Chapter 1
Note on the gonality of abstract modular curves

Anna Cadoret

Abstract Let Sbe a curve over an algebraically closed fielaf characteristip > 0.

To any family of representations = (o, : 1@ (S) — GLn(Fy)) indexed by primes
¢>> 0 one can associa@bstract modular curves,3 (¢) andS,(¢) which, in this
setting, are the modular analogues of the classical modulaesyY; (¢) andY (¢).

The main result of this paper is that, under some technisalmaptions, the gonality

of S,(¢) goes to+ with /. These technical assumptions are satisfied bimear
representations arising from the actionmfS) on theétale cohomology groups
with coefficients inF, of the geometric generic fiber of a smooth proper scheme
overS. From this, we deduce a new and purely algebraic proof ofdbethat the
gonality ofYy(¢), for p J¢(¢? — 1), goes tot-o with £.

Key words. 2010 MSC Primary: 14H30, 14K99; Secondary: 14K10.

1.1 Introduction

Let k be an algebraically closed field of characterigiic: 0 andS a smooth, sep-
arated and connected curve okawith generic point. Let rq(S) denote itstale
fundamental group. Fix an integar> 1. For each prim¢ > 0, letH, be an[F,
vector space of dimensianon which s (S) acts continuously. We will writ@ for
the family of the resultind,-linear representations

pe @ T0(S) — GL(Hy) ~ GLn(Fy).

To such data, one can associate familiealadtract modular curves,g (¢) — S
andS,(¢) — S see Section 1.2, which, in this setting, are the modulalogoas
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of the classical modular curv&s(¢) — Y (0) andY (¢) — Y (0) classifyingl-torsion
points and full level¢ structures of elliptic curves respectively.

The main examples of such representations we have in minthaié,-linear
representations arising from the actionmfS) on theétale cohomology groups
with coefficients inF, of the geometric generic fiber of a smooth proper scheme
over S. In particular, this includes those representationsragisiom the action of
1 (S) on the group of-torsion points of the geometric generic fiber of an abelian
scheme ove§, see Subsection 1.2.3.

The properties satisfied by these representations mativatfCT10b], the intro-
duction of technical conditions qm, denoted by (A), (WA) and (AWA) foabelian-
ization, weak abelianizatioandalternating weak abelianizatiorespectively, (1) for
isotriviality, (T) for tameand (U) forunipotent See Subsection 1.2.2 for a precise
formulation of these conditions.

Let gp,1(¢) andgp(?) (resp.yp.1(¢) and y,(¢)) denote the genus (resp. tke
gonality) of the abstract modular curvs (/) andS,(¢) respectively. The main
result of [CT10b] ([CT10b, Thm. 2.1]) asserts that, if cdiahs (AWA), (1), (U) are
satisfied then:

li = oo,
[Lngp,l(f) oo
An intermediate step in the proof of this result is that, ihditions (WA), (1), (T)

are satisfied then:

Jim g (£) = +oo.

In this note, we prove that the same holds with gonality @ptagenus, that is:

Theorem 1. If conditions (WA), (1), (T) are satisfied then:

ZLITW Vo(6) = +eo.

The proof of Theorem 1 is purely algebraic and based on thévarimnt-
primitive decompositions introduced by A. Tamagawa in [[l@estimate the go-
nality of Galois covers. The method, however, fails to prove

Conjecture 2 Assume that conditions (WA), (T), (U) are satisfied. Then:
Jm ypa(€) = +oo.

Our method shows Conjecture 2 only when we restrict t02 and primed with
p J¢(¢% 1), or, more generally, for the variant 8 1(¢) classifying points/ € Hy
whoserg (S)-orbit generates a subspace of rank 2, see Proposition ipiidvides
in particular an algebraic proof of the well-known fact, [€96], [PO7], that:

Corollary 3.



1 Note on the gonality of abstract modular curves 3

Whenp = 0, it seems that variants of Theorem 1 can be proved by theitpets
from differential geometry and Cayley-Schreier graph thiegeneralizing [A96]
and developed in [EHK10].

Apart from their intrinsic geometric interest, statemeagsTheorem 1 and Con-
jecture 2 also have arithmetic consequences. In charstitedi this follows from
the following corollary of [F91].

