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Abstract: This report focuses on improving the stability as well as the approxi-
mation properties of Reduced Order Models (ROM) based on Proper Orthogonal
Decomposition (POD). The ROM is obtained by seeking a solution belonging
to the POD subspace and that at the same time minimizes the Navier-Stokes
residuals. We propose a modified ROM that directly incorporates the pressure
term in the model. The ROM is then stabilized making use of a method based
on the fine scale equations. An improvement of the POD solution subspace is
performed thanks to an hybrid method that couples direct numerical simula-
tions and reduced order model simulations. The methods proposed are tested
on the two-dimensional confined square cylinder wake flow in laminar regime.
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Amélioration de la réduction de modele par
décomposition orthogonale aux valeurs propres

Résumé : Ce rapport est une réflexion sur 'amélioration des propriétés de

stabilité et d’approximation de modeles réduits (ROM) construits par décomposition

orthogonale aux valeurs propres (POD). Le ROM est obtenu en recherchant une
solution qui appartient au sous-espace propre POD et qui minimise les résidus
de l'opérateur de Navier-Stokes. Nous proposons un ROM modifié qui incorpore
directement le terme de pression dans le modele. Ce ROM est alors stabilisé
en utilisant une solution approchée des équations pour les petites échelles qui
ne sont pas résolues par le ROM. L’amélioration du sous-espace propre POD
est effectuée par d’une méthode hybride qui couple Simulations Numériques
Directes (DNS) et simulations par POD ROM. Les méthodes proposées sont
testées sur I’écoulement de sillage laminaire d’un barreau placé dans un canal.

Mots-clés : Modeles d’ordre réduit, Décomposition Orthogonale aux valeurs
Propres, Stabilisation, Sous-espaces propres
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1 Introduction

1.1 Reduced Order Models based on Proper Orthogonal
Decomposition

These last decades, the conception and the optimization of the aerodynam-
ics/aeroacoustics of ground vehicles and airplanes has been pursued by a numer-
ical simulation approach. The applications mainly concern unsteady turbulent
flows that develop at high Reynolds numbers. The numerical simulation of such
flows, as well as their control, requires massive computational resources. Indeed,
after discretization of the governing equations, i.e. the Navier-Stokes equations
in fluid mechanics context, one must then solve a system of equations whose
complexity algebraically grows with the number of degrees of freedom of the
system to be solved. Now, and despite of the considerable progress made in the
numerical field (power of the computers, new and more efficient algorithms), it
is still very difficult to solve such large problems for complex flows in real time,
that is, in fine, a major stake for industrials. To overcome this difficulty, it is
possible to determine a reduced order model of the flow dynamics keeping only
few adapted modes. The choice of these modes is not unique, and it strongly de-
pends on the characteristics of the flow that one wants to approximate, or even
might depend on some expected outputs (Goal-oriented models [1]). Several
methods are commonly used, among them Proper Orthogonal Decomposition
(POD) [2, 3, 4], balanced truncation [5, 6, 7], global eigenmodes [8], Galerkin
modes [9] etc. Due to the energetic optimality of its basis, the POD is chosen in
this study. By this technique it is possible to extract the dominant characteris-
tics (POD modes) of a given database, and the ROM is then obtained thanks to
a Galerkin projection of the governing equations onto these modes. Although
this method for reducing the order of a system can be very efficient in some
flow configurations, it also presents several drawbacks. Besides the possible in-
herent lack of numerical stability of POD/Galerkin methods, even for simple
systems [10], the main shortcomings are the following:

e Since in most of the POD applications for incompressible flows the POD
ROM is built from a velocity database! it is necessary to model the pres-
sure term. Usually, the contribution of the pressure term is neglected in
the POD ROM and it can be demonstrated that this contribution vanishes
in many closed flows. However, for convectively unstable shear layers, as
the mixing layer or the wake flow, it was proved in [11] that neglecting the
pressure term may lead to large amplitude errors in the Galerkin model.
Therefore, to accurately model such flows, the pressure term [11, 12] is
modeled. To overcome this difficulty, a pressure extended Reduced Or-
der Model is introduced in §3, so that the pressure term can be directly
approximated using the pressure POD mode.

e Due to the energetic optimality of the POD basis functions, only few
modes are sufficient to give a good representation of the kinetic energy
of the flow. For model reduction purpose, we only keep these few modes
that are associated to the large eddies of the flow (as the vortices of the
Von Karman street that usually develop behind bluff bodies). But since

n almost all experimental works the pressure data is unavailable.
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Figure 1: Flow configuration and vorticity snapshot at Re = 200.

the main amount of viscous dissipation takes place in the small eddies
represented by basis functions that are not taken into account, the lead-
ing ROM is not able to dissipate enough energy. It is then necessary to
close the ROM by modeling the interaction between the calculated modes
and the non resolved modes. This problem is similar to that of Large
Eddy Simulation (LES) [13] of turbulent flows. In this study, the ROM is
closed using Navier-Stokes equations residuals and exploiting ideas similar
to Streamline Upwind Petrov-Galerkin (SUPG) a Variational Multiscale
method (VMS) methods [14].

e Since POD basis functions are optimal to represent the main character-
istics included in the snapshot database of the flow configuration used to
build them, the same basis functions are a priori not optimal to efficiently
represent the main characteristics of other flow configurations. Indeed,
for flow control purpose, it was demonstrated [15, 16, 17] that POD basis
functions built from a flow database generated with a given set of control
parameters is not able to represent the main features of a flow generated
with another set of control parameters. To overcome this problem, we
propose to derive methods allowing to adapt the POD basis functions at
low numerical costs. This is the central question of §5.

1.2 Flow configuration

In this study the confined square cylinder wake flow (figure 1) is chosen as a
prototype of separated flow. This flow is interesting since it presents detach-
ments of the boundary layer, wake and vortices interactions with walls. The
Navier-Stokes equations, written in their dimensionless and conservative form,
write:

ou 1
¥ +(u-V)u=-Vp+ EAU’ (1a)
V-u=0, (1b)

where Re = Ux L/v denotes the Reynolds number, with Uy, = u(0, H/2) the
maximal inflow velocity, L the lenght of the side of the square cylinder and v
the kinematic visosity. In what follows, we consider Re = 100 and Re = 200,
that is to say, the laminar regime. Otherwise, the same parameters as those in-
troduced in [12] are used in this study, i.e. the blockage ratio § = L/H is equal
to 0.125 and the domain Q is (0, 4H) x (0, H). The same numerical method
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as that described in [12] is used. A vorticity representation of a flow snapshot
is presented in figure 1 (dashed lines represent negative values). The boundary
layer detachment, the wake and the vortex interactions with top and bottom
walls are visible.

The paper is organized as follows. Section 2 presents the Proper Orthogonal
Decomposition (POD, §2.1) and the standard velocity POD/Galerkin Reduced
Order Model (POD ROM, §2.2) for incompressible flows. A pressure extended
reduced order model is introduced in section 3. Different stabilization meth-
ods of the POD ROM are presented in section 4. A residuals based stabiliza-
tion method (§4.1), and Streamline Upwind Petrov-Galerkin (SUPG) as well
as the Variational Multiscale (VMS) methods (§4.2) are introduced. Section 5
presents methods to adapt the functional subspace when input system param-
eters change. A Krylov like method (§5.1) and an hybrid DNS/POD ROM
method (§5.2) are presented. Finally, section 6 is dedicated to conclusions.

