescu

et al.20 did not give information on the energetic efficiency of their algorithms. However, we

can estimate that with their values of optimal control parameters, their PSR was lower than

unity as well. For comparison, Protas and Styczek21 found a value of PSR equals to 51 at
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Re = 150. Naturally this energetic efficiency is explained by the choice particularly adapted

to the PSR criterion of the total power (drag and control) as cost functional. One way to

improve the PSR in our study consists to divide the cylinder boundary into two regions: an

upstream part on which an optimal control law is applied, and the remainder of the cylinder

which is not controlled (see Bergmann32 for numerical evidence).

Except for the approach presented in Ref. 21 where the energetic efficiency is favored,

the drag reduction found with the Navier-Stokes equations as state equation is only slightly

higher than the one found with our approach but the numerical costs (CPU and memory)

associated to their control are much more important. Using a POD ROM the costs of the

flow solves necessary at each iteration of the optimizer are greatly reduced. In our study, the

CPU time necessary to obtain with the POD ROM the flow dynamics over one natural vortex

shedding period represents 1% of the time necessary to solve the Navier-Stokes equations

with the finite-element approach. In first approximation58 the same gain is obtained for

the adjoint equations and the optimality conditions. The total CPU cost is thus drastically

reduced (approximately a factor equal to one hundred). With regard to memory cost, note

that we need to store the latest state approximation for all space-time to solve the adjoint

equations and all the adjoint variables to estimate the optimality conditions. When the finite

element simulation is used to solve the optimal control problem over a time horizon To, we

need to store the state and adjoint variables (two velocity components and the pressure) at

every time-step and for each vertex of the mesh. When the POD ROM is used, we only

need to store the time evolution of the state variables a and of the adjoint variables ξ for

Ngal POD modes plus the coefficients appearing in the state equation (22) (eventually the

POD basis functions can be stored for a future use). The parameters used in Sec. VI B are

To = 30 for the time horizon (approximately six times the natural vortex shedding period),

∆t = 0.01 for the optimization time-step, Nv = 13, 000 for the number of vertices and

Ngal = 40 for the number of POD modes kept in the ROM. After estimation we found that

the memory cost of the POD ROM approach is approximately 760 times lesser than for the

Navier-Stokes model (approximately 280 if we decide to store the POD eigenfunctions). The

reduction of the numerical costs offered by our approach is so important that the study of

three-dimensional unsteady complex flows by the optimal control theory becomes possible.

However, as it was suggested by Gunzburger in Ref. 22, the success of our approach depends

on the ability of the POD basis to well approximate the optimal solution and the path to the
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optimal solution. Using a POD ROM to solve an optimization problem in the extrapolary

regime is not so clear. Certainly, some updating of the POD basis would be necessary during

the optimization process like in the Trust Region POD method introduced by Fahl45. We

already evaluated this method for the same flow configuration32 and the results will be

published elsewhere.

VII. CONCLUSIONS

The objective of this paper was to illustrate the potential gain that can be offered by

the use of the Proper Orthogonal Decomposition for optimal control of fluid flows. Our

methodology was presented for the unsteady rotary control of the cylinder wake in the lam-

inar regime (Re = 200). Defining a cost functional representative of the wake unsteadiness,

the optimal control problem was solved with a POD ROM of the controlled flow as the state

equation. The solution of the optimization process was then used to control numerically the

wake flow with the Navier-Stokes equations as flow model. Finally, a significant reduction

(25%) of the amplitude of the drag coefficient was found. However, we demonstrate that

our approach is energetically inefficient. These numerical results agree to a large extent to

results obtained by other researchers19–21 using the two-dimensional Navier-Stokes equations

to solve the optimal control problem. Comparing to those studies, the main advantage of

our approach is that the numerical costs (CPU and memory) are negligible (of the order

of 1% for the CPU time and even less for the memory cost). The conceptual drawback

is that there is no mathematical assurance that the solution of the optimization algorithm

working with the approximation models will correspond to the solution of the optimization

problem for the original dynamical system. As it was suggested by Alexandrov et al. in

Ref. 23, a possible way to be assured that the solution of the optimization problem for the

reduced order model is likely to yield at least to a local optimum for the original high-fidelity

problem, is to use the general trust region framework59. Therefore is the POD ROM ap-

proach useful in the flow optimization setting ? A partially answer may be given by quoting

Gunzburger40 “without an inexpensive method for reducing the costs of flow computations,

it is unlikely that the solution of optimization problems involving the three-dimensional,

unsteady Navier-Stokes system will become routine”.
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APPENDIX A: POD ROM OF THE CONTROLLED WAKE FLOW

1. Contribution of the pressure term

When the POD ROM (22) is derived from the velocity expansion (18) with a standard

Galerkin projection on the Navier-Stokes system (1), it appears a contribution from the

pressure term:

(φi, −∇p) = (p, ∇ · φi) − [p φi] (A1)

where [p φi] =

∫

Γ

p φi · n dx.