Corollary 4. [Fr94]) Let k be a finitely generated field of characterisfi@and let S
be a smooth, proper, geometrically connected curve ovettkkvgonalityy. Then,

for any integerl <d < {V%l} the set of all closed points s of S with residue field
k(s) of degregk(s) : k] < d is finite.

So, for instance, Conjecture 2 fpr= 0 combined with [CT10a, Prop. 3.18], to
rule out thek-isotrivial torsion points of\;, would imply:

For any finitely generated field k of characterisficsmooth, separated and ge-
ometrically connected curve S over k, abelian scheme & and integer d> 1
the set of closed points s of S with degje@) : k]| < d and such that Acarries a
k(s)-rational torsion point of orde¥ is finite for¢ > 0.
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1.2 Abstract modular curves

We fix once and for all an algebraically closed fig&ldf characteristiqp > 0. By a
curve ovelk we mean a connected, smooth and sepatataheme of dimension 1.

1.2.1 Notation

Let S be a curve ovek with a geometric generic poinf above its generic point
n € S We will write S— S°P* for the smooth compactification &and i (S) for
its étale fundamental group with base pointFix an integem > 1, and, for each
prime¢ > 0, letH, be anF,-module of rankn on which7 (S) acts. We will write
p for the family of the resulting,-linear representations

Pr - Tl'l(S) — GL(H@) ~ GLn(FZ).
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For every prime/ >> 0, setG, = im(p,) and for any subgroup C G, theab-
stract modular curve associated ttJ is the connecteétale coverS; — Scorre-
sponding to the open subgrovngl(u) C m(S). We writegg, andyg, for genus
and gonality ofS; respectively.

Remark 5As we are only interested in the asymptotic behaviour ofrabsimod-
ular curves, it is enough to consider orlljg enoughprimes{. Furthermore, in
practice H, will be anétale cohomology grouﬁ‘(xﬁ, F,) for some smooth proper
morphismX — Swith connected geometric generic fibXg. In particular, the di-
mension ofH' (X5, IF,) may become constant only fér> 0, see Subsection 1.2.2.

In the following, we will consider only specific classes otact modular curves
of two kinds. First, forv € H, we denote byS, — S the abstract modular curve
associated to the stabilizer 6}, C G, of v, and letg, andy, denote its genus and
gonality respectively.

Secondly, for arg(S)-submoduleM C H,, we denote bySy — S the abstract
modular curve associated to FM) := {g € Gy | gjm = ldm}, and letgm and y
denote its genus and gonality respectively. The conneetigle coverSy — Sis
Galois with Galois grougcm = G,/Fix(M), which is the image of the induced
representatiopy : 7 (S) — GL(M).

Forv € H, and therq (S)-submoduleM (v) == F,[G, - V] C Hy generated by, the
coverSy ) — Sis the Galois closure &, — S,

Let.7 = (%) denote a sequence of non-empty families of subgrouf; ofve
will say that:

S70)= ] -8

UE-@(
is theabstract modular curve associated wi#y and define:
dp #(0) =min{[G,:U]; U € .}
Op.7(¢) =min{gg, ; U € F#}
Yoz (£) '=min{yg, ; U € %},

o
o

which we call the degree, genus and gonality of the abstradutar curves, ().
Following the notation for the usual modular curves, we wilite:

Sp,l(g)a dp71(£), gp,l(g)» Vp,l(g)
when.%, is the family of all stabilizers,, for 0 # v € H,, and

S (0), do(£), Go(£), Yo (£)

when.Z; is the family of all FiXM), for 0# M C H,. Note that by construction

do(€) = dp1(£), 9p(€) = Gpa(£) andyp(£) = yp,a(f).
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1.2.2 Conditions (WA), (1), (T)

Given an integer ¥ m < nand arg (S)-submoduleM C A™H,, write again
pw : T0(S) — GL(M)

for the induced representation. We consider the followahhical conditions on

p:

(WA) For any open subgroufd C m(S), there exists an integ&p > 1 such that,
for every prime/, integer 1< m < n and/1-submoduleM c A™H,, one has:

pwm (1) abelian of prime-taorder= |pm (I1)| < Bp.

