
Chapter 1
Note on the gonality of abstract modular curves

Anna Cadoret

Abstract Let Sbe a curve over an algebraically closed fieldk of characteristicp≥ 0.
To any family of representationsρ = (ρℓ : π1(S) → GLn(Fℓ)) indexed by primes
ℓ ≫ 0 one can associateabstract modular curves Sρ,1(ℓ) andSρ(ℓ) which, in this
setting, are the modular analogues of the classical modularcurvesY1(ℓ) andY(ℓ).
The main result of this paper is that, under some technical assumptions, the gonality
of Sρ(ℓ) goes to+∞ with ℓ. These technical assumptions are satisfied byFℓ-linear
representations arising from the action ofπ1(S) on theétale cohomology groups
with coefficients inFℓ of the geometric generic fiber of a smooth proper scheme
overS. From this, we deduce a new and purely algebraic proof of the fact that the
gonality ofY1(ℓ), for p 6 |ℓ(ℓ2−1), goes to+∞ with ℓ.

Key words: 2010 MSC Primary: 14H30, 14K99; Secondary: 14K10.

1.1 Introduction

Let k be an algebraically closed field of characteristicp ≥ 0 andS a smooth, sep-
arated and connected curve overk with generic pointη . Let π1(S) denote itśetale
fundamental group. Fix an integern ≥ 1. For each primeℓ ≫ 0, let Hℓ be anFℓ

vector space of dimensionn on whichπ1(S) acts continuously. We will writeρ for
the family of the resultingFℓ-linear representations

ρℓ : π1(S) → GL(Hℓ) ≃ GLn(Fℓ).

To such data, one can associate families ofabstract modular curves Sρ,1(ℓ) → S
andSρ(ℓ) → S, see Section 1.2, which, in this setting, are the modular analogues

Anna Cadoret
Universit́e Bordeaux 1, 351 Cours de la Libération, F 33405 TALENCE Cedex FRANCE e-mail:
anna.cadoret@math.u-bordeaux1.fr

1



2 Anna Cadoret

of the classical modular curvesY1(ℓ)→Y(0) andY(ℓ)→Y(0) classifyingℓ-torsion
points and full level-ℓ structures of elliptic curves respectively.

The main examples of such representations we have in mind arethe Fℓ-linear
representations arising from the action ofπ1(S) on theétale cohomology groups
with coefficients inFℓ of the geometric generic fiber of a smooth proper scheme
over S. In particular, this includes those representations arising from the action of
π1(S) on the group ofℓ-torsion points of the geometric generic fiber of an abelian
scheme overS, see Subsection 1.2.3.

The properties satisfied by these representations motivated, in [CT10b], the intro-
duction of technical conditions onρ , denoted by (A), (WA) and (AWA) forabelian-
ization, weak abelianizationandalternating weak abelianizationrespectively, (I) for
isotriviality, (T) for tameand (U) forunipotent. See Subsection 1.2.2 for a precise
formulation of these conditions.

Let gρ,1(ℓ) and gρ(ℓ) (resp.γρ,1(ℓ) and γρ(ℓ)) denote the genus (resp. thek-
gonality) of the abstract modular curvesSρ,1(ℓ) andSρ(ℓ) respectively. The main
result of [CT10b] ([CT10b, Thm. 2.1]) asserts that, if conditions (AWA), (I), (U) are
satisfied then:

lim
ℓ→+∞

gρ,1(ℓ) = +∞.

An intermediate step in the proof of this result is that, if conditions (WA), (I), (T)
are satisfied then:

lim
ℓ→+∞

gρ(ℓ) = +∞.

In this note, we prove that the same holds with gonality replacing genus, that is:

Theorem 1. If conditions (WA), (I), (T) are satisfied then:

lim
ℓ→+∞

γρ(ℓ) = +∞.

The proof of Theorem 1 is purely algebraic and based on the equivariant-
primitive decompositions introduced by A. Tamagawa in [T04] to estimate the go-
nality of Galois covers. The method, however, fails to prove:

Conjecture 2.Assume that conditions (WA), (T), (U) are satisfied. Then:

lim
ℓ→+∞

γρ,1(ℓ) = +∞.

Our method shows Conjecture 2 only when we restrict ton = 2 and primesℓ with
p 6 |ℓ(ℓ2−1), or, more generally, for the variant ofSρ,1(ℓ) classifying pointsv∈ Hℓ

whoseπ1(S)-orbit generates a subspace of rank 2, see Proposition 14. This provides
in particular an algebraic proof of the well-known fact, cf.[A96], [P07], that:

Corollary 3.
lim

ℓ→+∞
p6|ℓ(ℓ2−1)

γY1(ℓ) = +∞.
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Whenp= 0, it seems that variants of Theorem 1 can be proved by the techniques
from differential geometry and Cayley-Schreier graph theory generalizing [A96]
and developed in [EHK10].

Apart from their intrinsic geometric interest, statementsas Theorem 1 and Con-
jecture 2 also have arithmetic consequences. In characteristic 0, this follows from
the following corollary of [F91].

Corollary 4. [Fr94]) Let k be a finitely generated field of characteristic0 and let S
be a smooth, proper, geometrically connected curve over k with k-gonalityγ. Then,

for any integer1≤ d ≤
[

γ−1
2

]

, the set of all closed points s of S with residue field

k(s) of degree[k(s) : k] ≤ d is finite.

