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Abstract. We consider the Suliciu model which is a relaxation approximation of the p-system.
In the case of the Dirichlet boundary condition we prove that the local smooth solution of the
p-system is the zero limit of the Suliciu model solutions.
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1. Introduction

We study a relaxation approximation of the following p-system






∂tu1−∂xu2 =0,

∂tu2−∂xp(u1)=0.
(1.1)

For the viscoelastic case, Suliciu introduces in [19] the following approximation



























∂tu1−∂xu2 =0,

∂tu2−∂xv=0,

∂tv−µ∂xu2 =
1

ε
(p(u1)−v),

(1.2)

where ε and µ are positive.
The aim of this paper is to prove convergence results for the initial-boundary value
problem when the relaxation coefficient ε tends to zero.
Under the classical assumption

∀ ξ∈R,p′(ξ)>0, (1.3)

the p-system is strictly hyperbolic with eigenvalues

λ1(u1)=−
√

p′(u1)<λ2(u1)=
√

p′(u1). (1.4)

The semi-linear approximation system (1.2) is strictly hyperbolic with 3 constant
eigenvalues

µ1 =−√
µ<µ2 =0<µ3 =

√
µ. (1.5)

In all the paper we assume that µ is chosen great enough so that the subcharacteristic-
type condition holds

µ>p′(u1) (1.6)
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2 Relaxation Approximation for p-Systems

for all the values of u1 under consideration.
Formally, when ε tends to zero, the behaviour of the solution wε =(uε,vε)=
((uε

1,u
ε
2),v

ε) for the relaxation system (1.2) is the following: p(uε
1)−vε tends to zero,

so that uε tends to a solution u=(u1,u2) of the p-system (1.1).

Recent papers are devoted to the zero relaxation limit in the case of the Cauchy
problem. In [22] Wen-An Yong establishes a general framework to study the strong
convergence for the smooth solutions. This convergence result is obtained describing
the boundary layer which appears at t=0. We can apply Yong’s tools for the Suliciu
approximation



























∂tu
ε
1−∂xu

ε
2 =0,

∂tu
ε
2−∂xv

ε =0,

∂tv
ε−µ∂xu

ε
2 =

1

ε
(p(uε

1)−vε),

(1.7)

for (t,x)∈R
+×R, with the smooth initial data:

wε(0,x)=w0(x),x∈R. (1.8)

We give more details about this question in the annex at the end of this paper.
Since the lifespan for a smooth solution u of the Cauchy problem for the p-system is
generally finite (see [12]), the strong convergence of the solution uε to u can only be
obtained locally in time. Nevertheless, under the assumption

∀ ξ∈R,p′(ξ)≤Γ<µ, (1.9)

if w0 is smooth, the solution for the semi-linear Cauchy problem (1.7)-(1.8) is global
and smooth. In this case, the question is: what about the global convergence ?
Under further additional assumptions (in particular p′(ξ)≥γ>0) the weak conver-
gence to a global weak solution of the p-system is obtained by Tzavaras in [21] using
the compactness methods of [17].
Other convergence results in some particular cases can be found in [8] and [10].
For other connected papers see also [13, 16, 20]...

In this paper we study the zero relaxation limit for the initial-boundary value prob-
lem. To our knowledge general convergence results are not available for hyperbolic
relaxation systems in domains with boundary in the literature. A special well inves-
tigated problem is the semi-linear relaxation approximation to the boundary value
problem for a scalar quasilinear equation, see [11, 15, 9, 14], and [5, 1] for related
numerical considerations.
A first example of convergence result for a particular p-system (1.1) is obtained in [4].
In that paper the p-system is the one-dimensionnal Kerr model, so p is the inverse
function of ξ 7→ (1+ξ2)ξ. The relaxation approximation is given by the Kerr-Debye
model which is the following quasilinear hyperbolic system



























∂tu
ε
1−∂xu

ε
2 =0,

∂tu
ε
2−∂x

(

(1+vε)−1uε
1

)

=0,

∂tv
ε =

1

ε

(

(1+vε)−2(uε
1)

2−vε
)

.
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For these two models we consider the ingoing wave boundary condition. In the case
of the smooth solutions we obtained a local strong convergence result. The main tool
of the proof is the use of the entropic variables as proposed in [7]. In these variables,
the system is symmetrized and the equilibrium manifold is linearized.