(WA)'  For any open subgroupl C m(S), there exists an integ8y > 1 such
that, for every prime/, integer 1< m < n and [71-submoduleM ¢ A™H,, one
has:

pm () abelian=-|pu ()| < Bp.

(I) For any open subgroupl C a(S) the Fg—submoduler of fixed vectors
under/T is trivial for £ > 0.

(T) For anyP € SP'\ Sthere exists an open subgroiip of the inertia group
Ip C m(S) atP such thaip,(Tp) is tame for? >> 0.

In [CT10b], we introduce an additional condition (U), whiekserts that for any
P € S°Pt\ Sthere exists an open subgroup of the inertia grouge C (S) atP
such thato,(Up) is unipotent for/ > 0. Condition (U) is stronger than condition
(T); we will not use it in the following.

See [CT10b§2.3] for more details, in particular for the following lemma

Lemma6. ([CT10b, Lem. 2.2, 2.3 and 2.4])

(1) Assume that condition (T) is satisfied. SetK, ker(p,). Thenm (S)/K is
topologically finitely generated.
(2) Conditions (l) and (T) impl;ﬂnjmdp,l(ﬁ) = +-o00.

(3) Conditions (1), (T) and (WA) imply condition (WA)'.

Assume that conditions (1), (T) and (WA) are satisfied. Sidg€/) > dp 1(¢), it
follows from Lemma 6 (2) and (3) that férs> 0 and anyrs (S)-submodule @4 M C
H, the groupGy cannot be abelian.

Coroallary 7. Assume that conditions (1), (T) and (WA) hold. Then, for artgger
B > 1, for everyrm (S)-submodul® £ M C H, and for every abelian subgroup A of
Gm one hagGy : A] > B for ¢ > 0.

Proof. Otherwise, there exists an inted@p 1 and an infinite set of prime%’ such
that, for everyl € ., there exists ar (S)-submodule G4 M, C H, and an abelian
subgroupA, of Gy, with [Gy, : A/ < B. But, since it follows from Lemma 6 (1)
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that 75 (S) acts through a topologically finitely generated quotiehéré are only
finitely many isomorphism classes of connectgdle covers ofs corresponding
to thepM}(Ag) c m(9), £ € .. Hence at least one of them, s8y— S, appears
infinitely many times. Up to base-changing 8y— S, we may assume th&y, is
abelian for infinitely many € ., which contradicts Lemma 6 (2) and (3)O

1.2.3 Etale cohomology

Let X — Sbe a smooth, proper morphism with geometrically connectetsi For
every integei > 0 theF,-rankn; ; of H} = H'(Xg,F,) is finite and independent of
¢ for £ > 0. Indeed, wherp = 0, this follows from the comparison isomorphism
between Betti anétale cohomology with finite coefficients and the fact thattiBe
cohomology with coefficient iZ. is finitely generated. More generally, whpr> 0,
this follows from the fact thaf-adic cohomology with coefficients i, is torsion
free for¢ > 0 [G83] and that thé&),-rank of /-adic cohomology with coefficients in
Q( is independent of. So, we will simply writen; instead of; , for £>> 0.

For eachi > 1 and¢ > 0, the action of (S) onH gives rise to a family' = (p})
of nj-dimensionalF,-linear representations

ph: 1(S) — GL(H}) ~ GLy, (Fy).
It follows from [CT10b, Thm. 2.4] that the familieg' for i > 1 satisfy conditions

(T) and (WA). As for condition (1), ifX, is projective ovek(n) then, fori = 1 it
can be ensured by the condition:

Picﬁf —, contains no non-triviak-isotrivial abelian subvarieties.
/K1)

1.3 Technical preliminaries

The proof of Theorem 1 is based on a combination of Lemma 6 théhuse of E-P
decomposition and group-theoretic ingredients. We gédtreeresults we will need
in Subsections 1.3.1, 1.3.2 and 1.3.3 respectively.

