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Abstract. Let k be a field of characteristic 0 and S a normal scheme, separated, of finite type
and geometrically connected over k; let η denote the generic point of S. Given an abelian scheme

A → S, the étale fundamental group π1(S) of S acts continuously on the discrete module Aη [n] of

n-torsion points of the geometric generic fibre of A→ S. We denote by:

ρA,n : π1(S)→ GL(Aη [n]) ' GL2dim(Aη)(Z/n)

the corresponding continuous linear representation.To such data one can associate ‘abstract modular

schemes’ SA,1(n) and SA(n) which, in this setting, are the modular analogues of the usual modular
curves Y1(n) and Y (n). We conjecture that, under some natural isotriviality assumption on Aη , the

abstract modular schemes SA,1(n) and SA(n) are of general type for n large enough. The case when

S is a curve follows from previous works of A. Tamagawa and the author. In this paper, we consider
the case when S is a surface. Our main result is that, under the natural isotriviality assumption

mentioned above, SA(`n) is of general type as well for n large enough and SA,1(`n) is of general type

for n large enough, provided S is not rational.There is an arithmetic motivation for these geometric
results. Indeed, if k is a number field and SA,1(n) is of general type, Lang conjecture predicts that

SA,1(n)(k) is not Zariski-dense in SA,1(n). This observation shows that Lang conjecture implies the
`-primary torsion conjecture for abelian varieties provided one can show that SA,1(`n) is of general

type for n large enough. In particular, our result shows that Lang conjecture for surfaces implies that

the k-rational `-primary torsion in a family of (higher dimensional) abelian varieties parametrized
by a surface S which is not rational is uniformly bounded.
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1. Introduction

Let k be a field of characteristic 0 and let P(k) (resp. B(k)) denote the category of smooth,
projective and geometrically connected schemes over k (resp. the category of normal schemes,
of finite type, separated and geometrically connected over k). Fix S ∈ B(k) with generic point
η and let A→ S be an abelian scheme. For any integer n, the kernel A[n] of the multiplication-
by-n morphism is a finite étale group scheme over S hence the étale fundamental group π1(S)
of S acts continuously on its (discrete) geometric generic fibre:

Aη[n] := Aη[n](k(η)).

We denote by:
ρA,n : π1(S)→ GL(Aη[n]) ' GL2g(Z/n)

the corresponding continuous linear representation (here g = dim(Aη)).
Using the theory of étale fundamental groups, one can associate to such data projective

systems of abstract modular schemes (see subsection 2.2.4):

(SA,1(n)→ SA,1(m))m,n∈Z≥1, m|n and (SA(n)→ SA(m))m,n∈Z≥1, m|n

which, in this setting, are the modular analogues of the projective systems of usual modular
curves:

(Y1(n)→ Y1(m))m,n∈Z≥1, m|n and (Y (n)→ Y (m))m,n∈Z≥1, m|n

classifying n-torsion points and full level-n structures of elliptic curves respectively. More
precisely, a closed point s ∈ S lifts to a k(s)-rational point on SA,1(n) if and only if As has
a k(s)-rational torsion point of order exactly n. In particular, if for X ∈ B(k) and an integer
d ≥ 1 we write S≤d for the set of all closed points s ∈ S such that [k(s) : k] ≤ d, then:

SA,1(n)≤d = ∅ ⇐⇒ As(k(s))tors ⊂ A[n], s ∈ S≤d
1



2 ANNA CADORET

This is in this sense that the SA,1(n) are regarded as natural analogues of the Y1(n). The
SA(n) play the part of the Galois closure of the SA,1(n)→ S (but, in general, they are strict
quotients of the abstract modular schemes SA[n] classifying ’full level-n’ structure that is
with the property that a closed point s ∈ S lifts to a k(s)-rational point on SA[n] if and only
if As(k(s))[n] = A[n] - see remark 2.3).

Thus, the main motivation to study the diophantine properties of the abstract modular
schemes SA,1(n) and SA(n) is to obtain uniform boundedness result for the rational torsion
in the family As, S≤d.

More precisely, if k is finitely generated, we consider the following properties:

(A-1) SA,1(n)(k) is not Zariski dense in SA,1(n) for n� 0;

(A-2) (1) |SA,1(n)(k)| < +∞ for n� 0;
(2) For all integer d ≥ 1, |SA,1(n)≤d| < +∞ for n� 0;

(A-3) (1) SA,1(n)(k) = ∅ for n� 0;
(2) For all integer d ≥ 1, SA,1(n)≤d = ∅ for n� 0;

Via the classical theorems or conjectures relating arithmetic and geometry, these arithmetic
considerations yield geometric ones. Namely, if k is algebraically closed, we consider the
following properties:

(G-1) All the connected component of SA,1(n) are of general type for n� 0;

(G-2) If S is a curve,
(1) All the connected components of SA,1(n) are of genus ≥ 2 for n� 0;
(2) For all integer d ≥ 1, all the connected components of SA,1(n) are of k-gonality
≥ d for n� 0;

Indeed, one has the following implications:

(G-2)(1) ⇒ (A-2)(1) : Mordell conjecture ([FW92]);
(G-2)(2) ⇒ (A-2)(2) : Lang conjecture for subvarieties of abelian varieties ([F94], [Fr94]);
(G-1) ⇒ (A-1) : Lang conjecture (see conjecture 4.1).

Actually, thanks to the projective system structure on the abstract modular schemes
SA,1(n), n ≥ 1 it is enough to consider the above properties in the two following situa-
tions:

`-primary case: Fix a prime ` and consider the projective system:

(SA,1(`n+1)→ SA,1(`n))n≥0.

This amounts to studying the `-adic representation:

ρA,`∞ : π1(S)→ GL(T`(Aη)) ' GL2g(Z`)
of π1(S) on the `-adic Tate module T`(Aη) := lim

←−
Aη[`n].

Prime case: Consider the family SA,1(`), `: prime.

We will write (X/`∞) and (X/`) when we want to refer to one of the properties X above
only in the `-primary and prime case respectively.

Using the fact that the projective limit of a projective system of non-empty finite sets
is non-empty and Lang-Néron theorem [LNe59], it is straightforward to check the following
implications:

(A-2/`∞)(1)⇒ (A-3/`∞)(1)
(A-2/`∞)(2)⇒ (A-3/`∞)(2)

And, more generally, one can derive (A-3/`∞) from (A-1/`∞) by induction on the dimension
of S. In contrast, it does seem that one can directly deduce (A-3/`)(1) or (2) from the other
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conditions.

When S is a curve, the questions above have been investigated thoroughly by A. Tamagawa
and the author (Cf. [CT08] and [CT09a] for (G-2/`∞)(1), (A-2/`∞)(1) (hence (A-3/`∞)(1)),
[CT09b] for (G-2/`∞)(2), (A-2/`∞)(2) (hence (A-3/`∞)(1)), [CT10a] and [CT10b] for (G-
2/`)(1), (A-2/`)(1)). In summary, one has:

Theorem 1.1. ([CT08, Thm. 1.1], [CT09a, Thm. 3.4], [CT09b, Thm. 3.3], [CT10a][Thm.
2.1]) Assume that k is algebraically closed, S is a curve and Aη contains no non-trivial k-
isotrivial abelian subvariety. Then:

`-primary case: the minimum of the k-gonalities of the connected components of SA,1(`n)
goes to +∞ with n;

Prime case: the minimum of the genera of the connected components of SA,1(`) goes to
+∞ with `.

(This implies, in particular, that the minimum of the k-gonalities (hence the genera1) of the
connected components of SA(`n) goes to +∞ with n and that the minimum of the genera of
the connected components of SA(`) goes to +∞ with `.).

This theorem and the previous discussion motivate the following conjectural generalization
to higher dimensional S ∈ B(k).

Conjecture 1.2. Assume that k is algebraically closed and that Aη contains no non-trivial
weakly k-isotrivial abelian subvariety. Then, all the connected components of SA,1(n) are of
general type for n large enough.

Here, if k is an algebraically closed field of characteristic 0, K/k a field extension of strictly
positive transcendence degree and a an abelian variety over K, we say that a is weakly
k-isotrivial if it can be defined over a field subextension F/k of K/k of strictly smaller
transcendence degree over k. (See subsection 4.2 for more details about this notion).

In this paper, we investigate conjecture 1.2 in the `-primary case when S is a surface and
prove:

Theorem 1.3. (Main Theorem) Assume that k is algebraically closed, that S ∈ B(k) is a
surface and that Aη contains no non-trivial weakly k-isotrivial abelian subvariety. Then,

(1) All the connected components of SA(`n) are of general type for n large enough;
(2) For n large enough, any connected component of SA,1(`n) is either of general type or

rational.

In the final section of this paper, we discuss in more details the connection between con-
jecture 1.2 and two of the most classical conjectures in arithmetic geometry, namely Lang
conjecture (conjecture 4.1) and the (`-primary) torsion conjecture for abelian varieties (con-
jecture 4.2).