Here we study the zero relaxation limit for the Suliciu approximation


























∂tu
ε
1−∂xu

ε
2 =0,

∂tu
ε
2−∂xv

ε =0,

∂tv
ε−µ∂xu

ε
2 =

1

ε
(p(uε

1)−vε),

(1.10)

for (t,x)∈R
+×R

+, with the null initial data

wε(0,x)=0,x∈R
+, (1.11)

and with the Dirichlet boundary condition

uε
2(t,0)=ϕ(t),t∈R

+. (1.12)

For the null initial data to be in equilibrium we assume that p(0)=0. We prove the
strong convergence of uε to the smooth solution of the initial-boundary value problem
for the p-system







∂tu1−∂xu2 =0,

∂tu2−∂xp(u1)=0,
(1.13)

for (t,x)∈R
+×R

+, with the initial-boundary conditions

u(0,x)=0,x∈R
+, (1.14)

u2(t,0)=ϕ(t),t∈R
+. (1.15)

2. Main Results

Let us specify the assumptions on the source term ϕ in the boundary condition (1.12)
or (1.15). In order to simplify we chose ϕ smooth enough on R and such that supp
ϕ⊂ [0,b], with b>0. In this case the boundary conditions and the null initial data
(1.11) and (1.14) match each other so both initial-boundary value problem (1.10)-
(1.11)-(1.12) and (1.13)-(1.14)-(1.15) admit local smooth solutions.

First we consider the solutions for the second problem (1.13)-(1.14)-(1.15) and using
the methods of [12] we establish that the lifespan T ∗ is generally finite with formation
of shock waves.
Theorem 2.1. Assume the property (1.3). Let ϕ∈C∞(R) with supp ϕ⊂ [0,b], b>0,
ϕ 6=0. Let g the function defined by

g(ξ)=

∫ ξ

0

√

p′(s)ds.

We assume that

p′′ does not vanish on the interval g−1(−ϕ(R)). (2.1)
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Then the local smooth solution of (1.13)-(1.14)-(1.15) exhibits a shock wave at the
time T ∗<+∞ and we have

‖u‖L∞([0,T∗]×R+) ≤C‖ϕ‖L∞(R). (2.2)

We now investigate the smooth solutions of the initial-boundary value problem (1.10)-
(1.11)-(1.12) for a fixed ε>0. The system is semi-linear strictly hyperbolic and the
boundary {x=0} is characteristic. It is easy to prove that the local smooth solution
w exists and, if the lifespan T ∗

ε is finite, we have

‖w‖L∞([0,T∗

ε
]×R+) =+∞ (2.3)

(for general semi-linear hyperbolic systems, see [18]).
If we assume that p is globally lipschitz we establish that the smooth solutions are
global.
Theorem 2.2. Assume the properties (1.3) and (1.9). Let ϕ∈H3(R) with supp
ϕ⊂R

+. Then the solution of (1.10)-(1.11)-(1.12) is global and

w∈C0(R+;H1(R)), ∂tw∈C0(R+;L2(R)). (2.4)

Finally, let us describe the convergence result.
Theorem 2.3. We suppose (1.3). Let ϕ∈H3(R) with supp ϕ⊂R

+. We consider
a smooth solution u=(u0

1,u
0
2) of (1.13)-(1.14)-(1.15) defined on [0,T ∗[. We suppose

that

µ> sup
(t,x)∈[0,T∗[×R+

p′(u0
1(t,x)). (2.5)

Let T <T ∗. For ε small enough, the relaxation problem (1.10)-(1.11)-(1.12) admits
a solution wε =(uε,vε) defined on [0,T ] such that

uε =u0+εu1
ε,

and there exists a constant K such that

‖u1
ε‖L∞(0,T ;H1(R+)) +‖∂tu

1
ε‖L∞(0,T ;L2(R+)) ≤K. (2.6)