1.3.1 E-P decompositions

Consider a diagram of proper curves oker



1 Note on the gonality of abstract modular curves 7

Y —=B (1.2)

|
Y/
wheref : Y — Bis a non-constant morphism of proper curves dvandm:Y — Y’
is a G-cover with groufs (that isG acts faithfully ony andrr: Y — Y’ is the quotient
morphismY — Y /G). We will say that a pair of mapgt, f) asin (1.1) iquivariant
if for any o € G there existoig € Auty(B) such thatf o 0 = ogo f and thaf(, f) as
in (1.1) isprimitive if it does not have any equivariant nontrivial subdiagraat ik,
more precisely, if for any commutative diagram (1.2) of ntosms of proper curves
overk

|
Y/

with " and f” of degree> 2, the pair(m, f’) is not equivariant.
We will resort to the following corollary of the Castelnue@veri inequality.

Lemma 8. ([TO4, Thm. 2.4]) If the pair of mapgm, f) asin (1.1) is primitive then:

fogy+1
deq f) >,/ ——.
egf) = os+1

For a pair(m, f) as in diagram (1.1), among all equivariant decompositiaes,
diagrams as (1.2) with the pdim, f’) equivariant, we choose a pdir, f': Y — C)
with deg f’) maximal. This exists a¢rm,id) is equivariant and déd’) < deq f)
is bounded. By definition, the action & onY induces an action o@, hence we
obtain a homomorphisié — Auty(C). We setG = G/K where

K = Ker(G — Autk(C)).

Then diagram (1.1) fofr, f) can be enriched to a commutative diagram with re-
spect to the maximal equivariant decompositianf’) as follows:

s
i

(1.3)
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where the vertical map¥ — Z=Y/K, Z— Y =2Z/G andC — C' =C/G are
the quotient morphisms. By construction, the p&@r— Y’,Z — C) is equivariant
and the pair(C — C',C — B) is primitive. We will call such a decomposition an
equivariant-primitive decompositidife-P decomposition for short).

1.3.2 Review of the classification of finite subgroups®if,

We remind thak is a fixed algebraically closed field of characterigiic: 0. Then
we have the following description of finite subgroups ob84).

Theorem 9. ([Su82, Thm. 3.6.17])A finite subgroup G 08L;(k) is one from the
following list:

(1) acyclic group,
(2) for some > 2 a group with presentation

Xy [x" =y y xy=x1),

(3) SLx(3), or SLy(5), A
(4) the representation group’s of the permutation group”, in which transposi-
tions lift to elements of ordet,
(5) an extension
1-A—-G—-Q—1,

where A is an elementary abelian p-group and Q is a cyclic grofuprime-to-p
order,

(6) adihedral group,

(7) SLa(k), where k denotes the subfield of k witth plements,

(8) (SLaz(kr),dr), where g is the scalar matrix with diagonal entries given by a
m € k such that k(1) has P elements andr is a generator of K.

Case (6) occurs only when=p2 and cases (7) and (8) occur only when-f.

We will use two easy corollaries of Theorem 9. Namely, obisgrthat wherk is
algebraically closed PGI(k) = PSLy(k), we get the well known corollary:

Coroallary 10. A finite subgroup G dPGLy(k) is of the following form:

(1) acyclic group,
(2) adihedral group,
(3) A, S, o5,
(4) anextension
1-A—-G—-0Q—1,

where A is an elementary abelian p-group and Q is a cyclic groluprime-to-p
order,

(6) PSla(k),
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(6) PGLa(kr).
The last three cases occur only whep- 9.

Also, regarding Sk(F,) as a subgroup of SI(F,) and ruling out the groups that
cannot lie in Sk(F,), we get:

Corollary 11. Assume that > 5. A subgroup oSL,(FF,) is isomorphic to one of
the following.

(1) acyclic group,
(2) for some > 2 a group with presentation

<X7y‘ X' = y27 y_lxy: X_l>a

(3) SLz(Fg,), or SLz(F5), .

(4) the representation group’s of the permutation group”, in which transposi-
tions lift to elements of ordet,

(5) a semi-direct producF, x C contained in a Borel subgroup with C a cyclic
group of prime-to¢ order,

(6) SLo(Fy).

1.3.3 A group-theoretic lemma

The following lemma provides a practical condition for aténgroup to contain a
large normal abelian subgroup.