So, for instance, Conjecture 2 forp = 0 combined with [CT10a, Prop. 3.18], to
rule out thek-isotrivial torsion points ofAη , would imply:

For any finitely generated field k of characteristic0, smooth, separated and ge-
ometrically connected curve S over k, abelian scheme A→ S and integer d≥ 1
the set of closed points s of S with degree[k(s) : k] ≤ d and such that As carries a
k(s)-rational torsion point of orderℓ is finite forℓ ≫ 0.
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1.2 Abstract modular curves

We fix once and for all an algebraically closed fieldk of characteristicp≥ 0. By a
curve overk we mean a connected, smooth and separatedk-scheme of dimension 1.

1.2.1 Notation

Let S be a curve overk with a geometric generic pointη above its generic point
η ∈ S. We will write S →֒ Scpt for the smooth compactification ofS andπ1(S) for
its étale fundamental group with base pointη . Fix an integern ≥ 1, and, for each
primeℓ ≫ 0, let Hℓ be anFℓ-module of rankn on whichπ1(S) acts. We will write
ρ for the family of the resultingFℓ-linear representations

ρℓ : π1(S) → GL(Hℓ) ≃ GLn(Fℓ).
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For every primeℓ ≫ 0, setGℓ = im(ρℓ) and for any subgroupU ⊂ Gℓ, theab-
stract modular curve associated toU is the connected́etale coverSU → S corre-
sponding to the open subgroupρ−1

ℓ (U) ⊂ π1(S). We writegSU andγSU for genus
and gonality ofSU respectively.

Remark 5.As we are only interested in the asymptotic behaviour of abstract mod-
ular curves, it is enough to consider onlybig enoughprimesℓ. Furthermore, in
practice,Hℓ will be anétale cohomology groupH i(Xη ,Fℓ) for some smooth proper
morphismX → S with connected geometric generic fibreXη . In particular, the di-
mension ofH i(Xη ,Fℓ) may become constant only forℓ ≫ 0, see Subsection 1.2.2.

In the following, we will consider only specific classes of abstract modular curves
of two kinds. First, forv ∈ Hℓ we denote bySv → S the abstract modular curve
associated to the stabilizer ofGℓ,v ⊂ Gℓ of v, and letgv andγv denote its genus and
gonality respectively.

Secondly, for aπ1(S)-submoduleM ⊂ Hℓ, we denote bySM → S the abstract
modular curve associated to Fix(M) := {g ∈ Gℓ | g|M = IdM}, and letgM andγM

denote its genus and gonality respectively. The connectedétale coverSM → S is
Galois with Galois groupGM = Gℓ/Fix(M), which is the image of the induced
representationρM : π1(S) → GL(M).

For v∈ Hℓ and theπ1(S)-submoduleM(v) := Fℓ[Gℓ ·v] ⊂ Hℓ generated byv, the
coverSM(v) → S is the Galois closure ofSv → S.

Let F = (Fℓ) denote a sequence of non-empty families of subgroups ofGℓ. We
will say that:

Sρ,F (ℓ) :=
⊔

U∈Fℓ

SU → S

is theabstract modular curve associated withFℓ and define:

dρ,F (ℓ) := min{[Gℓ : U ] ; U ∈ Fℓ}

gρ,F (ℓ) := min{gSU ; U ∈ Fℓ}

γρ,F (ℓ) := min{γSU ; U ∈ Fℓ},

which we call the degree, genus and gonality of the abstract modular curveSρ,F (ℓ).
Following the notation for the usual modular curves, we willwrite:

Sρ,1(ℓ), dρ,1(ℓ), gρ,1(ℓ), γρ,1(ℓ)

whenFℓ is the family of all stabilizersGℓ,v for 0 6= v∈ Hℓ, and

Sρ(ℓ), dρ(ℓ), gρ(ℓ), γρ(ℓ)

whenFℓ is the family of all Fix(M), for 0 6= M ⊂ Hℓ. Note that by construction

dρ(ℓ) ≥ dρ,1(ℓ), gρ(ℓ) ≥ gρ,1(ℓ) andγρ(ℓ) ≥ γρ,1(ℓ).
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1.2.2 Conditions (WA), (I), (T)

Given an integer 1≤ m≤ n and aπ1(S)-submoduleM ⊂ ΛmHℓ, write again

ρM : π1(S) → GL(M)

for the induced representation. We consider the following technical conditions on
ρ :

(WA) For any open subgroupΠ ⊂ π1(S), there exists an integerBΠ ≥ 1 such that,
for every primeℓ, integer 1≤ m≤ n andΠ -submoduleM ⊂ ΛmHℓ, one has:

ρM(Π) abelian of prime-to-ℓ order⇒ |ρM(Π)| ≤ BΠ .

(WA)’ For any open subgroupΠ ⊂ π1(S), there exists an integerBΠ ≥ 1 such
that, for every primeℓ, integer 1≤ m≤ n andΠ -submoduleM ⊂ ΛmHℓ, one
has:

ρM(Π) abelian⇒ |ρM(Π)| ≤ BΠ .