2 Standard reduced order model based on proper
orthogonal decomposition

2.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) was first introduced in turbu-
lence by Lumley [18] in 1967 as an unbiased definition of the coherent structures
widely known to exist in a turbulent flow. A comprehensive review of the POD
can be found in Refs [2, 3, 4]. The POD, also known as Karhunen-Loéve de-
composition, principal component analysis or empirical eigenfunctions method,
consists of looking for the deterministic function ®(x) that is most similar in an
average sense to the realizations U (x,t). For instance, the realizations U (x, t)
can be velocity fields, pressure fields, temperature fields, etc. Since in this study
the data are issued from numerical simulations, the method to compute POD
modes introduced by Sirovich [3] is adopted (see [4] for justifications). In this
case, the constrained optimization problem reduces to the following Fredholm
integral eigenvalue problem:

T
/ Ct,t)an (") dt’ = Apan(t) (2)
0
where the temporal correlation tensor C'(¢,t") is defined by:
1
C(tat/) = T (U(IB,t),U(IE,t/))Q. (3)

The inner product (.,.), between two fields U and V' is computed as:

(U,V)Qz/U-Vdmz/ZUividm,
Q@ Qi1

where U? represents the i*" component of the vector U with dimension 7.
The eigenvalues A, (n = 1,...,+00) determined in (2) are all real and
positive and form a decreasing and convergent series. Each eigenvalue represents
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the contribution of the corresponding mode ®,, to the information content of
the original data. Note that if U are the velocity fields, the information content
reduces to the kinetic energy.

In Eq. (2), a,, are the time-dependent POD eigenfunctions of order n. These
modes form an orthogonal set, satisfying the condition:

T
%/ (1)t (1) dt = M. 4

The associated eigenvectors ®,, (also called empirical eigenfunctions) form
a complete orthogonal set and are normalized, so that they verify (®,,, ®,,), =
Onm.- _

The spatial basis functions @7, can then be calculated from the realizations
U? and the coefficients a,, with:

1

T
P! (x) = TAn/o U'(z,t)a,(t)dt. (5)

Since the POD eigenfunctions can be represented as linear combinations of
the realizations, they inherit all the properties of the original data. For instance,
the eigenfunctions are divergence free for incompressible flows. Moreover, the
eigenfunctions verify the boundary conditions of the numerical simulation used
to determine the flow realizations.

The set of POD modes {@n}:iﬁ is complete in the sense that any realiza-
tion U (x,t) contained in the original data set, can be expanded with arbitrary
accuracy (in function of Npop > 1) in the eigenfunctions as

Uz, t) = O Nrovl(@ ) = 3 a0, (1)@, (). (6)

n=1

For later convenience, the estimation Ul Neool of U is introduced, where the
brackets contain the indices of all employed modes. Hereafter, we consider that
the ensemble used to determine the POD modes consists of N, flow realizations
(called time snapshots) U(x,t;), € Q, taken at t; € [0,T],i=1,---, N;.

The energetic optimality of the POD basis functions suggests that only a
very small number of POD modes may be necessary to describe efficiently any
flow realizations of the input data i.e. N, < Ng. In practice, N, is usually
determined as the smallest integer M such that the Relative Information Con-
tent, RIC(M) = Zi\il i/ vazsl i, is greater than a predefined percentage of
energy, 0. So that Npop = N, and the approximation (6) becomes

Uz, t) ~ O N (g 1) = Z an(t)®,(z). (7)

2.2 Classical reduced order model and drawbacks

To derive a classical reduced order model only the velocity fields are used, so
that U(x, t) = u(x, t). Thus, decomposition (7) becomes:

(@, 1) = 3 an(t)bula), (8)

INRIA
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where ¢,, denote the velocity POD basis functions. A low dimensional dynam-
ical system is obtained via a Galerkin projection of the Navier-Stokes equa-
tions (1). The Galerkin projection formally writes:

0 1
(d)z', 8_1; + (u - V)u)Q = — (¢, Vp)g + ((f)z‘, EAU) . (9)

Note that since the pressure term (¢;, Vp), can not be evaluated using the
standard velocity POD formulation, it is usually neglected (see discussion be-
low). After some algebraic manipulations using decomposition (8), the reduced
order model writes (see [19] for more details):

da(t) Al o
n =Ai+ > Bijaj(t) = > > Cira;(tar(t) i=1,-+ N.. (10a)

j=1 j=1k=1

with initial conditions

a;(0) = (u(zx, 0), ¢pi(x)), t=1,---, N, (10b)

It is well known that when equations (10) are integrated in time a gradual
drifting from the full-state solution to another erroneous state may arise after
several vortex shedding periods, precluding a correct description of the long-
term dynamics [20]. Even worse, in some cases, the short-term dynamics of the
POD ROM may not be sufficiently accurate to be used as a surrogate model of
the original high-fidelity model. Essentially, three sources of numerical errors
can be identified. As it was already mentioned, the POD/Galerkin method can
first present a lack of inherent numerical stability even for very simple prob-
lems [10]. Secondly, the pressure term is often neglected in the POD ROM. It is
possible to model this term, but to avoid this modelisation, a pressure extended
Reduced Order Model is introduced in §3. The third source of instability is the
truncation involved in the POD-Galerkin approach. Indeed, since only the most
energetic POD modes are kept, the POD ROM is not sufficiently dissipative to
prevent erroneous time amplifications of its solution. This problem is similar to
that of Large Eddy Simulation where the energy transfers between the resolved
scales and the subgrid scales have to be modelled [13]. For instance, 4 modes are
sufficient to restore more than 99% of the kinetic energy of the circular cylin-
der wake flow (2D, laminar regime), but the solution of the such reduced order
model does not converge towards the numerical solution of the Navier-Stokes
equations [21]. It is thus necessary to stabilize the POD ROM. In this study,
thanks to the pressure extended reduced order model, the POD ROM can be
stabilized using the Navier-Stokes operator residuals evaluated with the POD
flow fields reconstructions (§4).

3 A pressure extended Reduced Order Model

It is demonstrated that the contribution of the pressure term vanishes in many
closed flows. However, Noack [11] proved that neglecting the pressure term for
convectively unstable shear layers (as the mixing layer or the wake flow) can
lead to large amplitude errors in the Galerkin model. A solution is to model this
pressure term [11, 12]. One aim of this study is to invoke the least modelization

RR n° 0123456789
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as possible. The purpose of this section is thus to derive a pressure extended
Reduced Order Model, i.e. a ROM that allows to build both the velocity and
the pressure fields. The pressure term can thus be easily calculated using p = p
(see decomposition (11b)). Another key issue is that, knowing the pressure field,
it is possible to evaluate the Navier-Stokes residuals?. Indeed, the Navier-Stokes
residuals will be used to both stabilize (§4) the ROM and to improve (§5) the
POD subspace.

3.1 Construction of the pressure extended POD ROM

As it was mentioned in §2.2, reduced order modeling is based on the restriction
of the weak form of the Navier-Stokes equations to the subspace S§©¥ spanned
by the first IV, spatial eigenfunctions ®,;. Here, we develop a global basis for
both the velocity and pressure fields (see [22] for justification and numerical
demonstration). The exact flow fields w and p are then approximated by:

Nr.

= a(t)eia) (11a)

i=1

= Zr:ai(t)wi(w). (11b)

The velocity and the pressure basis functions, ¢; and ; respectively, are
determined using U (z, t) = (u(z, t), p(z, t))T to calculate the temporal corre-
lation tensor (3). The basis functions ¢; and v; are determined as ®(x, t) =
(p(z, t), ¥(z, t))T, ®(x, t) being obtained from (5).