Lemma12. Let G be a finite group and assume that G fits into a short exact se
quence of finite groups
1-N-G—-Q—-1 ()

with Q abelian and generated by r elements. Then the group G contains a normal
abelian subgroup A with index
(G Al < H(Z(N))" - [Aut(N)],

wheret(Z(N)) denotes the least common multiple of the order of the elemient
the center ZN) of N.

Proof. The short exact sequence (nduces by conjugation representations

¢:G—Aut(N) and ¢@:Q— Out(N)
and induces on the centraliz&g(N) = ker(@) of N in G the structure of a central
extension
1—Z(N) — Zg(N) — ker(¢) — 1.
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Because the extension is central, taking the commutatdit®fd Zg(N) defines an
alternating bilinear fornp, | on kei(g) with values inZ(N). The radical of , |

R={qecker(¢); [a,q] =0forallq € ker(p)} C ker(¢),
containsu(Z(N)) ker(¢). We find an extension
1—-27Z(N)—>Z(Zg(N)) - R—1

whereA = Z(Zg(N)) is the center oZg(N). SinceN is normal inG, the abelian
groupA is also normal irG. We can estimate the indé¢® : A] as

16 [zsN) |ker(g)
CA= gy A AR
< AN S < AU (2N

[u(Z(N)) ker(g)
since kefp) C Qs also generated by r elements. O

1.4 Proof of Theorem 1

Observe first that ifS — Sis any connected finit&tale cover thems(S,) =
m(Svw) N (S). In particular, one has:

You < Vg, < YaudedSy — Su) < 5, degS — 9)

and, as a resulg, ”"VP\n1<g) (¢) =+ if and only ifé lim y,(¢) = +oo. This allows
— 00 — 00
to perform arbitrary base changes by connedtade covers. In particular, from
condition (T), one may assume tmat(S) acts through its tame quotient(S).
For every prime/, consider arg (S)-submodule G4 M, C H, such thatyy, =
Yo (£). We thus have a diagram of proper curves dver

t fo
gﬂg — =Pl (1.4)

|

Sl

with deq f;) = y,(¢). We can consider an E-P decomposition of (1.4)
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pt
S (1.5)
Z C Pi

P

St —— By

whereSP' — 7, = §P'/K, and, withGy, = Gy, /K faithfully acting onC;, also
C; — By =C;/Gy, are the respective quotient maps.

If y»(¢) does not diverge, then there exists an infinite sulssetf primes and an
integery > 1 such thay, (¢) < yfor all £ € .. In particular|K,| <y, hence

dP(€)>dp7(@
K =y

|6Mz| >

So, from Lemma 6 (2) one h?s lifGwm, | = +co.
/——+-00 :
tes

To get the contradiction, we distinguish between threexdadhe first case we
assume thatgc, > 2 for all but finitely many/ € .. Since by [St73] the size of the
automorphism group of a gengs> 2 curve over an algebraically closed field of
characteristig is bounded by, (g) for a polynomialP,(T) € Z[T] depending only
on p, we find for/ € .7 that|Gy, | < Pp(gc, ), which forces

But from Lemma 8 applied to the primitive pai€, — B;,C;, — IP’%) in diagram
(1.4), one has

Yo () = deg f;) > degC; — Py) > /gc, + 1,
which therefore also diverges fér . contradicting the choice of’.

If we are not in the first case, thag, < 1 for infinitely many/ ¢ .. In the
second case, we assume that for infinitely marmy.7, and in fact by replacing”
by a subset, that for all ¢ .7 we havegc, = 1. Then for¢ € ., the groupGy, is
an extension

1-A -Gy —-Q—1

with A, a finite quotient o2 and|Q,| < 24. Since by Lemma & (S) acts through

a topologically finitely generated quotient, there are dimligely many isomorphism
classes oétale covers oS with degree< 24 corresponding to the inverse image of
A, via
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Pwm, _
Tl'l(S) —» GMé —» GM[.

So, by replacingby the composite of all thestale covers of degree 24, we may
assume thaby, = A, for all £ € . Now Lemma 12 applied to

1-K—Gy,—A —1

shows, sincgK,| <y, thatGy, has an abelian subgroup of index bounded above
independently of € . in contradiction to Corollary 7.