(I) For any open subgroupΠ ⊂ π1(S) the Fℓ-submoduleHΠ
ℓ of fixed vectors

underΠ is trivial for ℓ ≫ 0.
(T) For anyP ∈ Scpt r S there exists an open subgroupTP of the inertia group

IP ⊂ π1(S) atP such thatρℓ(TP) is tame forℓ ≫ 0.

In [CT10b], we introduce an additional condition (U), whichasserts that for any
P∈ Scpt r S there exists an open subgroupUP of the inertia groupIP ⊂ π1(S) at P
such thatρℓ(UP) is unipotent forℓ ≫ 0. Condition (U) is stronger than condition
(T); we will not use it in the following.

See [CT10b,§2.3] for more details, in particular for the following lemma.

Lemma 6. ([CT10b, Lem. 2.2, 2.3 and 2.4])

(1) Assume that condition (T) is satisfied. Set K:=
⋂

ℓ ker(ρℓ). Thenπ1(S)/K is
topologically finitely generated.

(2) Conditions (I) and (T) implylim
ℓ→+∞

dρ,1(ℓ) = +∞.

(3) Conditions (I), (T) and (WA) imply condition (WA)’.

Assume that conditions (I), (T) and (WA) are satisfied. Sincedρ(ℓ) ≥ dρ,1(ℓ), it
follows from Lemma 6 (2) and (3) that forℓ≫ 0 and anyπ1(S)-submodule 06= M ⊂
Hℓ the groupGM cannot be abelian.

Corollary 7. Assume that conditions (I), (T) and (WA) hold. Then, for any integer
B≥ 1, for everyπ1(S)-submodule0 6= M ⊂ Hℓ and for every abelian subgroup A of
GM one has[GM : A] ≥ B for ℓ ≫ 0.

Proof. Otherwise, there exists an integerB≥ 1 and an infinite set of primesS such
that, for everyℓ ∈ S , there exists aπ1(S)-submodule 06= Mℓ ⊂ Hℓ and an abelian
subgroupAℓ of GMℓ

with [GMℓ
: Aℓ] ≤ B. But, since it follows from Lemma 6 (1)
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that π1(S) acts through a topologically finitely generated quotient, there are only
finitely many isomorphism classes of connectedétale covers ofS corresponding
to theρ−1

Mℓ
(Aℓ) ⊂ π1(S), ℓ ∈ S . Hence at least one of them, sayS′ → S, appears

infinitely many times. Up to base-changing byS′ → S, we may assume thatGMℓ
is

abelian for infinitely manyℓ ∈ S , which contradicts Lemma 6 (2) and (3).⊓⊔

1.2.3 Etale cohomology

Let X → Sbe a smooth, proper morphism with geometrically connected fibers. For
every integeri ≥ 0 theFℓ-rankni,ℓ of H i

ℓ := Hi(Xη ,Fℓ) is finite and independent of
ℓ for ℓ ≫ 0. Indeed, whenp = 0, this follows from the comparison isomorphism
between Betti and́etale cohomology with finite coefficients and the fact that Betti
cohomology with coefficient inZ is finitely generated. More generally, whenp≥ 0,
this follows from the fact thatℓ-adic cohomology with coefficients inZℓ is torsion
free forℓ≫ 0 [G83] and that theQℓ-rank ofℓ-adic cohomology with coefficients in
Qℓ is independent ofℓ. So, we will simply writeni instead ofni,ℓ for ℓ ≫ 0.

For eachi ≥ 1 andℓ≫ 0, the action ofπ1(S) onH i
ℓ gives rise to a familyρ i = (ρ i

ℓ)
of ni-dimensionalFℓ-linear representations

ρ i
ℓ : π1(S) → GL(H i

ℓ) ≃ GLni (Fℓ).

It follows from [CT10b, Thm. 2.4] that the familiesρ i for i ≥ 1 satisfy conditions
(T) and (WA). As for condition (I), ifXη is projective overk(η) then, fori = 1 it
can be ensured by the condition:

Pic0
Xη /k(η) contains no non-trivialk-isotrivial abelian subvarieties.

1.3 Technical preliminaries

The proof of Theorem 1 is based on a combination of Lemma 6 withthe use of E-P
decomposition and group-theoretic ingredients. We gatherthe results we will need
in Subsections 1.3.1, 1.3.2 and 1.3.3 respectively.

1.3.1 E-P decompositions

Consider a diagram of proper curves overk
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Y
f

//

π
²²

B

Y′,

(1.1)

where f : Y → B is a non-constant morphism of proper curves overk andπ : Y →Y′

is a G-cover with groupG (that isGacts faithfully onY andπ :Y→Y′ is the quotient
morphismY→Y/G). We will say that a pair of maps(π, f ) as in (1.1) isequivariant
if for any σ ∈G there existsσB ∈Autk(B) such thatf ◦σ = σB◦ f and that(π, f ) as
in (1.1) isprimitive if it does not have any equivariant nontrivial subdiagram that is,
more precisely, if for any commutative diagram (1.2) of morphisms of proper curves
overk

Y

π
²²

f

''

f ′
// B′

f ′′
// B

Y′

(1.2)

with f ′ and f ′′ of degree≥ 2, the pair(π, f ′) is not equivariant.
We will resort to the following corollary of the Castelnuovo-Severi inequality.

