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Méthodes numériques pour la réduction de

modèle basée sur la POD

Résumé : Ce rapport est une réflexion sur les différentes stratégies numériques
qui peuvent être utilisées pour obtenir un modèle réduit, basée sur la Décomposition
Orthogonales aux valeurs Propres (POD), capable d’approximer de manière effi-
cace les équation de Navier-Stokes. Il est montré qu’il est possible d’améliorer la
robustesse de la base POD à l’aide d’un échantillonnage optimal du sous-espace
engendré par des paramètres d’entrée du système en utilisant une norme appro-
priée des résidus des équations de Navier-Stokes. Nous montrons ensuite qu’il
est possible de modéliser les petites échelles non résolues à l’aide de techniques
variationnelles multi échelles afin d’obtenir un modèle réduit stable. Des tech-
niques de calibration des coefficients du modèle réduit sont ensuite appliquées
au calcul des coefficients aérodynamiques. Ces méthodes sont illustrées sur un
prototype d’écoulement de sillage avec ou sans contrôle.

Mots-clés : Modèles d’ordre réduit, Décomposition Orthogonale aux valeurs
Propres, Stabilisation, Sous-espaces propres
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1 Introduction

Low order modeling based on proper orthogonal decomposition (POD [1]) is an
art based on physical intuition and numerical analysis. Very few results exist
in terms of error bounds [2] as compared to other methods such as balanced
truncation [3] for which precise estimates of the deviation of the reduced model
from the full model exist. In turn POD models can be applied to non-linear
problems and it is computationally feasible for flows involving a large number of
degrees of freedom. Low-order modeling is based on a number of assumptions
affected by a certain degree of arbitrariness. The first choice is relative to the
low-dimensional subspace where the solution is sought. In POD this is done
by extracting from an existing database the most energetic structures in an
average sense. Of course, in terms of L2 approximation of the space spanned by
the database, such a basis is optimal. However, the energy norm is not the only
legitimate choice: for example enstrophy provides an optimal representation
of the database vorticity and in many detached flows one may assume that
rotational large scale structures are the most dynamically relevant. Or, in order
to provide the correct rates of dissipation, the H1 norm can be used to take into
account the relevance of smaller scales [4]. Besides the norm, the sampling of
the flow field represents an implicit choice of the representation subspace, since
the POD modes are just linear combinations of solution snapshots: the events
collected in the snapshot database determine the approximation properties of
the resulting POD modes. In this sense, the placement of the snapshots can
be chosen so that the resulting modes minimize the projection error for a given
number of snapshots and dimension of the reduced subspace, as a problem
parameter is perturbed [5]. Another option, that we detail in the following,
is to sample the flow so that the residuals of the high-fidelity operator are
minimized over a range of parameter values. All these ideas aim at retrieving
modes leading to accurate and robust dynamical systems describing the time
evolution of the system.

The reduced-order dynamical system can be obtained in a number of different
ways. The most popular procedure is that of representing by a modal expansion
the velocity field and hence projecting the Navier-Stokes equations over the
velocity modes. The projection step is usually performed in the L2 sense (see
for example [1, 6]), although in principle one could choose a different scalar
product [7]. In some flow configurations the resulting pressure term is either
zero or negligible, and therefore there is no need to model pressure. There
are cases where this is not true [8], typically for internal flows. Also pressure
is needed both for computing forces and to evaluate the high fidelity model
residuals. It may be therefore necessary to model or estimate pressure effects.
Another way of obtaining a low order model is to minimize the high-fidelity
model residuals in some norm. By minimizing high fidelity residuals it is very
simple to include integral constraints in the low-order model [9]. In general this
method leads to low-order models that have a different dynamical behavior as
compared to models obtained by Galerkin projection.

The simple choice of how to discretize the derivatives of the POD modes
has a dramatic impact on the asymptotic solution because of pure numerical
effects. Truncation of the model also plays a crucial role in that the non-resolved
modes strongly affect the dissipation rate of the model as well as the energy
redistribution between scales. Numerical as well as modelization issues strongly
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Figure 1: Flow configuration and vorticity snapshot at Re = 200.

affect the performance of the model in a manner that it is not easily predictable
for complex flows. One way to circumvent this problem is to resort to model
identification. The idea is to calibrate some of the coefficients appearing in the
model against the reference simulation used to build the POD modes [10]. In
other words the modes as well as the model solution minimize the error both
in terms of database representation and in time evolution. The advantage of
this procedure is that it can be extended to several different databases so as to
obtain a model that interpolates several dynamical behaviors [11]. In a different
spirit, instead of identifying the model parameters, the effect on the resolved
modes of the truncation can be modeled by appropriate closure terms. The
procedure consists in assuming that the non-resolved scales are well represented
by the residuals of the high-fidelity discrete operator [9], as it is done in some
large-eddy simulation closure models [12]. In this sense a modeling approach
was recently proposed [13] in which the mode interactions are fed back in the
dynamical system based on statistical information. The advantage of closure
models is that they need far less coefficients to be tuned compared to calibration
models.