In the last case we can and do assume gagt= 0 for all £ € . As above,
Corollary 7 shows that the subgroGm, C Aut(C,) = PGLy(k) can be only of type
(4), (5) or (6) as in Corollary 10 fof > 0, and/ € .. This occurs only ifp > 0.
Without loss of generality, by replacing’ by an infinite subset, we may assume
thatGy, is of the same type for all € .#. To rule out these cases, we are going to

use the following theorem.

Theorem 13 ([N87, Thm. C]). For any integer n> 1 there exists an integer(d) > 1
such that for any primé > n, integer m< n and subgroup G dBL(FF,) the follow-

ing holds. Let G denote the (normal) subgroup of G generated by the eleménts o
order/in G. Then, there exists an abelian subgroug & such that AG is normal

in G and[G: AGT] < d(n).

Assume thaBy, is of type (4) for all¢ € .7, that is of the form
(Z/p)" % Z/N;
for some integers;, N, > 1 with p JN,.
Claim. There exists an intege(n) > 1 such that, <r(n) for £>> 0in.~.

Proof. Let T, denote the inverse image @/p)" in Gy, that isT; fits into the short
exact sequence of finite groups

1-K, —T,—(Z/p)"* — 1.

BecauseK,| < y we see that does not dividdT,| for £ >> 0 and, in particular, that
Tf is trivial. Theorem 13 implies thaf, fits into a short exact sequence

1-A—-T)—Q—1
with A, abelian andQ,| < d(n). In turn, A, fits into the sort exact sequence
1-KNA —A — (Z/p)¥ —1

with s, <r. In particular,A, is an abelian subgroup of GM;) of prime-to£ order
and ofZ-rank> s,. This impliess, < nsince any abelian subgroépof order prime-
to-¢ in GLn(F,) is conjugate in GL(FF,) to a diagonal torus. So the claim follows
fromr, <s + IogIO |Qy¢| and the bounds fay, and|Q,| < d(n). O
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By the claim and Lemma 12, the groG, contains a normal abelian subgroup
A, with index bounded by

[éw A <p- |GL (n) (Fp)]-

Invoking again thatm (S) acts through a topologically finitely generated quotient,
without loss of generality we may assume tki, = A, and then, as above the
contradiction follows from the bounig,| < y, Lemma 12 and Corollary 7.

Assume now thaGy, is of type (5) or (6) for all € .7, that is either PSj(k;,)
or PGLy(k;,) for some integer, > 1.

For any non zero vector € M, the cover§y,) — Sis a quotient ofSy, — S
henceng(v) < Yau, - So, without loss of generality, we may assume thatis a

simple 5 (S)-module. In particular, there exists a non zero vewetarM, such that
M = M(v) andM;" :=F[Gy, V] C M is a simpleGy; -submodule.

Claim. The groqu,\tlé is nontrivial for/ >0, /¢ € .7.

Proof. Theorem 13 applied tGv, C GL(M,) shows that one can writ@M[/Gm
as an extension '
1— AgG@/G@ — GM(‘/G@ —-Qr—1

with A.Gy,, /Gy, abelian andQ| < d(n), because dim (M;) < n. As a result, f
G,T,,p =1, we get a contradiction to Corollary 7. This proves themlai O

Since PSk(k;,) is simple and the only nontrivial normal subgroups of B, )
are PSk(k;,) and PGlz(k,), the second claim implies that the normal subgroup

=+
Gw, := Gy, /G, K

of Gy, contains PSk(k;, ).
Claim. Z:=K;nN Gﬁe is a central subgroup @@ for{>>0,0e€ 7.