The substitution of equations (11) in the Navier-Stokes momentum equa-
tions (1a) leads to:

N, das N, N, 1 N,
Z —ZL¢ Z%dh VY angn Z—Z%V%ﬂL@Z%A%" (12)
k=1 j=1 J=1

that is
N, da N, N, Ny
So L+ (¢5- V) rajar =~y Vija;+ ZA@% (13)
=1 j=1k=1 J=1

N, das N, N, N, 1 Ny
¢ Y b+ (65 V) brajor+ D Vija;— 5= > Adja; | =0.
Jj=1 J=1k=1 J=1 j=1 Q
(14)

The Reduced Order Model is then:

ZL’”’d“J ZB ajJrZZ ciajay (15)

20nly the velocrﬂy held is necessarffo evaluate the tesifitils of the Navier-Stokes operator
written in its vorticity formulation.

INRIA
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where the coefficients® L7, B} and C7jy are given by:

Lz(;n) =+ (d)ia d)_])Q ’ (16&)
™ _ (. L Ad - T
Bij = (d)z; ReAqb] ij)g, (16b)

Here the superscript m stands for momentum equations.

In this reduced order modeling we used global basis functions built using
POD, but this methodology could be transposed to other modal decompositions
such as decomposition onto stability modes [8]. Moreover it could be interesting
to use non divergence free modes, as Navier-Stokes residuals modes. Such modes
can be used to stabilize (§4) and to improve (§5) the POD ROM. Hence, if
model (15) is built using non divergence free modes, it does not satisfy the
continuity equation (mass conservation). It is thus necessary to add a constraint
in the reduced order model. This constraint is simply obtained by inserting the
decomposition (11a) in the continuity equation (1b). This leads to:

N
Zajv.qu =0.

Jj=1

Minimizing residuals in a least squares sense, we obtain:

ZB a; =0,

where B( ) = = (V- ¢;)TV - ¢; and the superscript ¢ stands for continuity equa-
tion.

The modified ROM that satisfies both momentum and continuity equation
writes:

N, das N, N, N,
ZlL(;n) s _ Zl (B<m> +aB ) Zkz " azay, (17)
J= J =1

where the weight o has to be fixed. Another approach is to use directly the
weak form of the Navier-Stokes equations

ou 1
(w,E-l—V'(u@u)—i—Vp—EAU)Q‘F(CLV'U)ona (18)

with w = ¢ and ¢ = 1, i.e. BZ-(;) =TV - ¢; and a = 1 in (17). However, the
formulation of equation (17) with o = 0.01 does a better job, at least in our
configuration.

Since we use the flow fields decompositions (11) (not decomposition around
the mean field) the mean flow is solved by the reduced order model. The mean
flow is then U(z, t) = a1 (t)®1(x). It is well known that a small drift of the
first temporal coefficient a; can occur. The flow rate is thus modified. In order

3In a general way, we have (®;, ®; 7)o = 0ij, but not (@, ¢;)y = di;. So, L 7£ Oij-

RR n° 0123456789
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to keep the flow rate as constant, another constraint must be enforced in the
reduced order model (17). For the 2D confined flow, the conservation of flow

rate writes:
/ uds = ¢, (19)
S

where S is a cross section of the channel and c¢ is a constant. For instance S
could be the inflow or outflow height H of the channel, or, at the abscissa of the
cylinder with height L, S = H — L (see figure 1). Numerically, the flow rate has
to be constant over each slice §; = S(x;), 1 <1 < Nx where Nx is the number
of discretisation points in the a-direction (a cartesian mesh is used).
Denoting ¢ = (¢%, ¢*)T and using (11a), condition (19) is approximated
by*:
N,
> ai(t) [ pyds=c, (20)
i=1 St
The constant is initially evaluated by projection of a given snapshot onto
the basis functions ¢. Numerically, in this study we have ¢ = 1. The flow rate

conservation writes:
da
= / ¢ ds =0.

Denoting by f; the vector with components fj = [ s, @3 ds, the flow rate con-
servation over the whole domain €2 writes:

z:dajf]_0

j=1

In a least square sense, the flow rate conservation finally writes:
da;
E LY. R )
Idt

where L}; = fr fj- The superscript r stands for flow rate conservation. Finally
the reduced order model writes:

N,
~ m IS da; - m c E E
(L( )+ﬂL( )) di’fi _ E (Bz(g )+aBi(j)) aj + ]k aja,k 21&)

1 j=1 j=1k=1

2

<.
I

with initial conditions
a;(0) = (U(x, 0), ®;(x)), i=1,---, N, (21b)

This reduced order model satisfies the momentum equations, the continuity
equation as well as the conservation of the flow rate, even for non divergence
free modes.

4If one uses only POD modes, we have N, by 1 since the flow rate is only given by the mean
flow. However, if one uses other modes that do not respect a priori the flow rate conservation
(as residual modes), all the modes have to kept.

INRIA
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Figure 2: Eigenvalues spectrum.

3.2 Numerical results of the pressure extended POD ROM

The reduced order model (21) is tested on a 2D confined square cylinder wake
flow in laminar regime (Re = 200). In this section the POD basis @ is built fol-
lowing the POD snapshot method introduced by Sirovich [3]. Here, 80 snapshots
uniformly distributed over one vortex shedding period are used to compute the
discrete form of the temporal tensor (3). The corresponding eigenvalues spec-
trum is presented in Figure 2. This spectrum is degenerate presenting couples
of identical eigenvalues for the fluctuating modes (the mean flow is indexed by
1). The POD basis functions are obtained via a projection of the temporal
tensor eigenvectors on the whole set of snapshots. Some of them are presented
in figure 3 in terms of iso-vorticity (noted Va¢;, for velocity modes ¢;) and
isobars (for pressure modes ;). The evolution of the RIC introduced in §2.1
is presented in Figure 4. Only the first 5 modes are sufficient to represent more
than 98% of the total kinetic energy. However, another 5-modes reduced order
basis containing approximatively the same percentage of energy could be de-
rived using modes 6 and 7 instead of 4 and 5. Indeed, even if these two couples
of modes are very different (see for instance the topological differences between
¢5 and ¢7 in Fig. 3), they have approximatively the same energetic contribution
as one can see in Figure 5 where the Individual Enegetic Contribution (IEC) is
presented. Thus, a judicious choice of the POD modes is not so evident in this
case. Instead of using the RIC criterium, one can decide to keep all the fluctu-
ating modes presenting an energy contribution greater than a given threshold
(see Fig. 5). Here, all the modes with an energy contribution greater than 102
are kept. This corresponds to 10 fluctuating modes plus the mean flow mode,
i.e. N, = 11 modes.

After having computed once the operators of the reduced order model (21)
using these N, = 11 modes, a long time flow prediction over more than 1000
vortex shedding periods is performed. Figure 6 presents the temporal evolu-
tion of the set of coefficients {a;}\7,, solution of the system (21), over the 40
vortex shedding periods. Since the temporal tensor eigenvalues spectrum is de-
generated (it presents couples of eigenvalues) only the odd-indexed coefficients
are presented (the even ones have the same behavior). It is noticeable that no

RR n° 0123456789
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Va3

Vads

Vg7

Figure 3: Representation of some POD modes. Iso-vorticity (left) and isobars
(right). Dashed lines represent negative values (the pressure reference is arbi-
trarily chosen to be zero).