In this paper we show several examples of how the techniques used to model
the Navier-Stokes equations based on empirical eigenfunctions affect the accu-
racy and reliability of the results.

1.1 Numerical setup

Our test case is a two-dimensional incompressible laminar flow past a confined
square cylinder (see figure 1). The incoming flow has a Poiseuille profile. No-
slip conditions are imposed on the cylinder and on the parallel walls. The
blockage factor with reference with the figure is L/H = 1/8. Details about
numerical set up and method are reported in [14]. This is an interesting flow
configuration since it involves detachment, wakes and interaction with walls.
Another interesting point for reduced order modeling purposes is that there is
a pressure jump to model along the channel. Both controlled (see details in §5)
and uncontrolled (§3 and §4) flows are considered.

2 Modelization by empirical eigenfunctions

The point of departure is a finite dimensional representation: the solution is
sought in a functional subspace V of dimension Nr that is built according to

INRIA
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some desired properties

U(x, t) =

Nr∑

n=1

an(t)Φn(x). (1)

In the case of classical POD models, the functions Φn(x) ∈ V give an optimal
representation of precomputed solutions and there exist efficient ways to deter-
mine such functions [15]. We are however faced with a number of choices. It has
to be decided what we want to represent with U(x, t), i.e., if it is a D = {2, 3}
dimensional vector field for the flow velocity, or a D + 1 dimensional field also
taking into account pressure. In the first case we need a finite dimensional
representation for pressure

p(x, t) =

Np∑

n=1

bn(t)ψn(x). (2)

On the other hand, the latter case has a certain degree of arbitrariness since
at least for incompressible flows the actual value of pressure is unimportant.
Pressure differences are important and hence in the definition of the norms
leading to the velocity-pressure POD modes one implicitly makes a choice of
the relative weight of velocity versus pressure.

We focus on the case where the velocity field and the pressure field are repre-
sented using two separate expansions, for the case where the POD modes include
pressure, the following discussion is similar. The scalar coefficients an(t), bn(t)
are unknowns and they can be found by using the governing equations. Let us
define the residuals of the Navier-Stokes operator by

RM (U , p) = ȧnΦn + anam(Φn · ∇)Φm + bk∇ψk − an∆Φn (3)

RC(U) = an∇ · Φn (4)

where summation is taken over repeated indexes and m,n = 1, . . . , Nr, k =
1, . . . , Np. In the case of usual POD modes, the residuals relative to continuity
equations are identically zero since the velocity modes are linear combinations
of velocity flow snapshots. However in more general cases, see for example [9],
this may not be the case. The usual approach to obtain a system of ordinary
differential equations (ODEs) from the residuals is that of using a Galerkin
approach, that consists in imposing that the residuals are orthogonal to the
space spanned by the POD modes. Let the L2 scalar product over (Ω) be
〈·, ·〉Ω, and the induced energy norm ‖ · ‖Ω, we have

〈RM (U , p),Φn〉Ω n = 1, . . .Nr (5)

where Ω is the flow domain. When the velocity modes are not divergence free
we have also

〈RC(U), ψn〉Ω n = 1, . . . Np (6)

If the POD velocity modes are divergence free, integration by parts of the pres-
sure term in equation (5) eliminates pressure from the equations, except for a
boundary term. This term is usually neglected although it plays a crucial role
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in internal flows, where it represents the forcing term due to pressure drop. Of
course, when the POD modes are divergence free, equation (6) is identically
satisfied. Otherwise, it represents a constraint in the integration of equation (5)
. The Galerkin approach is well suited for linear elliptic partial differential
equations (PDEs) for which, under certain assumptions, there exist proofs of
well posedness as well as precise error bounds. In fluid flows, the problem is
non-linear and dominated by advection, therefore we cannot make use of such
results and it is difficult, hence, to justify this choice on solid ground. More-
over, it can be shown that advection dominated flows give rise to POD Galerkin
models that are numerically unstable [4].