Lemma 8. ([T04, Thm. 2.4]).If the pair of maps(π, f ) as in (1.1) is primitive then:

deg( f ) ≥

√

gY +1
gB +1

.

For a pair(π, f ) as in diagram (1.1), among all equivariant decompositions,i.e.,
diagrams as (1.2) with the pair(π, f ′) equivariant, we choose a pair(π, f ′ : Y →C)
with deg( f ′) maximal. This exists as(π, id) is equivariant and deg( f ′) ≤ deg( f )
is bounded. By definition, the action ofG on Y induces an action onC, hence we
obtain a homomorphismG→ Autk(C). We setG = G/K where

K := Ker(G→ Autk(C)).

Then diagram (1.1) for(π, f ) can be enriched to a commutative diagram with re-
spect to the maximal equivariant decomposition(π, f ′) as follows:

Y
f

((QQQQQQQQQQQQQQQQ

²²

Z //

²²

C //

²²

B

Y′ // C′

(1.3)
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where the vertical mapsY → Z = Y/K, Z → Y′ = Z/G andC → C′ = C/G are
the quotient morphisms. By construction, the pair(Z → Y′,Z → C) is equivariant
and the pair(C → C′,C → B) is primitive. We will call such a decomposition an
equivariant-primitive decomposition(E-P decomposition for short).

1.3.2 Review of the classification of finite subgroups ofSL2

We remind thatk is a fixed algebraically closed field of characteristicp≥ 0. Then
we have the following description of finite subgroups of SL2(k).

Theorem 9. ([Su82, Thm. 3.6.17])A finite subgroup G ofSL2(k) is one from the
following list:

(1) a cyclic group,
(2) for some n≥ 2 a group with presentation

〈x,y | xn = y2, y−1xy= x−1〉,

(3) SL2(3), or SL2(5),
(4) the representation groupŜ4 of the permutation groupS4 in which transposi-

tions lift to elements of order4,
(5) an extension

1→ A→ G→ Q→ 1,

where A is an elementary abelian p-group and Q is a cyclic group of prime-to-p
order,

(6) a dihedral group,
(7) SL2(kr), where kr denotes the subfield of k with pr elements,
(8) 〈SL2(kr),dπ〉, where dπ is the scalar matrix with diagonal entries given by a

π ∈ k such that kr(π) has p2r elements andπ2 is a generator of k×r .

Case (6) occurs only when p= 2 and cases (7) and (8) occur only when p> 0.

We will use two easy corollaries of Theorem 9. Namely, observing that whenk is
algebraically closed PGL2(k) = PSL2(k), we get the well known corollary:

Corollary 10. A finite subgroup G ofPGL2(k) is of the following form:

(1) a cyclic group,
(2) a dihedral group,
(3) A4, S4, A5,
(4) an extension

1→ A→ G→ Q→ 1,

where A is an elementary abelian p-group and Q is a cyclic group of prime-to-p
order,

(5) PSL2(kr),
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(6) PGL2(kr).

The last three cases occur only when p> 0.

Also, regarding SL2(Fℓ) as a subgroup of SL2(Fℓ) and ruling out the groups that
cannot lie in SL2(Fℓ), we get:

Corollary 11. Assume thatℓ ≥ 5. A subgroup ofSL2(Fℓ) is isomorphic to one of
the following.

(1) a cyclic group,
(2) for some n≥ 2 a group with presentation

〈x,y | xn = y2, y−1xy= x−1〉,

(3) SL2(F3), or SL2(F5),
(4) the representation groupŜ4 of the permutation groupS4 in which transposi-

tions lift to elements of order4,
(5) a semi-direct productFℓ ⋊C contained in a Borel subgroup with C a cyclic

group of prime-to-ℓ order,
(6) SL2(Fℓ).

1.3.3 A group-theoretic lemma

The following lemma provides a practical condition for a finite group to contain a
large normal abelian subgroup.

Lemma 12. Let G be a finite group and assume that G fits into a short exact se-
quence of finite groups

1→ N → G→ Q→ 1 (∗)

with Q abelian and generated by≤ r elements. Then the group G contains a normal
abelian subgroup A with index

[G : A] ≤ µ(Z(N))r · |Aut(N)|,

whereµ(Z(N)) denotes the least common multiple of the order of the elements in
the center Z(N) of N.

Proof. The short exact sequence (∗) induces by conjugation representations

φ̃ : G→ Aut(N) and φ : Q→ Out(N)

and induces on the centralizerZG(N) = ker(φ̃) of N in G the structure of a central
extension

1→ Z(N) → ZG(N) → ker(φ) → 1.
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Because the extension is central, taking the commutator of lifts to ZG(N) defines an
alternating bilinear form[ , ] on ker(φ) with values inZ(N). The radical of[ , ]

R= {q∈ ker(φ) ; [q,q′] = 0 for all q′ ∈ ker(φ)} ⊂ ker(φ),

containsµ(Z(N))ker(φ). We find an extension

1→ Z(N) → Z(ZG(N)) → R→ 1

whereA = Z(ZG(N)) is the center ofZG(N). SinceN is normal inG, the abelian
groupA is also normal inG. We can estimate the index[G : A] as