In particular, we show that the arithmetic form of the torsion conjecture over a finitely
generated field k of characteristic 0 is equivalent to the fact that for any S ∈ B(k) and abelian
scheme A→ S one has SA,1(n)(k) = ∅ for n large enough (lemma 4.3). And, assuming Lang
conjecture, we show that the `-primary form of conjecture 1.2 implies the `-primary arith-
metic form of the torsion conjecture (lemma 4.4). As a by product of the arguments involved
in these considerations and theorem 1.3 (2), we obtain that Lang conjecture for surfaces im-
plies that the k-rational `-primary torsion in a family of (higher dimensional) abelian varieties

1Recall that given an irreducible curve C over a field k, the k-gonality γC of C is the minimal degree of a
non-constant rational map C → P1

k and that it is related to the genus gC of (the smooth proper model of) C
by the following inequality:

γC + 2

2
≤ gC .
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parametrized by a surface S which is not rational is uniformly bounded (corollary 4.7).
Conversely, we show that the geometric form of the torsion conjecture implies conjecture

1.2 for surfaces. Since a weak analogue of the geometric form of the torsion conjecture is
available for full-level-n structures [HwT06], we obtain in particular a uniform variant of
conjecture 1.2 for the SA[n] when S is a surface (corollary 4.11).

The paper is organized as follows. Section 2 provides the definitions and basic facts required
to understand the statements and arithmetic motivations of theorem 1.3. More precisely, in
subsection 2.1, we recall how to extend the definition of birational invariants from P(k) to
B(k) and, in subsection 2.2, we define abstract modular schemes via the theory of étale fun-
damental group and review specific properties of the `-adic representation ρA,`∞ , which will
be used in the sequel (especially theorem 2.4). In section 3, we carry out the proof of theorem
1.3. In subsection 3.1, we recall basic facts about the Enriques-Kodaira birational classifica-
tion of surfaces, which is a key ingredient in our proofs. We then describe briefly the strategy
of the proof of theorem 1.3 in subsection 3.2 and go over the technical details of the proof of
part (2) in subsections 3.3.1, 3.3.2 and 3.3.3. The proof of part (1) is performed in subsection
3.4. Eventually, in the concluding section 4, we discuss the connection of conjecture 1.2 with
Lang conjecture and the (`-primary) torsion conjecture for abelian varieties.

Acknowlegments: I would like to thank Akio Tamagawa for lots of constructive discussions
during the preparation of this paper. I am also grateful to Brendan Hassett for explaining
me the argument of lemma 4.8 for K3-surfaces.

2. Preliminaries

We retain the conventions of section 1 for k, P(k) and B(k). Observe that, since k is of
characteristic 0, schemes in B(k) are automatically geometrically integral (e.g. [EGAIV2,
6.7.4]).

2.1. Extending birational invariants. Let ∼ denote the birational equivalence on B(k).

In our arguments, we will use birational geometric invariants which are classically defined
for schemes in P(k). As we are interested in schemes in the wider class B(k), we need to
extend the definition of these invariants from schemes in P(k) to schemes in B(k). This can
be done by means of the following lemma.

Lemma 2.1. The canonical map:

φ : P(k)/ ∼→ B(k)/ ∼

is bijective.

Proof. Let S ∈ B(k). Since S is separated over k, it follows from Nagata compactification
theorem [N62], [N63] that there exists a scheme Scpt proper over k and an open immersion
i : S ↪→ Scpt over k. Up to replacing Scpt by the reduced subscheme associated with the
Zariski closure of i(S) in Scpt, one can always assume that Scpt is integral. Then, it follows
from Hironaka desingularization theorem [Hi64] that there exists a regular scheme S̃cpt and
a proper, birational morphism π : S̃cpt → Scpt inducing an isomorphism above each regular
point of Scpt. Then, by construction S̃cpt ∈ P(k) and S̃cpt ∼ S. �

Remark 2.2. Note that Hironaka desingularization theorem is only known for fields of
characteristic 0, whence the restriction to this setting in lemma 2.1.
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Let I : P(k) → Z ∪ {−∞} be a numerical invariant which is constant on the equivalence
class of ∼, that is factors via:

P(k) I //

����

Z ∪ {−∞}

P(k)/ ∼
I

88qqqqqqqqqqq

Then we extend I on B(k) by setting:

I : B(k)� B(k)/ ∼
φ−1

→̃ P(k)/ ∼ I→ Z ∪ {−∞}.

2.2. Abstract modular schemes. Fix S ∈ B(k) with generic point η and let A → S be
an abelian scheme. For any integer n, the kernel A[n] of the multiplication-by-n morphism
is a finite étale group scheme over S hence the étale fundamental group π1(S) of S acts
continuously on its (discrete) geometric generic fibre:

Aη[n] := Aη[n](k(η)).

We denote by:
ρA,n : π1(S)→ GL(Aη[n]) ' GL2g(Z/n)

the corresponding continuous linear representation (here g = dim(Aη)). Given any integers
m,n ≥ 1 with m|n, multiplication-by- nm induces a π1(S)-equivariant epimorphism:

Aη[n]� Aη[m].

In particular, one obtains a `-adic representation (that is a continuous morphism of profinite
groups):

ρA,`∞ : π1(S)→ GL(T`(Aη)) ' GL2g(Z`)

of π1(S) on the `-adic Tate module:

T`(Aη) := lim
←−

Aη[`n].

Note that, if A∨η denotes the dual abelian variety, one has a π1(S)-equivariant isomorphism:

T`(Aη) ' H1(A∨η ,Z`)(1).

2.2.1. Specialization. One arithmetic motivation to study ρA,`∞ is that it contains the `-adic
Galois representation at each closed special fibre; this follows from the Galois-equivariant
specialization theory for `-adic cohomology.

Indeed, given a closed point s ∈ S, one has:

- a quasi-splitting of the ’fundamental sort exact sequence’ for π1(S):

1 // π1(Sk) // π1(S) // Γk // 1

Γk(s)

σs

ccGGGGGGGG � ?

OO

- a specialization isomorphism:

sps : T`(Aη)→̃T`(As),

which is Galois-equivariant in the following sense:

τ · sps(v) = sps(σs(τ) · v), v ∈ T`(Aη), τ ∈ Γk(s).
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In other words, the `-adic Galois representation at the special fibre:

ρAs,`∞ : Γk(s) → GL(T`(As))

decomposes as:
ρAs,`∞ = ρA,`∞ ◦ σs,

where the ’generic part’ - ρA,`∞ , is independent of s whereas the quasi-splitting - σs, only
depends on s. So, once the generic representation ρA,`∞ is given, describing the ρAs,`∞ when
s varies among the closed points of S amounts to describing the quasi-splittings σs. But,
precisely, the formalism of Galois categories provides a description of the image of the quasi-
splitting σs in terms of the lifting of s to k(s)-rational points on étale covers of S.

2.2.2. Control of the Galois image. Indeed, since the category of étale covers of S is Galois
with Galois group π1(S), there is a functorial correspondance between open subgroups U ⊂
π1(S) and connected étale covers SU → S. Moreover, SU → S is defined over kU , where kU
is the finite extension of k corresponding to the image of U = π1(SU ) in Γk via the structural
epimorphism:

π1(S)� Γk = π1(spec(k)).
A straightforward consequence of the ’Galois dictionnary’ (e.g. [SGA1, V, Prop. 6.4]) is that
σs(Γk(s)) ⊂ U if and only if s ∈ S lifts to a k(s)-rational point sU ∈ SU that is:

SU

��
S spec(k(s)).s

oo

sU

ee

So, to understand the image of the Galois representations ρAs,`∞ , one is led to study the
diophantine properties of the SU , properties which are partly encoded in their geometric
invariants. To determine those geometric invariants, it can be more convenient to work
over an algebraically closed base field. In terms of étale fundamental groups, the following
observation relates the arithmetic and geometric situation. Write Ugeo := U ∩ π1(Sk). Then,
one has:

(Sk)Ugeo

��

SU ×S Sk

xxqqqqqqqqqqq

Sk.

The SU are the bricks abstract modular schemes are made of.

2.2.3. Abstract modular schemes. For n ≥ 1, set Gn := im(ρA,n) and for any subgroup
U ⊂ Gn, write, to simplify:

SU := Sρ−1
A,n(U) → S, kU := kρ−1

A,n(U)

and let κSU denote the Kodaira dimension of SU . (Be aware of the change of notation for SU ).

Let S(Gn) denote the set of all subgroups of Gn. The projective system structure (Gn �
Gm)m,n∈Z≥1, m|n (induced by the multiplication-by- nm morphisms Aη[n] � Aη[m], m,n ∈
Z≥1, m|n) endows the S(Gn), n ≥ 1 with a projective system structure. Let

F = (Fn)m,n∈Z≥1, m|n ∈ lim
←−
S(Gn).

We will say that the (non connected) étale cover:

SA,F (n) :=
⊔

U∈Fn

SU → S
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is the abstract modular scheme associated with Fn and define:

dA,F (n) := min{[Gn : U ]}U∈Fn , κA,F (n) := min{κSU }U∈Fn ,

which we call - by abuse of language - the degree and Kodaira dimension of the abstract
modular scheme SA,F (n). Also, we will say that SA,F (n) is of general type if κA,F (n) =
dim(S).

By functoriality, the projective system structure on F induces a projective system structure
on the corresponding abstract modular schemes:

(SA,F (n)→ SA,F (m))m,n∈Z≥1, m|n.

2.2.4. Abstract modular schemes associated with torsion. For any integer n ≥ 1, let:

Aη[n]× ⊂ Aη[n]

denote the subset of torsion points of order exactly n.
(1) SA,1(n) (↔ Y1(n)): Let SA,1(n), denote the abstract modular scheme associated with:

Fn = {StabGn(v) | v ∈ Aη[n]×}.

