Amélioration de la représentativité dynamique de modèles réduits POD. Application au contrôle aérodynamique.

Michel Bergmann

Michel.Bergmann@math.u-bordeaux1.fr http://www.math.u-bordeaux.fr/~bergmann/

Institut de Mathématiques de Bordeaux - Université Bordeaux 1 351 cours de la Libération 33405 TALENCE cedex, France

Plan de l'exposé

Introduction

- I Etude paramétrique
- II Méthodes mathématiques

La théorie du contrôle optimal

Réduction de modèle par Décomposition Orthogonale aux valeurs Propres (POD)

- III Optimisation sans réactualisation de la base POD
- IV Optimisation avec réactualisation de la base POD

Méthode adaptative

Méthode à région de confiance

- V Observations et améliorations
- VI Amélioration du modèle réduit

Conclusions

Introduction Contexte et objectifs de l'étude

Optimisation aérodynamique interne et externe avion par *contrôle des écoulements* :

→ enjeu majeur pour développement transport aéronautique

Optimisation aérodynamique

- Augmentation de l'autonomie en vol
- Diminution de la masse au décollage
- Réduction de l'émission de gaz polluant
- Réduction de la nuisance sonore
- Gain de manœuvrabilité

Exemple chiffré

- \circ Réduction 1% consommation mondiale de fuel pour le transport aéronautique

Introduction Configuration & méthode résolution

LEMTA - L. Cordier & J.-P. Brancher
$$\star\star\star$$

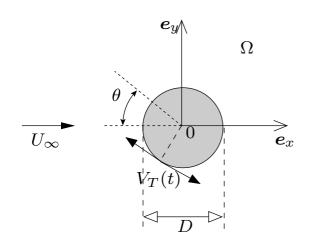
Configuration d'écoulement

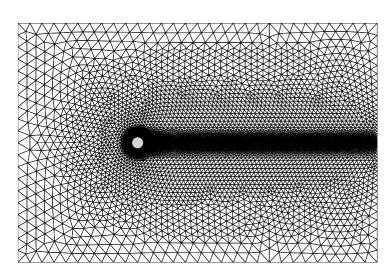
- o Prototype écoulement décollé
 - Cylindre circulaire 2D à Re = 200
 - Fluide visqueux, incompressible
- \circ Rotation cylindre : vitesse tangentielle $V_T(t)$

> Méthodes de résolution numérique

- Méthode à pas fractionnaires en temps
 - Correction de pression
- Éléments finis (P_1, P_1) en espace

Code de calcul développé par M. Braza et D. Ruiz (IMFT-ENSEEIHT)

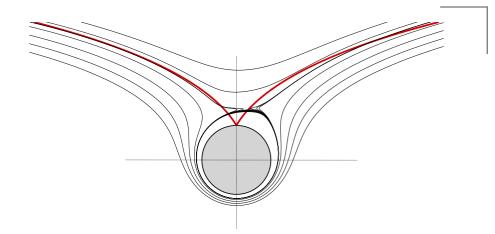




Introduction Rotation à vitesse constante

Rotation constante : $V_T(t) = V_0 U_{\infty}$

- Observations numériques,
 - \circ Si $V_0 = 3,6$ un seul point d'arrêt
 - \circ Si $V_0 \geq 3,6$ plus de sillage, $C_D \rightarrow 0$.
- ho Analytiquement, $V_0=3,1$ [Glauert, Proc. Roy. Soc., 1954]



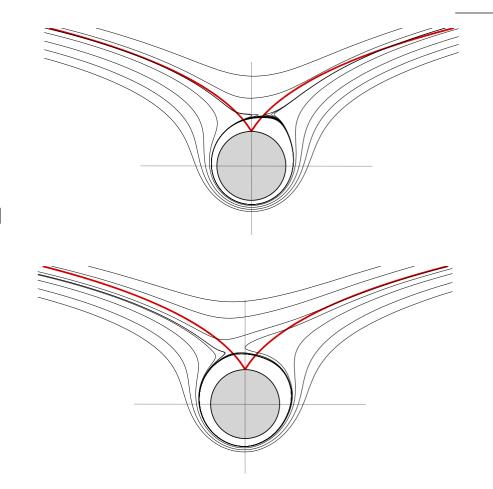
Introduction Rotation à vitesse constante

Rotation constante : $V_T(t) = V_0 U_{\infty}$

- Observations numériques,
 - Si $V_0 = 3,6$ un seul point d'arrêt
 - Si $V_0 \ge 3,6$ plus de sillage, $C_D \to 0$.
- ho Analytiquement, $V_0=3,1$ [Glauert, Proc. Roy. Soc., 1954]

Contrôle appliqué sur $\theta_{min} \leq \theta \leq \theta_{max}$

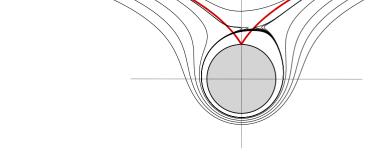
- ightharpoonup Circulation $\Gamma = 2\pi R V_0 \sqrt{\frac{\theta_{max} \theta_{min}}{\pi}}$
 - \circ $100^{\circ} \le \theta_c \le 160^{\circ} \Rightarrow V_c = \sqrt{3}V_0$



Introduction Rotation à vitesse constante

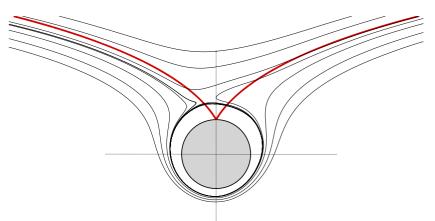
Rotation constante : $V_T(t) = V_0 U_{\infty}$

- Observations numériques,
 - Si $V_0 = 3,6$ un seul point d'arrêt
 - Si $V_0 \ge 3,6$ plus de sillage, $C_D \to 0$.
- ightharpoonup Analytiquement, $V_0=3,1$ [Glauert, Proc. Roy. Soc., 1954]



Contrôle appliqué sur $\theta_{min} \leq \theta \leq \theta_{max}$

- ightharpoonup Circulation $\Gamma = 2\pi R V_0 \sqrt{\frac{\theta_{max} \theta_{min}}{\pi}}$
 - $\circ 100^{\circ} \le \theta_c \le 160^{\circ} \Rightarrow V_c = \sqrt{3}V_0$



Réduction de traînée due au déplacement du point d'arrêt

ho Rotation sinusoïdale $\gamma(t)=rac{V_T(t)}{U_\infty}=A\sin(2\pi St_ft)$: point d'arrêt reste fixe à $\theta=0^\circ$.

Déterminer A et St_f qui minimisent la traînée (sans considérations énergétiques)

Introduction Ecoulement de base stationnaire instable

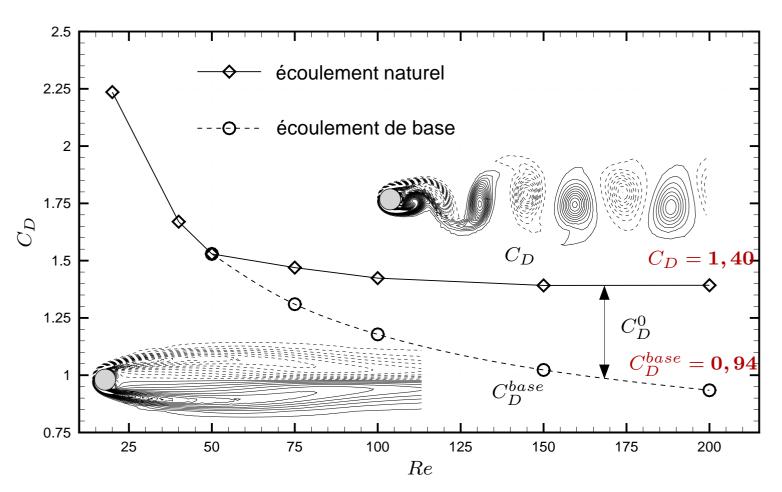


Fig. : Evolution du coefficient de traînée moyen en fonction du nombre de Reynolds. Comparaison entre l'écoulement naturel et l'écoulement de base stationnaire instable.

Protas, B. et Wesfreid, J.E. (2002): Drag force in the open-loop control of the cylinder wake in the laminar regime. *Phys. Fluids*, **14**(2), pp. 810-826.

I - Etude paramétrique Coefficient de traînée moyen

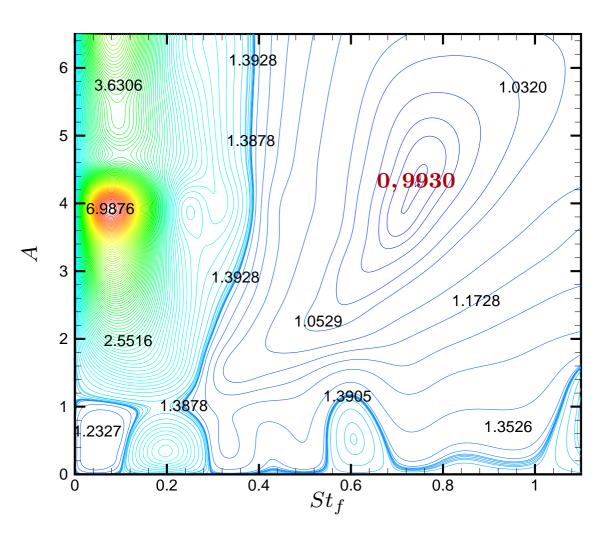


Fig. : Coefficient de traînée moyen en fonction de l'amplitude et de la fréquence de forçage.

Minimum (global?): $C_D = 0{,}9930$ pour $A = 4{,}25$ et $St_f = 0{,}74$.

I - Etude paramétrique Synchronisation des fréquences

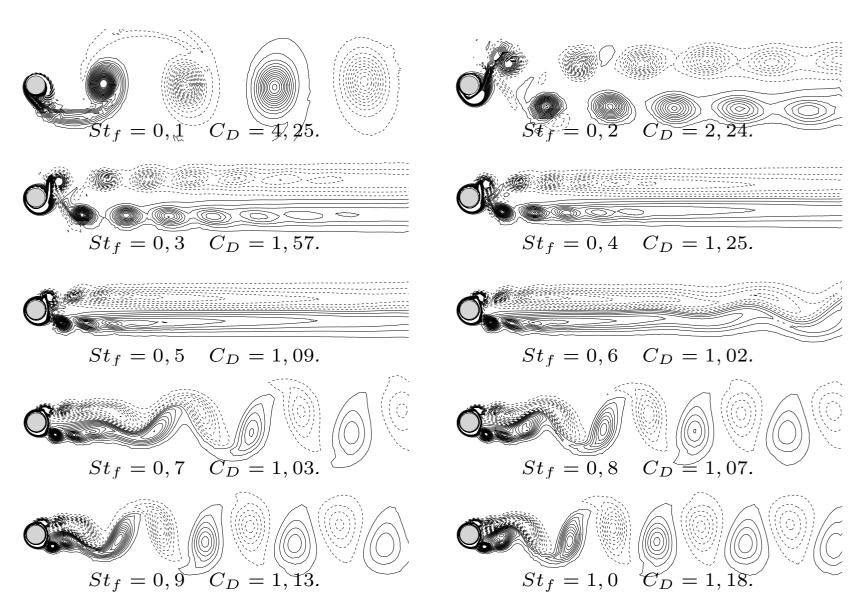


Fig. : Isovaleurs de la vorticité ω_z pour A=3

I - Etude paramétrique Synchronisation des fréquences

Définitions : Lock-on : la fréquence du lâché de tourbillons St est égale à

la fréquence de forçage St_f , soit $St = St_f$

Lock-in : idem *lock-on* avec $St_f = St_n$, où St_n est la fréquence naturelle

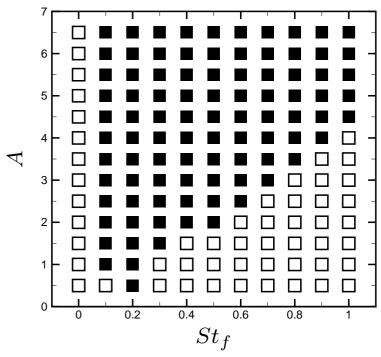


Fig. : Écoulements lock-on \blacksquare et no lock-on \square en fonction de l'amplitude A et du nombre de Strouhal St_f de forçage.