[G : A] =
|G|

|ZG(N)|
·
|ZG(N)|

|A|
≤ |Aut(N)| ·

|ker(φ)|

|R|

≤ |Aut(N)| ·
|ker(φ)|

|µ(Z(N))ker(φ)|
≤ |Aut(N)| ·µ(Z(N))r

since ker(φ) ⊂ Q is also generated by≤ r elements. ⊓⊔

1.4 Proof of Theorem 1

Observe first that ifS′ → S is any connected finitéetale cover thenπ1(S′M) =
π1(SM)∩π1(S′). In particular, one has:

γSM ≤ γS′M
≤ γSM deg(S′M → SM) ≤ γSM deg(S′ → S)

and, as a result, lim
ℓ→+∞

γρ|π1(S′)
(ℓ) = +∞ if and only if lim

ℓ→+∞
γρ(ℓ) = +∞. This allows

to perform arbitrary base changes by connectedétale covers. In particular, from
condition (T), one may assume thatπ1(S) acts through its tame quotientπ t

1(S).
For every primeℓ, consider aπ1(S)-submodule 06= Mℓ ⊂ Hℓ such thatγMℓ

=
γρ(ℓ). We thus have a diagram of proper curves overk

Scpt
Mℓ

fℓ //

²²

P1
k

Scpt

(1.4)

with deg( fℓ) = γρ(ℓ). We can consider an E-P decomposition of (1.4)
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Scpt
Mℓ

fℓ

((PPPPPPPPPPPPPPPPP

²²

Zℓ
//

²²

Cℓ
//

²²

P1
k

Scpt // Bℓ

(1.5)

whereScpt
Mℓ

→ Zℓ = Scpt
Mℓ

/Kℓ and, withGMℓ
= GMℓ

/Kℓ faithfully acting onCℓ, also

Cℓ → Bℓ = Cℓ/GMℓ
are the respective quotient maps.

If γρ(ℓ) does not diverge, then there exists an infinite subsetS of primes and an
integerγ ≥ 1 such thatγρ(ℓ) ≤ γ for all ℓ ∈ S . In particular|Kℓ| ≤ γ, hence

|GMℓ
| ≥

dρ(ℓ)

|Kℓ|
≥

dρ(ℓ)

γ
.

So, from Lemma 6 (2) one has lim
ℓ→+∞
ℓ∈S

|GMℓ
| = +∞.

To get the contradiction, we distinguish between three cases. In the first case we
assume thatgCℓ

≥ 2 for all but finitely manyℓ ∈ S . Since by [St73] the size of the
automorphism group of a genusg ≥ 2 curve over an algebraically closed field of
characteristicp is bounded byPp(g) for a polynomialPp(T) ∈ Z[T] depending only
on p, we find forℓ ∈ S that|GMℓ

| ≤ Pp(gCℓ
), which forces

lim
ℓ→+∞
ℓ∈S

gCℓ
= +∞.

But from Lemma 8 applied to the primitive pair(Cℓ → Bℓ,Cℓ → P1
k) in diagram

(1.4), one has

γρ(ℓ) = deg( fℓ) ≥ deg(Cℓ → P1
k) ≥

√

gCℓ
+1,

which therefore also diverges forℓ ∈ S contradicting the choice ofS .

If we are not in the first case, thengCℓ
≤ 1 for infinitely manyℓ ∈ S . In the

second case, we assume that for infinitely manyℓ ∈ S , and in fact by replacingS
by a subset, that for allℓ ∈ S we havegCℓ

= 1. Then forℓ ∈ S , the groupGMℓ
is

an extension
1→ Aℓ → GMℓ

→ Qℓ → 1

with Aℓ a finite quotient ofẐ2 and|Qℓ| ≤ 24. Since by Lemma 6π1(S) acts through
a topologically finitely generated quotient, there are onlyfinitely many isomorphism
classes of́etale covers ofSwith degree≤ 24 corresponding to the inverse image of
Aℓ via
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π1(S)
ρMℓ
։ GMℓ

։ GMℓ
.

So, by replacingSby the composite of all theséetale covers of degree≤ 24, we may
assume thatGMℓ

= Aℓ for all ℓ ∈ S . Now Lemma 12 applied to

1→ Kℓ → GMℓ
→ Aℓ → 1

shows, since|Kℓ| ≤ γ, thatGMℓ
has an abelian subgroup of index bounded above

independently ofℓ ∈ S in contradiction to Corollary 7.

In the last case we can and do assume thatgCℓ
= 0 for all ℓ ∈ S . As above,

Corollary 7 shows that the subgroupGMℓ
⊂ Aut(Cℓ)∼= PGL2(k) can be only of type

(4), (5) or (6) as in Corollary 10 forℓ ≫ 0, andℓ ∈ S . This occurs only ifp > 0.
Without loss of generality, by replacingS by an infinite subset, we may assume
thatGMℓ

is of the same type for allℓ ∈ S . To rule out these cases, we are going to
use the following theorem.

Theorem 13 ([N87, Thm. C]). For any integer n≥ 1 there exists an integer d(n)≥ 1
such that for any primeℓ≥ n, integer m≤ n and subgroup G ofGLm(Fℓ) the follow-
ing holds. Let G+ denote the (normal) subgroup of G generated by the elements of
orderℓ in G. Then, there exists an abelian subgroup A⊂ G such that AG+ is normal
in G and[G : AG+] ≤ d(n).

