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| - Flow configuration and numerical methods

Il - Optimal control

lIl - Proper Orthogonal Decomposition (POD)

IV - Reduced Order Model of the cylinder wake (ROM)
V - Optimal control formulation applied to the ROM

VI - Results of POD ROM

VIl - Discussion

VIl - Nelder-Mead Simplex method

= Conclusions and perspectives




#» Two dimensional flow around a
circular cylinder at R, = 200

# Viscous, incompressible and
Newtonian fluid

# Cylinder oscillation with a tan-
gential velocity ~(t)

# Fractional step method in time
# Finite Element Method (FEM)
In space (P)

» Numerical code written by M.Braza
(IMFT-EMT2) & D.Ruiz (ENSEEIHT)
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Iso vorticity at ¢ = 100.

Authors St Cp
Braza et al. (1986) 0.2000 | 1.4000
Henderson et al. (1997) | 0.1971 | 1.3412
He et al. (2000) 0.1978 | 1.3560
this study 0.1983 | 1.3972

80\ - \90\ \-\ \100\-\ L \110\ - \120
time units

Aerodynamic coefficients.

Strouhal number and drag coefficient.




Mathematical method allowing to determine without a priori knowledge
a control law based on the optimization of a cost functional.

# State equations F(¢,c) =0;
(Navier-Stokes + I.C. + B.C.)

# Control variables c;
(Blowing/suction, design parameters ...)

# Cost functional J (¢, c).
(Drag, lift, target function, ...)

=== Find a control law c and state variables ¢ such that the cost functional
}  J(¢,c) reach an extremum under the constraint 7 (¢, ¢) = 0.




Constrained optimization = unconstrained optimization
» Introduction of Lagrange multipliers £ (adjoint variables).

» Lagrange functional :

£(¢7 Caf) — j(¢7 C)_ < F(¢7 C)?f >

» Force L to be stationary = look for 6L = 0 :

5L = —¢5¢ a—L(sc a§5§ — 0

» Hypothesis : ¢, c and & assumed to be independent of each other :

(3’[, (9£




» State equations ( §(5§ =0):

(¢7 C) =0

» Co-state (adjoint) equations ( ¢5¢ =0):

ZANWSNENAY
06 O
» Optimality condition (%—géc =0) :
0T\ _ (9FY",
Jc -\ Oc
__ = Expensive method in CPU time and storage memory for large system!

= Ensure only a local (generally not global) minimum




"without an inexpensive method for reducing the cost of flow
computation, it is unlikely that the solution of optimization problems
involving the three dimensional unsteady Navier-Stokes system will

become routine"

Initialization

High—fidelity model

-

M. Gunzburger, 2000

Recourse to detailed model (TRPOD)

Approximation model

a(x), grad aQ<)

-

Optimization

Optimization on simplified model

AX




» Introduced in fluid mechanics (turbulence context) by Lumley (1967).

» Look for a realization ¢(X') which is closer, in an average sense, to
the realizations u(X). (X = (z,t) € D =Q x R™)

» ¢(X) solution of the problem : mquﬂ(u, oI*) st |o|*=1

» Snapshots method, Sirovich (1987) :

/ C(t,tNa™ ') dt’ = X al™ (1),
T

» Optimal convergence L? norm (energy) of ¢(X)
=- Dynamical order reduction is possible.

» Decomposition of the velocity field :

Npop

SRR




» Galerkin projection of NSE on the POD basis :

0
(qs(” —“+(u V)u ) (qb(z —vp+§Au)

» Integration by parts (Green’s formula) leads :

(¢(% “— 4 (u-V)u > (p, \va ¢(Z)) _ é ((V@qﬁ(i))T, \v4 ®u)

L (Vo))

i (®)
p ¢ ]+R6

g With [a] = / a-ndl'and (A, B) = / A:BdQ = Z/ AijBji df).




» Velocity decomposition with Npop modes

Npop

u(x,t) = uy(x) + (1) ) + Z a'®) (t) (x).

» Reduced order dynamical system where only Ny, (< Npop) modes
are retained (state equations) :

( da(z>(t) Ngal gal Ngal ()
_ 1. y k
71=1 71=1 k=1
< d Ngal
-0 . ) ~2
+D; — + 82+;E;,a3 ®) | v+ Gy
L aD(0) = (u(z, 0), ¢ (x)).