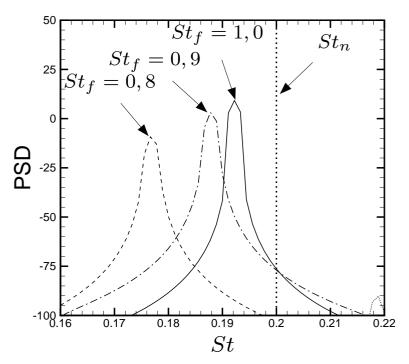


Fig.: Evolution des spectres de puissance du coefficient de portance pour A=3 après la zone de lock-on.

I - Etude paramétrique Synchronisation des fréquences

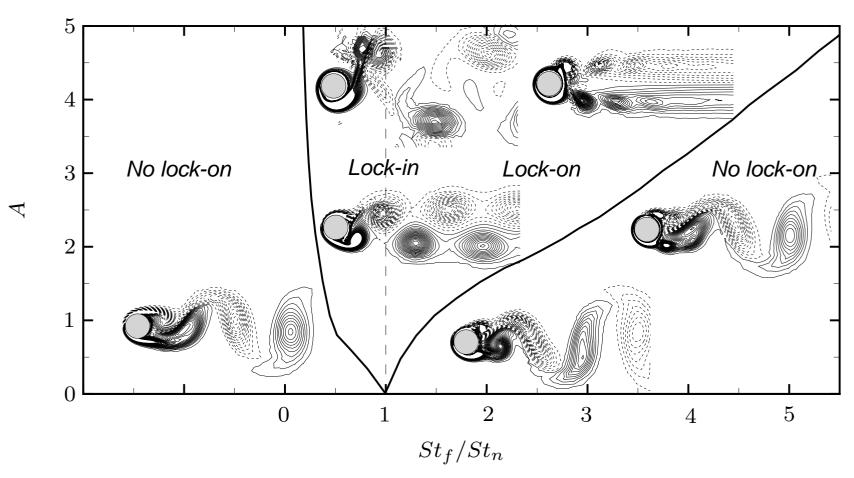


Fig. : Bande fondamentale lock-on et iso-contours de vorticité ω_z dans le sillage proche.

Écoulements hors lock-on "semblables"

I - Etude paramétrique Angle maximal de rotation

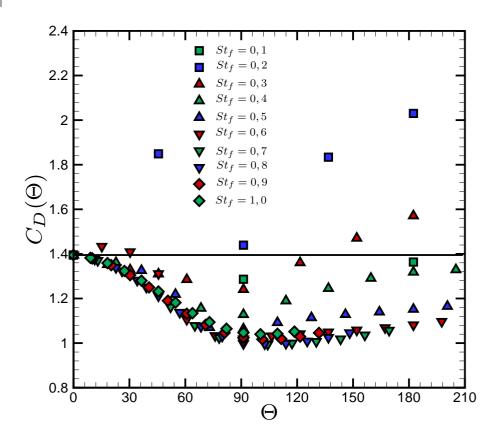


Fig. : Coefficient de traînée moyen en fonction de l'angle maximal de rotation.

Notation

► Angle maximal de rotation :

$$\Theta = \max_{t} \{\theta(t)\} = \frac{A}{\pi S t_f}$$

Observations

► Réduction de traînée maximale

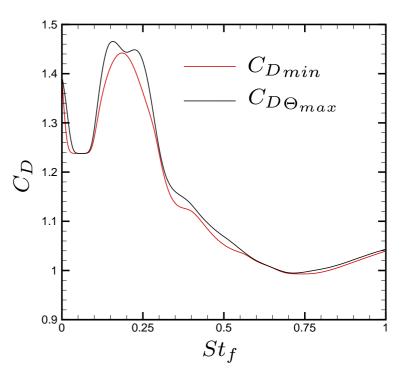
$$\Theta_{max} = 95^{\circ}$$

 \hookrightarrow Coefficient de traînée minimal $C_D = 0,993$

N.B. : Sans contrôle, $C_D \simeq 1,4$

Existence d'une valeur optimale Θ_{max} pour l'angle maximal de rotation

I - Etude paramétrique Angle maximal de rotation



6 3.5867 1.3919 1.0450 1.0450 1.0450 1.398.6 1.3903 1.3965 1.3565

Fig. : Evolution du coefficient de traînée moyen en fonction du nombre de Strouhal.

Fig. : Dépendance des paramètres optimaux dans l'espace de contrôle

▶ Bonne concordance entre C_{Dmin} et $C_{D\Theta_{max}}$.

A et St_f "optimaux" semblent dépendants : $A/St_f = 5, 2$ ($\Theta_{max} = 95$ °) \Rightarrow Correspond à la limite région "lock-on".

II - Théorie du contrôle optimal Définition

Méthode mathématique permettant de déterminer sans empirisme une loi de commande à partir de l'optimisation d'une fonctionnelle coût.

- - (Navier-Stokes + C.I. + C.L.)
- Variables de contrôle c;

(Soufflage/aspiration, paramètres de forme, ...)

riangleright Fonctionnelle objectif $\mathcal{J}(\phi,c)$

(Traînée, portance, ...)

Déterminer les variables de contrôle c et les variables d'état ϕ telles que la fonctionnelle objectif $\mathcal{J}(\phi,c)$ soit minimale ou maximale sous les contraintes $\mathcal{F}(\phi,c)=0$.

II - Théorie du contrôle optimal Méthode duale

Optimisation avec contraintes \Rightarrow optimisation sans contraintes

- \triangleright Introduction de multiplicateurs de Lagrange ξ (pour chaque contrainte active).
- \triangleright Fonctionnelle de Lagrange : $\mathcal{L}(\phi, c, \xi) = \mathcal{J}(\phi, c) \langle \mathcal{F}(\phi, c), \xi \rangle$.
- \triangleright Problème : rendre \mathcal{L} "stationnaire" \Rightarrow déterminer $\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial c} \delta c + \frac{\partial \mathcal{L}}{\partial \xi} \delta \xi = 0$.
- ightharpoonup Hypothèse : ϕ , c et ξ indépendantes : $\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi = \frac{\partial \mathcal{L}}{\partial c} \delta c = \frac{\partial \mathcal{L}}{\partial \xi} \delta \xi = 0$.
 - \hookrightarrow Solution de $\frac{\partial \mathcal{L}}{\partial \xi} \delta \xi = 0$: équations d'état $\mathcal{F}(\phi, c) = 0$.
 - $\hookrightarrow \textit{Solution de } \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi = 0 : \quad \text{ équations adjointes} \qquad \left(\frac{\partial \mathcal{F}}{\partial \phi}\right)^* \xi = \left(\frac{\partial \mathcal{J}}{\partial \phi}\right)^*.$
 - $\hookrightarrow \textit{Solution de } \frac{\partial \mathcal{L}}{\partial c} \delta c = 0 : \qquad \textit{conditions d'optimalit\'e} \qquad \left(\frac{\partial \mathcal{J}}{\partial c}\right)^* = \left(\frac{\partial \mathcal{F}}{\partial c}\right)^* \xi.$
 - ⇒ Assure un extremum local (minimum)
 - ⇒ Méthode de résolution coûteuse en temps CPU et mémoire pour des systèmes de grandes tailles!

II - Théorie du contrôle optimal Réduction de modèle

"without an inexpensive method for reducing the cost of flow computations, it is unlikely that the solution of optimization problems involving the three dimensional unsteady Navier-Stokes system will become routine"

M. Gunzburger, 2000

Proper Orthogonal Decomposition (POD), Lumley (1967)

** Lecture series, Part I, Von Karman Institute, 2003 **

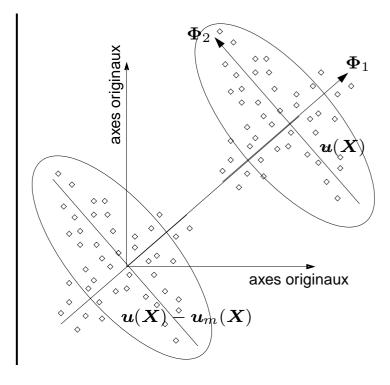
 \triangleright Rechercher la réalisation $\Phi(X)$ "ressemblant le plus" en moyenne aux réalisations u(X).

$$(\boldsymbol{X} = (\boldsymbol{x}, t) \in \mathcal{D} = \Omega \times \mathbb{R}^+)$$

 $hd \Phi(oldsymbol{X})$ solution du problème :

$$\max_{\mathbf{\Phi}} \langle |(\boldsymbol{u}, \mathbf{\Phi})|^2 \rangle, \quad \|\mathbf{\Phi}\|^2 = 1.$$

 \triangleright Convergence optimale *en norme* L^2 de $\Phi(X)$ \Rightarrow réduction de dynamique envisageable.



Lumley J.L. (1967): The structure of inhomogeneous turbulence. *Atmospheric Turbulence and Wave Propagation*, ed. A.M. Yaglom & V.I. Tatarski, pp. 166-178.

⊳ Equivalence avec une équation intégrale de Fredholm :

$$\int_{\mathcal{D}} R_{ij}(\boldsymbol{X}, \boldsymbol{X'}) \Phi_n^{(j)}(\boldsymbol{X'}) d\boldsymbol{X'} = \lambda_n \Phi_n^{(i)}(\boldsymbol{X}) \qquad n = 1, ..., N_{POD}$$
$$\hookrightarrow R(\boldsymbol{X}, \boldsymbol{X'}) : \text{ tenseur des corrélations spatio-temporelles}$$

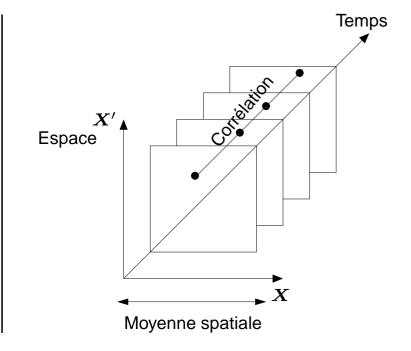
⊳ Méthode des snapshots, Sirovich (1987) :

$$\int_T C(t, t') a_n(t') dt' = \lambda_n a_n(t)$$

 $\hookrightarrow C(t,t')$: corrélations temporelles

 $\triangleright \Phi(oldsymbol{X})$ base de l'écoulement :

$$\boldsymbol{u}(\boldsymbol{x},t) = \sum_{n=1}^{N_{POD}} a_n(t) \boldsymbol{\Phi}_n(\boldsymbol{x}).$$



Sirovich L. (1987): Turbulence and the dynamics of coherent structures. Part 1,2,3 *Quarterly of Applied Mathematics*, **XLV** N° 3, pp. 561–571.

Réaliser une troncature dans la base POD en conservant 99% de l'énergie relative

$$ightharpoonup$$
 Contenu énergétique relatif : $RIC(M) = \sum_{k=1}^{M} \lambda_k \Big/ \sum_{k=1}^{N_{POD}} \lambda_k$

Cas test : A=2 et $St_f=0,5\Rightarrow N_{POD}=361$ réalisations sur T=18

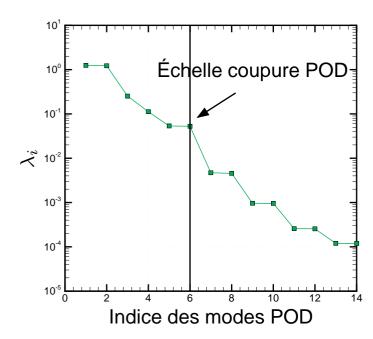


Fig.: Spectre énergétique POD.