Assume thatGMℓ
is of type (4) for allℓ ∈ S , that is of the form

(Z/p)rℓ ⋊Z/Nℓ

for some integersrℓ,Nℓ ≥ 1 with p 6 |Nℓ.

Claim. There exists an integerr(n) ≥ 1 such thatrℓ ≤ r(n) for ℓ ≫ 0 in S .

Proof. Let Tℓ denote the inverse image of(Z/p)rℓ in GMℓ
that isTℓ fits into the short

exact sequence of finite groups

1→ Kℓ → Tℓ → (Z/p)rℓ → 1.

Because|Kℓ| ≤ γ we see thatℓ does not divide|Tℓ| for ℓ ≫ 0 and, in particular, that
T+
ℓ is trivial. Theorem 13 implies thatTℓ fits into a short exact sequence

1→ Aℓ → Tℓ → Qℓ → 1

with Aℓ abelian and|Qℓ| ≤ d(n). In turn,Aℓ fits into the sort exact sequence

1→ Kℓ ∩Aℓ → Aℓ → (Z/p)sℓ → 1

with sℓ ≤ rℓ. In particular,Aℓ is an abelian subgroup of GL(Mℓ) of prime-to-ℓ order
and ofZ-rank≥ sℓ. This impliessℓ ≤ n since any abelian subgroupA of order prime-
to-ℓ in GLn(Fℓ) is conjugate in GLn(Fℓ) to a diagonal torus. So the claim follows
from rℓ ≤ sℓ + logp |Qℓ| and the bounds forsℓ and|Qℓ| ≤ d(n). ⊓⊔
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By the claim and Lemma 12, the groupGMℓ
contains a normal abelian subgroup

Aℓ with index bounded by

[GMℓ
: Aℓ] ≤ p· |GLr(n)(Fp)|.

Invoking again thatπ1(S) acts through a topologically finitely generated quotient,
without loss of generality we may assume thatGMℓ

= Aℓ and then, as above the
contradiction follows from the bound|Kℓ| ≤ γ, Lemma 12 and Corollary 7.

Assume now thatGMℓ
is of type (5) or (6) for allℓ ∈ S , that is either PSL2(krℓ)

or PGL2(krℓ) for some integerrℓ ≥ 1.
For any non zero vectorv ∈ Mℓ the coverSM(v) → S is a quotient ofSMℓ

→ S
henceγSM(v)

≤ γSMℓ
. So, without loss of generality, we may assume thatMℓ is a

simpleπ1(S)-module. In particular, there exists a non zero vectorv∈ Mℓ such that
Mℓ = M(v) andM+

ℓ := Fℓ[G
+
Mℓ

v] ⊂ M is a simpleG+
Mℓ

-submodule.

Claim. The groupG+
Mℓ

is nontrivial forℓ ≫ 0, ℓ ∈ S .

Proof. Theorem 13 applied toGMℓ
⊂ GL(Mℓ) shows that one can writeGMℓ

/G+
Mℓ

as an extension
1→ AℓG

+
Mℓ

/G+
Mℓ

→ GMℓ
/G+

Mℓ
→ Qℓ → 1

with AℓG
+
Mℓ

/G+
Mℓ

abelian and|Qℓ| ≤ d(n), because dimFℓ
(Mℓ) ≤ n. As a result, if

G+
Mℓ

= 1, we get a contradiction to Corollary 7. This proves the claim. ⊓⊔

Since PSL2(krℓ) is simple and the only nontrivial normal subgroups of PGL2(krℓ)
are PSL2(krℓ) and PGL2(krℓ), the second claim implies that the normal subgroup

G
+
Mℓ

:= G+
Mℓ

/G+
Mℓ

∩Kℓ

of GMℓ
contains PSL2(krℓ).

Claim. Zℓ := Kℓ ∩G+
Mℓ

is a central subgroup ofG+
Mℓ

for ℓ ≫ 0, ℓ ∈ S .

Proof. Because|Zℓ| ≤ γ we see that (i)ℓ 6 ||Zℓ| and (ii)ℓ 6 ||Aut(Zℓ)| for ℓ≫ 0, ℓ∈S .
From (i) and Schur-Zassenhauss, for anyℓ-Sylow Sℓ ⊂ GMℓ

, the groupZℓSℓ is a
semidirect productZℓ ⋊ Sℓ and, from (ii), the semidirect productZℓ ⋊ Sℓ is actually
a direct product that isSℓ is contained in the centralizerZG+

Mℓ

(Hℓ) of Hℓ in G+
Mℓ

. But,

by definition, forℓ ≫ 0 the groupG+
Mℓ

is generated by theℓ-Sylow subgroupsSℓ of
GMℓ

henceG+
Mℓ

= ZG+
Mℓ

(Zℓ). ⊓⊔

BecauseZℓ is commutative and of prime-to-ℓ order,Zℓ is conjugate in GLn(Fℓ)

to a diagonal torus. For anyz∈ Zℓ let VP(z) ⊂ F
×
ℓ denote the set of eigenvalues of

zand set
V := ∏

z∈Zℓ

VP(z).
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Then,M⊗Fℓ
Fℓ can be decomposed into a direct sum

M⊗Fℓ
Fℓ =

⊕

λ∈V

E(λ ),

where, for anyλ = (λz)z∈Zℓ
we write

E(λ ) :=
⋂

z∈Zℓ

ker(z−λzId).