We will write dA,1(n) and κA,1(n) for its degree over S and Kodaira dimension re-
spectively. Given v ∈ Aη[n]×, we will also use the simplified notation:

Sv := SStabGn (v) → S, kv := kStabGn (v).

From the above, a closed point s ∈ S lifts to a k(s)-rational point on SA,1(n) if and
only if:

As[n]×(k(s)) 6= ∅.
This is why one can think of the SA,1(n), n ≥ 0 as the abstract modular analogues
of the Y1(n), n ≥ 0.

(2) SA(`n) (↔ Y (n)): To define the natural abstract modular analogue of Y (n) - that
we denote by SA(n), recall that Y (n)→ Y (0) is the Galois closure of Y1(n)→ Y (0).
So we would like SA(n) to play the part of a Galois closure for SA,1(n). For this,
observe that, for a π1(S)-submodule M ⊂ Aη[n], free as Z/n-module, if we write
ρM : π1(S)→ GL(M) for the induced representation and:

GM := im(ρM ), Fix(M) := {g ∈ Gn | g|M = IdM}

then the connected étale cover:

SM := SFix(M) → S

is Galois with group GM . Furthermore, for v ∈ Aη[n]× and:

M = M(v) := Z[Gn · v] ⊂ Aη[n],

the cover SM(v) → S is the Galois closure of Sv → S. So, we define SA(n) to be the
abstract modular scheme associated with:

Fn := {Fix(M(v)) | v ∈ Aη[n]×}.
We will write dA(n) and κA(n) for its degree over S and Kodaira dimension respec-
tively.

Remark 2.3. Note that, in general, the covers SM(v) → S are strict quotients of
the connected étale cover SA[n]→ S associated with the open subgroup ker(ρA,n) ⊂
π1(S). Actually, for SA[n], one can prove a uniform version of conjecture 1.2 for
surfaces (see corollary 4.11).
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(3) SA,0(n) (↔ Y0(n)): Let SA,0(n), denote the abstract modular scheme associated with:

Fn = {StabGn(〈v〉) | v ∈ Aη[n]×},

where 〈v〉 denotes the cyclic subgroup generated by v. Given v ∈ Aη[n]×, we will also
use the simplified notation:

S〈v〉 := SStabGn (〈v〉) → S.

Note that, by definition, Sv → S〈v〉 is Galois with group:

Aut(Sv/S〈v〉) = StabGn(〈v〉)/StabGn(v) ↪→ Aut(〈v〉) ' (Z/`n)×.

2.2.5. Properties of ρA,`∞. We consider the following technical geometric conditions on:

ρA,`∞ : π1(S)→ GL(T`(Aη)) ' GL2g(Z`).

(A/`∞) (i) For any open subgroup Π ⊂ π1(Sk), one has |ρA,`∞(Π)ab| < +∞;
(⇐⇒ (ii) (Lie(ρA,`∞(π1(Sk)))

ab = 0.)

(I/`∞) For any open subgroup Π ⊂ π1(Sk), the submodule T`(Aη)Π of Π-invariant vectors
is trivial.

It is easy to see that condition (I/`∞) and the fact that π1(Sk) is topologically finitely
generated imply:

lim
n→+∞

dA,1(`n) = +∞

(hence, a fortiori, lim
n→+∞

dA(`n) = +∞).

Basically, conditions (A/`∞) and (I/`∞) are the minimal conditions to make our proof
work in the case when S is a curve.

The fact that ρA,`∞ : π1(S) → GL(T`(Aη)) satisfies condition (A/`∞) is a special case of
the following theorem.

Theorem 2.4. Let f : X → S be a smooth, proper morphism with geometrically connected
fibres. Then the representations:

ρif : π1(S)→ GL(Hi(Xη,Z`)), i ≥ 1

satisfy condition (A/`∞).

Proof. First, we may assume that k is an algebraically closed field of characteristic 0. Also,
we may replace freely π1(S) by any of its open subgroups. Since all the schemes are finitely
generated, we may assume that k has finite transcendence degree over Q and fix an embedding
k ↪→ C. This induces a comparison isomorphism of profinite groups:

πtop1 (San; s)∨→̃π1(Sk; s),

where (−)∨ denotes the profinite completion and πtop1 (San; s) the topological fundamental
group of the topological space underlying the analytic space San associated with S ×k C.

Set H i
B := Hi

Betti(X
an
s ,Z) and H i

BQ := H i
B ⊗Z Q. Let G denote the image of πtop1 (San; s)

in GL(H i
BQ). Up to replacing S by a connected étale cover, we may assume that the Zariski

closure Gz of G in GL(H i
BQ) is connected hence semisimple ([D71, Cor. (4.2.9) (a)]). On the

other hand, set:
G := im(ρif ) ⊂ GL(Hi(Xη,Z`)).

and let Gz denote the Zariski-closure of G in GL(Hi(Xη,Q`)). It follows from the comparison
isomorphism between Betti cohomology with coefficient in Q and étale cohomology with
coefficients in Q` that the algebraic groups Gz and (Gz)Q` coincide. The conclusion thus
follows from:
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Lemma 2.5. Let G ⊂ GLr(Q`) be a closed (`-adic) subgroup and assume that its Zariski
closure Gz in GLrQ` is a semisimple algebraic group over Q`. Thenthe Lie algebra of G (as
a `-adic Lie group) coincide with the Lie algebra of Gz (as an algebraic group over Q`). In
particular, (Lie(G))ab = 0.

Proof of lemma 2.5. Since Gz is a connected semisimple algebraic group, it is the almost
direct product:

Gz1 × · · · ×Gzr → Gz

of its minimal connected normal subgroups and, with gzi := Lie(Gzi ), i = 1, . . . , r and gz :=
Lie(Gz), the following:

gz = gz1 ⊕ · · · ⊕ gzr

is the decomposition of gz into the direct sum of its simple ideals.
GLdQ` acts via the adjoint representation on Md(Q`). As g := Lie(G) ⊂ Md(Q`) is a Q`-

submodule the stabilizer of g in GLdQ` is an algebraic subgroup N of GLdQ` . By definition
G ⊂ N(Q`) hence Gz ⊂ N . As a result, the action of Gz on gz := Lie(Gz) via the adjoint
representation restricts to g. This implies that:

g =
⊕
i∈I

gzi

for some subset I ⊂ {1, . . . , r}.
As a result, there is an open subgroup U ⊂op G such that U ⊂

∏
i∈I G

z
i (Q`) hence:

Gz = U z ⊂
∏
i∈I

Gzi ,

which is only possible if I = {1, . . . , r}. �

Remark 2.6. In [CT09a], we give a different proof of theorem 2.4. There, we reduce first to
the case where S is a curve by a Bertini-type argument. Then, by specialization theory, we
reduce to the case where the base field is the algebraic closure of a finite field of characteristic
p 6= ` and, eventually, we conclude by a Frobenius weight argument based on Weil conjectures.
The idea of the proof presented here was suggested to me by Y. André. Lemma 2.5 is
attributed to A. Weil; its proof was explained to me by B. Edixhoven. For lack of a suitable
reference, I have included it in the text.

The fact that ρA,`∞ : π1(S)→ GL(T`(Aη)) satisfies condition (I/`∞) is ensured by the geo-
metric form of Lang-Néron theorem [LNe59] provided Aη contains no non-trivial k-isotrivial
abelian subvariety. But, to make our arguments work for higher dimensional base schemes
S ∈ B(k), we have to ensure not only that ρA,`∞ satisfies condition (I/`∞) but also that
for any generically finite morphism T → S (with dim(T ) > 0), the representation ρA×ST,`∞
satisfies condition (I/`∞) as well. According to the geometric form of Lang-Néron theorem,
this is ensured by:

(∗) Aη contains no non-trivial weakly k-isotrivial abelian subvariety.
Here, if k is an algebraically closed field of characteristic 0, K/k a field extension of strictly
positive transcendence degree and a an abelian variety over K, we say that a is weakly
k-isotrivial if it can be defined over a field subextension F/k of K/k of strictly smaller tran-
scendence degree over k.

Remark 2.7. Concerning the prime case, the families of representations:

ρA,` : π1(S)→ Gl(Aη[`]), ` : prime,

satisfy natural analogues - denoted by (A/`) and (I/`) - of conditions (A/`∞) and (I/`∞).
See [CT10b] for precise formulations and proofs.
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3. Proofs

As mentioned in subsection 2.2, it is enough to prove theorem 1.3 when k is algebraically
closed. So, from now on and till the end of this section, k is an algebraically closed field of
characteristic 0.

3.1. Classification of surfaces. We gather in this subsection classical results about sur-
faces that will be used in the proof of theorem 1.3. Given an integer d ≥ 0, let Pd(k) ⊂ P(k)
(resp. Bd(k) ⊂ B(k)) denote the full subcategory of d-dimensional schemes in P(k) (resp. in
B(k)).

3.1.1. Birational classification. Given S ∈ P2(k), we will write aS : S → Alb(S) for the
Albanese morphism. The following numerical invariants:

- Kodaira dimension: κ : P2(k)→ Z≥0 ∪ {+∞}
- Irregularity: q: P2(k) → Z≥0

S 7→ dimk(H0(S,Ω1
S|k)) = dim(Alb(S))

- Geometric genus: pg: P2(k) → Z≥0

S 7→ dimk(H2(S,OS))
factor via P2(k)→ P2(k)/ ∼. So, as explained in subsection 2.1, their definition extends to
B2(k).