Another class of methods results from the idea of minimizing the norm of
the residuals. Let us consider the general case of velocity modes that are not
divergence free, and let the scalar product over space (Ω) and time ([0, T ])
be 〈·, ·〉TΩ, and the induced energy norm ‖ · ‖T

Ω. The unknown functions ai(t)
and bn(t) are represented by a spectral formulation over appropriate collocation
points, i.e.,

ai(t) =

Nt∑

r=1

âir ϕr(t) bn(t) =

Nt∑

r=1

b̂nr ϕr(t)

where âir and b̂nr are the values of the function at the collocation points and
ϕr(t) are Lagrange interpolating polynomials. We are left with (Nr +Np)×Nt

unknowns that solve

min
ânr,bn

(
‖ RM (U , p) ‖T

Ω +τC ‖ RC(U) ‖T
Ω

)
(7)

where τC ∈ R
+ is a penalization weight for the continuity equation. The nec-

essary conditions for the minimum result in the following non-linear system of
algebraic equations:

∀l ∈ {1, . . . , Nt}, ∀i ∈ {1, . . . , Nr} and ∀n ∈ {1, . . . , Np}

〈ϕ̇lΦi + ϕlLi(U),RM (U , p)〉TΩ + τC〈ϕl∇ ·Φi,RC(U)〉TΩ = 0 (8)

〈ϕl∇ψn,RM (U , p)〉TΩ = 0 (9)

where
Li(U) = (U · ∇)Φi + (Φi · ∇)U − ∆Φi

In this formulation it is easy to include additional constraints. For example, it
is possible to explicitly take into account the boundary conditions, or to satisfy
known first integrals of the flow such as mass conservation. This can be done
by including additional penalization terms in the minimization of equation (7).

Yet another option is that of relaxing the spectral ansatz for ai(t) and bn(t)
and obtaining a set of ODEs from

min
an,bn

(
‖ RM (U , p) ‖Ω +τC ‖ RC(U) ‖Ω

)
(10)

which results in

〈Li(U ),RM (U , p)〉Ω + τC〈∇ · Φi,RC(U )〉Ω = 0 (11)

INRIA
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〈∇ψn,RM (U , p)〉Ω = 0 (12)

that can be written ∀i ∈ {1, . . . , Nr}, ∀n ∈ {1, . . . , Np}. This is a set of non-
linear algebraic-differential equations for ai(t) and bn(t). As mentioned, it may
be practical to include pressure together with the velocity vector in the corre-
lation function to compute the POD modes. In this case we have an(t) = bn(t)
and the above system reduces to the following system of ODEs ∀i ∈ {1, . . . , Nr}

〈Li(U) + ∇ψi,RM (U , p)〉Ω + τC〈∇ · Φi,RC(U)〉Ω = 0 (13)

In section 4, we will see that this approach is closely linked to recent stabilization
methods used in finite elements.

We could minimize the residuals with respect to ȧn, but this would lead to
the classical Galerkin method. What it is used in practice is a blend of the two
approaches

〈Φi + τM
(
Li(U) + ∇ψi

)
,RM (U , p)〉Ω + τC〈∇ · Φi,RC(U )〉Ω = 0 (14)

with τM ∈ R
+ and ∀i ∈ {1, . . . , Nr}.

The models proposed above enjoy different numerical properties. For exam-
ple it is known that the Galerkin approach is unstable and that the least-square
approach is dissipative. However, a common problem is that these models are
not robust with respect to variations of physical parameters such as the Reynolds
number or the effect of a control. Therefore, it was proposed to introduce a cal-
ibration of the model [16] that would modify all or part of the constant coeffi-
cients resulting from the different projection methods presented above, in order
to match as close as possible the time evolution of the reference simulations.
This will be explained in more details in the section 5.

3 Sampling of the input system parameters sub-

space

The main drawback of POD basis functions is that they are only able to give an
optimal representation of the kinetic energy included in the snapshot database.
Usually, this database is collected from a flow generated with some given sys-
tem input parameters. Thus, the same basis functions are not optimal for
representing characteristics of another flow generated with different system in-
put parameters (see [17, 18, 19]). The aim of this section is therefore to give an
efficient criterion to sample the input parameter subspace in order to improve
the robustness of the POD basis functions. For simplicity reasons, the input
parameter subspace is reduced to a Reynolds number interval I = [ReL, ReR],
where we chose ReL = 70 and ReR = 180. These values correspond approxi-
mately to the lower and higher bound for the 2D periodic regime for the confined
square cylinder wake flow. Numerically, I is disrcetized with ∆Re = 5, and is
denoted Ih. We note that all the concepts introduced in this study can be easily
extended to higher dimensional control spaces, as done in Ref. [20].