100
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“‘é““l‘o““l‘S““éO 1075““Fl)““llo““‘ll\’)““zo
index of POD modes index of POD modes
Figure 4: RIC of fluctuating modes. Figure 5: Eigenvalues spectrum.

divergence occur for the long time prediction. A comparison of the projected
(projection of the Navier-Stokes solution onto the POD basis) and the predicted
(solutions of the ROM (21)) limit cycles over 1000 vortex shedding periods is
presented in Figure 7. The predicted limit cycles perfectly match the projected
ones even for small scales (high order modes) where the high-frequency dynam-
ics is more complex. The good accuracy for all limit cycles indicates also that

INRIA
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Figure 6: Temporal evolutions of the predicted POD coefficients over 40 vortex
shedding periods. 11 modes model.

as

1

Figure 7: Comparison of the projected (NS: ) and the predicted (ROM: —)
limit cycles over 1000 vortex shedding periods. 11 modes model.
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Figure 8: Temporal evolutions of the predicted POD coefficients over 40 vortex
shedding periods. 5 modes model.

no spurious dephasing occurs between modes. The system (21) with 11 modes
is numerically stable for short and long time predictions so that no calibration
procedures are needed. We want to highlight that a small gradual drifting could
be observed using classical POD reduced order model where the pressure term
remains unmodeled. It is thus important to calculate, or at least to model, the
pressure term.

As it was already mentioned (§2.2), when system (21) is integrated in time
a gradual drifting from the full-state solution to another erroneous state may
arise after several vortex shedding periods if only a very small number of modes
are kept. Indeed as it was shown in figures 8 and 9, the solution of model (21)
built with 5 modes reaches erroneous limit cycles, and can even diverge with 3
modes (see figures 10 and 11). In this simple test case, only N, = 11 modes are
sufficient to build a stable ROM. However, in many practical applications (three
dimensional flows, turbulent regimes, complex geometries, etc) the number of
POD modes that represents 99% of the total kinetic energy is large. Usually,
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as

d; 4

Figure 9: Comparison of the projected (NS: ) and the predicted (ROM: —)
limit cycles over 1000 vortex shedding periods. 5 modes model.
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Figure 10: Temporal evolutions of the predicted POD coefficients over 10 vortex
shedding periods. 3 modes model.
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Figure 11: Comparison of the projected (NS: <) and the predicted (ROM: —)
limit cycles over 1000 vortex shedding periods. 3 modes model.

approximatively 60% to 80% of the kinetic energy can be retained, so that
reduced order models are unstable. The following section presents methods
based on the Navier-Stokes residuals to stabilize reduced order models built
with a very low number of modes (namely, 3 or 5 modes in our case).

4 Stabilization of reduced order models

To overcome errors due to the truncation involved in the POD-Galerkin ap-
proach, different kind of POD ROM/Galerin stabilization methods are com-
monly used.

The first class of stabilization methods uses eddy viscosity. Since the early
works on POD ROM, it was shown that artificial viscosity can help stabiliza-
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tion [23]. A natural way is to add a constant viscosity acting the same way on
all POD modes: this is called Heisenberg model [24, 25]. The global dimension-
less viscosity 1/Re is thus replaced by another one defined as (1 + ¢)/Re. The
problem is then to determine or to adjust the constant ¢ > 0 in order to obtain
a better accuracy for the POD ROM. Rempfer and Fasel [26] and Rempfer [27]
have improved this idea by supposing that the dissipation is not identical on
each of the POD modes. Thus, the global viscosity could be replaced by modal
viscosities 1/Re; = (1 + ¢;)/Re on each POD mode ®;. It is then necessary to
determine a set of correction coefficients spanned by ¢; for i = 1, ..., N,. In
[27] it is argued that these eddy viscosities are a function of the coupled modes
index j =1, ..., N,/2. The coefficients ¢; are such that ¢; = K x j where K is
the unique constant to determine or to adjust. More recently, Karniadakis em-
ployed a dissipative model called Spectral Vanishing Viscosity Model (SVVM)
to formulate alternative stabilization approaches [28] and to improve the accu-
racy of POD flow models [20]. In this spirit, an optimal spectral viscosity model
based on parameters identification technique has been proposed [29].

The second class of stabilization methods consists in calibrating the polyno-
mial coefficients of the POD model [12, 30, 31]. All the coefficients of tensor B
are determined using a least square or an adjoint method so that the predicted
coefficients a;(t) are as closed as possible to the eigenvectors of the tempo-
ral correlation tensor (see equation (2)). These calibration methods, based on
system identification, are very similar to spectral viscosity closures. However,
calibration methods allow such a representation of the inter-modal transfers.

The third class of stabilization methods uses a penalty term. This consists in
introducing a new term in the reduced order model. Cazemier [32] and Cazemier
et al. [33] used modal kinetic equations to determine viscosities to be added on
each POD mode. Cazemier [32] supposes that the lack of interaction between
the calculated and the non-resolved modes is responsible of a linear divergence
of the temporal POD coefficients. To solve this problem another artificial linear
coefficient is introduced in the POD dynamical system. The POD ROM writes
then:

da- N, N, N,
dtz =A; + legij a; + Zl ];Cijk ajar + H; a;,
Jj= j=1k=

where, after some manipulations based on energetic conservation,

2
2

r

1
H; = W Cijk <aiajak> — Bii.
vi=1k=1

r

<
Il
=~
Il

For a compressible flow, Vigo [34] proposed a stabilisation method based on
a cubic penalization term in order to prevent a nonlinear amplification. This
method seems to give good results but the construction of this cubic term and
the resolution of the POD ROM induces high numerical costs. A linear penalty
term can also be added to model the pressure term. The drawbacks of all penal-
ization methods is the numerical costs involved in computing the penalization
term.

Finally, the last class of stabilization methods that can be found in the
literature introduces dissipation directly in the numerical schemes used to build
the POD ROM [35]. Instead of using the standard L? inner product in the
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POD, the Sobolev norm H! is used [36]. However, the level of dissipation has
also to be fixed.

The main drawback of all the previous stabilization methods is that there
are always a lot of parameters to fix or to optimize. The aim of this section is
to derive stabilization methods that involve less empirical parameters.

Let AN+ be the model defined by (21) and derived using with N, modes.
Unstable models correspond to N, = 3 or N, = 5.

The two kinds of stabilization methods presented in what follows use the
residual of the Navier-Stokes (NS) operator evaluated with the POD flow fields.
These residuals, called POD-NS residuals, are:

ou _ _ 1
Ry (z, t) = N +(u-V)u+ Vp— EAu, (22a)
Reo(x, t) =V - u, (22Db)

where the POD flow fields u and p are given by decompositions (11).

We showed that the POD ROM is stable if a sufficient number of modes is
taken into account in the model. For instance, model A is stable. Thus, the
POD ROM is stable if the POD flow fields get close enough to the exact flow
field. The exact flow field writes:

u(z, t) = u(zx, t) + u'(z, t), (23a)

p(:l:, t) = 5(1” t) +pl($a t)’ (23b)

where v/ and p’ denote the fine scales that are not resolved by the POD ROM.

Unfortunately, the exact resolution of the fine scales equations (with solutions
u’ and p’) requires computational costs similar to those required for solving the
complete Navier-Stokes equations. The objective of the following section is thus
to derive stabilization methods that make use of approximations of these fine
scales.