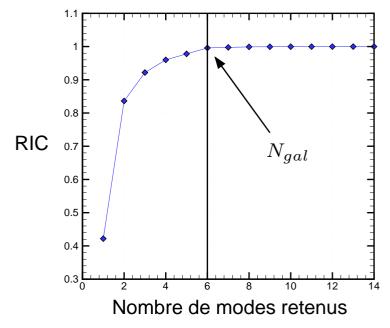


Fig. : RIC(M), M nb modes POD retenus.

$$N_{gal} = \arg\min_{M} RIC(M) \text{ t.q. } RIC(N_{gal}) > 99\% \quad \Rightarrow \quad N_{gal} = 6!$$

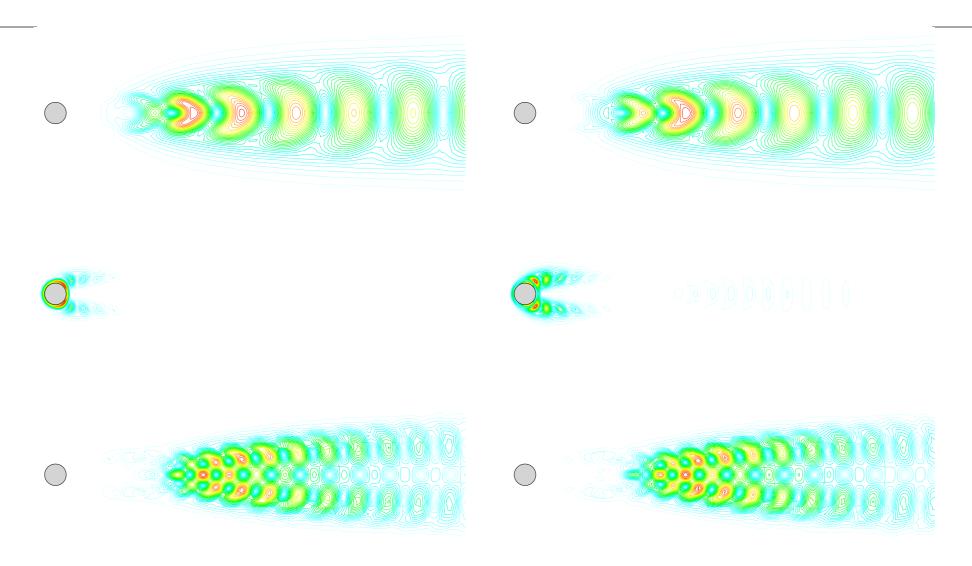


Fig. : Représentation des 6 premiers modes POD de fluctuations autour du champ moyen $\gamma(t)=A\sin(2\pi St_ft) \text{ avec } A=2 \text{ et } St_f=0,5.$

Réduction d'ordre du sillage contrôlé d'un cylindre (POD ROM)

** Lecture series, Part II, Von Karman Institute, 2003 **

> Projection de Galerkin des équations de Navier-Stokes sur la base POD :

$$\left(\boldsymbol{\Phi}_{i}, \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u}\right) = \left(\boldsymbol{\Phi}_{i}, -\boldsymbol{\nabla} p + \frac{1}{Re} \Delta \boldsymbol{u}\right).$$

▷ Intégration par parties (formule de Green) :

$$\left(\mathbf{\Phi}_{i}, \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u}\right) = (p, \boldsymbol{\nabla} \cdot \boldsymbol{\Phi}_{i}) - \frac{1}{Re} \left((\boldsymbol{\nabla} \otimes \boldsymbol{\Phi}_{i})^{T}, \boldsymbol{\nabla} \otimes \boldsymbol{u}\right) - [p \boldsymbol{\Phi}_{i}] + \frac{1}{Re} [(\boldsymbol{\nabla} \otimes \boldsymbol{u})\boldsymbol{\Phi}_{i}].$$

$$\text{avec } [\boldsymbol{a}] = \int_{\Gamma} \boldsymbol{a} \cdot \boldsymbol{n} \, d\boldsymbol{x} \text{ et } (\overline{\overline{A}}, \, \overline{\overline{B}}) = \int_{\Omega} \overline{\overline{A}} : \overline{\overline{B}} \, d\Omega = \sum_{i, \, j} \int_{\Omega} A_{ij} B_{ji} \, d\boldsymbol{x}.$$

▷ Termes de pression "indésirables" : ⇒ élimination

 \triangleright Décomposition du champ de vitesse sur N_{POD} modes :

$$\boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{u}_m(\boldsymbol{x}) + \gamma(t) \, \boldsymbol{u}_c(\boldsymbol{x}) + \sum_{k=1}^{N_{POD}} a_k(t) \boldsymbol{\Phi}_k(\boldsymbol{x}).$$

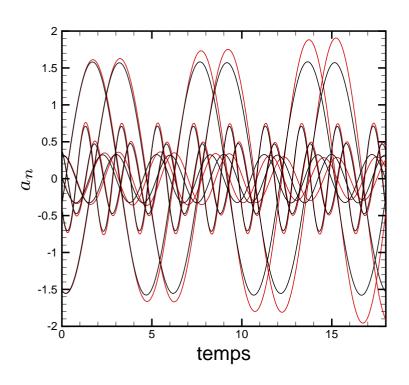
ho Système dynamique réduit avec $N_{gal}~(\ll N_{POD})$ modes retenus :

$$\begin{cases} \frac{d a_i(t)}{d t} = \mathcal{A}_i + \sum_{j=1}^{N_{gal}} \mathcal{B}_{ij} a_j(t) + \sum_{j=1}^{N_{gal}} \sum_{k=1}^{N_{gal}} \mathcal{C}_{ijk} a_j(t) a_k(t) \\ + \mathcal{D}_i \frac{d \gamma}{d t} + \left(\mathcal{E}_i + \sum_{j=1}^{N_{gal}} \mathcal{F}_{ij} a_j(t) \right) \gamma + \mathcal{G}_i \gamma^2 \end{cases}$$

$$a_i(0) = (\boldsymbol{u}(\boldsymbol{x}, 0), \boldsymbol{\Phi}_i(\boldsymbol{x})).$$

 \mathcal{A}_i , \mathcal{B}_{ij} , \mathcal{C}_{ijk} , \mathcal{D}_i , \mathcal{E}_i , \mathcal{F}_{ij} et \mathcal{G}_i dépendent uniquement de Φ , u_m , u_c et Re

Erreurs de reconstruction POD ROM ⇒ amplification temporelle des modes



Causes:

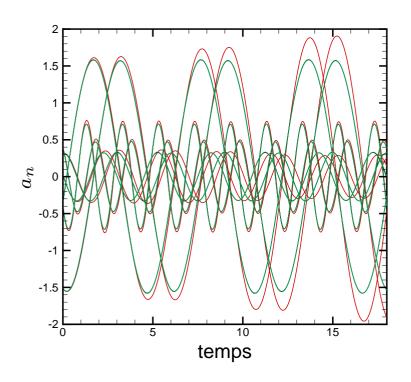
- Extraction POD : grosses et moyennes structures porteuses d'énergie
- Essential dissipation : petites structures

Solution:

```
** soumis à Theoret. Comput. Fluid Dynamics, 2007 **
```

—— projection (Navier-Stokes) : $a_{\tau n}(t)$ —— prédiction avant stabilisation (POD ROM)

Erreurs de reconstruction POD ROM ⇒ amplification temporelle des modes



Causes:

- Extraction POD : grosses et moyennes structures porteuses d'énergie
- Essential dissipation : petites structures

Solution:

```
** soumis à Theoret. Comput. Fluid Dynamics, 2007 **
```

- —— projection (Navier-Stokes) : $a_{\tau n}(t)$ —— prédiction avant stabilisation (POD ROM) —— prédiction après stabilisation (POD ROM).
 - ⇒ Modèle réduit validé

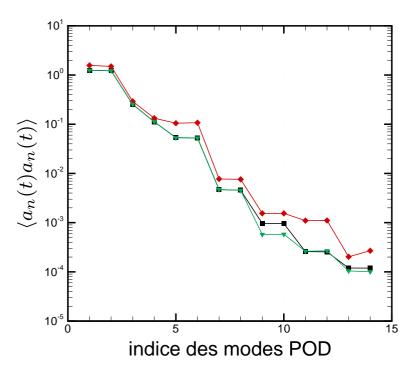


Fig. : Comparaison du contenu énergétique de chaque mode POD estimé respectivement par DNS et par POD ROM.

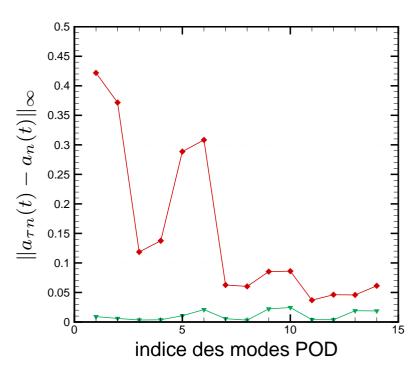


Fig.: Erreur en norme infinie du contenu énergétique de chaque mode POD avant et après stabilisation.

- ⊳ Bonne concordance entre spectres POD ROM et DNS
- ▷ Réduction de l'erreur de reconstruction entre les modes prédits (POD) et projetés (DNS)

⇒ Validation du modèle réduit POD

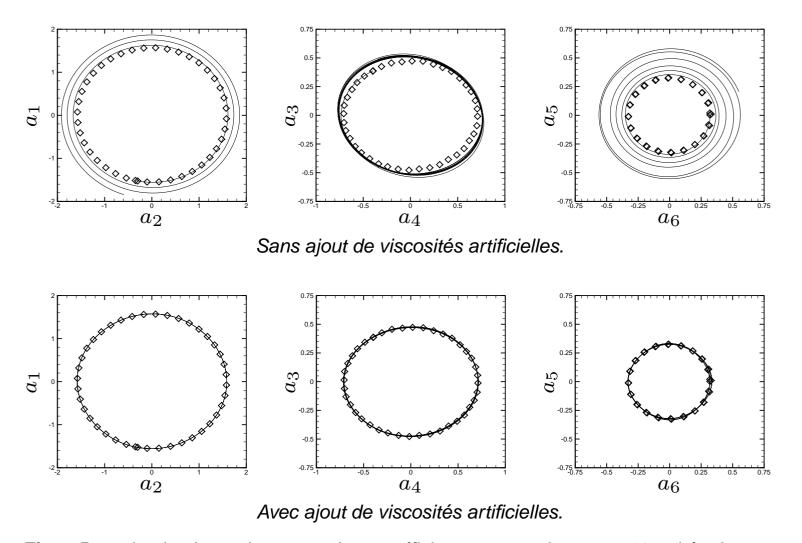
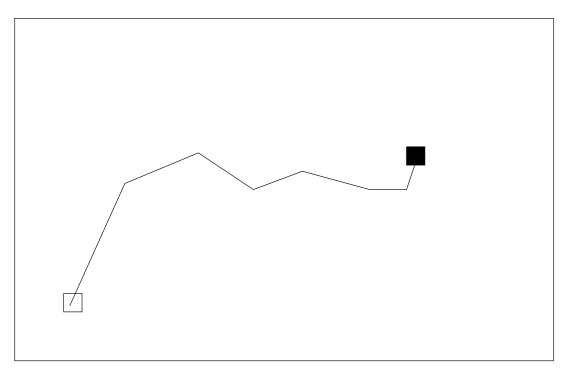


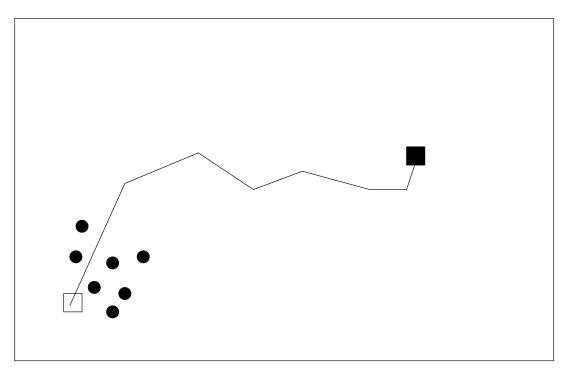
Fig. : Portraits de phase des 6 premiers coefficients temporels a_n sur 18 unités de temps. \Diamond modes DNS; —— modes POD.

Le modèle réduit POD représente correctement une unique dynamique ...



Configuration générale.

Fig. : Problème d'optimisation posé dans l'espace des paramètres de contrôle.
—— chemin d'optimisation, conditions initiale □ et terminale ■ du processus d'optimisation.