In order to improve the functional subspace, we want to enlarge the database
in an iterative way by adding some snapshot sets that correspond to different
Reynolds numbers Rei ∈ I. Let U [Re1,...,ReN ] be the database composed by

RR n° 6758



8 Weller, Lombardi, Bergmann & Iollo

N snapshots sets taken independently at Re1, . . . , ReN , where the parameter
N has to be determined according to the desired accuracy of the POD basis.
The main question is to determine how to chose these Reynolds numbers to
compute a robust POD basis Φ(x) from database U [Re1,...,ReN ] so that the
POD flow field reconstruction U(x, t) (see Eq. (1)) is as close as possible to
the numerical solution of the Navier-Stokes equations, U(x, t), for all Reynolds
numbers in Ih. Note that we will always use Nr = 50 basis functions, even if
N > 1 Reynolds numbers are considered. The temporal coefficients an(t) are
evaluated by projecting the numerical solution of the Navier-Stokes Equations
(NSE) onto the POD basis functions, i.e.

an(t) =

∫

Ω

U(x, t)Φn(x)dx. (15)

Two class of sampling methods are commonly used for Proper Orthogonal
Decomposition. The first one is based on the Centroidal Voronoi Tessellations
(CVT, see [21, 22, 23]) that can be efficiently computed using the Lloyd algo-
rithm [24]. The drawback of such an approach is that the number of sampling
points has to be fixed meaning we cannot control the degree of accuracy. The
second one is based on Greedy sampling (see [20]). This is an iterative sampling
for which we can choose the degree of accuracy by fixing a stopping criterion.
In this study we will present a hybrid sampling method that couples both ideas.

To illustrate our sampling method, we will consider an initial database U [Re1]

composed by Ns snapshots collected at Re1 = 100. Note that we will always
use Ns = 200 in this study, so the database U [Re1,...,Rek] is composed by k×Ns

snapshots. As we can see in figure 2, the error defined by

〈U ′〉2 =

∫

T

‖U ′(x, t)‖2dt, (16)

where U ′(x, t) = U(x, t) − U(x, t) denotes the missing scales, grows when
we move away from the sampling point Re1 = 100. Indeed, we have 〈U ′〉2 ∝

70 80 90 100 110 120 130 140 150 160 170 180

5.0E-05

1.0E-04

1.5E-04

Re

〈U
′ 〉

2

Figure 2: Evolution of the error 〈U ′〉2 versus the Reynolds number.

|Re − Re1|. The Greedy method consists in sampling the input parameter
subspace where the error is maximal, namely

ReGRE
k = arg max

Re
〈U ′〉2. (17)

INRIA
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For instance ReGRE
2 = 180 in figure 2. In order to reduce the CPU costs,

one usually uses the residual of the Navier-Stokes operator evaluated with the
POD flow field reconstruction, U (see Eq. (1)), denoted RM (U), instead of
using the error (16) (see [20]). Using such an approximation, the new points
Rek, k = 2, .., N can be computed as being the Centroids of the Greedy Region
(CGR) IGRE

k

ReCGR
k =

∫

IGRE
k

Re ρ(Re)dRe

∫

IGRE
k

ρ(Re)dRe

, with ρ(Re) = 〈RM (U)〉2, (18)

where the Greedy Region is

1. centered on the Greedy value ReGRE
K ,

2. with radius mini∈[1;N−1] |Re
GRE
K −Rei|,

3. restricted to IGRE
K ⊂ I.

Note that this criterion can be easily transposed for input parameter subspaces
with dimension greater than one. For instance, the Greedy Regions are intervals,
disks, spheres and hyper-spheres for dimensions 1, 2, 3, and greater than 3,
respectively.

We can see in table 1 that this criterion enables a significant reduction of
the average error, noted J , evaluated on the input parameter subspace I under
consideration, i.e.

J =

∫

I

〈U ′〉22dRe. (19)

k 1 2 3 4 5

ReCGR
k 100 152 81 170 126

J CGR
k 60 · 10−4 16 · 10−4 7.7 · 10−4 3.6 · 10−4 3.0 · 10−4

ReGRE
k 100 180 70 140 80

J GRE
k 60 · 19.2−4 19.2 · 10−4 12.9 · 10−4 6.1 · 10−4 4.5 · 10−4

Table 1: Evolution of the average error (19) versus the number of CGR sampling
points.

This a priori centroidal Greedy region sampling method gives points that
are more efficient than the Greedy ones (see figure 3). Moreover, they are very
close to the a posteriori optimal ones (see [25]).