A surface S ∈ P2(k) is said to be relatively minimal if any birational morphism from S to
another surface in P2(k) is an isomorphism. A surface S ∈ P2(k) is said to be minimal if,
given S′ ∈ P2(k), any birational map S′ ˜99KS is a birational morphism. Any minimal surface
is relatively minimal and, for a minimal surface, any birational map S ˜99KS automatically
extends to an automorphism S→̃S.

If κS = −∞ then the birational class of S may contain several non-isomorphic relatively
minimal surfaces. If κS ≥ 0 then the birational class of S contains a unique (up to isomor-
phism) relatively minimal surface which, actually, is minimal. Enriques-Kodaira classification
gives a geometrical description of P2(k)/ ∼ in terms of the relatively minimal models.

κS qS pg,S

2 General type

1 Honest Elliptic

0 2 2 Abelian
1 0 Bielliptic
0 1 K3
0 0 Enriques

−∞ g ≥ 1 0 ruled of genus g ≥ 1
0 0 rational

Enriques-Kodaira classification
The terminology is the following:

- A relatively minimal rational surface is isomorphic either to P2
k or to a geometrically

ruled surfaces of genus 0:

Sn := Proj(OP1
k
⊕OP1

k
(n))→ P1

k, n ≥ 1
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(and two such surfaces Sn → P1
k, Sn′ → P1

k are not isomorphic for n 6= n′).

- A relatively minimal ruled surface of genus g is isomorphic to a geometrically ruled
surface of genus g that is:

Proj(E)→ C,

where C is a smooth, proper and geometrically connected curve of genus g and E is
a locally free sheaf of rank 2 (and two such surfaces Proj(E)→ C, Proj(E ′)→ C ′ are
isomorphic if there exists an isomorphism u : C→̃C ′ and an invertible sheaf L on C
such that u∗E ′ ' E ⊗ L).

- Minimal honest elliptic surfaces are isomorphic to elliptic surfaces:

p : S → C

whose elliptic fibration is an Iitaka fibration (see subsection 3.4);

- Minimal abelian surfaces are isomorphic to abelian varieties;

- Minimal bielliptic surfaces are isomorphic to elliptic surfaces:

a : S → Alb(S) = C

whose elliptic fibration is given by the Albanese morphism;

- Minimal K3 and Enriques surfaces are more complicated to describe. We will only
use that for any Enriques surface S ∈ P2(k), one has π1(S) = Z/2 and the unique
connected étale cover of S is a K3 surface, that we denote by KS → S.

We refer to the classical textbook [B78] for a detailled proof of the Enriques-Kodaira
classification and an overview of relatively minimal surfaces.

3.1.2. Generically finite morphisms. For any two S, S′ ∈ P2(k) and generically finite k-
morphism S → S′ one has κS ≥ κS′ , qS ≥ qS′ and pg,S ≥ pg,S′ . This imposes constraints on
the existence of such morphisms. More precisely, Let T := (κ, q, p) be a triple with q, p = 0, 1
or − and κ = −∞, 0, 1, 2, where, by −, we mean that we impose no condition on the variable.
Endow the set of such triples T with the order ≺ defined by τ ≺ τ ′ if and only if κ ≤ κ′,
q ≤ q′ and p ≤ p′ (with the convention that − > 2 > 1 > 0 > −∞) then, T ′ ≤ T if and only
if there can be generically finite morphisms from a surface with invariants T to a surface with
invariant T ′. This is summarized in the diagram below.

General type

��uukkkkkkkkkkkkkk

Ruled g = n+ 1

��

Honest Elliptic

��

oo

Ruled g = n

��

Abelian

{{xxxxxxxxxxxxxxxxxxxxxx

!!BBBBBBBBBBBBBBBBBBBB

++WWWWWWWWWWWWWWWWWWWWWWWWW

· · ·

��

Bielliptic

��������������������

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Ruled g = 2

��

K3

��
Ruled g = 1 // Rational Enriques,oo
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Diagram of generically finite morphisms
where an arrow A→ B means that there can be generically finite k-morphisms from a surface
of type A to a surface of type B.

In particular, one has:

Lemma 3.1. Let · · · → Sn+1 → Sn → · · · → S0 be a projective system in B2(k) whose
transition morphisms are generically finite morphisms. Then, one of the following occurs:

(1) Sn is of general type for n� 0;
(2) Sn is honest elliptic for n� 0;
(3) Sn is abelian for n� 0;
(4) Sn is bielliptic for n� 0;
(5) Sn is K3 for n� 0;
(6) Sn is Enriques for n� 0;
(7) Sn is ruled of genus ≥ 1 for n� 0;
(8) Sn is rational for n� 0.

3.2. Reduction to projective systems. After reducing the proof of theorem 1.3 to the
case of projective systems in subsection 3.2, we prove first theorem 1.3 (2) in subsection 3.3.
Theorem 1.3 (2) automatically implies theorem 1.3 (1) except when S is rational. We rule
this remaining case out in subsection 3.4.

Now, endow the set of triples T with the lexical order ≤. As observed in subsection 3.1.2,
if there can be generically finite morphisms from a surface with invariants T ′ to a surface
with invariant T then T ≤ T ′ . For every n ≥ 0 and v ∈ Aη[`n]×, write Tv := (κSv , qSv , pg,Sv)
and TM(v) := (κSM(v)

, qSM(v)
, pg,SM(v)

). Consider the sets:

EA,1,≤T (n) := {v ∈ Aη[`n]× | Tv ≤ T }, EA,1,T (n) := {v ∈ Aη[`n]× | Tv = T }
and:

EA,≤T (n) := {v ∈ Aη[`n]× | TM(v) ≤ T }, EA,T (n) := {v ∈ Aη[`n]× | TM(v) = T }.

By definition, EA,1,≤T (n) and EA,≤T (n) are either finite or empty. For any n ≥ 0 and
v ∈ Aη[`n+1]×, by fonctoriality, one has an étale cover Sv → S`v so:

T`v ≤ Tv, TM(`v) ≤ TM(v).

As a result, the multiplication-by-` maps:

Aη[`n+1]× → Aη[`n]×

induce structures of projective system:

(EA,1,≤T (n+ 1)→ EA,1,≤T (n))n≥0, (EA,≤T (n+ 1)→ EA,≤T (n))n≥0

For our purpose, it is enough to consider the following 8 values of T :

T Surfaces with invariant ≤ T

(2,−,−) all;
(1,−,−) all except those general type;
(0,−,−) all except those of general type or honest elliptic;
(0, 1,−) all except those of general type, honest elliptic, or abelian;
(0, 0, 0) rational, ruled, Enriques or K3;
(0, 0, 0) rational, ruled or Enriques;
(−∞,−,−) rational or ruled;
(−∞, 0,−) rational.

These triples T are totally ordered for ≤. So write them as:

T1 = (−∞, 0,−) < T2 < · · · < T8 = (2,−,−).
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Concerning theorem 1.3 (2), we are to prove that either EA,1,≤T1(n) 6= ∅ for all n ≥ 0
or there exists N ≥ 1 such that EA,1,≤T1(n) = ∅ for n ≥ N and, then, for all T ≤ T7, one
has EA,1,≤T (n) = ∅ for n large enough. For the second part of the assertion, we proceed as
follows. Assume that we have proved that there exists ni ≥ 1 such that EA,1,≤Ti(n) = ∅ for
n ≥ ni but EA,1,≤Ti+1(n) 6= ∅, for all n ≥ 1. Then, one gets a projective system of non-empty
finite sets:

((EA,1,Ti+1(n+ 1)→ (EA,1,Ti+1(n))n≥ni
and as the projective limit of a projective system of non-empty finite sets is always non-empty,
one thus gets:

v = (vn)n≥0 ∈ T`(Aη)× := lim
←−

Aη[`n]×(= T`(Aη) r `T`(Aη))

such that Svn has invariants Ti+1 for all n ≥ ni. So, to prove theorem 1.3 (2), it is enough to
consider projective systems of the form:

· · · → Svn+1 → Svn → · · · → Sv1 → S(= Sv0),

where:
v = (vn)n≥0 ∈ T`(Aη)×

and show that cases (2)-(7) of lemma 3.1 cannot occur.

Concerning theorem 1.3 (1), we are to prove that for all T ≤ T7, one has EA,≤T (n) = ∅ for
n large enough. The argument above shows that it is enough to consider projective systems
of the form:

· · · → SM(vn+1) → SM(vn) → · · · → SM(v1) → S(= SM(v0)),
where:

v = (vn)n≥0 ∈ T`(Aη)×

and show that cases (2)-(8) of lemma 3.1 cannot occur. From theorem 1.3 (2) and the fact
that κSM(vn)

≥ κSvn for all n ≥ 0, it follows from theorem 1.3 (2) that the only case, we
already know that cases (2)-(7) cannot occur. So the only case to rule out is case (8).