In this result we can remark that no boundary layer appears in the time variable
because the null initial data belongs to the equilibrium manifold V ={v=p(u1)}. For
the space variable, we have the same boundary condition for both systems, so no
space boundary layer appears.
To prove Theorem 2.3 we don’t use the method in [4]: as observed in [7], with the
entropic variables, we lose the semi-linear character of the system (1.10). We prefer
write the following expansion of wε

wε =w0 +εw1
ε =((u0

1,u
0
2),p(u

0
1))+εw

1
ε

so that the rest term w1
ε satisfies a semi-linear hyperbolic system. In order to esti-

mate w1
ε , we use the conservative-dissipative variables introduced in [2]. With these

variables the system is symmetrized and its semi-linear character is preserved. Fur-
thermore by this method we obtain a more precise result : for ε small enough the
lifespan T ∗

ε is greater that the lifespan T ∗ of the limit system solution and the con-
vergence is proved on all compact subset of [0,T ∗[.
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3. Proof of Theorem 2.1

We use the methods proposed by Majda in [12] for the Cauchy problem. We denote
by l and r the left and right Riemann invariants of the system (1.1):















l=
1

2
(u2 +g(u1)),

r=
1

2
(u2−g(u1)).

These variables define a diffeomorphism which inverse is given by






u1 = g−1(l−r),

u2 = l+r.

These invariants (l,r) satisfy the diagonal system







































∂tl−ν(l−r)∂xl=0,

∂tr+ν(l−r)∂xr=0,

l(0,x)= r(0,x)=0,x>0,

(l+r)(t,0)=ϕ(t),t>0,

(3.1)

where ν(l−r)=
√

p′(g−1(l−r)). The smooth solution of (3.1) is (0,r) where r is the
solution of the scalar equation























∂tr+ν(−r)∂xr=0,

r(0,x)=0,x>0,

r(t,0)=ϕ(t),t>0.

(3.2)

Under the assumptions (1.3) and (2.1) we will prove that the lifespan T ∗ of the solution
of the problem (3.2) is finite and that this solution exhibits shock waves in T ∗.
For solving (3.2) we can use the method of characteristics. The function r is constant

on the characteristic curves which are the straight lines t=T+
1

ν(−ϕ(T ))
x, T ∈R.

Denoting α(s)=
1

ν(−s) we obtain then that

r(T,0)=ϕ(T )= r(T+α(ϕ(T ))x,x).

Let us introduce the mapping

(T,X) 7→Φ(T,X)=(t,x)=(T+α(ϕ(T ))X,X).

This map is a diffeomorphism for X<X̄ with

X̄=

[

max
T∈[0,b]

− d

dT
α(ϕ(T ))

]−1

.
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Under assumption (2.1) we have 0<X̄<+∞ and we have

‖r‖L∞(R+×[0,X̄[)≤‖ϕ‖L∞(R).

The characteristic curves through (0,0) and (b,0) cut the straight line {x= X̄} at
times
T1 =

√

p′(0)
−1
X̄ and T2 = b+

√

p′(0)
−1
X̄ so T ∗∈ [T1,T2].

4. Proof of Theorem 2.2

In this section ε>0 and µ>0 are fixed. We rewrite system (1.10)

∂tw+A∂xw=h(w)

where

A=





0 −1 0
0 0 −1
0 −µ 0



 and h(w)=







0
0

1

ε
(p(u1)−v)







and by (1.3) and (1.9) p is globally lipschitz. As zero is an eigenvalue of the matrix
A, the boundary {x=0} is characteristic, so for completeness we give the proof of the
global existence. Using (2.3) it is sufficient to prove that the solution w is bounded on
any domain [0,T ]×R

+. In a first step we lift the boundary condition (1.12). We set
ω(t,x)=ϕ(t)η(x) where η is a smooth function compactly supported with η(0)=1.
We replace u2 by u2−ω and we obtain the following initial-boundary value problem







































∂tw+A∂xw=h(w)+





∂xω

−∂tω

µ∂xω



 ,

w(0,x)=0,x∈R
+,

u2(t,0)=0,t∈R
+.

(4.1)

We diagonalize the matrix A by the matrix P : w=PW with

P =





1 1 1√
µ 0 −√

µ

µ 0 µ



 .

We obtain






































∂tW +





−√
µ 0 0

0 0 0
0 0

√
µ



∂xW =H(W )+Φ,

W (0,x)=0,x∈R
+,

W1(t,0)−W3(t,0)=0,t∈R
+.

(4.2)

We have H(W )=P−1h(PW ) so H is globally lipschitz

∃K>0, |∂WH |≤K. (4.3)



G. Carbou and B. Hanouzet 7

In addition, Φ is given by

Φ=P−1





∂xω

−∂tω

µ∂xω



 .