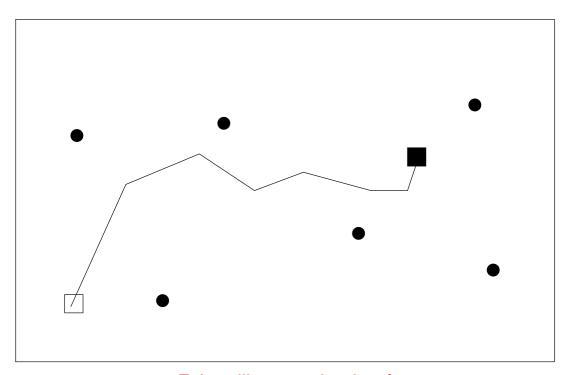


Echantillonnage inadapté.

Fig. : Problème d'optimisation posé dans l'espace des paramètres de contrôle.

—— chemin d'optimisation, conditions initiale □ et terminale ■ du processus d'optimisation,

• réalisation utilisée pour la base de données.

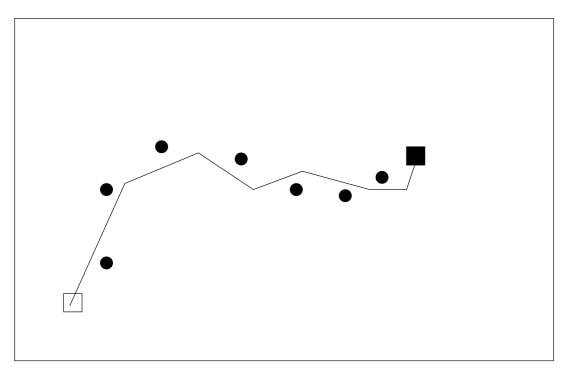


Echantillonnage inadapté.

Fig. : Problème d'optimisation posé dans l'espace des paramètres de contrôle.

—— chemin d'optimisation, conditions initiale □ et terminale ■ du processus d'optimisation,

• réalisation utilisée pour la base de données.

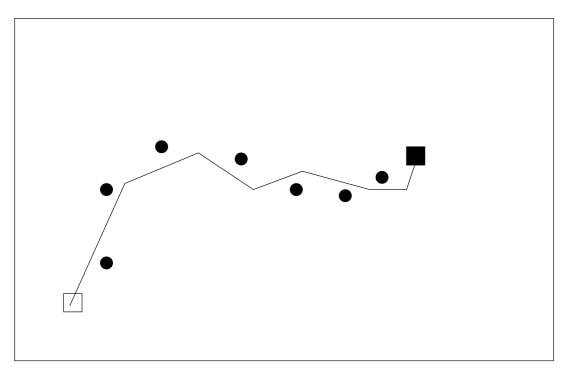


Echantillonnage idéal.

Fig. : Problème d'optimisation posé dans l'espace des paramètres de contrôle.

—— chemin d'optimisation, conditions initiale □ et terminale ■ du processus d'optimisation,

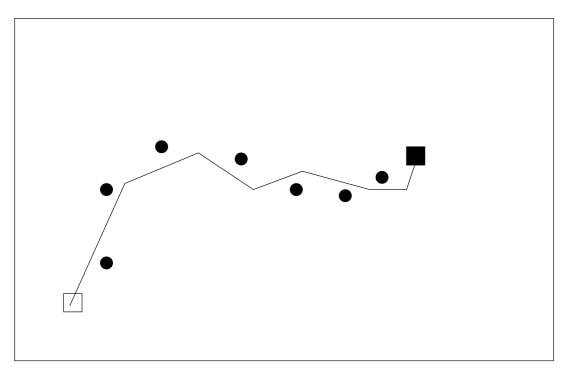
• réalisation utilisée pour la base de données.



Echantillonnage idéal.

Fig. : Problème d'optimisation posé dans l'espace des paramètres de contrôle.
—— chemin d'optimisation, conditions initiale □ et terminale ■ du processus d'optimisation,
réalisation utilisée pour la base de données.

La base représente toutes les dynamiques le long du chemin d'optimisation
 III - Optimisation sans réactualisation de la base POD



Echantillonnage idéal.

Fig. : Problème d'optimisation posé dans l'espace des paramètres de contrôle.

—— chemin d'optimisation, conditions initiale □ et terminale ■ du processus d'optimisation,

• réalisation utilisée pour la base de données.

- La base représente toutes les dynamiques le long du chemin d'optimisation
 III Optimisation sans réactualisation de la base POD
- La base ne représente qu'une dynamique contrôlée particulière
 IV Optimisation avec réactualisation de la base POD

III - Base POD non réactualisée Présentation

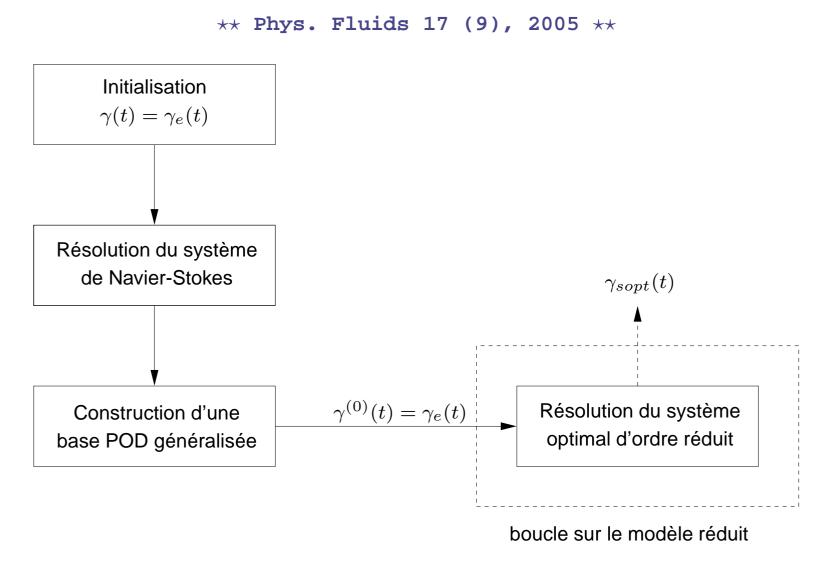


Fig. : Représentation schématique de méthode d'optimisation sans réactualisation de la base POD.

III - Base POD non réactualisée Contrôle optimal

Objectif : minimiser l'instationnarité du sillage

⊳ Fonctionnelle coût :

$$\mathcal{J}(\boldsymbol{a}, \gamma(t)) = \int_0^T J(\boldsymbol{a}, \gamma(t)) dt = \int_0^T \left(\sum_{i=1}^{N_{gal}} a_i^2(t) + \frac{\alpha}{2} \gamma^2(t) \right) dt.$$

 α : paramètre de régularisation (pénalisation).

> Equations adjointes :

$$\begin{cases} \frac{d\xi_{i}(t)}{dt} = -\sum_{j=1}^{N_{gal}} \left(\mathcal{B}_{ji} + \gamma \mathcal{F}_{ji} + \sum_{k=1}^{N_{gal}} \left(\mathcal{C}_{jik} + \mathcal{C}_{jki} \right) a_{k} \right) \xi_{j}(t) - 2a_{i} \\ \xi_{i}(T) = 0. \end{cases}$$

⊳ Condition d'optimalité :

$$\delta\gamma(t) = -\sum_{i=1}^{N_{gal}} \mathcal{D}_i \frac{d\xi_i}{dt} + \sum_{i=1}^{N_{gal}} \left(\mathcal{E}_i + \sum_{j=1}^{N_{gal}} \mathcal{F}_{ij} a_j + 2\mathcal{G}_i \gamma(t) \right) \xi_i + \alpha\gamma(t).$$

III - Base POD non réactualisée Système optimal

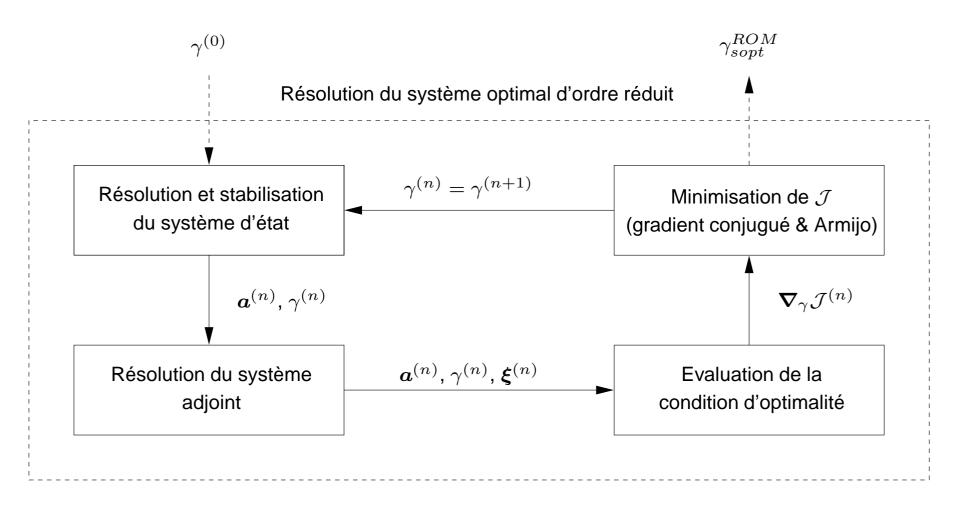


Fig. : Représentation schématique du processus de résolution du système optimal d'ordre réduit.

III - Base POD non réactualisée Méthode

Problème : un système POD représente *a priori* uniquement une dynamique proche de celle utilisée pour le générer

Méthode : construction d'une base POD généralisée représentative d'une plus large gamme de dynamique \rightarrow balayage amplitude et fréquence de $\gamma(t)$

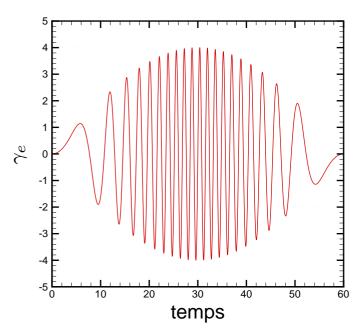


Fig. : Excitation temporelle γ_e imposée au cylindre.

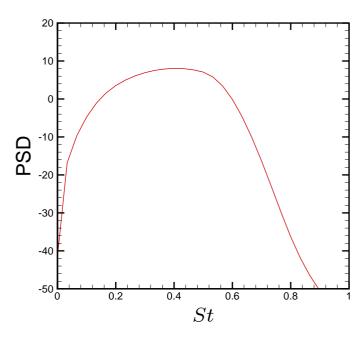


Fig. : Densité spectrale de puissance de l'excitation temporelle γ_e .

 $\triangleright 0 \le \text{amplitudes} \le 4 \text{ et analyse de Fourier} \Rightarrow 0 \le \text{fréquences} \le 0, 8$

 $hd \gamma_e$ loi de contrôle initiale dans processus itératif

III - Base POD non réactualisée Méthode

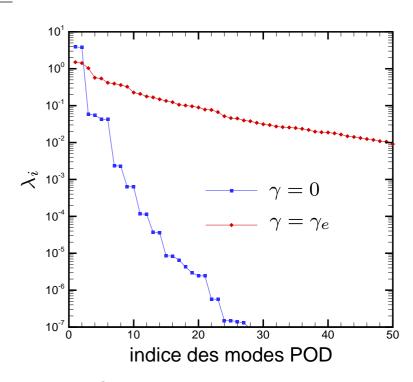


Fig.: Comparaison des spectres de valeurs propres.