4 Model by closure terms

This section is devoted to stabilizing the reduced order models by means of
closure terms in the spirit of least squares methods presented in Section 2. To
be more precise the idea is to use the variational multiscale method (VMS,
see [12, 9]) in order to take into account in the ROM the fine scales that are
not calculated by standard POD-Galerkin ROMs. The VMS method is an
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10 Weller, Lombardi, Bergmann & Iollo

1 2 3 4 5
100

101

102

number of sampling points N

J

J CGR

J GRE

Figure 3: Evolution of the average error J versus the number of sampling
points for the centroidal Greedy region (CGR) and the Greedy (GRE) sampling
methods.

improvement of the standard Streamline Upwind Petrov-Galerkin (SUPG). It is
based on approximating the fine scales using the residuals of the Navier-Stokes
operator computed with the truncated POD flow fields. In order to computed
the Navier-Stokes residuals the pressure field is needed. We then use the pressure
extended model introduced in Ref. [9]:

Nr∑

j=1

Lij

daj

dt
=

Nr∑

j=1

Bijaj +

Nr∑

j=1

Nr∑

k=1

Cijkajak, (20a)

with initial conditions

ai(0) = (U(x, 0), Φi(x))Ω i = 1, · · · , Nr, (20b)

where Φ = (φ, ψ)T denotes the POD basis. For the purpose of reduced order
modeling one wants to use a very small number Nr of POD basis functions
in expansion (1). As it was already mentioned, the dissipative missing scales
(high order POD modes, namely Φi, i > Nr) are then not taken into account
in the ROM. Thus, due to a lack of dissipation, the solution of ROM (20) can
either converge towards erroneous limit cycles or even diverge in an exponential
way (see figure 4). It seems thus necessary to introduce into the ROM (20) the
effects of the missing scales. In the spirit of the VMS method the missing scales
u′ and p′ can be approximated using the residuals of the governing equations:

u′ ≃ −τM RM (21a)

p′ ≃ −τC RC , (21b)

where τM and τC denote some constant parameters to be fixed. We recall
that the vector functions RM and RC denote respectively the residuals of the
momentum and continuity equations evaluated with the POD fields (1) with
U = (u, p)T . After some algebra manipulations, the VMS model is:

Nr∑

j=1

Lij

daj

dt
=

Nr∑

j=1

Bijaj +

Nr∑

j=1

Nr∑

k=1

Cijkajak + Fi(t), (22a)

INRIA
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Figure 4: Comparison of the projected (NS: ♦) and the predicted (Standard
pressure ROM: −−−) limit cycles over 1000 vortex shedding periods.

with initial conditions

ai(0) = (U(x, 0), Φi(x))Ω i = 1, · · · , Nr, (22b)

where

Fi(t) = (u · ∇φi + ∇ψi, τM RM (x, t))Ω + (∇ · φi, τC RC(x, t))Ω

+ (u · (∇φi)
T , τM RM (x, t))Ω

− (∇φi, τM RM (x, t) ⊗ τM RM (x, t))Ω.

(23)

Note that neglecting the two lasts terms of (23) leads to the Streamline Upwind
Petrov-Galerkin (SUPG) model. These two additional terms come from the
variational multiscale developments described in Ref. [12]. The VMS ROM (22)
with (23) is then stable as one can see from the long time integration performed
in figure 5.

In comparison with the calibrated models introduced in §5.4, the VMS model
requires the calibration1 of only two parameters, namely τM and τC . Moreover,
the VMS model can be used for a very long time integration. Unfortunately, it
is less obvious to fit the VMS model to several dynamics as it can be done using
calibrated models.

1Note that these parameters can be found using some scaling arguments (see [26] for more
details), so that no mobilization is required.
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Figure 5: Comparison of the projected (NS: ♦) and the predicted (VMS ROM:
−−−) limit cycles over 1000 vortex shedding periods.

5 Model by calibration

5.1 Controlled flow setup

The controlled flow configuration is the same as that described in Section 1.1.
The actuators are two jets placed on the upper and lower faces of the cylinder.
The presence of the actuators is modeled by imposing a new boundary condition
on a small surface Γc of the cylinder boundary:

u(x, t) · n(x) = c(t), x ∈ Γc

The jets are normal to the walls and are driven in opposite phase, as shown in
Fig.6:

v(x, t) = c(t), x ∈ Γc

For control purposes, using measurements of the vertical velocity at points xj

in the cylinder wake, we can define a proportional control law:

c(t) =

Nv∑

j=1

Kjv(xj , t)

where Nv denotes the number of sensors used. We could then use the model to
compute the set of feedback gains Kj that minimizes the vortex shedding in the
cylinder wake.