3.3. Proof of theorem 1.3 (2). For simplicity, set Sn := Svn and let ηn denote the generic
point of Sn, n ≥ 0 .

3.3.1. Case (3). Assume that case (3) occurs. Up to replacing A by A×S Sn for some n large
enough, we may assume that Sn is birational to an abelian surface An over k for all n ≥ 0.
Hence, fixing birational maps φn : Sn 99K An, the projective system:

· · · → Sn+1 → Sn → · · · → S1 → S0(= S)

induces a profinite commutative diagram:

· · · // Sn+1
//

φn+1

��

Sn //

φn
��

· · · // S1

φ1

��

// S0

φ0

��
· · · // An+1

// An // · · · // A1
// A0,

(where An+1 99K An is just An+1

φ−1
n+1
99K Sn+1 → Sn

φ−1
n
99K An). By rigidity, a rational map

between abelian varieties is automatically a morphism so An+1 99K An is a generically finite
morphism hence an isogeny (up to translation). Furthermore, one has:

Aut(Sn/S0)
(1)
= Aut(k(ηn)/k(η))

(2)
= Aut(An/A0),

where (1) follows from the fact that Sn is the normalization of S in k(ηn)/k(η) and (2) follows
from rigidity. This shows that Sn = SM(vn) → S is a Galois cover and that its automorphism
group GM(vn) is a quotient of Z4 (hence, in particular, is abelian). But:

|GM(vn)| ≥ dA(`n)
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and, from condition (I/`∞), one has lim
n→+∞

dA(`n) = +∞, which contradicts condition (A/`∞).

So case (3) cannot occur.

Remark 3.2. This part of the argument works for S of arbitrary dimension.

3.3.2. Cases (2), (4), (7). To rule out cases (2), (4) and (7), our strategy consists in con-
sidering geometric generic fibers of canonical fibrations to reduce to the case of curves and
conclude by theorem 1.1. More precisely, we show that if case (2), (4) or (7) holds, one can
construct a profinite commutative diagram:

(†) · · · // Sn+1
//

φn+1

��

Sn //

φn
��

· · · // S1

φ1

��

// S0

φ0

��
· · · // Cn+1

// Cn // · · · // C1
// C0,

where φn : Sn 99K Cn are dominant rational maps, Cn+1 → Cn are finite (non constant) mor-
phisms of curves and that, if ζn denotes the generic point of Cn, then Sζn

has genus 0 or 1.
But this contradicts theorem 1.1 for A×S Sζ0 (which contains no non-trivial k(ζ0)-isotrivial
abelian subvariety by assumption (*)) since, from the commutativity of the above diagram,
Snζn

maps to (Sζ0)vn . So, it remains to construct diagram (†) in each of the cases (2), (4)
and (7).

3.3.2.1. Case (7). Assume that case (7) occurs. Up to replacing A by A×SSn for some n� 0,
we may assume that Sn is birational to a product P1

k×kCn, where Cn is smooth proper curve
of genus gn ≥ 1 for all n ≥ 0. Hence, fixing birational maps ϕn : Sn 99K P1

k ×k Cn, the
projective system:

· · · → Sn+1 → Sn → · · · → S1 → S0(= S)

induces a profinite commutative diagram:

· · · // Sn+1
//

ϕn+1

��

Sn //

ϕn
��

· · · // S1

ϕ1

��

// S0

ϕ0

��
· · · // P1

k ×k Cn+1
// P1
k ×k Cn // · · · // P1

k ×k C1
// P1
k ×k C0.

Since there is no non-constant rational map from a genus 0 to a genus ≥ 1 curve, given any
section sn+1 : Cn+1 → P1

k ×k Cn+1 of the projection pn+1 : P1
k ×k Cn+1 → Cn+1, the resulting

rational map (which is automatically a morphism):

Cn+1
sn+1→ P1

k ×k Cn+1 99K P1
k ×k Cn

pn→ Cn

is dominant and makes the following diagram commute:

P1
k ×k Cn+1

//

pn+1

��

P1
k ×k Cn
pn

��
Cn+1

// Cn.

3.3.2.2. Case (4). Assume that case (4) occurs. Up to replacing ρ by its restriction ρ|π1(Sn)

for some n� 0, we may assume that Sn is birational to a minimal bielliptic surface Bn whose
elliptic fibration aBn : Bn → Cn := Alb(Bn) is the Albanese morphism for all n ≥ 0. Hence,
fixing birational maps ϕn : Sn 99K Bn, the projective system:

· · · → Sn+1 → Sn → · · · → S1 → S0(= S)
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induces a profinite commutative diagram:

· · · // Sn+1
//

ϕn+1

��

Sn //

ϕn

��

· · · // S1

ϕ1

��

// S0

ϕ0

��
· · · // Bn+1

// Bn // · · · // B1
// B0.

It follows from lemma 3.3 below that the rational map:

Bn+1 99K Bn
aBn→ Cn

is a morphism. Hence, from the universal property of Albanese, it factors through a commu-
tative diagram:

Bn+1
//

aBn+1

��

Bn

aBn
��

Cn+1
// Cn.

Lemma 3.3. Let S be a smooth, proper surface over k and C a smooth, proper curve over k
with genus ≥ 1. Then any rational map p : S 99K C is a morphism.

Proof. By elimination of indeterminancy [B78, II, Thm. 7], there exists a commutative
diagram:

S̃
ε

���������
π

��>>>>>>>>

S p
// C

where ε = εn ◦ · · · ◦ ε1 is the composite of n monoidal transformations and π : S̃ → C is a
morphism. Assume that n is minimal and ≥ 1 and let En ⊂ S̃ denote the exceptional divisor
of the monoidal transformation εn. As C has genus ≥ 1, the image of En by π is a point. So
π : S̃ → C factors through εn [B78, II, Rem. 13 2)], which contradicts the minimality of n.
�

3.3.2.3. Case (2). Let S ∈ P(k) with κS ≥ 1. Recall that an Iitaka fibration for S is a rational
map S 99K B such that B ∈ P(k) with dimension κS and the generic fiber F of S 99K B
is connected with Kodaira dimension 0. Let ωS := ∧nΩ1

S/k denote the canonical sheaf on S

and ν(S,m) := dimk(H0(S, ω⊗mS )) the mth plurigenus of S, m ≥ 0. If N (S) denote the set
of all m ≥ 1 such that ν(S,m) ≥ 1 then, for any m ∈ N (S), ω⊗mS defines a rational map
φS,m : X 99K Pν(S,m)−1

k (called the mth canonical map). Let dm : BS,m → φS,m(S) denote a
desingularization of the Zariski closure of φS,m(S) in Pν(S,m)−1

k . Then the rational map:

d−1
m ◦ φS,m : S 99K BS,m

is an Iitaka fibration for m� 0. An Iitaka fibration is birationally unique.
Assume that case (2) occurs. Up to replacing ρ by its restriction ρ|π1(Sn) for some n� 0,

we may assume that Sn is birational to a minimal honest elliptic surface Qn whose elliptic
fibration Qn → Cn is an Iitaka fibration for all n ≥ 0. Hence, fixing birational maps ϕn :
Sn 99K Qn, the projective system:

· · · → Sn+1 → Sn → · · · → S1 → S0(= S)

induces a profinite commutative diagram:

· · · // Sn+1
//

ϕn+1

��

Sn //

ϕn

��

· · · // S1

ϕ1

��

// S0

ϕ0

��
· · · // Qn+1

// Qn // · · · // Q1
// Q0.

Now, the conclusion follows from the general lemma below.
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Lemma 3.4. Let · · · → Sn+1 → · · · → S1 → S0 be a projective system of generically finite
morphims in P(k). Assume that κS0 ≥ 0 Then one can construct a profinite commutative
diagram:

· · · // Sn+1
//

qn+1

��

· · · // S1
//

q1

��

S0

q0

��
· · · // Bn+1

// · · · // B1
// B0,

where qn : Sn 99K Bn is an Iitaka fibration and Bn+1 99K Bn is a dominant rational map,
n ≥ 0.

Proof. Any generically finite morphism π : S′ → S in P(k) is separable hence induces
monomorphisms:

H0(S, ω⊗nS ) ↪→ H0(S′, ω⊗nS′ ), n ≥ 1.

Also, for every n ≥ 1 such that H0(S, ω⊗nS ) 6= 0 we have monomorphisms:

H0(S, ω⊗nS ) ↪→ H0(S, ω⊗rnS ), r ≥ 1.

So, let n0 ≥ 1 such that φS0,n0 : S0 99K B0 is an Iitaka fibration and define inductively a
sequence of integers ni ≥ 1, i ≥ 0 such that:

φSi,n0n1···ni : Si 99K Bi
is an Iitaka fibration (such a sequence always exists; see for instance the proof of [E81, Th.
3]). Then we get a sequence of monomorphisms:

H0(S0, ω
⊗n0
S0

) ↪→ H0(S1, ω
⊗n0n1
S1

) ↪→ · · · ↪→ H0(Si, ω⊗n0n1···ni
Si

) ↪→ · · ·
Thus, any compatible system of bases:

(sn = (s1, · · · , sd1 , · · · , sdi))i≥0

of the H0(Si, ω⊗n0n1···ni
Si

) produces a commutative diagram as required. �

Remark 3.5. As lemma 3.4 holds for S ∈ P(k) of arbitrary dimension, our argument shows
that, for δ ≥ 2, one has:

Conjecture 1.2 (2) for δ′-dimensional varieties of Kodaira dimension 0, δ′ ≤ δ
+ Conjecture 1.2 (2) for δ-dimensional varieties of Kodaira dimension −∞
⇒ Conjecture 1.2 (2) for δ-dimensional varieties.

Hence, the difficult cases of conjecture 1.2 are for κS = −∞, 0.
This argument also shows that theorem 1.3 (1) implies conjecture 1.2 (2) for all S ∈ B3(k)

with κS ≥ 1.