From the second claim,G+
Mℓ

stabilize eachFℓ-submoduleE(λ ) of M ⊗Fℓ
Fℓ and

from the first claim, it acts non diagonally at least on one of the nonzeroE(λ ), say
E. The action ofG+

Mℓ
onE induces a non trivial action on the projective space

P(E) := E/F
×
ℓ

and, by definition ofE, this action factors throughG
+
Mℓ

. This shows that PSL2(krℓ)

embeds into PGL(E). But E is of Fℓ-dimension≤ n so, from [LS74, Thm. p. 419],
this can occur only for finitely many values ofrℓ. which, in turn, contradicts the fact
thatrℓ → ∞ for ℓ ∈ S by Lemma 6 (2).

The proof of Theorem 1 is now complete.

1.5 The case of Sρ,1(ℓ)

Whenever it is defined, we set fori = 1, . . . ,n = dimFℓ
(Hℓ)

γ i
ρ,1(ℓ) := min{γv ; 0 6= v∈ Hℓ and dimFℓ

(M(v)) = i}

Note that, whenn = i, one hasγn
ρ,1(ℓ) = γρ,1(ℓ).

Let S denote the set of all primesℓ such thatHℓ contains aπ1(S)-submodule of
Fℓ-rank 2. Assume thatS is infinite. In this section, we prove:

Proposition 14. Assume that conditions (WA), (I) and (T) are satisfied. Then:

lim
ℓ→+∞

p6|ℓ(ℓ2−1)

γ2
ρ,1(ℓ) = +∞.

and deduce from this result the proof of Corollary 3. The proof of Proposition 14
needs some preparation.

We first study the possible structure of the groupGM when dimFℓ
(M) = 2 and

ℓ ≫ 0.

Lemma 15. Assume that conditions (WA), (I) and (T) are satisfied. Then,for ℓ ≫ 0
and anyπ1(S)-submodule M⊂ Hℓ of Fℓ-rank2 one hasSL(M) ⊂ GM.
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Proof. We writeGM as an extension

1→ GM ∩SL(M) → GM
det
−→ DM → 1,

whereDM = det(GM) ⊂ F×
ℓ ≃ Z/(ℓ−1).

Let us show first that|GM ∩SL(M)| diverges withℓ → ∞ in S andM is any
π1(S)-submoduleM ⊂ Hℓ of Fℓ-rank 2. Otherwise, up to replacingS by an infinite
subset, we may assume that there exists an upper bound

|GM ∩SL(M)| ≤ B

for all possibleM. From Lemma 6 (2), one has

lim
ℓ→+∞
ℓ∈S

|GMℓ
| = +∞,

which forces|DM| to diverge whenℓ→ ∞ in S . Let o(B) denote the maximal order
of the automorphism group of a group of order≤B. Then, asDM is cyclic, it follows
from Lemma 12 thatGM contains a normal abelian subgroup of index≤ B ·o(B),
which contradicts Corollary 7 forℓ ≫ 0 in S .

Hence, forℓ ≫ 0 in S and anyπ1(S)-submoduleM ⊂ Hℓ of Fℓ-rank 2, the only
possibilities with respect to the list of Corollary 11 forGM ∩SL(M) are (1), (2), (5)
or (6). The types (1) and (2) are ruled out by condition (WA)’ and Lemma 6, and
type (6) is exactly what the lemma claims. It remains to rule out type (5).

If GM ∩SL(M) is of type (5), then it is contained in a Borel and thus fixes a line
Fℓ ·v⊂ M for some 06= v∈ Hℓ. The line is uniquely determined since theℓ-Sylow
of GM ∩SL(M) is nontrivial, and thusFℓ · v is also invariant underGM. However,
by condition (WA) and Lemma 6 (2), the groupGM cannot fixFℓ · v, which is the
desired contradiction.⊓⊔

Lemma 16. Assume that conditions (WA), (I) and (T) are satisfied. Then,there exists
an integer D≥ 1 such that forℓ ≫ 0 and anyπ1(S)-submodule M⊂ Hℓ one has
|det(GM)| ≤ D.

Proof. Let m denote theFℓ-rank of M. Then the action ofGM on the lineΛmM
factors through a faithfull action ofDM := det(GM). So the conclusion follows from
condition (WA)’. ⊓⊔

Now we can prove Proposition 14. LetS denote the set of all primesℓ such that
there existsv∈ Hℓ with M(v) of Fℓ-rank 2. Assume thatS is infinite and for every
ℓ ∈ S , choosevℓ ∈ Hℓ with Mℓ := M(vℓ) of Fℓ-rank 2 such thatγvℓ

= γ2
ρ,1(ℓ). By

Lemma 15 and forℓ ≫ 0 in S we write againGMℓ
as an extension

1→ SL(Mℓ) → GMℓ

det
−→ Dℓ → 1,

whereDℓ = det(GMℓ
) ⊂ F×

ℓ ≃ Z/(ℓ−1). From lemma 16, we have|Dℓ| ≤ D. Con-
sider an E-P decomposition
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Scpt
Mℓ

fℓ

((PPPPPPPPPPPPPPPPP

²²

Zℓ
//

²²

Cℓ
//

²²

P1
k

Scpt // Bℓ

(1.6)

whereScpt
Mℓ

→ Zℓ = Scpt
Mℓ

/Kℓ and, withGMℓ
= GMℓ

/Kℓ faithfully acting onCℓ, also

Cℓ → Bℓ = Cℓ/GMℓ
are the respective quotient maps, and deg( fℓ) = γMℓ

. We setDK
ℓ

for the image ofKℓ in Dℓ. ThenKℓ fits into the short exact sequence

1→ Kℓ ∩SL(Mℓ) → Kℓ → DK
ℓ → 1.