We denote by T ∗ the lifespan of the solution W for system (4.2) and we assume that
T ∗<+∞. We will prove that ‖W‖L∞([0,T∗]×R+)<+∞ so that by (2.3) we obtain a
contradiction.
L2 estimate

We take the inner product of the first equation in (4.2) by W and we obtain

1

2

d

dt
‖W‖2

L2(R+) +

∫

R+

√
µ(−W1∂xW1 +W3∂xW3)dx=

∫

R+

H(W )Wdx+

∫

R+

ΦWdx.

Using the third equation in (4.2) and (4.3) we obtain

1

2

d

dt
‖W‖2

L2(R+) ≤C(1+‖W‖2
L2(R+)). (4.4)

H1 estimate

We derivate system (4.2) with respect to t and with similar computations we obtain
that

1

2

d

dt
‖∂tW‖2

L2(R+) ≤C(1+‖∂tW‖2
L2(R+)). (4.5)

By Gronwall lemma we obtain from (4.4) and (4.5) that

‖W‖L∞([0,T∗];L2(R+)) +‖∂tW‖L∞([0,T∗];L2(R+)) ≤C(T ∗). (4.6)

So using the first equation in (4.2) we have

‖∂xW1‖L∞([0,T∗];L2(R+)) +‖∂xW3‖L∞([0,T∗];L2(R+)) ≤C(T ∗), (4.7)

In addition we have

∂t∂xW2−∂W2
H2(W )∂xW2 =H(t,x),

where

H=∂W1
H2(W )∂xW1 +∂W3

H2(W )∂xW3 +∂xΦ2.

By (4.3) and (4.7) we have

‖H‖L∞([0,T∗];L2(R+))≤C(T ∗),

and since

∂xW2(t,x)=

∫ t

0

(

exp

∫ t

s

∂W2
H2(W (τ,x))dτ

)

H(s,x)ds,

we conclude that

‖∂xW2‖L∞([0,T∗];L2(R+))≤C(T ∗).

By Sobolev injections we can apply the continuation principle and we conclude the
proof of Theorem 2.2.
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5. Proof of Theorem 2.3

We denote by T ∗ the lifespan of the smooth solution u0 =(u0
1,u

0
2) of system (1.13)-

(1.14)-(1.15). Since the boundary data ϕ belongs to H3(R) we have

∂i
tu

0∈C0([0,T ∗[;H3−i(R+)), i=0,1,2,3. (5.1)

We define the profile w0 by

w0 =(u0,v0)=((u0
1,u

0
2),p(u

0
1)). (5.2)

We denote

γ(t,x)=p′(u0
1(t,x)),t<T

∗,x>0, (5.3)

Γ= sup
(t,x)∈[0,T∗[×R+

γ(t,x), (5.4)

and by (2.2), Γ<+∞. We fix µ such that

µ>Γ. (5.5)

We will construct the solution wε of the relaxation problem (1.10)-(1.11)-(1.12) writing

wε =w0 +ε





0
0
v1



+εr, (5.6)

where

v1 =−∂tv
0 +µ∂xu

0
2, (5.7)

so that r satisfies the following system



























∂tr1−∂xr2 =0,

∂tr2−∂xr3 =∂xv
1,

∂tr3−µ∂xr2 =
1

ε
(p′(u0

1)r1−r3)+F (t,x,εr1)(r1)
2−∂tv

1,

(5.8)

for (t,x)∈ [0,T ∗[×R
+, with the initial-boundary conditions







r(0,x)=0,x∈R
+,

r2(t,0)=0,0≤ t<T ∗.

(5.9)

The function F is defined by

F (t,x,ξ)=

∫ 1

0

(1−s)p′′(u0
1(t,x)+sξ)ds. (5.10)
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First step: we want to construct a suitable symmetrization for system (5.8). We
denote by A and B the matrices

A=





0 −1 0
0 0 −1
0 −µ 0



 , B=





0 0 0
0 0 0

γ(t,x) 0 −1



.

With this object, we will use the conservative-dissipative form introduced in [2]. We
first need a symmetric positive definite matrix A0 such that AA0 is a symmetric
matrix, and such that

BA0 =





0 0 0
0 0 0
0 0 −d



 with d>0.