4.1 Residuals based stabilization method: model Bk

The goal of this method is to approximate the fine scales v’ and p’ onto some
adapted basis functions. The exact flow field is hence approximated as:

2

r Nr+K

u(z, t) =Y ailt)pi(x)+ Y ai(t)pi(z), (242)
i=1 i=N+1
u(z,t) u'(x,t)
N, N+K
p(@, ) =Y ait)i(@)+ Y alt)i(@). (24b)
i=1 i=N,+1

Pz, t) P (x,t)

If the basis functions ¢, and 1 are respectively equal to ¢; and 1); the ener-
getic representation is improved. Indeed, the more POD modes are retained,
the better is the energetic representation. This is a classical remark of POD.
However, it is not granted that POD modes are optimal to stabilize the ROM.
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If we suppose that a sufficient amount of energy is captured with NV, modes, it
is not necessary to add any more energy in the POD ROM, but rather some
viscous dissipation. For instance, model AP/ i.e. model BI¥? with ® =
in (24), is not stable. However, it will be demonstrated that another 5-modes
model with N, = 3 and K = 2 is stable using different modes ®’. It is well
known that the residuals of the governing equations play a major role to sta-
bilize dynamical systems [14]. The leading idea of this section is thus to take
¢, and 1] as being the POD basis functions of the POD-NS residuals defined
by (22). The method is the following.

Algorithm 1 (Residuals based stabilization)

1. Integrate the ROM AIN'] to obtain a;(t) and compute Ny coefficients a;(t),
k=1,...,N,.

2

T

2. Compute the POD flow fields u(x, ty) = a;(ty)oi(x), plx, ty) =
1

K2

N,
Z a;(ty)i(x), and then the POD-NS residuals Ry (x, t) and Re(x, ty).
i=1

3. Compute the POD modes ¢} (x) and . (x) of the POD-NS residuals Ry (x, tr,)

and Re(x, ty) .

4. Add the K first residual modes ¢, and 1, to the existing POD basis ¢;
and ; (using Gram-Schmidt process) and built a new ROM (here the mass
and flow rate constraints are important).

The reduced order model obtained with this algorithm is noted BIVriK] where
N, is the number of initial POD basis functions and K is the number of POD

residuals modes. Results of this model are presented in section 4.3.

4.2 SUPG and VMS methods: models C™land DIV

The Streamline Upwind Petrov-Galerkin (SUPG) and the Variational Multiscale
(VMS) methods are devised to provide appropriate modeling and stabilizations
for the numerical solution of the Navier-Stokes equations. The SUPG method
is a simplified version of the complete VMS method, and the main steps leading
to these models are described in [14].

The main idea of both SUPG and VMS methods is to approximate the fine
scales by:

u’ >~ —TM RM (25&)

p ~ —1¢ Re, (25Db)

where 737 and 7. denote some constants to be fixed.
The SUPG and VMS reduced order models can be formally written:

(m) ) 995 <N [ ) (©) A RA - (m)
(Lij + 5Lij ) d_tj = Z (Bij + aB;; ) a; + chijk a;ay

j=1 j=1 j=1k=1

s
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Figure 12: Comparison between original POD modes (left, model AP!) and
residuals modes (right, model B[3?2]). Dashed lines represent negative values.

where the ”penalization” term Fj(t) is defined as follows:

e For the SUPG reduced order model, noted C!N*] we have:

FAUPC () = (- Vi + Vi, T Rur(z, t))a + (V - @i, 70 Re(, t))a.
(27)

e For the VMS reduced order model, noted DIV, we have:

FVMS () = FSUPC() + (u- (V)T 7 Rt (, 1))

- (Vd)i, ™M R]u((l?, t)®TM RM(ZE, t))Q (28)
The parameters Tp; and 7¢ can be found using some scaling arguments (see [37]
for more details), so that no modelisation is required. This can lead to an univer-
sal POD ROM closure model. However, in what follows, parameters 7y, and 7¢
are determined using an optimal formulation, so that the temporal coefficients
a;(t) fit as best as possible the eigenvectors of the correlations tensor (3).

4.3 Results of stabilization methods

In this section we take exactly the same configuration and parameters than
those used in §3.2. The confined square cylinder wake flow for Re = 200 and
the ROMs are built using Ny = 80 snapshots uniformly distributed over one vor-
tex shedding period. The model based on residual modes, BIN+K] s integrated
following §4.1. The SUPG model, C!N"), and the VMS model, DI™"]| are inte-
grated using (27) and (28) respectively. The unstable configurations observed
in §3.2 are studied, i.e. N, =5 and N, = 3. Moreover, for model BIN=K] only
K = 2 residual modes are used. These two additional modes present a different
behavior than POD modes 4 and 5 used to build model APl (see figure 12).
The temporal evolutions of the predicted POD coefficients a;(t) obtained
with models B, C' and D, over 40 vortex shedding periods, are presented in
figures 13 and 15 for N, = 5 and N, = 3 respectively. The three reduced order
models provide an accurate description of the asymptotic attractor (compare
with results in figure 6), and results are indistinguishable between model B, C'
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Figure 13: Temporal evolutions of the predicted POD coefficients over 40 vor-
tex shedding periods. 5 modes model with stabilization. (Indistinguishable
difference between models B®2 €6l and D)
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Figure 14: Comparison of the projected (NS: ) and the predicted (ROM:
——) limit cycles over 1000 vortex shedding periods. 5 modes model with
stabilization. (Indistinguishable difference between models B2, Pl and DI®l.)
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Figure 15: Temporal evolutions of the predicted POD coefficients over 40 vor-
tex shedding periods. 3 modes model with stabilization. (Indistinguishable
difference between models B2 C13l and DBL.)

and D. The limit cycles obtained with models B, C' and D are represented
in figures 14 and 16 for N, = 5 and N, = 3 respectively. These limit cycles
represent 1000 vortex shedding periods. There are no difference between results
obtained from the three models. These limit cycles are compared to exact
ones obtained by DNS (projection of the snapshots onto the POD functional
subspace) in the figures. Excellent agreements are observed between all these
limit cycles, thus validated all the stabilization methods describe in §4.1 and
§4.2.

In order to highlight the differences between the stabilization methods pre-
sented above, we study the L? norm of the POD-NS residuals introduced in (22).
Figures 17(a) and 18(a) show the temporal evolutions of the Ly norms of the
POD-NS residuals obtained initial model A (obtained from (21) or (26) with
F; = 0) with N,. = 5 and N, = 3 respectively. For sake of clarity, only 20 vortex
shedding periods are represented. An initial growth and then an asymptotic
limit is reached with N, = 5. This can be explained by the fact that the dy-

RR n° 0123456789



inria-00288415, version 2 - 18 Jun 2008

20 Bergmann, Bruneau € Iollo

60 -1

20

20

40

60} -

Figure 16: Comparison of the projected (NS: ) and the predicted (ROM:
——) limit cycles over 1000 vortex shedding periods. 3 modes model with
stabilization. (Indistinguishable difference between models B1*2l, C1?l and DI3l)

namic converges towards another attractor (see figure 7). On the contrary, an
exponential divergence occurs with N,. = 3 (see also the divergence in figure 11).
We compare the effectiveness of models B, C' and D in figures 17(b) and 18(b).
All stabilized reduced order models are accurate (low values of the POD-NS
residuals norm). For the N, =5 or N, = 3, models C' and D are more accurate
than model B (lower residuals). Moreover, the VMS model, D, is better than
the SUPG one, C, but without significant differences between them. In our
reduced order modeling the SUPG method seems to be sufficient to obtain an
accurate POD ROM. However, the numerical costs required for both SUPG and
VMS methods are similar. To conclude on the first stabilization method, it is

0.045 ———F—T—T—T—T T T 0.02 ———T—T—T——T—T—TTT———

[ [ [ B[S,Z] ]
0.04F 0018 .
z SEEERYell |
0.035 0016 . ]
I Db ]
003 0.014 |+ .
ol ]
Eo.ozs 1
= o012 i
i
002 1

0.01 r

t A ] T I I

0.015 gt u POTTOTIT ;u“ﬂ‘ oy ym 1yl il
i n i Tl et e T
o008k “}“fl,,'“"'; i ,1’]!4‘]!’(,“':&/‘]‘!‘? P ‘,‘ i "’1’{ i 1 b MW‘T

0.01 X 1
0.006 |- .

.oy [ . PR TR S NSRRI ST
0'0050 5 10 15 20 0 5 10 15 20

Number of Vortex Shedding periods

(a) Initial model.