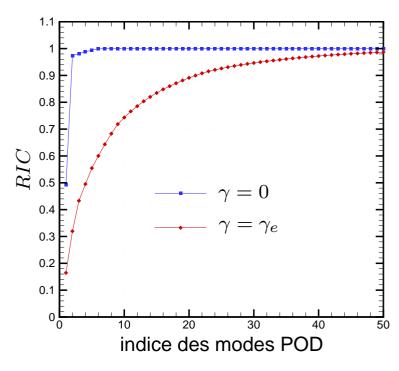


Fig.: Comparaison du contenu informationnel relatif

hickspace > Cylindre non contrôlé, $\gamma=0$:

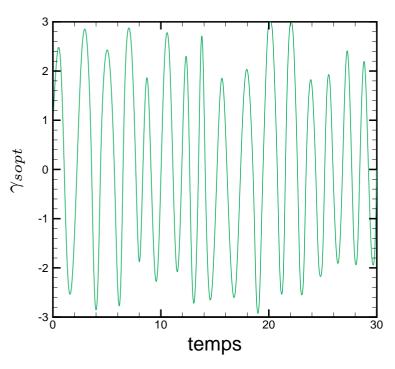
 $\hookrightarrow 2$ modes sur 100 suffisent pour représenter 97% de l'énergie.

riangle Cylindre excité, $\gamma=\gamma_e$:

 $\hookrightarrow 40$ modes sur 100 sont nécessaires pour représenter 97% de l'énergie

⇒ Evolution de la robustesse p.r. aux évolutions dynamiques

III - Base POD non réactualisée Contrôle sous-optimale



20 10 0 -10 -20 -30 -40 -50 0 0.53 1.06 1.59 2.12 2.65

Fig. : Evolution temporelle de la loi de contrôle γ_{sopt} .

Fig. : Densité spectrale de puissance de la loi de contrôle γ_{sopt} .

▷ Diminution très importante de l'instationnarité du sillage :

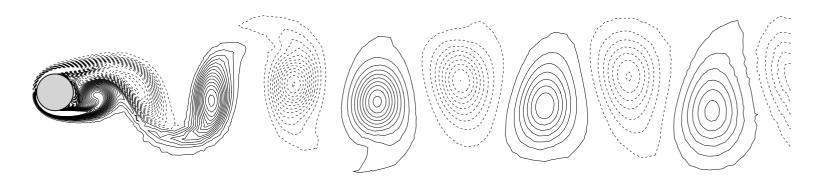
$$\mathcal{J}(\gamma_e) = 11,85 \implies \mathcal{J}(\gamma_{sopt}) = 3,70.$$
 $\gamma_{sopt} \simeq A \sin(2\pi S t_f t)$ avec $A = 2,2$ et $S t_f = 0,53$

Le contrôle est optimal pour le système POD ROM

Le contrôle est-il optimal pour Navier-Stokes?

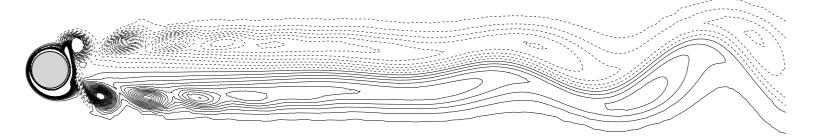
III - Base POD non réactualisée Sillage

Aucune preuve mathématique d'optimalité pour Navier-Stokes



Écoulement non contrôlé : $\gamma = 0 \Rightarrow$ Sillage asymétrique.

 \hookrightarrow Grosses structures porteuses d'énergie.



Écoulement contrôlé : $\gamma = \gamma_{sopt} \Rightarrow$ Sillage quasi symétrique.

→ Plus petites structures ⇒ moins énergétiques.

Fig. : Isocontours de vorticité ω_z

III - Base POD non réactualisée Coeff. aéro.

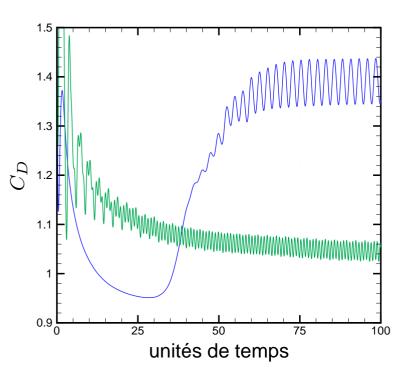


Fig. : Comparaison de l'évolution temporelle des coefficients de traînée

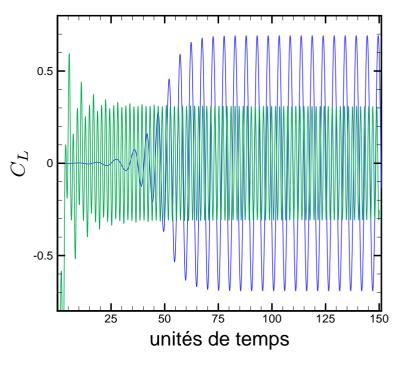


Fig. : Comparaison de l'évolution temporelle des coefficients de portance

⊳ Importante réduction de traînée :

$$C_D=1,40$$
 pour $\gamma=0$ et $C_D=1,06$ pour $\gamma=\gamma_{sopt}$ (plus de 25%).

▷ Diminution de l'amplitude de la portance :

$$C_L=0,68$$
 pour $\gamma=0$ et $C_L=0,13$ pour $\gamma=\gamma_{sopt}$.

III - Base POD non réactualisée Coûts de calcul

- Comparaison résultats : POD ROM sans réactualisation / DNS
 - Contrôle optimal Navier-Stokes par He et al. (2000) :
 - \hookrightarrow loi de contrôle harmonique avec A=3 et St=0,75. $\Rightarrow 30\%$ de réduction de traînée.
 - Contrôle optimal POD ROM :
 - \hookrightarrow loi de contrôle harmonique avec A=2,2 et St=0,53. $\Rightarrow 25\%$ de réduction de traînée.
- Réduction stockage mémoire :
 - 600 fois moins de variables par POD ROM que par NSE!
- Réduction temps de calcul :
 - 100 fois inférieur par POD ROM que par NSE, idem équations adjointes et condition d'optimalité.

IV - Base POD réactualisée Présentation

** J. Fluid Mech., under review **

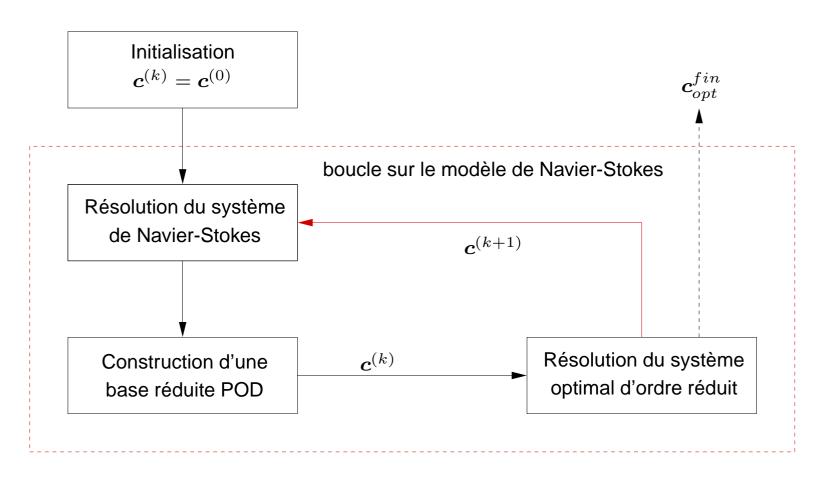
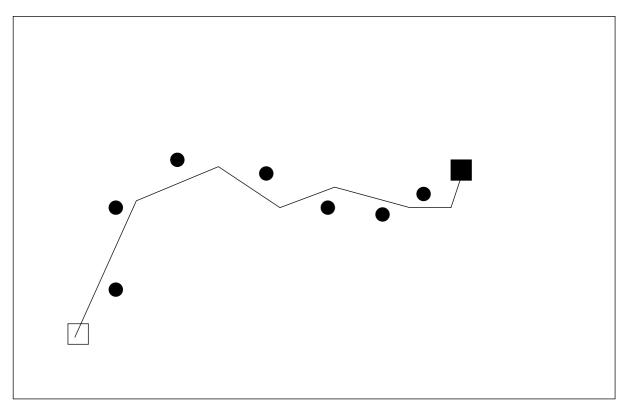


Fig. : Représentation schématique de la méthode d'optimisation avec réactualisation de la base POD.

Quand avoir recours au modèle de Navier-Stokes?

IV - Base POD réactualisée Présentation

** J. Fluid Mech., under review **



Echantillonnage idéal.

Fig. : Problème d'optimisation posé dans l'espace des paramètres de contrôle.

—— chemin d'optimisation, conditions initiale □ et terminale ■ du processus d'optimisation,

• réalisation utilisée pour la base de données.

Quand avoir recours au modèle de Navier-Stokes?

IV - Base POD réactualisée Modes de non-équilibre

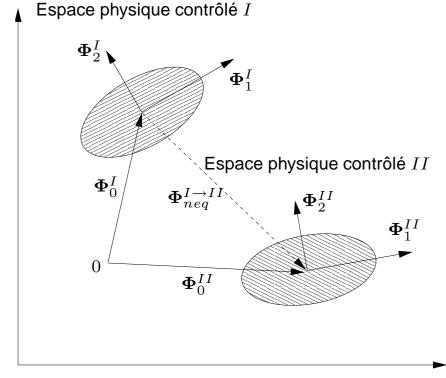
- riangle Nécessité de directions non prises en compte dans la base POD initiale $\{\Phi_i\}_{i=1,...,N_{qal}}$
- ightharpoonup Construction N_{neq} modes particuliers
 - Vecteur translation entre le champ moyen I et le champ moyen II :

$$\mathbf{\Phi}_0^{I \to II} = \mathbf{\Phi}_0^{II} - \mathbf{\Phi}_0^{I}.$$

 Ajout à la base existante (Gram-Schmidt)

$$\mathbf{\Phi}_{N_{gal}+1}^{I} \equiv \widetilde{\mathbf{\Phi}}_{0}^{I \to II}.$$

o Idem pour $\Phi_0^{I \to III}$, etc...



Espace de contrôle

Fig. : Représentation schématique d'une transition de dynamique par utilisation d'un mode moyen de non-équilibre.

Noack, B.R., Afanasiev, K., Morzyński, M., Tadmor, G. et Thiele, F. (2003): A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. *J. Fluid Mech.*, **497** pp. 335–363.

IV - Base POD réactualisée POD ROM augmenté

riangleright Décomposition de la vitesse sur $N_{gal} + N_{neq} + 1$ modes

$$\widetilde{\boldsymbol{u}}(\boldsymbol{x},\,t) = \underbrace{a_0(t)\,\boldsymbol{\Phi}_0(\boldsymbol{x})}_{\text{champ moyen}} + \gamma(\boldsymbol{c},\,t)\,\boldsymbol{u}_c(\boldsymbol{x}) + \underbrace{\sum_{i=1}^{N_{gal}}a_i(t)\,\boldsymbol{\Phi}_i(\boldsymbol{x})}_{\text{modes POD Galerkin}} + \underbrace{\sum_{i=N_{gal}+1}^{N_{gal}+N_{neq}}a_i(t)\,\boldsymbol{\Phi}_i(\boldsymbol{x})}_{\text{modes de non-équilibre}}.$$

riangle Système dynamique avec $N_{gal} + N_{neq} + 1$ modes retenus (équations d'état)

$$\begin{cases} \frac{d a_i(t)}{d t} = \sum_{j=0}^{N_{gal}+N_{neq}} \mathcal{B}_{ij} a_j(t) + \sum_{j=0}^{N_{gal}+N_{neq}} \sum_{k=0}^{N_{gal}+N_{neq}} \mathcal{C}_{ijk} a_j(t) a_k(t) \\ + \mathcal{D}_i \frac{d \gamma(\mathbf{c}, t)}{d t} + \left(\mathcal{E}_i + \sum_{j=0}^{N_{gal}+N_{neq}} \mathcal{F}_{ij} a_j(t)\right) \gamma(\mathbf{c}, t) + \mathcal{G}_i \gamma^2(\mathbf{c}, t). \end{cases}$$

$$a_i(0) = (\mathbf{u}(\mathbf{x}, 0), \Phi_i(\mathbf{x})).$$

 \mathcal{B}_{ij} , \mathcal{C}_{ijk} , \mathcal{D}_i , \mathcal{E}_i , \mathcal{F}_{ij} et \mathcal{G}_i dépendent de Φ , \boldsymbol{u}_c et Re

IV - Base POD réactualisée Modes POD & non-équilibre

Aspects physiques et dynamiques des modes utilisés

Aspects physiques	Modes	Aspects dynamiques
fonction de contrôle	$oldsymbol{u}_c$	dynamique pré-déterminée
mode écoulement moyen	\boldsymbol{u}_m , $i=0$	$a_0 = Cste$
modes POD Galerkin correspondent à la physique de l'écoulement	i = 1	Oug () mag alom a maiores
	i=2	Système dynamique modes déterminés par intégration du système dynamique (le mode $i=0$ peut
	•••	
	$i = N_{gal}$	
modes de non-équilibre	$i = N_{gal} + 1$	également être résolu et
correspondent à des directions	• • •	$a_0 \equiv a_0(t)$
privilégiées	$i = N_{gal} + N_{neq}$	

Tab. : Descriptif des aspects physiques et dynamiques des modes présents dans la décomposition sur la base POD, augmentée des modes de non-équilibre.