Following [7], such a matrix can be constructed using the entropic variables. For the
special case of the Suliciu model we have

A0(t,x)=





(γ(t,x))−1 0 1
0 1 0
1 0 µ



=





A0,11 A0,12

A0,21 A0,22



 .

We obtain

AA0 =





0 −1 0
−1 0 −µ
0 −µ 0



 , BA0 =





0 0 0
0 0 0
0 0 γ−µ



 ,

and we remark that with (5.5), we have µ−γ≥µ−Γ>0. Finally we can apply Propo-
sition 2.7 in [2]: the conservative-dissipative variables ρ is defined by ρ=P (t,x)r with

P (t,x)=





(A0,11)
−

1
2 0

((A−1
0 )22)

−
1
2 (A−1

0 )21 ((A−1
0 )22)

1
2



=





γ
1
2 0 0

0 1 0

−γ(µ−γ)− 1
2 0 (µ−γ)− 1

2



 .

In these variables, system (5.8) is equivalent to

∂tρ+A1∂xρ+Lρ=−1

ε





0
0
ρ3



+





0
0

F1(t,x,ερ1)ρ
2
1



+H, (5.11)

for (t,x)∈ [0,T ∗[×R
+, with the initial-boundary conditions

ρ(0,x)=0 for x∈R
+ and ρ2(t,0)=0 for t∈ [0,T ∗[. (5.12)

The matrix A1 =PAP−1 is symmetric

A1(t,x)=





0 −γ 1
2 0

−γ 1
2 0 −(µ−γ) 1

2

0 −(µ−γ) 1
2 0



.

The matrix L is given by L(t,x)=P∂tP
−1 +PA∂xP

−1. In addition, F1 and H are
given by

F1(t,x,ξ)=γ−1(µ−γ)− 1
2F (t,x,γ−

1
2 ξ), (5.13)
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H(t,x)=





0
∂xv

1

−(µ−γ)− 1
2 ∂tv

1



.

From (5.1) we have

∂i
tγ∈C0([0,T ∗[;H3−i(R+)),i=0,1,2,3, (5.14)

and using (2.2) there exists α>0 such that

γ(t,x)≥α for (t,x)∈ [0,T ∗[×R
+. (5.15)

Using (5.14), (5.15) and (5.5) we have

A1,∂tA1,∂xA1 ∈C0([0,T ∗[;L∞(R+)), (5.16)

L,∂tL,∂xL∈C0([0,T ∗[;L∞(R+)). (5.17)

Using (5.1) and (5.7) we have

∂i
tH ∈C0([0,T ∗[;H1−i(R+)),i=0,1. (5.18)

We recall that by (5.10) and (5.13) we have

F1(t,x,ξ)=γ−1(t,x)(µ−γ(t,x))− 1
2

∫ 1

0

(1−s)p′′(u0
1(t,x)+sγ

−
1
2 (t,x)ξ)ds,

so, by (5.14), (5.15) and (5.5) we have

F1,∂tF1,∂xF1,∂ξF1 ∈C0([0,T ∗[;L∞(R+× [−1,1])). (5.19)

Now we fix T <T ∗ and we introduce Tε defined by

Tε =sup

{

t≤T,‖ρ‖L∞([0,t]×R+) ≤
1

ε

}

. (5.20)

We will prove that, for ε small enough, Tε =T and that there exists K such that for
all ε small enough,

‖ρ‖L∞([0,T ];H1(R+)) +‖∂tρ‖L∞([0,T ];L2(R+)) ≤K. (5.21)

First, by variational methods, we obtain L2-estimates on ρ and ∂tρ. To obtain L2-
estimates on ∂xρ we use the equations taking into account that the boundary {x=0}
is characteristic.

Second step: variational estimates

We take the inner product of system (5.11) by ρ and we obtain that

1

2

d

dt
‖ρ‖2

L2(R+) +

∫

R+

A1∂xρ ·ρdx+

∫

R+

Lρ ·ρdx+
1

ε

∫

R+

ρ2
3dx=

∫

R+

F1(t,x,ερ1)ρ
2
1ρ3

+

∫

R+

H ·ρdx.
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Using (5.12) we obtain that

∫

R+

A1∂xρ ·ρdx=−1

2

∫

R+

(∂xA1)ρ ·ρdx.