Number of Vortex Shedding periods

(b) Stabilized models.

Figure 17: Temporal evolution of the L? norm of the Navier-Stokes residuals
computed using a 5-modes ROM.
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Figure 18: Temporal evolution of the L? norm of the Navier-Stokes residuals
computed using a 3-modes ROM.

noticeable that although models B*? and Al®! used 5 modes, only model B3
is stable. It is thus not necessary to include a lot of modes in the POD basis in
order to obtain a stable model, but only to add some appropriate ”damping”
modes (see figure 12).

5 Improvement of the functional subspace

Since the POD was first introduced in turbulence by Lumley [18] in 1967 as an
unbiased definition of the coherent structures in a turbulent flow, POD was used
to analyze physical characteristics of turbulent flows. More recently, Reduced
Order Models based on POD are found as being an efficient tool for flow control
purpose (see [38, 39, 40, 29, 17] for examples). Indeed, the use of POD ROM
allows to reduce significantly the CPU time during numerical simulation and
also to reduce the memory storage, an essential feature when adjoint based
optimal control methods are used. Different optimization methods that couple
POD ROM and optimal control have been taken under consideration. The
main drawback for flow control is that the POD basis is only able to give an
optimal representation of the snapshots set from which it was derived. The
approximation properties of the basis can be greatly degraded under variation
of some input system parameters values, as control parameters [15, 16, 17] .
For flow control purposes, some special care has to be taken to build the POD
basis functions. One solution is to use an a priori global database composed
by several dynamics. For example, it is possible to use a database composed
by snapshots that correspond to different control laws [17] or different Reynolds
numbers [41]. One efficient way to do that is either by Centroidal Voronoi
Tessellations (CVT) [42] or by using an ad-hoc time-dependent control law that
generates a flow representing a large band of dynamics [43, 40, 29]. We privilege
the idea of updating the POD basis during the simulation. Trust Region Proper
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Figure 19: Comparison of the iso-vorticity representation of some POD modes.
The initial POD basis at Re; = 100 (left) and the target POD basis at Rez = 200
(right). Dashed lines represent negative values.

Orthogonal Decomposition originally introduced by Fahl [44] is an example of
such ideas (see Refs. [45, 17]). The main drawback of the TRPOD method is
that the POD basis has to be re-actualized. Each actualization requires a large
computational effort since it involves DNS.

The aim of this section is thus to present efficient methods to improve - or
actualize - the functional subspace. As it was mentioned, the underlying idea
is to adapt the basis when input system parameters change (Reynolds number,
control parameters, etc). For simplicity reasons, we will only focus on Reynolds
number modifications, but the forthcoming process is easily transposable to
other parameters modifications. Here, for instance, our goal is to obtain the
target basis built at Res = 200 starting from the initial basis built at Re; = 100.
These two basis are quite different, especially for the mean flow mode ¢1 (see
figure 19).

In what follows two methods are considered.

e The objective of the first method is to improve the basis using residuals
based approximations of the missing fields u’ and p’. This is exactly the
same idea that was used in (§4.1), applied iteratively (§5.1).

e The aim of the second method is to modify the POD database by means
of DNS simulations (§5.2).
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These two methods are based on an iterative process. The current POD basis
obtained during the actualization process is simply denoted by ® = ®(™ where
n is the number of iterations considered (number of POD basis actualization
cycles). Obviously, &) = 71 and we expect at least that &) = Pl
The convergence criterion tested in this study is the best projection of &)
onto @72 noted ® - 72, For our Navier-Stokes test case with Re; = 100 and
Rey = 200, the initial value of the convergence criterion is ®7€1 . ez ~ 0.5,
The expected final value is naturally ®() . ®%¢ ~ 1, with the smallest possible
number of iterations n.

5.1 A Krylov-like method

The first method used to improve the functional subspace uses successive appli-
cation of the Navier-Stokes operator on the residuals. This method is nothing
but an iterative version of the stabilization process introduced in §4.1. We have
seen that this method does a good job to stabilize POD ROM, so it is rea-
sonable to investigate its performance to improve the functional subspace. This
subspace adaptation is described by the following algorithm and is schematically
represented in figure 20. The numerical integration of the ROM (21) is always
performed at the target Reynolds number Re = Res (the Reynolds number Re
is required to evaluate B(™), see equation (16b)). Otherwise, all the POD coef-
ficients, i.e. L") L) B B ™) are built using the current updated
POD basis, ® = ®™), following (16).

Algorithm 2 (Krylov like adaptation method)

Start with the POD basis to be improved, ®; with i = 1,..., N, (in our
case built for Re = Rey). Let No = N, and T = [0, T] be an observation
period.

1. Build and solve the corresponding ROM over T with Re = Res to obtain
a;(t) and extract Ny snapshots a;(ty) withi =1,...,N, andk =1,..., N;.
Compute the flow fields u(x, ti)), p(x, tr) from (11).

2. Compute the POD-NS residuals R(zx, ty) = (R (z, ty), Ro(x, ti))T from (22).

3. Compute the POD modes ®(x) = (¢(z), ¥(x))T from the POD-NS resid-
uals database R(x, ty), k=1,..., N;.

4. Add the K firsts residual modes ®(x) to the existing POD basis ®;(x)
(using Gram-Schmidt process)

e P — P4+ W
o N. — N, + K
e If N, is below than a threshold, Ny,qz, return to 1. Else, go to 5.

5. Do step (1). From fields u and p, perform a new POD compression from
with NT = No.

e If a convergence criterion is satisfied, stop. Else, return to 1.
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Let N, = No. {®;}7, for Re;.

\

Build and solve the ROM (®) if Ny < Nyag Compute the residuals R(x, tj)
Extract N, snapshots a;(tx) > from u(x, t;) and p(ax, t;)
Compute u(x, t;) and p(ax, t;) NS operator evaluated for Res
= Coarse scales (®) if N, > Npaa = Missing scales (u' = —TR)

A A

y

Perform a new POD

using u(x, tx) and p(x, ty)
Extract firsts Ny modes ®;
Let N, = Ny

Add {&)l}fil to {‘I)l}fil
Let ® — @+ &P
Let N, «— N, + K

Perform a POD from R(x, tj)

Extract firsts K modes ®;

A

Figure 20: Schematic representation of the functional adaptation process based
on a Krylov-like method.

This algorithm is a simplified version of a generalized minimal residual (GM-
RES) algorithm for linear system (see [46] for more details about GMRES
method).

Before testing this adaptation method to the two-dimensional confined square
cylinder wake flow governed by the Navier-Stokes equations (§5.1.2), a simple
one dimensional test case is performed on the Burgers equation (§5.1.1).

5.1.1 A one dimensional test case: the Burgers equation

The burgers equation, in its dimensionless form, writes:

2 2
78u+18i7i@:07 (29)

Lp(u) = Ot ' 2 0r Reox?

with initial condition®

t (22 — 1
u(z, 0) = sin (WM) with ¢y = 1.3, (30)
tan(cs)
and boundary conditions
u(0, t) =0,
0, 1) (31)
u(L, t) = 0.

This equation is solved onto the domain D defined by:

D = {(z, t) €0, 1] x [0, 1]}.