IV - Base POD réactualisée Modes POD & non-équilibre

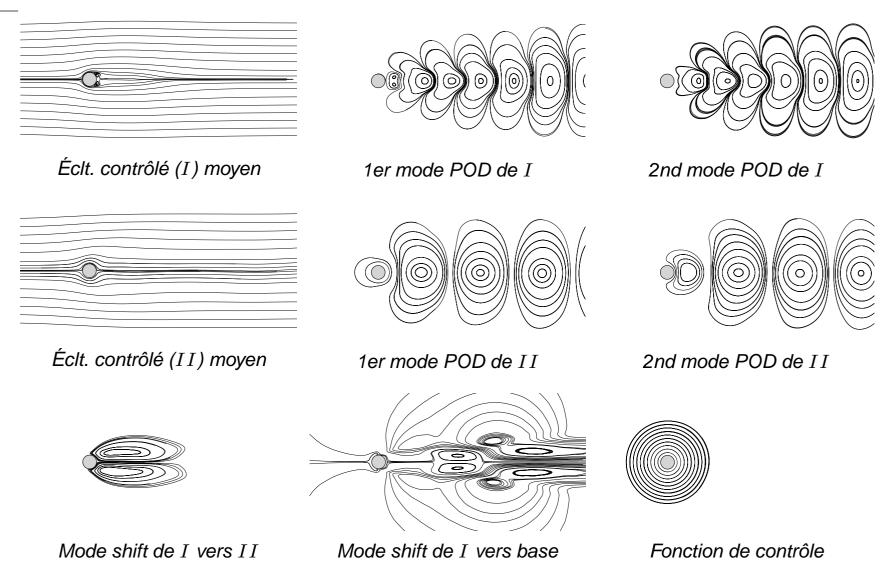


Fig. : Représentation de modes Galerkin, de la fonction de contrôle u_c , et de modes de non-équilibre présents dans la base POD

IV - Base POD réactualisée Contrôle optimal

 ${\,\vartriangleright\,} \text{Opérateur } \textit{de traîn\'ee}: \ \mathcal{C}_{\mathcal{D}}: \mathbb{R}^3 \mapsto \mathbb{R}$

$$\mathbf{u} \mapsto 2 \int_{\Gamma_c} \left(u_3 n_x - \frac{1}{Re} \frac{\partial u_1}{\partial x} n_x - \frac{1}{Re} \frac{\partial u_1}{\partial y} n_y \right) d\Gamma$$

- > Coefficients de traînée réel et modèle
 - \hookrightarrow Coefficient de traînée réel Navier-Stokes $C_D = \mathcal{C}_{\mathcal{D}}(\boldsymbol{U})$ avec $\boldsymbol{U} = (u, v, p)^T$
 - $\hookrightarrow \text{Coefficient de traînée modélisé par POD } \widetilde{C}_D = \mathcal{C}_{\mathcal{D}}(\widetilde{\boldsymbol{U}}) \text{ avec } \widetilde{\boldsymbol{U}} = (\widetilde{u},\,\widetilde{v},\,\widetilde{p})^T$
- ho Problème : la pression \widetilde{p} n'est pas connu
 - \hookrightarrow La base POD est étendue au champ de pression : $\mathbf{\Phi}=(\mathbf{\Phi},\,\Phi^p)^T$
 - \Rightarrow Corrélations avec pression $C(t,t')=rac{1}{T}\int_{\Omega}U_{i}(m{x},t)U_{i}(m{x},t')\,dm{x}$

$$\textbf{D\'ecomposition:} \ \widetilde{\pmb{U}}(\pmb{x},\,t) = \gamma(\pmb{c},\,t) \ \pmb{U}_c(\pmb{x}) + \underbrace{\sum_{i=0}^{N_{gal}} a_i(t) \, \pmb{\Phi}_i(\pmb{x})}_{\text{modes POD Galerkin}} + \underbrace{\sum_{i=N_{gal}+1}^{N_{gal}+N_{neq}} a_i(t) \, \pmb{\Phi}_i(\pmb{x})}_{\text{modes de non-\'equilibre}}$$

IV - Base POD réactualisée Contrôle optimal

▶ Fonction objectif modélisée par POD (coefficient de traînée moyen) :

$$\widetilde{\mathcal{J}}(\boldsymbol{a}) = \frac{1}{T} \int_0^T \sum_{i=0}^{N_{gal}+N_{neq}} a_i(t) N_i dt, \text{ avec } N_i = \mathcal{C}_{\mathcal{D}}(\boldsymbol{\Phi}_i)$$

> Système dynamique adjoint :

$$\begin{cases} \frac{d\xi_{i}(t)}{dt} = -\sum_{j=0}^{N_{gal}+N_{neq}} \left(\mathcal{B}_{ji} + \gamma(\boldsymbol{c}, t) \mathcal{F}_{ji} + \sum_{k=0}^{N_{gal}+N_{neq}} \left(\mathcal{C}_{jik} + \mathcal{C}_{jki} \right) a_{k}(t) \right) \xi_{j}(t) - \frac{N_{i}}{T}, \\ \mathcal{E}_{i}(T) = 0 \end{cases}$$

> Conditions d'optimalite :

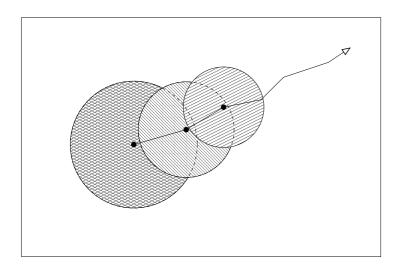
$$\nabla_{\boldsymbol{c}} \mathcal{L} = \int_{0}^{T} \left(\sum_{i=0}^{N_{gal} + N_{neq}} \mathcal{L}_{i} \right) \nabla_{\boldsymbol{c}} \gamma dt$$

$$\operatorname{avec} \mathcal{L}_i = -\frac{d\xi_i}{dt} \mathcal{D}_i + \xi_i \left(\mathcal{E}_i + \sum_{j=0}^{N_{gal} + N_{neq}} \mathcal{F}_{ij} a_j + 2\gamma(\boldsymbol{c}, t) \mathcal{G}_i \right)$$

IV - Base POD réactualisée Méthodes résolution

Quand avoir recours au modèle de Navier-Stokes pour "rafraîchir" la base POD?

- Déterminer domaine validité modèle réduit
 - Opening of the control of the con
 - Détermination empirique :
 - Détermination automatique :



⇒ Avantages TRPOD

- Pas d'empirisme
- Preuves de convergence de la solution sous certaines conditions
- Coûts de calcul identiques à méthode adaptative

Conn, A.R., Gould, N.I.M. et Toint, P.L. (2000): Trust-region methods. SIAM, Philadelphia.

Initialisation : c_0 , résolution du modèle de Navier-Stokes. k=0.

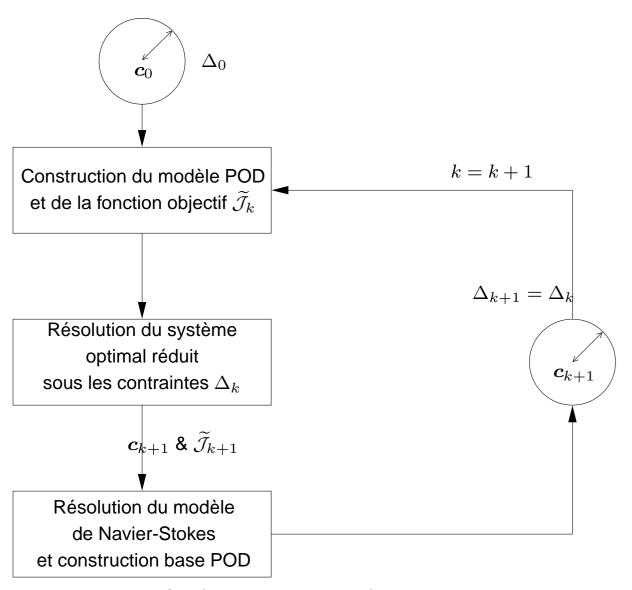
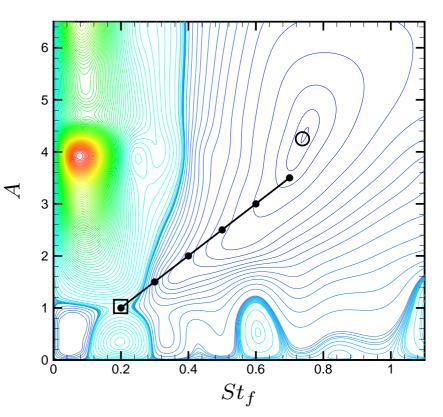
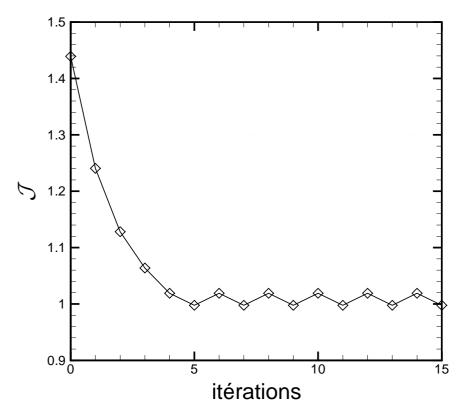


Fig. : Schématisation de la méthode adaptative.