3.3.3. Cases (5) and (6). Assume that case (6) occurs and let us show that, then, necessarily,
case (5) occurs as well. Up to replacing A by A×S Sn for some n� 0, we may assume that
Sn is birational to a minimal Enriques surface En for all n ≥ 0. Hence, fixing birational maps
ϕn : Sn 99K En, the projective system:

· · · → Sn+1 → Sn → · · · → S1 → S0(= S)

induces a profinite commutative diagram:

· · · // Sn+1
//

ϕn+1

��

Sn //

ϕn

��

· · · // S1

ϕ1

��

// S0

ϕ0

��
· · · // En+1

// En // · · · // E1
// E0.

Up to replacing S0 by its regular locus, we may assume that the ϕn : Sn 99K En are open
immersions. Also, by elimination of indeterminancy [B78, II, Thm. 7] up to replacing En by
a birational smooth proper surface (which is not necessarily minimal), we may assume that
the rational maps En+1 99K En are morphisms. Let Kn → En denote the universal covering
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of En. As En ×E0 K0 → En is a degree Z/2 connected étale cover and π1(En) = Z/2, we
have Kn = En ×E0 K0. But, then, base changing A→ S via S ×E0 K0 → S, we have:

(S ×E0 K0)vn = Sn ×S (S ×E0 K0) = Sn ×E0 K0
(1)→ En ×E0 K0 = Kn,

where (1) is an open immersion. So (S ×E0 K0)vn is birational to a K3 surface and case (5)
occurs.

As a result, it is enough to rule out the case where Sn is a K3-surface for all n ≥ 0.
For this, the idea is to use the following uniform boundedness result for finite subgroups of
automorphism groups of K3 surfaces.

Theorem 3.6. ([X96, Cor. p. 87]) A finite group G which acts faithfully on a K3 surface
has order ≤ C(= 5760).

According to theorem 3.6, it is enough to prove that Sn has a finite subgroup of its auto-
morphism group of order > C for n large enough. A way to produce finite automorphisms
on a surface is to show that this surface can be realized as a Galois cover. In our situation,
Sn = Svn is a Galois cover of Tn := S〈vn〉 with group:

Aut(Sn/Tn) = StabGn(〈vn〉)/StabGn(vn) ↪→ Aut(〈vn〉) ' (Z/`n)×.

So it is enough to show that:

lim
n→+∞

[StabGn(〈vn〉) : StabGn(vn)] = +∞,

which is equivalent to:

lim
n→+∞

|Gnvn ∩ 〈vn〉| = +∞.

And, setting:

G := ρA,`∞(π1(S)) ⊂ GL(T`(Aη)) ' GL2g(Z`),

this follows from:

Lemma 3.7. For any v ∈ T`(Aη)×, the set Gv ∩ 〈v〉 is infinite.

Proof. Set W (v) := Q`[Gv] ⊂ V`(Aη) and r := dim(W (v)). Then W (v) is a simple Q`[G]-
module with basis:

ε = (e1 = v, e2, . . . , er)

over Q`. Let L : W (v)� Q` denotes the projection onto the line Q`v. By definition, Gv∩〈v〉
can be identified with L(Gv). Thus, we are to prove that L(Gv) is infinite. Consider the
dual Q`-basis e∨1 , . . . , e

∨
r of W (v)∨ := HomQ`(W (v),Q`). Then, by definition, L = e∨1 . Given

g ∈ G, write Cg,i (resp. Rg,i) for the ith column (resp. row) of the matrix of g written in ε,
i = 1, . . . , r. Then:

E := L(Gv) = {L(gv)}g∈G = {L(gg′v)}g,g′∈G = {aRg,kCg′,1}g,g′∈G

Since W (v) is a simple Q`[G]-module, W (v)∨ is a simple Q`[G]-module as well. In particular,
the g−1L = L(g−) = Rg,k, g ∈ G generate W (v)∨ as a Q`-vector space. Hence, one can fix
a Q`-basis of the form Rg1,k, . . . , Rgr,k for Q`(v)∨. The matrix A whose rows are the Rgi,k,
i = 1, . . . , r is in GLr(Q`) with the property that ACg,1 ∈ Er, g ∈ G. Hence:

Gv = {Cg,1}g∈G ⊂ A−1Er.

So the conclusion follows from condition (I/`∞), which ensures that Gv is infinite. �.

3.4. Proof of theorem 1.3 (1).
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3.4.1. End of the proof of theorem 1.3 (1). As explained at the end of subsection 3.2, we are
only to prove that, for all

v = (vn)n≥0 ∈ T`(Aη)×

and associated projective system:

· · · → SM(vn+1) → SM(vn) → · · · → SM(v1) → S(= SM(v0)),

the surface SM(vn) is no longer rational for n large enough. Otherwise, writing Mn := M(vn),
GMn would be a finite subgroup of the Cremona group Cr2(k). But finite subgroups of Cr2(k)
are well understood and, in particular, one has:

Theorem 3.8. (See [S09, Thm. 3.1]) There exists an integer J ≥ 1 such that any finite
subgroup G of Cr2(k) contains a normal abelian subgroup A C G whose index [G : A] divides
J .

Since π1(S) is topologically finitely generated, there are only finitely many isomorphism
classes of étale covers of S with degree ≤ J hence at least one of them - say S′ → S - appears
infinitely many times among the connected étale covers corresponding to the open subgroups
ρ−1
Mn

(AMn) ⊂ π1(S) (where AMn denotes a normal abelian subgroup of GMn of index dividing
J). So, up to base-changing A → S via S′ → S, we may assume that GMn is abelian for
infinitely many n ≥ 0. But, as already mentioned, one always have:

|GMn | ≥ dA(`n)

and, from condition (I/`∞):
lim

n→+∞
dA(`n) = +∞,

which contradicts condition (A/`∞).

Remark 3.9. In subsection 3.3.3, we proved that Svn carries an automorphism un of order
going to +∞ with n. Unfortunately, this is not enough to rule out case (8) for SA,1(`n) since,
from [Bl06, Thm. 4.6], finite abelian subgroups of the Cremona group Cr2(k) are of the
following form: Z/mZ× Z/nZ, for any integers m,n ≥ 1; Z/2nZ× (Z/2Z)2, for any integer
n ≥ 1; (Z/4Z)2×Z/2Z; (Z/3Z)3 and (Z/2Z)4. However, if ∆ denotes the dimension of Gv as
a `-adic analytic space and if we assume that all the minimal level `n0-structure are defined
over S (that is SM(v) = S for all v ∈ Aη[`n0 ]×, which also amounts to SA[`n0 ] = S), one can
show that, for any

v = (vn)n≥0 ∈ T`(Aη)×

and for n large enough, the surface Svn carries a finite subgroup of its automorphism group
isomorphic to (Z/`n0)∆. This essentially follows from [CT09b, Lemma 3.5]. So, under nu-
merical assumptions on ∆, n0 (depending on whether ` = 2, 3 or not), case (8) for SA,1(`n)
can be ruled out as well.

4. Lang conjecture and the `-primary torsion conjectures

The so-called Lang (or Lang-Bombieri) conjecture is the higher dimensional analogue of
Mordell conjecture. It predicts that if k is a number field and S ∈ P(k) (of dimension > 0)
is of general type then S(k) is not Zariski-dense in S. From subsection 2.1, this is equivalent
to:

Conjecture 4.1. (Lang) Let k be a number field and let S ∈ B(k) (of dimension > 0).
Assume that S is of general type. Then S(k) is not Zariski-dense in S.

There are only few known cases of Lang conjecture, among which the most significant one
is that it holds for subvarieties of general type of abelian varieties [F94]. See e.g. [CHM97,
§1.1.1] and the references given there for a more detailled account on Lang conjecture and
its variants.
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The aim of this concluding section is to discuss the connection between conjecture 1.2,
Lang conjecture and the (`-primary) torsion conjectures for abelian varieties.

Conjecture 4.2. (Torsion conjectures)
Arithmetic form: Let k be a finitely generated field of characteristic 0. Then, for every integer
g ≥ 1 there exists an integer N := N(k, g) such that for every g-dimensional abelian variety
a over k one has:

a(k)tors ⊂ a[N ].
Geometric form: Let k be an algebraically closed field of characteristic 0. Then, for every
function field K/k and integer g ≥ 1, there exists an integer N := N(K/k, g) such that for
every g-dimensional abelian variety a over k which contains no non-trivial k-isotrivial abelian
subvariety, one has:

a(K)tors ⊂ a[N ].

One can weaken the torsion conjectures by considering only the `-primary torsion submodule

a(k)[`∞] :=
⋃
n≥1

a(k)[`n] ⊂ a(k)tors

(and requiring that the integers N := N(k, g, `) and N := N(K/k, g, `) depend also on `).
We will refer to these weak variants of the torsion conjectures as the `-primary form of the
torsion conjectures. Similarly, we will refer to the weak variant of conjecture 1.2 for the
SA,1(`n), n ≥ 1 as the `-primary form of conjecture 1.2.

The only known case of the (`-primary) torsion conjectures is for g = 1 (See [M69] for the
`-primary arithmetic form and works of B. Mazur, S. Kammienny, L. Merel and others for
the whole conjecture [M77], [Me96]; the geometric form simply follows from the fact that the
genus of the modular curves Y1(n) goes to +∞ with n). See e.g. [Si01] for an introduction
to the folklore of torsion conjectures for abelian varieties.