As the only normal subgroups of SL2(Fℓ) are 1,Z/2 and SL2(Fℓ), there are only
two possibilities forKℓ ∩SL(Mℓ), namely

(1) Kℓ ∩SL(Mℓ) = SL(Mℓ).
(2) Kℓ ∩SL(Mℓ) = 1, Z/2,

In case (1), one has the estimate

γMℓ
= deg( fℓ) ≥ deg(Scpt

Mℓ
→ Zℓ) = |Kℓ| = ℓ(ℓ2−1) · |DK

ℓ | = |GMℓ
| ·
|DK

ℓ |

|Dℓ|
.

Since SL(Mℓ) acts transitively onMℓ \ {0}, the stabilizerGMℓ,vℓ
of vℓ under the

action ofGMℓ
, namely the Galois group ofSM(v) → Sv, has indexℓ2−1 and so

γ2
ρ,1(ℓ) = γvℓ

≥
γMℓ

|GMℓ,vℓ
|
≥ (ℓ2−1) ·

|DK
ℓ |

|Dℓ|
≥

ℓ2−1
D

→ +∞.

In case (2), the stabilizer has size

|GMℓ,vℓ
| =

|GMℓ
|

ℓ2−1
= ℓ · |Dℓ|,

and thus Lemma 8 applied to the primitive pair(Cℓ → Bℓ,Cℓ → P1
k) in diagram (1.6)

yields the estimate

γ2
ρ,1(ℓ) = γvℓ

≥
γMℓ

|GMℓ,vℓ
|
≥

deg(Scpt
Mℓ

→ Zℓ) ·deg(Cℓ → P1
k)

ℓ · |Dℓ|
≥

|Kℓ| ·
√

gCℓ
+1

ℓ · |Dℓ|
(1.7)

For ℓ ≫ 0 and in particularℓ > p, the groupGMℓ
contains SL(Mℓ) or PSL(Mℓ), and

so it is not a subgroup of the automorphism group of a curve of genus 0 or 1 over an
algebraically closed field of characteristicp≥ 0. As a result, one may assume that
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Cℓ has genus≥ 2. If p does not divideℓ(ℓ2−1) then p does not divide|GL(Mℓ)|
hence,a fortiori, does not divide|GMℓ

|. Consequently, the coverCℓ → Bℓ lifts to
characteristic 0 and we have the Hurwitz bound for the automorphism group

ℓ(ℓ2−1)|Dℓ|

|Kℓ|
= |GMℓ

| ≤ 84(gCℓ
−1).

In combination with (1.7) this yields

γ2
ρ,1(ℓ) ≥

|Kℓ| ·
√

gCℓ
+1

ℓ · |Dℓ|
≥

|Kℓ|

ℓ · |Dℓ|

√

ℓ(ℓ2−1)|Dℓ|

84|Kℓ|
+2

Hence

γ2
ρ,1(ℓ) ≥

√

(ℓ2−1)

84· ℓ · |D|
→ +∞.

This completes the proof of Proposition 14.

Remark 17.When p|ℓ(ℓ2−1), one can assert only thatℓ(ℓ2−1) ≤ Pp(gCℓ
) so the

resulting lower bound forgCℓ
is too small to conclude. Also, from condition (T), one

could observe thatZℓ → Scpt is tame forℓ ≫ 0 but, if p|ℓ(ℓ2−1) andScpt → Bℓ is
wildly ramified, it may happen thatCℓ → Bℓ is wildly ramified as well hence does
not necessarily lift to characteristic 0.

Finally, we give a proof of Corollary 3. LetY(0) andY1(ℓ) denote the coarse
moduli schemes of the stackE of elliptic curves and of the stackE1(ℓ) of elliptic
curves with a torsion point of order exactlyℓ as stacks overk. For any nonisotrivial
relative elliptic curveE → Sand 06= v∈ Eη [ℓ], one has the following commutative
diagram

E

²²

E

²²
E1(ℓ)

55jjjjjjj

²²
Y(0) S

boo

Y1(ℓ)

d 55kkkkkk

Svc
oo

a

66mmmmmmm

In particular we can estimate the gonality as

γY1(ℓ) ≥
γv

deg(c)
=

γvdeg(d)

deg(a)deg(b)
=

γv(ℓ
2−1)/2

|Gℓ ·v|deg(b)
≥

γv

2deg(b)

with deg(b) independent ofv andℓ. Applying Proposition 14 to the family of rank-2
Fℓ-linear representations

ρℓ : π1(S) → GL(Eη [ℓ])
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gives the conclusion of Corollary 3.
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