INRIA
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Figure 6: Placement of synthetic jet and sensors for control

5.2 The POD basis

In our case, a numerical simulation of the Navier-Stokes equations is performed
over a time interval [0, T ], and the velocity field is saved at Ns time instants
ti ∈ [0, T ]. This yields a data set {ui(x) = u(x, ti)}i=1..Ns

.
In the case of forced flow, the snapshots depend on the control law c(t) used.
In this section we consider a classical POD basis derived from numerical sim-
ulations obtained using several different control laws c(t) while all the other
parameters (such as Reynolds number or domain geometry) will be the same.
The data set used for the POD is therefore written:

{ui,ℓ(x) =}i=1..Ns,ℓ=1..Nc

whereNc denotes the number of control laws considered. If C = {c1, c2, · · · , cNc
}

is the set of control laws used to obtain the database, the ensuing POD basis is
denoted φ(C).

5.3 Dealing with the boundary conditions

In the non-controlled case, we lift the boundary conditions on the velocity fields
by defining a new set of snapshots:

wi(x) = ui(x) − û(x)

where û is some reference velocity field that satisfies the same boundary con-
ditions as the snapshots. In the present configuration, it can be the steady
unstable solution, or a time average of the snapshots uk.
When an extra boundary condition is imposed on the cylinder for control pur-
poses, the snapshots are chosen to be:

wi(x) = ui(x) − û(x) − c(ti)uc(x)

where uc(x) satisfies the following criteria:

uc(x) = 0 on Γ\Γc,uc(x) = 1 on Γc

In practice we use the velocity field proposed in [16]:

uc(x) =
1

c⋆
(û′(x) − û(x))

RR n° 6758
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where û′ is obtained in the same way as û but applying a constant control equal
to c⋆ on Γc . The low-dimensional solution is now written:

ū(x, t) = û(x) + c(t)uc(x) +

Nr∑

k=1

ak(t)φj(x) (24)

5.4 POD-Galerkin Reduced Order Model with Calibra-

tion

We consider the simple velocity model (as opposed to the pressure extended
model (20)). Extra terms appear in the reduced order model due to the presence
of control :

ȧi(t) = Ai +Bijaj(t) +Cijkaj(t)ak(t) +Eiċ(t) +Fic
2(t) +Gic(t) +Hijaj(t)c(t)

(25a)
with initial conditions

ai(0) = 〈u(·, 0), Φi(·)〉 i = 1, · · · , Nr, (25b)

where:

Ei = 〈uc,φi〉

Gi = −〈(û · ∇)uc,φi〉 − 〈(uc · ∇)û,φi〉 +
1

Re
〈∆uc,φi〉

Fi = 〈(uc · ∇)uc,φi〉

Hij = 〈(uc · ∇)φj ,φi〉 + 〈(φj · ∇)uc,φi〉

Setting:

Xi = [Ai, {Bij}j=1···Nr
, {Cijk}j,k=1···Nr

, Ei, Fi, Gi, {Hij}j=1···Nr
]
T

and

f(a(t), c(t), ċ(t)) =
[
1, {aj(t)}j=1···Nr

, {aj(t)ak(t)}
j,k=1···Nr

,

ċ(t), c2(t), c(t), {aj(t)c(t)}j=1···Nr

]

the equation (25a) can be written in the compact form:

ȧi(t) = f(a(t), c(t), ċ(t)) · Xi

As discussed in several papers [16, 18, 27], the initial value problem (25) can be
inaccurate, even unstable, for it may not take into account enough of the flow
dynamics. Indeed, although a number Nr of modes can be sufficient to capture
most of the flow energy, the neglected modes continue to play an important role
in the flow dynamics through their interaction with the resolved ones.

In order to build a robust order model we applied the calibration technique
described in [11]. Following that approach, the system coefficients contained in
matrix X are adjusted to fit the solution of (25) to several dynamics.

INRIA
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We consider a data base that includes simulations obtained with Nc different
control laws to calculate the POD basis. The system coefficients obtained by
Galerkin projection of the NSE on the Nc-control low-dimensional subspace

are denoted X̂ . The calibration procedure then consists in choosing X as the
solution of:

min
X

Nr∑

i=1

Nc∑

ℓ=1

∫ T

0

(
˙̂aℓ
i(t) − f(âℓ(t), cℓ(t), ċℓ(t)) · Xi

)2

dt+ α

Nr∑

r=1

‖Xi − X̂i‖
2 (26)

where

âℓ
i(t) = 〈uℓ(·, t),φi〉

and where α is the Tikhonov regularization parameter and is chosen << 1.
Following the idea of [10], all the elements of X are calibrated except the N3

r

terms Cijk . We recall that this is due to the assumption that the errors in the
Galerkin model are due mainly to the fact that it neglects the small scales and
therefore a large part of the viscous effects, and Cijk results from the projection
of the convective term.