(e Ai, Bij, Cijk, Di, &, Fij and G; depend on ¢, w.,, u. and Re.




Integration and "optimal” stabilization of the POD ROM for
v = Asin(2wS;t), A=2and S; = 0.5.
POD reconstruction errors = temporal modes amplification

» Causes :

# Extraction by POD only of the
large energetic eddies

# Dissipation takes place in small
eddies

» Solution :

P S R <A » Addition of an optimal artificial

5
time units - -
Temporal evolution of the first 6 POD viscosity on each POD mode

temporal modes.

projection (Navier-Stokes)
prediction before stabilization (POD ROM)
prediction after stabilization (POD ROM).
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Comparison of energetic spectrum. Comparison of absolute errors.

» Good agreements between POD ROM spectrum and DNS spectrum

=== » Reduction of the reconstruction error between predicted (POD ROM)
. and projected (DNS) modes

| = Validation of the POD ROM




» Objective functional :

T(a,(1)) = /OTJ<a,< /T (wa% St )dt

« . regularization parameter (penalization).

» Co-state equations :

1 . N N
d (7’) t gal gal | |
! €dt( - D | Bii tvFii+ ) Chin A Cini) a™ | €9(2) — 201
Jj=1 k=1
\ g(z) (T) =0

> Optimality condition (gradient) :

Ngal gal

(4)
Zpdg +Z(5+Zﬂja +2Giv(¢)




» ~(0(¢) done; for n = 0, 1,2, ... and while a convergence criterium is
not satisfied, do :

1. Fromt¢ = 0to ¢t = T solve the state equations with v (¢);
— state variables a(™ (t)

2. From ¢ = T to ¢t = 0 solve the co-state equations with a™) (¢);
— co-state variables £(™)(t)

3. Solve the optimality condition with a(™ (t) and £ (¢);
— objective gradient 6v(™)(¢)

4. New control law — ~( D () = (M) (1) + w() §~(7) (1)

> End do.




» No reactualization of the POD basis.

» The energetic representativity is a priori different to the dynamical
one :

— possible inconvenient for control,

— a POD dynamical system represents a priori only the dynamics (and
Its vicinity) used to build the low dynamical model.

» Construction of a POD basis representative of a large range of
dynamics :

—excitation of a great number of degrees of freedom scanning ~(¢) in
. amplitudes and frequencies.




time units

Ye(t)

1500

1000

500

0

L
0 01 02 03 04 05 06 07 08 09 1

St

= Ay sin(27Ss1 t) X sin(2wSigt — Ao sin(27wSi5t))

with A; =4, A5 = 18, Stl = 1/120, St2 = 1/3 and St3 = 1/60

e > 0 < amplitudes < 4 and Fourier analysis = 0 < frequencies < 0.65

> > v, Initial control law in the iterative process.




relative Ec
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POD modes index

» Stationary cylinder v = 0 : — 2 modes out of 100 are suffi cient to
restore 97% of the kinetic energy.

__ » Controlled cylinder v = v, : — 40 modes out of 100 are then

necessary to restore 97% of the kinetic energy

= Improvement of the POD ROM robustness to dynamical evolutions '




’Yopt

time units
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» Reduction of the wake instationarity. v,,; ~ Asin(275,t) with A = 2.2

and Sy = 0.53

' ) |s it also optimal for the Navier-Stokes model ?

T(ve) =981 = T(Yopt) = 5.63.

~ » The control is optimal for the reduced order model based on POD.




» No mathematical proof concerning the Navier Stokes optimality.

no control v =0 optimal control v = yopt
Isocontours of vorticity w .

» no control : v = 0 = Asymmetric flow.
— Large and energetic eddies.
» optimal control : v = ~,,; = Symmetrization of the (near) wake.

— Smaller and lower energetic eddies.
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time units time units

» Important drag reduction :
Cpg =140fory=0and Cp = 1.04 for v = y,pt
Cp/Cpo = 0.74 = more than 25%.

1 » Decrease of the lift amplitude :
Cr =0.68fory=0and Cr = 0.13 for v = vop¢.




» Optimal control of NSE by He et al. (2000) :
— harmonic control law with A = 3 and S; = 0.75.
= 30% drag reduction.