Proof. BecauséZ,| < ywe see that (if }|Z,| and (ii)¢ JAut(Z,)|for £>>0,¢ € .
From (i) and Schur-Zassenhauss, for d&8ylow S C Gy, the groupZ;§ is a
semidirect producZ; x & and, from (ii), the semidirect produg; x & is actually
a direct product that i§, is contained in the centralizég@ (Hy) of Hy in G@. But,

by definition, for¢ > 0 the groum,\*,l/ is generated by théSonw subgroup$y of
Gw, henceGy,, = ZGBE (Zy). O

Becaus&, is commutative and of prime-tborder,Z, is conjugate in Gk(F,)
to a diagonal torus. For arge Z; let VP(z) c F, denote the set of eigenvalues of
zand set
V:=[]VP2.

el
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Then,M ®, F, can be decomposed into a direct sum

M ®F[ F@ = @ E(A)v
AeVv

where, for any\ = (A;)zcz, we write

E(A) = ) ker(z—A1d).

zeZy

From the second clairrG% stabilize eachF,-submoduleE(A) of M ®F, F, and
from the first claim, it acts non diagonally at least on onehefhonzerde (A ), say
E. The action o’GM on E induces a non trivial action on the projective space

P(E) := E/F,

and, by definition ok, this action factors througﬁﬁé. This shows that PSi(k;, )

embeds into PG(E). ButE is of F,-dimension< n so, from [LS74, Thm. p. 419],
this can occur only for finitely many values igf which, in turn, contradicts the fact
thatr, — oo for £ € . by Lemma 6 (2).

The proof of Theorem 1 is now complete.

1.5 Thecaseof S, 1(¢)

Whenever it is defined, we set foe=1,...,n = dimg,(H,)
Yh1(6) = min{y, ; 0#ve H, and dimy, (M(v) =i}

Note that, whem =1, one has/ ; (¢) = yp 1(¢).
Let. denote the set of all priméssuch thaH, contains ar (S)-submodule of
F,-rank 2. Assume tha¥” is infinite. In this section, we prove:

Proposition 14. Assume that conditions (WA), (1) and (T) are satisfied. Then:

lim y34(0) = 4.

{—+o0
plA(?-1)

and deduce from this result the proof of Corollary 3. The pafdProposition 14
needs some preparation.

We first study the possible structure of the grdbp when diny, (M) = 2 and
£>0.

Lemma 15. Assume that conditions (WA), (1) and (T) are satisfied. Tfar, > 0
and anyrs (S)-submodule MC H, of Fy-rank 2 one hasSL(M) C G.
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Proof. We write Gy as an extension
1— GuNSL(M) — Gy 2 Dy — 1,

whereDy = det(Gy) CF; ~Z/({—1).

Let us show first thatGy N SL(M)| diverges with{ — « in . andM is any
M (S)-submoduleM c Hy of IFy-rank 2. Otherwise, up to replacing by an infinite
subset, we may assume that there exists an upper bound

|GMNSL(M)| <B
for all possibleM. From Lemma 6 (2), one has

lim |Gy, | = +o,
{— 400 -
les

which forcegDy | to diverge wherf — o in .. Leto(B) denote the maximal order
of the automorphism group of a group of ordeB. Then, aDy is cyclic, it follows
from Lemma 12 thaGy contains a normal abelian subgroup of indeB - o(B),
which contradicts Corollary 7 fof > 0 in ..

Hence, for/ >> 0 in . and anyrg (S)-submoduleM C H, of Fy-rank 2, the only
possibilities with respect to the list of Corollary 11 85 NSL(M) are (1), (2), (5)
or (6). The types (1) and (2) are ruled out by condition (WA)dd.emma 6, and
type (6) is exactly what the lemma claims. It remains to ruletgpe (5).

If Gm NSL(M) is of type (5), then it is contained in a Borel and thus fixesa i
F,-v C M for some G4 v € Hy. The line is uniquely determined since th&ylow
of Gy N'SL(M) is nontrivial, and thud, - v is also invariant undeGy. However,
by condition (WA) and Lemma 6 (2), the gro@ cannot fix[F, - v, which is the
desired contradiction. O

Lemma 16. Assume that conditions (WA), (1) and (T) are satisfied. Ttheme exists
an integer D> 1 such that for¢ >> 0 and any7s (S)-submodule MC H, one has
|detGm)| < D.