Since the POD basis functions φi can be represented as linear combinations of instanta-

neous velocity fields (see Eq. 14), they inherit all the properties of the snapshots that can be

written as linear and homogeneous equations. So, if the velocity fields included in the input

data are solenoidal, then divergence-free POD basis functions are obtained (∇ ·φi = 0) and

(A1) becomes:

(φi, −∇p) = −

∫

Γ

p φi · n dx. (A2)

When the control function method is employed, POD basis functions with homogeneous

boundary conditions (φi = 0) are determined on all the boundaries where Dirichlet condi-

tions were considered in the numerical simulation (see Sec. IV A). Therefore, there is no

pressure contribution from the inflow and cylinder boundaries. Moreover, due to the bound-

ary conditions prescribed on the top and bottom walls (see Eq. 4), the POD functions verify

the condition φi ·n = 0 and the contributions from the top and bottom boundaries are then
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equal to zero. Hence, the Galerkin projection of the pressure term (A2) writes

(φi, −∇p) = −

∫

Γo

p φi · n dx. (A3)

Following Deane et al.36 and Noack et al.14, this term is found to be negligible for a wake

flow configuration. Recently, Noack et al.46 used a modal energy-flow analysis to elucidate

the effect of the pressure term in a POD ROM of incompressible shear-flows. Essentially,

they demonstrated that the effect of the pressure term is important for a mixing layer

and small in a wake flow. In our approach, the pressure term (A3) is indeed omitted in

the coefficients of the POD ROM (see coefficients Ai in Sec. A 2). Here, this omission is

numerically justified by the introduction of a time dependent eddy-viscosity for each POD

mode (the method is described in Ref. 32). With this dissipative model, an accurate low

order modelling of a controlled wake flow is possible (see Figs. 12 and 13) and neglecting

the pressure term in the linear coefficients Ai have no influence.
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2. POD ROM coefficients

Ai = − (φi, (um · ∇)um) −
1

Re

(
(∇ ⊗ φi)

T , ∇ ⊗ um

)
+

1

Re
[(∇ ⊗ um)φi] ,

Bij = − (φi, (um · ∇)φj) − (φi, (φj · ∇)um) −
1

Re

(
(∇ ⊗ φi)

T , ∇ ⊗ φj

)

+
1

Re
[(∇ ⊗ φj)φi] ,

Cijk = − (φi, (φj · ∇)φk) ,

Di = − (φi, uc) ,

Ei = − (φi, (uc · ∇)um) − (φi, (um · ∇)uc) −
1

Re

(
(∇ ⊗ φi)

T , ∇ ⊗ uc

)

+
1

Re
[(∇ ⊗ uc)φi] ,

Fij = − (φi, (φj · ∇)uc) − (φi, (uc · ∇)φj) ,

Gi = − (φi, (uc · ∇)uc) .

APPENDIX B: OPEN LOOP CONTROL

In this appendix, we summarize the principal results of an open loop control study realized

numerically to validate the control law obtained with the optimization method based on the

POD ROM. Here the active control is based on oscillatory rotation characterized by the

following forcing angular velocity

γ(t) = A sin (2πStf t) .

A series of simulations with different amplitude A varying from 0 to 6.5 by step of 0.5

and different forcing Strouhal number Stf varying from 0 to 1. by step of 0.1 was performed.
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For a Reynolds number equal to 200, the forcing frequency Stf ranges from one-half to five

natural shedding frequency Stn. For every forcing frequency our simulations are performed

for a sufficient long time (TS = 130) to assure that the saturated state has been reached.

All simulations have been done with the same time step, here equal to 1.5 10−2. In Fig. 31,

we visualize the contours of the mean temporal drag estimated over the last 30 units of time

as a function of A and Stf . Numerically, the mean drag is minimized for an optimal pair

(Amin, Stfmin
) = (4.3, 0.74). The corresponding minimum value is 0.99. Finally, to illustrate

the different flow patterns that can be obtained for the forced flow, we represent in Fig. 32

the vorticity fields corresponding to a fixed value equal to 3 of the amplitude A and different

forcing Strouhal numbers.
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estimation is then given when it is possible.

TABLE 2. Comparison at Re = 200 of the natural vortex shedding Strouhal number
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TABLE I:

Authors Re Type of optimal Cost functional Relative mean PSR

control function drag reduction

He et al.19 200 Sinusoidal Drag-related 30% Unknown

A = 3. (certainly < 1)

Stf = 0.75

Homescu et al.20 100 Sinusoidal Target flow Unknown Unknown

A = 3.25 (Re = 2) (certainly < 1)

Stf = 1.13

Protas and Styczek21 150 Any Power Drag 15% 51

+ Power Control

Present study 200 Sinusoidal Drag-related

ℓ2 = 0 : A = 2.2 25% 0.26

Stf = 0.53

ℓ2 = 1 : A = 0.75 8% 0.86

Stf = 0.33

Bergmann, Cordier and Brancher, Physics of Fluids
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TABLE II:

Re Authors Stn CD

200 Braza et al.49 0.2000 1.4000

Henderson50 0.1971 1.3412

He et al.19 0.1978 1.3560

Present study 0.1999 1.3900

Bergmann, Cordier and Brancher, Physics of Fluids
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(c) Unsuitable sampling. (d) Unsuitable sampling.
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(a)Vorticity fields. (b)Pressure fields.
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(a)Mode 1. (b)Mode 2.

(c)Mode 3. (d)Mode 4.

(e)Mode 5. (f)Mode 6.
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(a)Uncontrolled flow (γ = 0).

(b)Optimally controlled flow (γ = γopt).

(c)Basic flow (γ = 0).
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