» Optimal control POD ROM (this study) :
— harmonic control law with A = 2.2 and S; = 0.53.
= 25% drag reduction.

# Less energetic costs (greater energetic gain ?)

# Reduction costs using POD ROM compared to NSE :
s calculus time : 100
s Memory storage : 600

— "Optimal" control of 3D flows becomes possible!
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Iso-relative- drag coefficient
s Cp (A, St)/Cpgin (A, St) plan.

Finding the global minimum with an optimization algorithm
may be difficult due to the smooth valley

Observations

» Minimum is located in a smooth
valley

— Global minimum :
around A = 4.4 and St = 0.76

» Maximum is located in a sharp
peak

— Global maximum :
near St = 0.2, the natural frequency :
lock-on flow
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Relative drag coefficient
vS. maximum angle of rotation.

Existence of an "optimal" maximum angle of rotation ©,,,,..

150

180

» Maximum angle of rotation :

© = max; {6(t)} = ﬁiSt

Observations

» No drag reduction possible near
natural frequency

» Maximum drag reduction around
@ma:c = 95°

— For all frequencies g.t. natural fre-
guency
— Minimum drag :

CD = 0.71 % CDO = 0.98




1.2 e Notations
CDmin(St) — glelﬁ CD(@, St)
CD@max (St) — CD(@maa;a St)

Observations

» Good agreements between
CpDmin @nd Cpg, for St > Sty

0'60 0.1 02 03 04 05 06 07 08 09 1 . ]
St » O,,.: IS not optimal for St <
~ Comparison between C'p,,;,, and StNnat

CD@max '

A and St corresponding to the minimal drag seems dependent :
A/St =5.2 (Oq: = 95°).




» POD ROM control law does not correspond to the global minimum

— POD ROM parameters : A = 2.2 and St = 0.53 (O = 76°)
= (Cp=1.04

— Global minimum parameters : A = 4.4 and St = 0.76
(© = 105° # Oaz = 95°)
= CD = (.98
» Results in (A, St) quite different but not so far in terms of C'p

— The smooth valley is reached

» Improvement : coupling to the POD ROM approach an efficient new
=== Optimization algorithm for smooth fonctions

— Take results obtained by POD ROM as initial conditions




Advantages

» Numerical simplicities
» Adaptive topology
» Gradients calculations not necessary

» Good results with smooth functions
Drawbacks

» No proof of optimality for simplex dimensions greater than two
__ » Need to fix free parameters

L » Maybe more iterations than gradient based optimisation algorithms.. <
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Iso-relative- drag coefficient
== Cp(A, St)/Cpg in (4, St) plan.
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Relative drag reduction by POD ROM : 25% (1 NSE resolution)
Usefulness of coupling a new algorithm ?

» Topology adaptation function of
the curve of the valley

» Minimum found by Nelder-Mead
simplex method :

A=4.5and St =0.76 = O = 108°
— Seems to be the global mini-
mum

» 30 NSE resolutions = 5% ad-
ditive drag reduction compared to
POD ROM




K J

Important drag reduction obtained by POD ROM : more than 25% of
relative drag reduction

This solution is not the global minimum of the drag function

POD ROM compared to NSE =- important reduction of numerical
costs :

— Reduction factor of the calculus : 100

— Reduction factor of the memory storage : 600

"OPTIMAL" CONTROL OF 3D FLOWS POSSIBLE BY POD ROM

Existence of an optimal maximum angle of rotation for effective drag
reduction, O,,,,, = 95°

Coupling POD ROM with the Nelder-Mead simplex method leads a
priori to the global minimum of the drag function

But the gain on the drag function is quite small compared to result ¢
obtained by POD ROM :




K

Improve the representativity of the POD ROM

— "Optimize" the temporal excitation ~,
— Mix snapshots corresponding to different dynamics (temporal
excitations)

Look for harmonic control v(¢) = Asin(27 S; t) with POD basis
reactualization (closed loop on NSE and not only on POD ROM)

Coupling the POD ROM approach with Trust Region Methods
(TRPOD)
— proof of convergence under weak conditions

Introducing the pressure into the POD dynamical system

< pressure contribution to drag coefficient : 80%

Optimal control of the Navier-Stokes equations
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