Paramètres de contrôle initiaux : A=1,0 et $St_f=0,2$

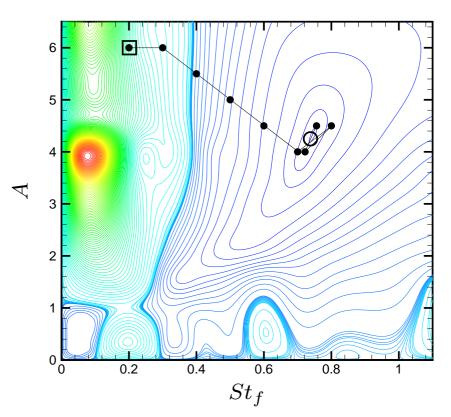


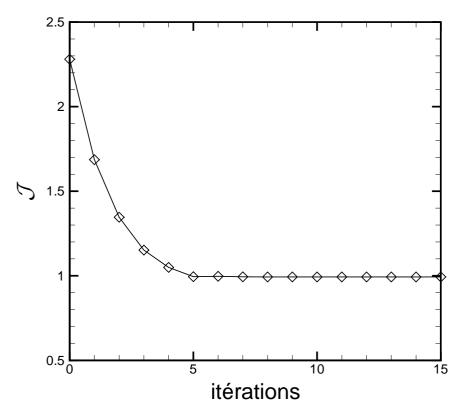


Paramètres de contrôle obtenus : oscillations autour de A=3,25 et $St_f=0,65$

Coefficient de traînée moyen : $\mathcal{J} = 1,01$

Paramètres de contrôle initiaux : A=6,0 et $St_f=0,2$

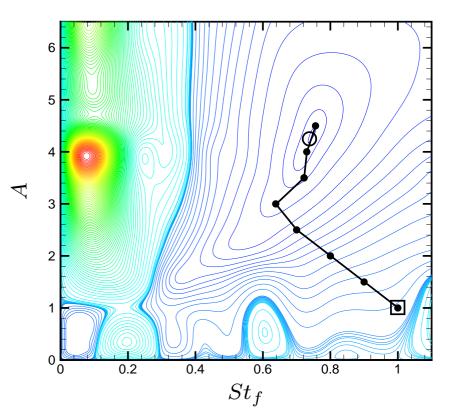


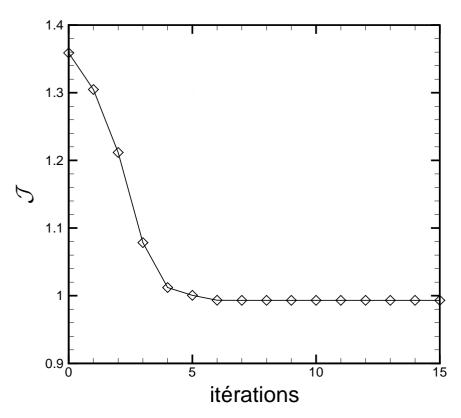


Paramètres de contrôle obtenus : oscillations autour de A=4,25 et $St_f=0,74$

Coefficient de traînée moyen : $\mathcal{J} = 0,993$

Paramètres de contrôle initiaux : A = 1, 0 et $St_f = 1, 0$

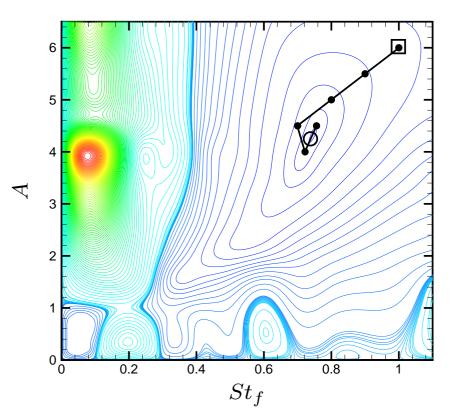


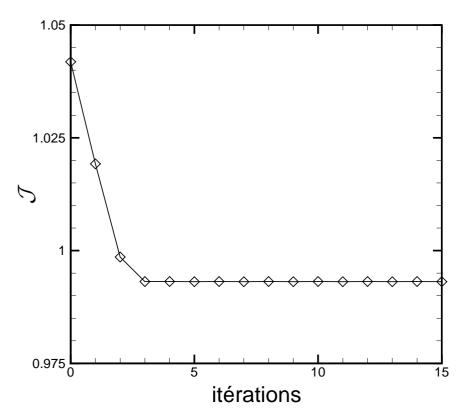


Paramètres de contrôle obtenus : oscillations autour de A=4,25 et $St_f=0,74$

Coefficient de traînée moyen : $\mathcal{J} = 0,993$

Paramètres de contrôle initiaux : A=6,0 et $St_f=1,0$





Paramètres de contrôle obtenus : oscillations autour de A=4,25 et $St_f=0,74$

Coefficient de traînée moyen : $\mathcal{J} = 0,993$

Initialisation : c_0 , résolution du modèle de Navier-Stokes, \mathcal{J}_0 . k=0.

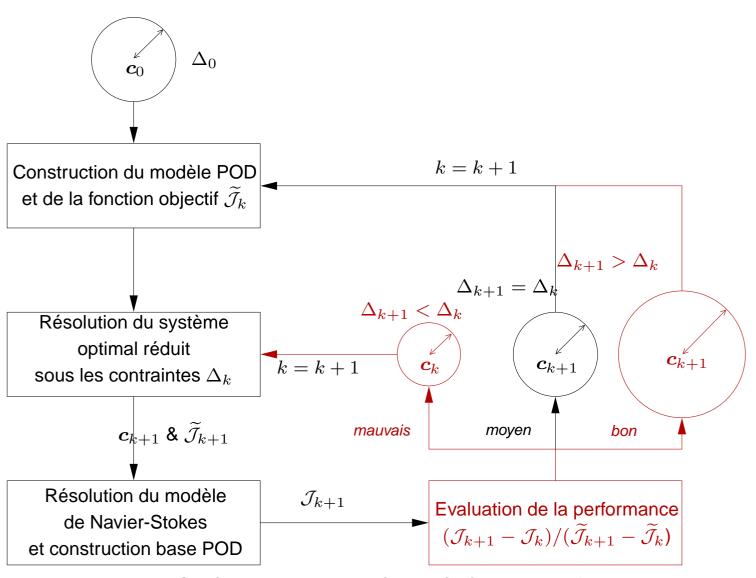
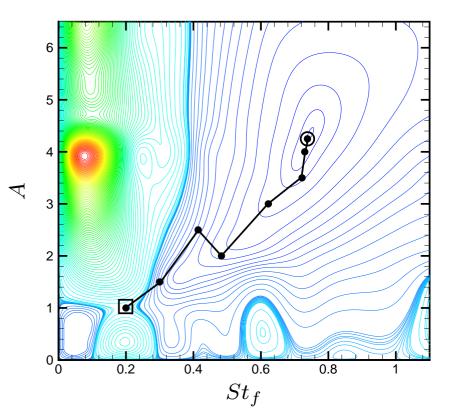
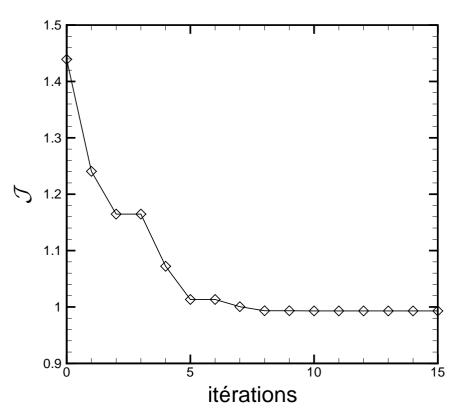


Fig. : Schématisation de la méthode à région de confiance.

Paramètres de contrôle initiaux : A=1,0 et $St_f=0,2$



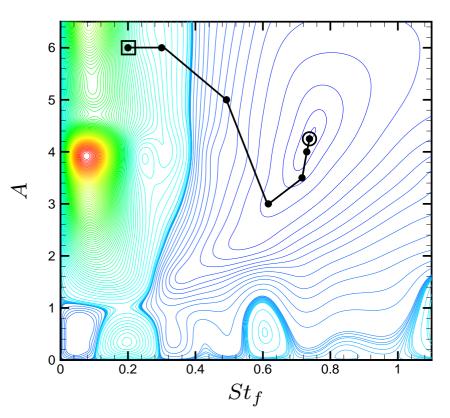


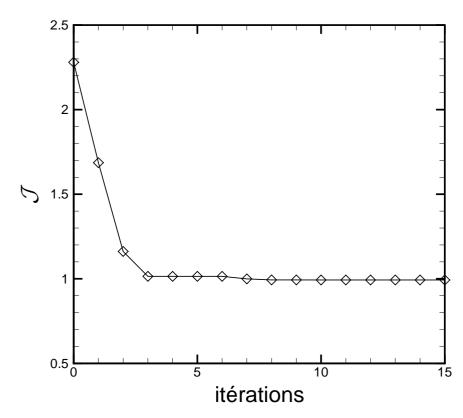
Paramètres de contrôle optimaux : A=4,25 et $St_f=0,74$

Convergence : coefficient de traînée moyen : $\mathcal{J} = 0,993$

obtenus en uniquement 8 résolutions de Navier-Stokes

Paramètres de contrôle initiaux : A=6,0 et $St_f=0,2$



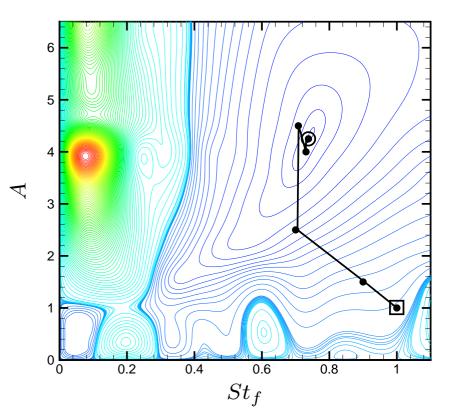


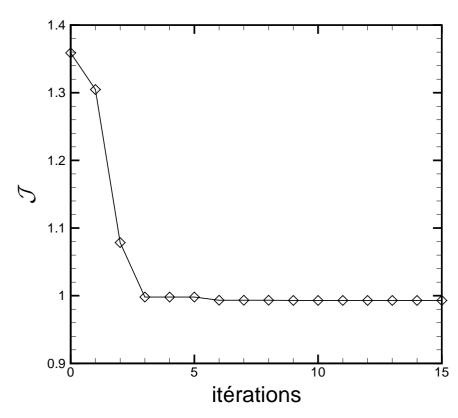
Paramètres de contrôle optimaux : A=4,25 et $St_f=0,74$

Convergence : coefficient de traînée moyen : $\mathcal{J} = 0,993$

obtenus en uniquement 6 résolutions de Navier-Stokes

Paramètres de contrôle initiaux : A = 1, 0 et $St_f = 1, 0$



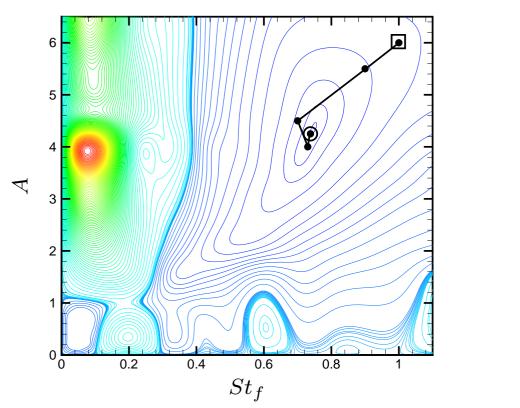


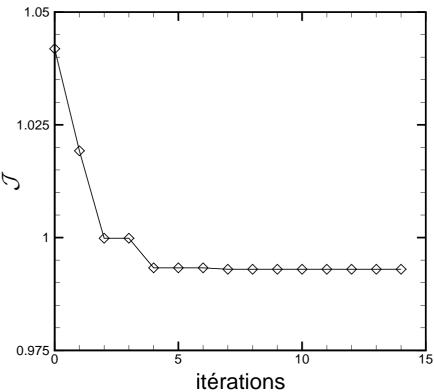
Paramètres de contrôle optimaux : A=4,25 et $St_f=0,74$

Convergence : coefficient de traînée moyen : $\mathcal{J} = 0,993$

obtenus en uniquement 5 résolutions de Navier-Stokes

Paramètres de contrôle initiaux : A=6,0 et $St_f=1,0$





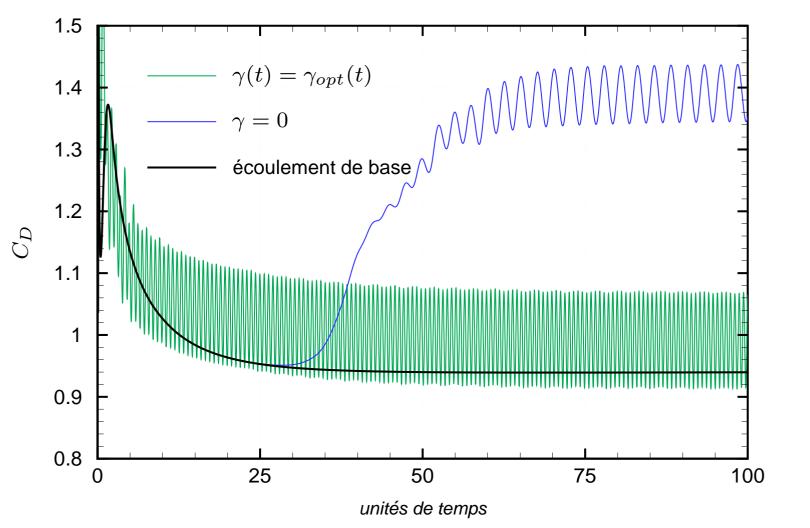
Paramètres de contrôle optimaux : A=4,25 et $St_f=0,74$

Convergence : coefficient de traînée moyen : $\mathcal{J} = 0,993$

obtenus en uniquement 4 résolutions de Navier-Stokes

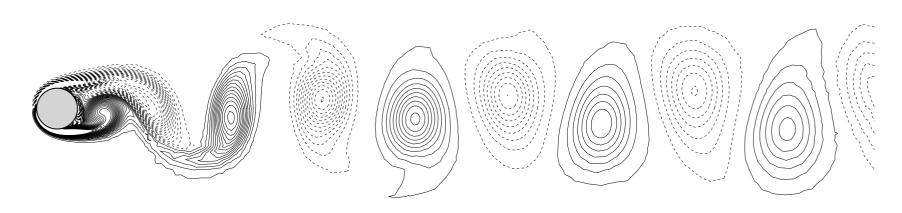
IV - Base POD réactualisée Résultats numériques

Loi de contrôle optimale : $\gamma_{opt}(t) = A\sin(2\pi S t_f t)$ avec A=4,25 et $St_f=0,74$

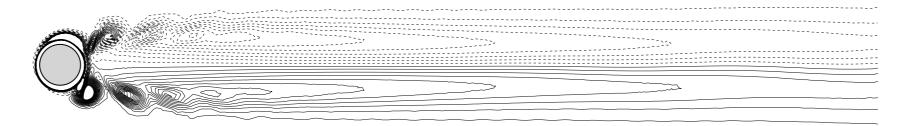


Diminution relative du coefficient de traînée de 30% ($\mathcal{J}_0 = 1, 4 \Rightarrow \mathcal{J}_{opt} = 0,99$)

IV - Base POD réactualisée Résultats numériques



Écoulement non contrôlé, $\gamma = 0$.