4.1. Reformulation of the arithmetic torsion conjecture in terms of abstract mod-
ular schemes.

Lemma 4.3. Let k be a finitely generated field of characteristic 0. The following three
statements are equivalent:

(1) The arithmetic torsion conjecture;
(2) For every S ∈ B(k), abelian scheme A → S such that Aη contains no non-trivial

weakly k-isotrivial abelian subvariety and n large enough, one has:

SA,1(n)(k) = ∅;
(3) For every S ∈ B(k), abelian scheme A→ S, and n large enough, one has:

SA,1(n)(k) = ∅.

Proof. (3) ⇒ (2) and (1) ⇒ (3) are straightforward. For (3) ⇒ (1), we first observe that the
arithmetic form of conjecture 4.2 is equivalent to the arithmetic form of conjecture 4.2 for
principally polarized abelian varieties. This follows from ’Zarhin’s trick’ ([Mi86, Rem. 16.12]),
according to which any g-dimensional abelian variety over k embeds into a 8g-dimensional
principally polarized abelian variety over k, namely (A× A∨)4. Next, for any integer g ≥ 1,
one can a scheme Sg ∈ B(Q) with generic points η and an abelian scheme Ag → Sg such that
any g-dimensional principally polarized abelian variety is a fiber of Ag → Sg (representability
of Hilbert schemes - see [CT10b, §2.1.3], where the scheme built there is actually known to
be smooth and irreducible). The conclusion follows from the fact that Ag,iηi is then auto-
matically simple (since End(Agηi) embeds into any of the endomorphism rings End(Ag,is),
s ∈ Sg,i) hence contains no non-trivial weakly Q-isotrivial abelian subvariety. �

Lemma 4.4. Lang conjecture and the `-primary form of conjecture 1.2 imply the `-primary
arithmetic torsion conjecture.
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Proof. Assume first that k is a number field. From lemma 4.3, it is enough to prove that Lang
conjecture and the `-primary form of conjecture 1.2 imply the `-primary form of assertion
(2) of lemma 4.3. So, let S ∈ Bδ(k) and A → S an abelian scheme such that Aη contains
no non-trivial weakly k-isotrivial abelian subvariety. Observe that if δ = 0, the statement of
lemma 4.4 holds unconditionally (this is just Mordell-Weil theorem). So, assume that δ > 0.
We are to show that:

SA,1(`n)(k) = ∅,
for n large enough.

Otherwise, we would have SA,1(`n)(k) 6= ∅ for all n ≥ 0. Let Tn denote the reduced closed
subscheme of SA,1(`n) associated with the Zariski closure of SA,1(`n)(k) and let δn denote
the maximal dimension of the irreducible components of Tn. One has δn+1 ≤ δn ≤ δ for
n ≥ 0. So, up to replacing S by SA,1(`n) for some n large enough, we may assume that
δn = δ0 ≤ δ for all n ≥ 0. Write Irrδ0(Tn) for the non-empty finite set of δ0-dimensional
irreducible components of Tn. Since the transition morphisms SA,1(`n+1) → SA,1(`n) are
finite, they induce a projective system of non-empty finite sets:

(Irrδ0(Tn+1)→ Irrδ0(Tn))n≥0

hence:
lim
←−

Irrδ0(Tn) 6= ∅.

So one can consider a projective subsystem of δ0-dimensional irreducible components (Un+1 →
Un)n≥0 of (Tn+1 → Tn)n≥0. If δ0 = 0, this contradicts Mordell-Weil theorem. If δ0 > 0 then,
since Un is irreducible, Un is contained in Svn for some vn ∈ Aη[`n]×. Up to replacing Un by
a dense open subscheme, we may furthermore assume that Un is normal and, base changing
A → S via U0 → S, one gets a dominant morphism Un → U0vn . In particular, U0vn(k)
is Zariski-dense in U0vn since, by definition, Un(k) is Zariski dense in Un. But from the
`-primary form of conjecture 1.2 for δ0-dimensional schemes applied to A ×S U0, we may
assume that U0vn is of general type for n large enough, which contradicts conjecture 4.1 for
δ0-dimensional schemes. Hence SA,1(`n)(k) = ∅ for n large enough as announced.

The conclusion for an arbitrary finitely generated field of characteristic 0 now follows from:

Claim: The arithmetic form of conjecture 4.2 is equivalent to the arithmetic form of conjec-
ture 4.2 for number fields.

Proof of the claim The argument is rather standard. Let K is a finitely generated field of
characteristic 0 and a an abelian variety over K. Let k denote the algebraic closure of Q in
K. Then there exists a smooth irreducible scheme S over k with generic point η and such
that:

- S(k) 6= ∅;
- k(η) = K;
- a→ spec(K) extends to an abelian scheme A→ S.

So, the action of ΓK on a[`∞] factors through ΓK � π1(S). Now, given s ∈ S(k), one can
again consider the specialization isomorphism:

sps : a(K)tors = (Aη(k(η)))tors→̃(As(k))tors,

which, we recall, is Galois-equivariant in the sense that for all τ ∈ Γk, v ∈ (Aη(k(η)))tors,
one has:

sps(σs(τ) · v) = τ · sps(v).
In particular, if a has a K-rational point of order exactly `n then As has a k-rational point
of order exactly `n as well. �

The proof of lemma 4.4 shows, more precisely, that when k is a number field conjecture 4.1
and the `-primary form of conjecture 1.2 for all S ∈ Bδ′(k), δ′ ≤ δ imply the `-primary form
of assertion (2) of lemma 4.3 for all S ∈ Bδ′(k), δ′ ≤ δ. One may ask whether they also imply
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the `-primary form of assertion (3) of lemma 4.3 for all S ∈ Bδ′(k), δ′ ≤ δ. This is true for
δ ≤ 2 but unclear for δ ≥ 3.

Lemma 4.5. Assume that k is a number field. Then, the `-primary form of conjecture 1.2
and conjecture 4.1 for all S ∈ Bδ(k), δ ≤ 2 imply the `-primary form of assertion (3) of
lemma 4.3 for all S ∈ Bδ(k), δ ≤ 2.

Proof. Under the hypotheses of lemma 4.5, given S ∈ Bδ(k) with δ ≤ 2 and an abelian scheme
A→ S we are to prove that there exists an integer N := N(A, `) such that SA,1(`n)(k) = ∅,
n ≥ N . When δ ≤ 1, the following stronger assertion holds:

Lemma 4.6. ([CT09b, Cor. 4.3.1]) Let k be a finitely generated field of characteristic 0. For
any S ∈ B1(k), abelian scheme A → S, integer b ≥ 1 and prime ` there exists an integer
n := n(A, `, b) such that:

As(k(s))[`∞] ⊂ As[`n], s ∈ S≤b.

So, we are only to deal with the case δ = 2, which we assume from now on.
Given a function field K/k and an abelian variety a over K, let a0 denote the largest

k-isotrivial abelian subvariety of a (see [CT08, §2.1]). By Poincaré’s complete reducibility
theorem, Aη is isogenous to (Aη)0 × b for some abelian subvariety b ⊂ Aη such that b0 = 0.
Again, by Poincaré’s complete reducibility theorem, b is isogenous to a product:

b1 × · · · × bn × b0,

where b0 contains no non-trivial weakly k-isotrivial abelian subvariety and, for each i =
1, . . . , n, bi is weakly k-isotrivial but not k-isotrivial that is, there exists a curve Ti ∈ B(k),
a dominant morphism S → Ti, a finite morphism T ′i → Ti and an abelian scheme B′i → T ′i
(whose geometric generic fibre contains no non-trivial k-isotrivial abelian subvariety) such
that, if η′i denotes the generic point of S′i := S×Ti T ′i , then (B′i×T ′i S

′
i)η′i = bi×k(η) k(η′i). Let

ν ≥ 0 denote the maximal integer such that `ν divides the degree of the kernel of the isogeny:

Aη → (Aη)0 × b1 × · · · × bn × b0.

Up to replacing N(A, `) by N(A, `) + ν in the statement of lemma 4.5, we may assume that
ν = 0 hence that:

Aη[`∞] = (Aη)0[`∞]⊕ b1[`∞]⊕ · · · ⊕ bn[`∞]⊕ b0[`∞].

For X one of the abelian varieties (Aη)0, b1, · · · , bn, b0, set:

SX(`n) :=
⊔

v∈X[`n]r`X[`n]

Sv.

Then the projection Aη[`∞]� X[`∞] induces by functoriality an étale cover:

SA,1(`n)→ SX(`n).

Thus it is enough to show that SA,1(`n)(k) = ∅ for `� 0 in each of the following cases:
(1) Aη is k-isotrivial;
(2) Aη contains no non-trivial weakly k-isotrivial abelian subvariety;
(3) There exists a curve T ∈ B(k), a dominant morphism S → T , a finite morphism

T ′ → T and an abelian scheme B′ → T ′ such that, if η′ denotes the generic point of
S′ := S ×T T ′, then (B′ ×T ′ S′)η′ = Aη ×k(η) k(η′).

Case (1) follows from [CT10a, Prop. 3.18] and case (2) is lemma 4.4 for δ = 2.
Case (3) follows from lemma 4.6. Indeed, observe first that one can replace freely S by a

non-empty open suscheme U . Indeed, then, the closed reduced subscheme associated with
S\U is a curve and, up to remove finitely many points - say s1, . . . , sr - we may assume that it
is normal. In particular, it is the disjoint union of its irreducible (=connected) components.
Each of these connected components C is a curve in B(k) so considering A ×S C → C it
follows from lemma 4.6 that there is no points in SA,1(`n)(k) above C(k) for n� 0. Also, it
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follows from Mordell-Weil theorem that there is no points in SA,1(`n)(k) above s1, . . . , sr for
n� 0.