We refer to a model built using Nc control laws as an Nc-control model.
Such a model is denoted MC where C = {c1, · · · , cNc

}.

5.5 Lift and Drag modeling

In this section we present a technique for evaluating the forces on the body
using the POD model developed. We define the lift and the drag coefficients on
the square cylinder in the classical way :

CL(t) =

∫
S

((p(x, t) − p0) · n̄(x) + τ(x, t) · t̄(x)) dS
1
2U

2
0S

· j̄

CD(t) =

∫
S

((p(x, t) − p0) · n̄(x) + τ(x, t) · t̄(x)) dS
1
2U

2
0S

· ī

where p0, U0 are the reference pressure and velocity at the inflow and τ is the
viscous stress tensor.
In order to calculate the lift and drag coefficients we have to provide an es-
timation of the pressure field around the square cylinder. A POD procedure
is performed also for the pressure fields. This leads to a set of POD pressure
modes ψn. The pressure at each time instant can be developed in terms of the
first Np

r modes :

p̄(x, t) = p̂(x) + c(t)pc(x) +

Np
r∑

i=1

bi(t)ψi(x) (27)

where p̂(x) and pc(x) are the pressure fields of the same reference solutions used
to satisfy the boundary conditions for the velocity.

We recall the Poisson equation for incompressible flows:

∆p(x, t) = −∇ · (u(x, t) · ∇u(x, t)) (28)
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Using the expansion for p̄(x, t) and ū(x, t) in terms of the first Nr and Np
r

modes respectively and given a control law c(t), the projection of the Poisson
equation onto the retained pressure modes leads to the following system:






Lp
ilbl(t) = Ap

i +Bp
ijaj(t) + Cp

ijkaj(t)ak(t)

+ F p
i c

2(t) +Gp
i c(t) +Hp

ijaj(t)c(t)

1 ≤ i, l ≤ Np
r

1 ≤ j, k ≤ Nr

(29)

where:

Lp
ij = (∆ψj , ψi)

Ap
i = −(∆p̂, ψi) − (∇ · (û · ∇û, ψi))

Bp
ij = −((∇ · (û · ∇φj), ψi) − (∇ · (φj · ∇û), ψi))

Cp
ijk = −(∇ · (φj · ∇φk), ψi)

Gp
i = −((∇ · (û · ∇uc)), ψi) − ((∇ · (uc · ∇û)), ψi) − (∆pc, ψi)

F p
i = −((∇ · (uc · ∇uc)), ψi)

Hp
ij = −((∇ · (uc · ∇φj)), ψi) − ((∇ · (φj · ∇uc)), ψi)

We denote this model PC where C = {c1, · · · , cNc
} is again the set of control

laws used to obtain the database. This model enables calculation the pressure
coefficients bi(t) at each time instant at which the velocity coefficients ai(t) are
known.
In order to fit the pressure model to the database solutions, we again perform
a multiple control calibration procedure described above (26) for the Poisson

model. We let b̂i(t) be the temporal coefficients obtained by projecting the pres-
sure (calculated by solving the NSE) onto the POD subspace. The coefficients
Xp are chosen by minimizing the norm of the residual obtained by substituting
b̂i(t) into (29) (as previously Cp

ijk results from the Galerkin projection and is
not calibrated).

Once the dynamic low order model MC is integrated the calculated velocity
coefficients ar(t) are used with the model PC in order to estimate the pressure
coefficients br(t). Both sets of coefficients are then used to estimate the lift and
drag coefficients.

5.6 Results

The described technique was applied in order to build a low order model of the
actuated flow around a confined square cylinder for Reynolds number Re = 150,
with feedback control laws. Different velocity models with one and more con-
trol laws and their predictions with different controls are analyzed in [11]. As in
[11] actuation by jets is started only once the flow is fully developed. With the
control turned on the simulation is performed for about seven shedding cycles,
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Figure 7: Control laws used for building and testing the model and correspond-
ing lift coefficients

and Ns ≈ 200 snapshots are saved. The non-dimensional duration of the time
interval is T ≃ 50. The number of POD modes retained for the reduced order
model for the velocity is Nr = 60.