5This value of ¢ is choose to obtained a shock wave in the domain D.
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Figure 21: Comparison of few POD basis functions obtained for Re; = 50 (—)
and Res = 300 (— — —).

We chose the initial and target POD basis, ®%¢ and ®7°2, such that ®7e1 .
®F2 ~ 0.5, i.e. Rey = 50 and Res = 300 in this context. We used 40
snapshots uniformly distributed over the whole observation domain 7 = [0, 1].
Figure 21 shows a comparison between few POD basis functions obtained for
Rey and Res. Significant differences are observable. Results of the adaptation
process are presented in figure 22 which shows the evolution of the convergence
criterion versus the number of iterations. Convergence is obtained in less than
6 iterations. In other words, the POD basis at Res is obtained from that at
Req using only 6 integration of the POD ROM, without any DNS. The POD
basis functions at Res can even be determined starting from one mode (the
normalized intial condition), or from any given basis. This represents a very
efficient method to actualize a POD basis for the 1D burgers equation. It is
then of interest to see if this adaptation method can provide as good results for
the Navier-Stokes equations.

5.1.2 The confined square cylinder wake flow

For the confined square cylinder wake flow (2D Navier-Stokes equations), we
take Re; = 100, Res = 200 and we also use 40 snapshots distributed uniformly
over one vortex shedding period T, so that 7 = [0, T], of the 2D confined
square cylinder wake flow. During the adaptation process, the vortex shedding
period T has to be actualized in consequence. Results are presented in figure 23.
Unfortunately, no convergence is obtained. The algorithm is stopped when the
computational costs were estimated to be larger than those necessary using
only DNS. Same results are obtained using 400 snapshots uniformly distributed
over an observation period 7 = [0, 107], not presented here. The information
contained into the Navier-Stokes residuals are not sufficient to improve the POD
basis functions for a dynamical change, but they are sufficient to stabilized the
ROM for a given dynamic (see §4.1). One possible explanation is that the
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Figure 22: Evolution of the convergence criterion versus the number of iterations
for the 1D burgers equation.
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Figure 23: Evolution of the convergence criterion versus the number of iterations
for the 2D Navier-Stokes equations.

approximation of the missing scales, u/(x, t) = —7Ty Ry (x, t) and p'(x, t) =
—1cRc(z, t), is only valid for fine scales, i.e. the ones that are not represented
due to the truncation of the POD basis. Residual modes have just dissipative
behavior. We can ask if it is possible to find good values for parameters s
and 7¢ for "quite large” missing scale. The answer is not so clear yet. One
solution could be to look for U’(zx, t) = M(t)R(z, t), where M € R3*3 for the
2D Navier-Stokes equations.
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Figure 24: Schematic representation of the hybrid method DNS-POD ROM to
improve the POD subspace.

A step toward the full GMRES algorithm was also made. Few Arnoldi
modes, ® = AP/ B! = AP/ ..., have been added to the initial basis. The
operator A denotes the linear operator obtained after an adapted discretization
of the Navier-Stokes equations, so that AU = b(U). The results have not
been really improved. A large Arnoldi basis should be certainly necessary, but
the numerical costs required to generate (and to solve) the POD ROM become
prohibitive.

The following section presents another kind of algorithm that couples POD
ROM with DNS. If the Navier-Stokes lives on the same attractor (no dynamic
change), the DNS can be greatly accelerated using POD basis functions. Indeed,
a Galerkin free reduced order model is recently used as DNS accelerator [47] .

5.2 An hybrid DNS/POD ROM method

It has been demonstrated that the percentage of the reconstruction energy de-
creases rapidly outside the temporal interval defined by the snapshots database
for three dimentional flows [30]. Thus, the aim of the present methodology is
to update the database statistics when time evolves. By doing this, the POD
basis is actualized and represents with high fidelity the current flow. The main
idea is to implement a process allowing to replace older snapshots with new
ones at low numerical costs. These new snapshots can be obtained using few
DNS iterations. Once a new POD basis is available, a new ROM is constructed
and integrated until a new snapshot is needed. Then, the process is repeated.
We chose to take snapshot periodically. A schematic representation of the algo-
rithm is presented in figure 24. Let us denote Re; the Reynolds number used
to build the initial POD subspace, and Res the Reynolds number associated to
the new desired dynamic. All the simulations (ROM and DNS in figure 24) are
performed at Res. After few DNS iterations, a new snapshot is available. To
build a new POD subspace, we have to update the database (§5.2.1), to compute
the correlations tensor (§5.2.2) and to compute the new POD basis (§5.2.3). All
the coefficients of the ROM (21), i.e. L™, L) B B ) are built
using the current POD basis (corresponding to the modified database), and the
integration is performed using Re = Res. Indeed, the Reynolds number Re is
required to evaluate B(™ (see(16b)). In order to obtain a ”real time” POD
basis actualization, efficient methods are developed for each step.

5.2.1 Database modification

Following equation (7) each snapshot included in the POD database can be
approximated by:

Ol M@, t) = 3 an () Ba(a). (32)
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Using one new snapshot, the POD database is modified by either adding this
new snapshot, or by replacing the older snapshot by this new one. The position
of the new snapshot in the database is denoted by s. The number of snapshots
included in the new database is thus N = max(s, Ng). The snapshot Us can
be written as the sum of its projection onto the POD basis plus its orthogonal
part as:

Uz, to) N =T Nl 1) + UL (w, t).

Therefore, in general, each snapshot is:

et N =T Nl @, ty) + 60U (2, 1),
where § represents the Kronecker symbol.

5.2.2 Evaluation of the temporal correlation tensor

In order to reduce the computational costs, the temporal correlation tensor C'

o .

is calculated using the snapshots decomposition ﬁ][cl o]
Clte,t)) = U(a: )L o], ﬁ(x,tl)[l"“’NT])Q
N, N
= | Y ai(te)pi(®@) + 6k U (2, th), Y a; (1) (@) + 6,.U ™ (m, 1)
i=1 j=1 o
N, N,
= Z Z a; tk a; tl) ((]51(:13), ¢j (.’13))Q 4015015 (UJ‘(.’IZ, tk), UJ‘(.’IZ, tl))ﬂ
i=1 j=1 T
N, N,
0 Y ault) (u(@). U (@,0)) 401 Y ay(0) (UL (@ )by (@)
i=1 j=1

=0 -0

Hence, the approximation of the temporal correlation tensor simply writes:

Ny

C(tk,tl Zaz tr az(tl +5k55l5/ ZUL €T tk: (m,tl)dx. (33)

i=1

The evaluation of this matrix is very fast. Indeed, it is not necessary to calculate
snapshots correlations on the whole mesh, but only correlations on the retained
temporal coefficients. Other than that, it is only necessary to evaluate one
auto-correlation with Uj‘ to evaluate the component Css.

5.2.3 Actualization of the POD basis

All the quantities evaluated before the calculation of the temporal correlation
tensor (33) are superscripted by (n). The actualized POD basis could be eval-
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uated from (see [3] for more details):

k j=1 \i=1
N, N,
1 a(n—i—l)( £)a (n)( )¢(n)(w)+ 1 UJ_(n)( ) (n+1)( )
)\(n-i-l) k J J i )\(n-i-l) y Us s
k i=1 j=1 A

Introducing the modal correlation tensor K(t1) ¢ RNs*Ns between old and
new time-dependent POD eigenfunctions,

N,
(n+1) (n+1) )

Kkz' )\(n+1 Z (tj)a
and the vector

n 1 (n) n+1

S (@) = WDUL (@, )0 (t,),
we have:
N,
T ZK”%’” z) + 8" (@). (34)

Using the matrix S *1) with elements S(J"H) s7 () , the new POD basis can
be obtained from the old one using the linear apphcatlon @ :R"xR" —» R"xR"
defined as follows:

@1 M o ¢t = g (nt1) | gln+1) (35)

The actualization of the POD basis is thus much faster than in the classical way
(reconstruction of a new POD basis). Indeed, it is not necessary to make a sum
on the whole set of snapshots (N), but only to make a weighted sum on the
N, < N old POD modes plus a part of the orthogonal contribution.