In particular, we may assume that T ′ → T is an étale cover hence that S′ → S is an
étale cover as well. By assumption, there exists an open subscheme U ⊂ S′ such that
A ×S U = B′ ×T ′ U . Up to replacing S by the image of U in S, which is again open since
S′ → S is flat, we may assume that U = S′. Set b := deg(T ′ → T ). Then S′A×SS′,1(`n) is the
normalization of T ′B,1(`n)×T ′ S′, which is normal (being an étale cover of the normal scheme
S′) hence:

S′A×SS′,1(`n) = T ′B,1(`n)×T ′ S′.
Now, given v ∈ Aη[`n] of order `n with image v′ in Aη ×k(η) k(η′), let kv and kv′ denote the
field of definition of Sv and S′v′ respectively. Again, S′v′ = Sv ×S S′ and, in particular, we
have [k′v′ : kv] ≤ b. If [kv : k] > 1 then Sv(k) = ∅. If k = kv and Sv(k) 6= ∅ then any point
s ∈ Sv(k) lifts to a point s′ ∈ S′v′ such that [k(s′) : kv′ ] ≤ b hence [k(s′) : k] ≤ b2. The image
t′ of s′ in T ′B′,1(`n) then satisfies [k(t′) : k] ≤ b2. But, with the notation of lemma 4.6, this is
only possible for n ≤ n(B, `, b2). �

As a result, theorem 1.3 implies the following uniform boundedness statement for the
`-primary torsion in families of abelian varieties parametrized by surfaces.

Corollary 4.7. Assume that conjecture 4.1 holds for surfaces. Let k be a number field,
S ∈ B2(k) a surface which is not rational and A → S an abelian scheme. Then, for every
prime ` there exists an integer N := N(A, `) ≥ 1 such that, for every s ∈ S(k), one has:

As(k)[`∞] ⊂ As[`N ].

4.2. A remark about the geometric form of conjecture 4.2. We begin with the fol-
lowing general observation.

Lemma 4.8. Let S ∈ B2(k) which is not of general type. Then there exists a curve B ∈ B1(k)
with generic point ζB, a flat family C → B of genus ≤ 2 curves and a dominant morphism
CζB → S.

Proof. It is enough to prove the assertion of lemma 4.8 for S ∈ P2(k). From the Enriques-
Kodaira classification for surfaces, the only non-obvious case of lemma 4.8 are for S ∈ B2(k)
with κS = 0. For an abelian surface S, this follows from the fact that S is always isogenous
to a principally polarized abelian surface S# which, itself, is either a product of two elliptic
curves or the jacobian of a genus 2 curve C (hence birational to C ×k C). For a K3 surface
S, this follows from the fact that S always contains a curve C of genus 1 [MoMu83] and
that, up to replacing C by its normalization, one gets a morphism C → S from an elliptic
curve to S which is birational onto its image. But such morphisms can always be deformed
into a flat family satisfying the properties of lemma 4.8 (e.g. [H03, Prop. 10.6]). For an En-
riques surfaces S, this follows again from the fact that the universal cover of S is a K3 surface
(more generally, it is known that Enriques surfaces always admit elliptic fibrations [Ho78]). �

Among the classical conjectures alluded to in this paper, the geometric form of conjecture
4.2 is probably the most accessible one and it seems that diophantine geometers seriously
believe in it. By a straightforward Weil restriction argument (see [CT10a, Footnote 1]), the
geometric form of conjecture 4.2 is equivalent to the following apparently stronger uniform
boundedness statement.

Conjecture 4.9. Let k be an algebraically closed field of characteristic 0. Then, for any
integers γ, g ≥ 1, there exists an integer N := N(k, γ, g) such that for any smooth, proper
connected curve C over k of k-gonality ≤ γ and g-dimensional abelian variety a over k(C)
containing no non-trivial k-isotrivial abelian subvariety, one has:

a(k(C))tors ⊂ a[N ].
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So, from lemma 4.8 the geometric form of conjecture 4.2 implies the following uniform vari-
ant of conjecture 1.2 (2) for surfaces. Let k be an algebraically closed field of characteristic 0.
Then, for any S ∈ B2(k) and integer g ≥ 1 there exists an integer N := N(g) ≥ 1 such that
for any abelian scheme A → S with dim(Aη) = g and such that Aη contains no non-trivial
weakly k-isotrivial abelian subvariety, all the connected components of SA,1(n) are of general
type for n ≥ N .

For full level n-structures, one has the following non-conjectural (but weak, in the sense
that k-gonality is replaced by genus) analogue of conjecture 4.9.

Theorem 4.10. ([HwT06, Thm. 1.3]) For any integers g ≥ 1, a ≥ 0 there exists an integer
N := N(g, a) such that for any curve S ∈ B1(C) and abelian scheme A → S such that Aη
is a g-dimensional principally polarized abelian variety over C(η) containing no non-trivial
C-isotrivial abelian subvariety, the genus of SA[n] is ≥ a for n ≥ N .

Again by Zarhin’s trick, one can remove the assumption that Aη is principally polarized
in the statement of theorem 4.10 and, by the standard descent argument, the statement of
theorem 4.10 remains true for algebraically closed field of characteristic 0. As a result, from
lemma 4.8 and theorem 4.10, one deduces the following uniform form of conjecture 1.2 (2)
for SA[n], when S ∈ B2(k).

Corollary 4.11. Let k be an algebraically closed field of characteristic 0. Then, for any
integer g ≥ 1 there exists an integer N := N(g) ≥ 1 such that for any S ∈ B2(k) and
abelian scheme A→ S such that Aη is a g-dimensional abelian variety over k(η) containing
no non-trivial weakly k-isotrivial abelian subvariety, SA[n] is of general type for n ≥ N .

The above observations motivate the following question, which generalizes lemma 4.8.

Question 1: Let k be an algebraically closed field of characteristic 0. Given an integer δ ≥ 1
does there exists an integer a(δ) ≥ 0 such that for any S ∈ Bδ(k) of Kodaira dimension ≤ 0
there exists B ∈ Bδ−1(k) with generic point ζB, a flat family of genus ≤ a(δ) curves C → B
and a dominant morphism CζB → S?

The condition that dim(B) = δ − 1 in question 1 ensures that, given an abelian scheme
A → S such that Aη contains no non-trivial weakly k-isotrivial abelian subvariety then
A×S CζB → Cζ(b) contains no non-trivial k(ζB)-isotrivial subvariety.

A positive answer to question 1 would imply:

- Let k be an algebraically closed field of characteristic 0. Then, for any integer g ≥ 1
there exists an integer N := N(g) ≥ 1 such that for any S ∈ B(k) and abelian scheme
A→ S such that Aη is a g-dimensional abelian variety over k(η) containing no non-
trivial weakly k-isotrivial abelian subvariety, SA[n] is of general type for n ≥ N .

- Assume the geometric form of conjecture 4.2 and let k be an algebraically closed field
of characteristic 0. Then, for any S ∈ B(k) and integer g ≥ 1 there exists an integer
N := N(g) ≥ 1 such that for any abelian scheme A → S with dim(Aη) = g and
such that Aη contains no non-trivial weakly k-isotrivial abelian subvariety, all the
connected components of SA,1(n) are of general type for n ≥ N .

Actually, for this purpose, it would be enough to answer positively question 2 below, which
seems more accessible. This follows from:

Lemma 4.12. Let k be an algebraically closed field of characteristic 0. Then, for any S ∈
B(k) and abelian scheme A → S such that Aη is weakly k-isotrivial, the set of curves C
contained in S such that the geometric generic fibre of A ×S C → C is k-isotrivial is not
Zariski dense in S.



24 ANNA CADORET

Proof. First, Aη is weakly k-isotrivial if and only if a := (Aη ×k(η) A
∨
η )4 is. From Zarhin’s

trick, a is principally polarized and since the Néron-Severi group of an abelian variety is
invariant under algebraically closed field extension, it follows that a is weakly k-isotrivial if
and only if for any principal polarization λ : a→̃a∨, the pair (a, λ) is. So, choose any principal
polarization λ : a→̃a∨ on a. This defines a morphism:

f : spec(k(η))→ Ag,1,

where g = dim(Aη) and Ag,1 denotes the coarse moduli scheme of principally polarized g-
dimensional abelian varieties. Let x denote the image of this morphism and Z ↪→ Ag,1 the
reduced subscheme associated with the Zariski closure of x in Ag,1. Saying that (a, λ) is not
weakly k-isotrivial is equivalent to saying that the induced morphism f : spec(k(η)) → Z is
generically finite. Also, being of finite type, it extends to a generically finite morphism:

f0 : U → Z,

where U ⊂ S is a non-empty open subscheme. Up to shrinking U , we may assume that
f0 : U → Z is quasi-finite. As a result, any curve C contained in S such that the geometric
generic fibre of A×S C → C is k-isotrivial is necessarily contained in S \ U . �

Question 2: Let k be an algebraically closed field of characteristic 0. Given an integer δ ≥ 1
does there exists an integer a(δ) ≥ 0 such that any S ∈ Bδ(k) of Kodaira dimension ≤ 0 is
the Zariski closure of the curves of genus ≤ a(δ) it contains?

This question is answered positively for abelian varieties in [CT10b].
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