We chose three different feedback configurations that give three control laws
which we denote c1(t), c2(t) and c3(t), shown in Fig. 7. The figure also shows the
drag coefficients obtained for each control law. For each control law a simulation
of the Navier-Stokes equations is performed and 200 snapshots are saved for each
simulation. We then defined two control sets, a 1-control set and a 2-control
set.

C2 = {c2}

C1,2 = {c1, c2}

For each Ci, we computed a POD basis φ(Ck) as described in section 5.2 and a
calibrated reduced order model Mk = M(Ck) by solving problem (26).
The control law c3(t) was chosen to be a test control law, and was used as in-
put for the Navier-Stokes equations and for the reduced order models M(Ck)
defined above.

The first aim of calibration, which is attained with the above method, is that
a model M{c̄} provides accurate results when integrated with c = c̄. However,
for estimation and control purposes the model needs to be accurate when inte-
grated with different control laws. The benefit of using Nc-control models with
Nc > 1 was shown in [11]. To illustrate this point we consider the projection
of the solution induced by c3 onto the POD subspaces span{φ(Ck)} (for k = 2
and k = (1, 2)), and the solutions obtained by solving systems Mk with input
c3. Model M2 could be expected to give better results than model M1,2 due to
the fact that the dynamics induced by c3 are closer to those induced by c2 than
to those induced by c1. This can be seen by comparing the coefficients result-
ing from the projections onto span{φ(C1,2)} of the three different solutions, or
by comparing the resulting lift coefficients (see Fig. 7). However, model M1,2

turns out to give a lower reconstruction error than M2. Estimations of the third
modal coefficient by the 1- and the 2-control models are plotted in Fig. 8.

The modal coefficients ai(t) given by the two models Mk are then used in the
pressure models Pk to obtain the pressure modal coefficients bi(t). The number
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Figure 8: â3 DNS versus a3 obtained by model integration M2 (left) and M1,2

(right) using c3
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Figure 9: b̂1 and b̂3 DNS versus b1 and b3 obtained by model integration {M1,2−
P1,2} using c1 and c2

of POD pressure modes retained is Np
r = 60. Fig. 9 shows estimations of some

coefficients resulting from solving {M1,2−P1,2} with c = c1 and c = c2. In this
example the 2-control velocity-pressure model provides a good approximation of
the pressure coefficients for the two dynamics that it was fitted to by calibration.

In Fig. 10 the same coefficients are plotted when the dynamic models are
integrated using the test control law c3. The results obtained with the 1-control
model are also shown: for approximation of the pressure coefficients the 2-
control model gives better results than the 1-control model.

We now look at the velocity-pressure model’s capacity to predict the time
history of the drag and lift coefficients. Fig. 11 shows the lift and drag coeffi-
cients resulting from integrating model {M2 − P2} with c = c2. The 1-control
model proves able to reproduce the forces on the cylinder for the dynamic to
which it was fitted. Fig. 12 shows the similar results obtained with the 2-control
model.

In Fig. 13 the DNS lift and drag coefficients are shown together with the
predictions of the 1-control and 2-control models. The figure shows that the
2-control model is able to almost perfectly reconstruct the coefficients over a
limited time interval, while the 1-control model diverges after only a few time
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Figure 10: b̂3 DNS versus b3 obtained by model integration {M2 − P2} (left)
and {M1,2 − P1,2} (right) using c3
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Figure 11: CD and CL DNS versus CD and CL obtained by model integration
of {M2 − P2} using c2
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Figure 12: CD and CL DNS versus CD and CL obtained by model integration
of {M1,2 − P1,2} using c1 and c2

steps.

6 Conclusions

In this paper we emphasize the different numerical choices that lead to a low-
order model. We do not provide a detailed analysis of each option, however
we present numerical evidences to illustrate the discussion. In particular we
considered a low order-model that includes pressure and that is obtained in
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Figure 13: CD and CL DNS versus CD and CL obtained by models integration
{M2 − P2} (left) and {M1,2 − P1,2} (right) using c3

a Galerkin-least squares framework. It is based on a closure term that can be
interpreted either as the modelization of the effect of the small scales on the large
ones, or as a classical penalization term. This model is stable for configurations
where classical POD models are unstable. Future work will be devoted to extend
the Galerkin-least squares model to control configurations. On the other hand,
we showed how robust models can be obtained by identifying a set of parameters
appearing in the system of ODEs. This procedure enables, for example, the
prediction of aerodynamic forces with a good degree of accuracy. Finally, we
showed that optimal solution sampling leads to significantly lower representation
errors in terms of the POD modes. To make this option viable, we plan to use
the reduced-order model the make the sampling process more efficient.
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