Proof. Let m denote theF,-rank of M. Then the action oy on the lineA™M
factors through a faithfull action @y := det Gy ). So the conclusion follows from
condition (WA)'. O

Now we can prove Proposition 14. Let denote the set of all priméssuch that
there existy € H, with M(v) of Fy-rank 2. Assume that” is infinite and for every
¢ €., choosev; € Hy with M, := M(v,) of F;-rank 2 such thag, = %71(6). By
Lemma 15 and fof >> 0 in . we write againGy, as an extension

1 SL(My) — Gy, 24 D, — 1,

whereD, = detGy,) C F ~Z/(¢—1). From lemma 16, we hav®,| < D. Con-
sider an E-P decomposition



16 Anna Cadoret

pt
St (1.6)
Z C Pi

P

S:pt —_— B(g

whereSP' — 7, = §P'/K, and, withGy, = Gy, /K faithfully acting onC;, also
C; — By = C,/G, are the respective quotient maps, and(dgg= y,. We setDX
for the image oK, in D,. ThenK, fits into the short exact sequence

1— K,NSL(M;) — K, — D — 1.
As the only normal subgroups of $(F,) are 1,Z/2 and Sk(F,), there are only
two possibilities forK, N SL(M;), namely

1) Kyn SL(M[) = SL(M()
(2) KenSLM()=1,7Z/2,
In case (1), one has the estimate
pt 2 K |D[K
Wi, = deg f,) > ded §p" — Z) = |K| = £(¢*~1)-|Dy | = |G, Tk

Since SI(My) acts transitively orM, \ {0}, the stabilizerGy,,, of v, under the
action ofGy,, namely the Galois group &y, — S, has index? —1 and so

W, 2_q IDF -1
) =¥, > — > -1) — > — 400,
yf),l( ) W[ |GMg,Vé| ( ) |D[| D
In case (2), the stabilizer has size
|Gwm,
|GM137V/| = 62 _141 =/ ‘D€|7

and thus Lemma 8 applied to the primitive p@¥y — By,C;, — ]P’&) in diagram (1.6)
yields the estimate

W o deg%zt—)Zg)-dEQCg — P} N IKe| - \/Gc, + 1
IGMyv | - Dy ~  {-|D/]

Voa(l) =y, > 1.7)

For¢>> 0 and in particulaf > p, the groupGu, contains SIM,) or PSL(M,), and
so itis not a subgroup of the automorphism group of a curvesnfig O or 1 over an
algebraically closed field of characterispic> 0. As a result, one may assume that
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C, has genus> 2. If p does not diﬁvid(—:€(£2 — 1) thenp does not dividgGL(M)]
hence,a fortiori, does not dividgGy, |. Consequently, the cov&; — By lifts to
characteristic 0 and we have the Hurwitz bound for the autphism group

((¢?—1)|Dy|

=Gy | < —1).

In combination with (1.7) this yields

IKel-v/Oc, +1 K| [£(¢2—1)|Dy]
6> > +2
a2 =751 2 7 p,1\ 84k

(2-1)
Voa(0) > g o

Hence

This completes the proof of Proposition 14.

Remark 17When p|¢(¢2 — 1), one can assert only that¢2 — 1) < Py(gc,) so the
resulting lower bound fogc, is too small to conclude. Also, from condition (T), one
could observe that, — S°P' is tame for¢ >> 0 but, if p|/¢(¢2 — 1) andS*Pt — By is
wildly ramified, it may happen th&k, — B, is wildly ramified as well hence does
not necessarily lift to characteristic O.

Finally, we give a proof of Corollary 3. Let(0) andY;(¢) denote the coarse
moduli schemes of the staek of elliptic curves and of the stack (¢) of elliptic
curves with a torsion point of order exaclyas stacks ovet. For any nonisotrivial
relative elliptic curveE — Sand 0# v € E;[/], one has the following commutative
diagram

- & E

é1(0) i i

l o Y(0) /b? s
Yi(l) <— S

In particular we can estimate the gonality as

% wdedd) _ w(-1)/2  y
Ya() = Geglc) ~ deda)degb)  |G;-v|degb) — 2degb)

with degb) independent of and?¢. Applying Proposition 14 to the family of rank-2
F,-linear representations

pr @ Ta(S) — GL(Ex[{])
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gives the conclusion of Corollary 3.
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