This process for the hybrid method can be applied at each new snapshot.

5.2.4 Numerical results

During the simulation of the confined square cylinder wake flow at Re; = 100,
40 snapshots are uniformly taken over a vortex shedding period to evaluate the
temporal correlation tensor.

In the first phase, the method to evaluate the temporal correlation tensor
introduced in §5.2.2 is tested. A comparison between eigenvalues of the tem-
poral correlation tensor evaluated from the exact field U and from a IN.-mode
approximated one, UL Vvl is presented in Fig. (25). For this example we
set N,. =5 and N, = 11. In the two cases, the Relative Information Content
RIC(Ny,) is greater than 99%. It can be seen that the N, first eigenvalues com-
puted from the N,.-approximated temporal correlation tensor accurately fit the
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6 10 12 4 1 ;
index of POD modes index of POD modes
(a) Ny = 5. (b) N = 11.

Figure 25: Comparison of the temporal correlation tensor eigenvalues evaluated
from the exact field, U, and from the N,-modes approximated one, U V-],

eigenvalues computed from the exact temporal correlation tensor. All the other
approximated eigenvalues for n > N, are equal to zero except Ay,.i11 which
indicates a non-zero contribution of the orthogonal part U'.

Then, the influence of the linear actualization of the POD basis is considered.
Results of the linear actualization of the POD basis functions introduced in
section 5.2.3 are presented in Fig. 26. Here, one step of the actualization of a
transient flow from Re; = 100 to Res = 200 is presented. As in the previous
illustration, a 40 snapshots database is used to compute the initial POD basis

PO
EPPPPRI =-PPEPEEE

(a) ¢4 (0) o = o ({6\” 1, U).

@@@@@@©@.@@@ Dg@@ % @@@@[
- SCLBOORRBERE! RETUISlelol

(©) ¢ @ f" = ¢ ({61, U").

Figure 26: Modification of the POD basis functions under the application of the
linear transfomation . Streamline representation of the velocity fields.
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Figure 27: Evolution of the convergence criterion versus the number of vortex
shedding periods.

We consider the results concerning the hybrid method. The initial and tar-
get POD basis, ®7°1 and ®7¢2, correspond to Reynolds numbers Re; = 100
and Res = 200 respectively. Figure 27 shows the evolution of the conver-
gence criterion ® - &2 versus the number of vortex shedding periods (and
so versus the number of actualization iterations) for different percentages of
actual the DNS. Denoting Txs and Troas the time intervals where we use ei-
ther DNS or POD ROM 6 respectively, the percentage of DNS is defined as
Pys =Tns/(Tns +Trow)-

The simulation with Pys = 100% does not involve any ROM. It can be
seen that 10 vortex shedding periods are necessary to converge towards the
target POD basis using only DNS. This time corresponds to that required for
perturbations, coming from the dynamics changes Re; — Res, to cross the
whole simulation domain 2 and to reach an asymptotic behavior. The same
results can approximatively be obtained with Pys = 90%, Pnys = 80% and
with less accuracy 70% DNS. However, no convergence is obtained with less
than Pygs = 70%. Hence, a sufficient amount of DNS is necessary to converge
toward the target POD basis. An explanation of this phenomenon is given in
figure 28. Since the POD basis is not well adapted to give a good representation
of the current flow (there is a delay in the adaptation process), the solution of
the POD ROM moves away from the exact ”desired” solution. The DNS has
to be able to correct this drift. If the DNS is able to correct the error made
by the POD ROM (see figures 28(a) and 28(b)), the convergence is obtained.
However, if the DNS is not able to correct this error (see figure 28(c)), it is not
possible to converge toward the target basis.

A few comments about the numerical costs can be given. The computational
cost due to the ROM is negligible in comparison with the DNS ones. Also, the

6We do not use the number of iterations because the POD ROM allows to use greater time
steps than the DNS.
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convergence
L

(a) Pns > 70%.

convergence

divergence

(¢) Pns < 70%.

Figure 28: Schematic explanation for the convergence of the hybrid DNS-POD
method. ---- exact "target”; — — — POD ROM ; DNS.

POD basis update described in sections 5.2.1, 5.2.2 and 5.2.3 generates very low
numerical costs. In practice, our estimation is that taking Pys = 70%, which
still gives good results in terms of approximation, approximatively 20% of the
total numerical costs can be saved as compared to DNS.

6 Conclusions

The objective of this paper was to improve reduced order modeling based on
proper orthogonal decomposition. Indeed, the proper orthogonal decomposi-
tion method is a viable technique to build low dimensional models, but it also
presents several drawbacks: (i) since usually only velocity fields are used to
build the reduced order model, the pressure term has to be modeled, (ii) it is
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necessary to model the effects of the fine scale that are not explicitly taken into
account in the expansion and that are responsible of the main part of the vis-
cous dissipation, and (iii) the POD basis functions are only able to give a good
representation of the flow dynamics included in the given snapshots database.

We have shown how to build a pressure extended reduced order model at no
additional cost in comparison with a standard velocity ROM. Using this pressure
extended ROM, it is not necessary to model the pressure term. Since both the
velocity and pressure POD fields are available, it is possible to evaluate the
Navier-Stokes operator residuals using these POD fields. Although this model
gives very good results in term of asymptotic solution, it is still necessary to
model the effects of the unresolved fines scales.

In this respect, different stabilization methods for the reduced order model
were taken under consideration. The stabilization we propose consists in mod-
eling the effect of the missing fine scales. To this end, we made the choice of
using residuals of Navier-Stokes operator evaluated from POD fields. The first
method proposed consists in enlarging the POD subspace with few residuals
modes. If the original of modes is not large enough to provide appropriate dis-
sipation, this method is able to stabilize the model. The stabilization is not
due to the enlargement of the POD subspace, in fact an unstable model can
be stabilized replacing a few number of original POD modes with the same
number of residual modes. No empiric parameter has to be estimated in this
approach. The second approach proposed relies on an approximation of the fine
scale equation. Both SUPG and VMS methods give good results. In this ap-
proach, only two parameters have to be estimated. In some specific cases [37],
these parameters can be approximated using some scaling arguments, leading
to an universal model with no empiricism.

Finally, we have tried to improve the POD functional subspace. The goal
was to derive efficient methods to adapt the POD basis when dynamics changes
(with control parameters). The first method is a Krylov-like method. This
method is based on iteratively including in the basis some POD-NS residuals
(this is an iterative version of the first stabilization method). When the size
of the basis becomes too large, a new POD compression is performed. This
method gives very good results for the 1D Burgers equation, but convergence
is too slow for the 2D Navier-Stokes equations, at least in our configuration.
One explanation is that the ?missing” scales (when dynamics evolves) are not
necessary “fine” scales, and thus the approximation using POD-NS residuals
is not good. The second method is an hybrid method that couples DNS and
reduced order models. The idea is to modify and update the database when
dynamical evolution occurs, so that the leading basis functions always represent
the updated dynamics. This method, coupled with a fast method to actualize
the POD basis functions using this new database, gives good results if a sufficient
amount of DNS is performed. Approximatively 20% of the total numerical costs
can be saved using such hybrid method.
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