Écoulement contrôlé, $\gamma = \gamma_{opt}$.

Fig. : Isocontours de vorticité ω_z .

Écoulement contrôlé : Sillage proche fortement instationnaire, sillage lointain (après 5 diamètres) stationnaire et symétrique → écoulement de base stationnaire instable

IV - Base POD réactualisée Coûts de calcul

- Comparaison résultats : POD ROM avec réactualisation / DNS
 - Contrôle optimal Navier-Stokes par He et al. (2000) :
 - \hookrightarrow loi de contrôle harmonique avec A=3 et St=0,75. $\Rightarrow 30\%$ de réduction de traînée.
 - Contrôle optimal POD ROM :
 - \hookrightarrow loi de contrôle harmonique avec A=4,25 et St=0,74. $\Rightarrow 30\%$ de réduction de traînée.
- Réduction stockage mémoire :
 - $\circ 1600$ fois moins de variables par POD ROM que par NSE !
- ▶ Réduction temps de calcul :
 - 4 fois inférieur par POD ROM que par NSE

V - Amélioration des performances

Contrôle partiel sur une partie amont du cylindre

** Phys. Fluids 18 (2), 2006 **

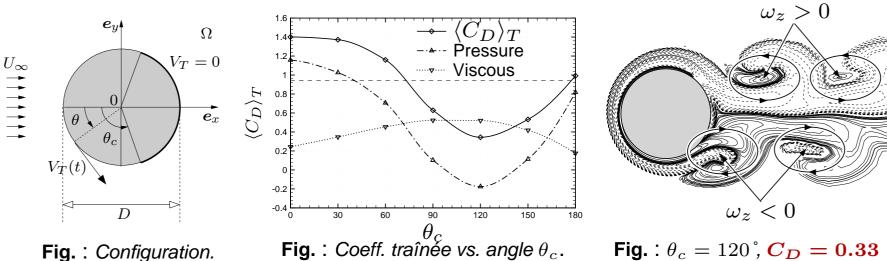
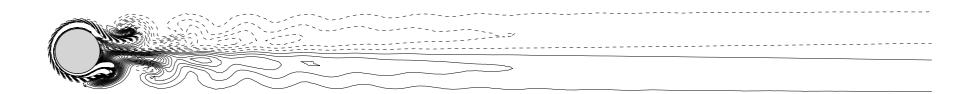


Fig. :
$$heta_c=120\,\mathring{,}\,oldsymbol{C_D}=oldsymbol{0.33}$$



⇒ Allée de Von Karman inversée : similaire écoulement généré par queue de poisson

V - Amélioration des performances

Puissance dépensée pour le contrôle

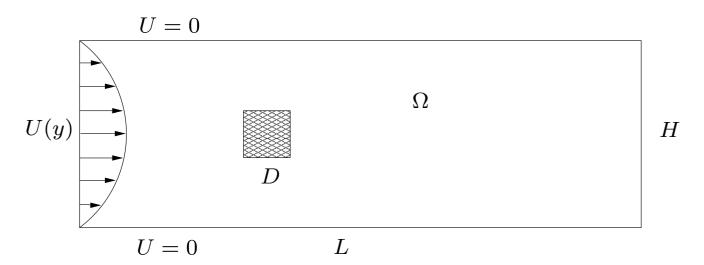
- Besoin de peu de d'énergie pour contrôler les instabilités
- ⊳ Besoin d'injecter beaucoup d'énergie
- $\qquad \text{Relation analytique} : \widetilde{\mathcal{P}_C} = \rho \, U_\infty^3 \, R \, \ell_z \, \sqrt{\pi} \, \frac{\theta_c A^2 \sqrt{St_f}}{\sqrt{Re}}$

 - \hookrightarrow Gain énergétique relatif égal à 15%!

IMB-MAB/ INRIA Futurs MC2 - A. Iollo et C.-H. Bruneau
$$\star\star\star$$

> Configuration d'écoulement

- o Écoulement laminaire 2D autour d'un barreau dans un canal confiné
- Fluide visqueux, incompressible et newtonien
- Pas de contrôle (pour le moment ...)

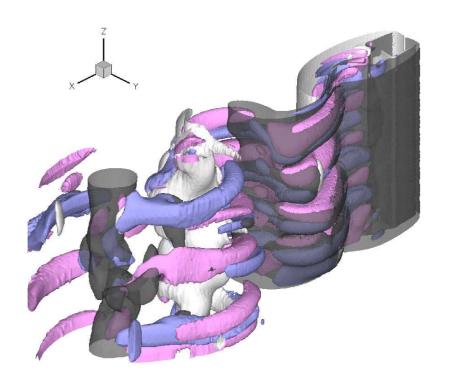


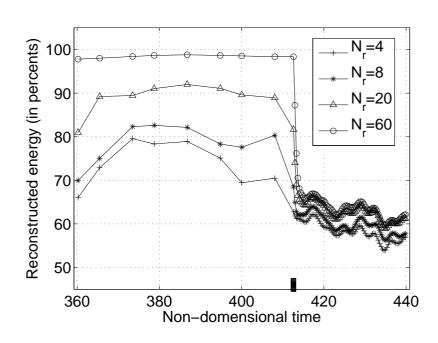
Méthode de résolution numérique

- Méthode de pénalisation pour le barreau
- Méthode multigilles V-cycles en espace
- Méthode de Gear en temps

Code de C.-H. Bruneau

1 - Problème base POD, $\Phi_n(x)$: mauvaise représentation écoulements 3D turbulents pour paramètres du systèmes différents



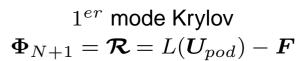


- Problèmes contrôle écoulements 3D turbulents
- Propriétés de turbulence érronées (spectre, etc)

- ho Construction d'une base $\Phi_n(x)$ qui s'adapte à la dynamique (pprox maillages adaptatifs)
 - o *Modification base existante :* évolution des statistiques $\Rightarrow \varphi : \Phi^{(k)} \mapsto \Phi^{(k+1)}$

o *Enrichissement base :* ajout nouveaux modes dans sous espace de Krylov

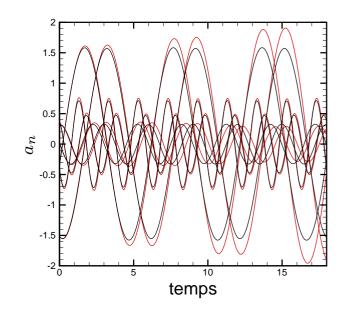
$$oldsymbol{U}_{pod} = \sum_{i=1}^{N} a_i(t) oldsymbol{\Phi}_i(oldsymbol{x})$$



$$2^{nd}$$
 mode Krylov $oldsymbol{\Phi}_{N+2} = L(oldsymbol{\mathcal{R}}) - oldsymbol{F}$

2 - Problème Galerkin POD ROM, $a_n(t)$:

- Mauvaise représentation dynamique
 - Cycles instables
- Besoin de calibration (viscosités)
 - Numériquement coûteux!
 - Préservation groupes d'invariance?



 \triangleright Détermination d'un modèle réduit précis et rapide pour les coefficients $a_n(t)$

ROM / POD "classique"

Uniquement base $\Phi_n(\boldsymbol{x})$ optimale

Projection Galerkin \Rightarrow système dynamique Temps \approx **quadratique** avec nombre modes

ROM / bases modifiées

Déterminer sortie U(x, t) optimale

Minimisation résidu NS ⇒ système linéaire! Temps ≈ **linéaire** avec nombre modes

Très adaptée écoulements 3D turbulents

○ Cycles intrinséquement stables! ⇒ retour vers attracteur NS imposé!

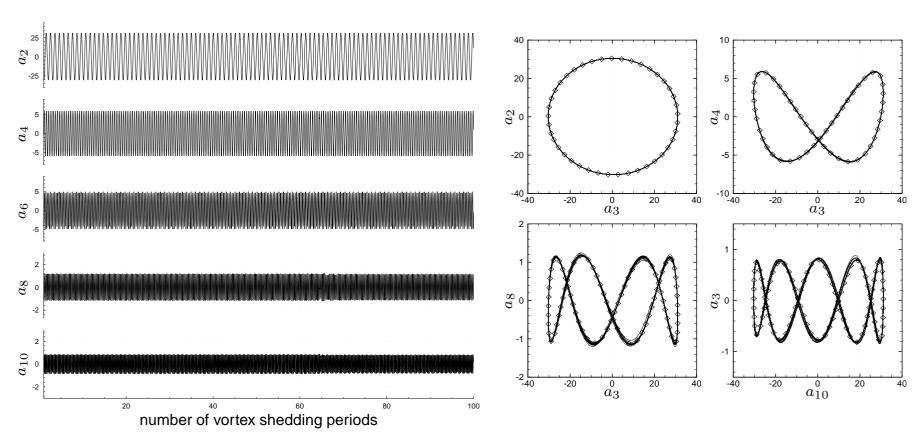


Fig. : Evolution temporelle des coefficients POD : 100 périodes de Von Karman

Fig. : Cycles limites des coefficients POD : 1 000 périodes de Von Karman

** soumission à J. Comput. Phys., 2007 (+ RR INRIA) **

Conclusions

- Observations physiques
 - Contrôle cylindre par rotation harmonique adopté car "intéressant"
 - Identification écoulements "lock-on" (synchronisation fréquences)
- Détermination de modèles réduits précis et fiables
 - Galerkin POD ROM instable → stabilisation par ajout viscosités
 - Modèle par minimisation résidu opérateur NS → intrinséquement stable
- Méthodes "contrôle optimal + réduction de modèle"
 - Sans réactualisation de la base
 Avec réactualisation de la base

25% Réduction traînée30%

600 Réduction mémoire CPU 1 600

100 Réduction temps CPU 4

NON Preuve convergence..... OUI

- Amélioration résultats
 - Allée Von Karman inversée (queue de poisson)
 - Relation analytique puissance contrôle

Conclusions

Méthodes numériques variées

- Méthode éléments finis
- Méthode multi-grilles V-cycles
- Méthode de pénalisation pour présence obstacle

Thématique complètement générale, problèmatique transversale

- Contrôle équations réaction-diffusion (invariance + contrôle domaine, 2 publis)
- Problématique en plein essor, multiphysique

Bonne productivité scientifique

- 6 articles publiés (3 Phys. Fluids, Comm. Numer. Meth. Eng., NNFM, Méc & Ind.)
- 5 articles en révision (J. Fluid Mech., Inverse Problems, TCFD, Comput. Fluids, J. Comput. Phys.)
- 4 chapitres ouvrages sythèses (2 Lectures Series IVK, notes cours OCET, RR INRIA)
- 14 congrès (6 sur invitations MIT, Princeton, Brown, Berlin), 15 séminaires

Tous ces travaux sont disponibles sur ma page web:

http://www.math.u-bordeaux.fr/~bergmann/