With the estimates (5.16),.., (5.19) and since ε|ρ|≤1 on [0,Tε]×R
+, there exists a

constant C>0 such that, for t≤Tε,

1

2

d

dt
‖ρ‖2

L2(R+) +
1

ε

∫

R+

ρ2
3dx≤C(1+‖ρ‖2

L2(R+) +‖ρ1‖L∞(R+)‖ρ1‖L2(R+)‖ρ3‖L2(R+)).

Therefore we obtain that for t≤Tε,

d

dt
‖ρ‖2

L2(R+) +
1

ε

∫

R+

ρ2
3dx≤C(1+‖ρ‖2

L2(R+) +ε‖ρ1‖2
L∞(R+)‖ρ1‖2

L2(R+)). (5.22)

We can derivate (5.11)-(5.12) with respect to t

∂t∂tρ+A1∂x∂tρ+L∂tρ+
1

ε





0
0

∂tρ3



=−∂tA1∂xρ−∂tLρ+





0
0

∂tF1(t,x,ερ1)ρ
2
1





+





0
0

ε∂ξF1(t,x,ερ1)∂tρ1ρ
2
1



+





0
0

2F1(t,x,ερ1)ρ1∂tρ1



+∂tH.

With the same arguments as before we obtain that there exists C>0 such that for
≤Tε,

d

dt
‖∂tρ‖2

L2(R+) +
1

ε

∫

R+

(∂tρ3)
2dx≤C(1+‖ρ‖2

L2(R+) +‖∂tρ‖2
L2(R+) +‖∂xρ‖2

L2(R+))

+Cε‖ρ1‖2
L∞(R+)(‖ρ1‖2

L2(R+) +‖∂tρ1‖2
L2(R+))).

(5.23)
We define ψ by

ψ(t)=
(

‖ρ(t)‖2
L2(R+) +‖∂tρ(t)‖2

L2(R+)

)
1
2

, (5.24)

so we obtain by (5.22) and (5.23) the L2-estimate: there exists C>0 such that for
t≤Tε,

d

dt
(ψ(t))2 +

1

ε
(‖ρ3‖2

L2(R+) +‖∂tρ3‖2
L2(R+))≤C(1+(ψ(t))2

+ε‖ρ1‖2
L∞(R+)(ψ(t))2 +‖∂xρ‖2

L2(R+)).
(5.25)

Third step

We now estimate ∂xρ using the equations







∂tρ1−γ
1
2 ∂xρ2 +(Lρ)1 =0,

∂tρ2−γ
1
2 ∂xρ1−(µ−γ) 1

2 ∂xρ3 +(Lρ)2 =H2,

∂tρ3−(µ−γ) 1
2 ∂xρ2 +(Lρ)3 + 1

ε
ρ3 =F1(t,x,ερ1)ρ

2
1 +H3.

(5.26)

From the first equation in (5.26), and with (5.15) and (5.17) we have for t∈ [0,Tε]

‖∂xρ2‖L2(R+)≤Cψ. (5.27)
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Let us introduce ρ̃1 =ρ1+γ−
1
2 (µ−γ) 1

2 ρ3. From the second equation in (5.26) we have

∂tρ2−γ
1
2 ∂xρ̃1 +γ

1
2 ∂x(γ−

1
2 (µ−γ) 1

2 )ρ3 +(Lρ)2 =H2,

so, by (5.15), (5.14), (5.17) and (5.18) we obtain that

‖∂xρ̃1‖L2(R+) ≤C(1+ψ). (5.28)

We cannot estimate ∂xρ1 or ∂xρ3 by the same method because the boundary {x=0}
is characteristic. We rewrite the third equation in (5.26)

∂tρ3 +
1

ε
ρ3 =γ−

1
2 (µ−γ) 1

2 (∂tρ1 +(Lρ)1)−(Lρ)3 +F1(t,x,ερ1)ρ
2
1 +H3.

So eliminating ρ1 we obtain

µγ−1∂tρ3 + 1
ε
ρ3 =γ−

1
2 (µ−γ) 1

2 [∂tρ̃1−∂t(γ
−

1
2 (µ−γ) 1

2 )ρ3]+M1(t,x)ρ̃1 +M2(t,x)ρ2

+M3(t,x)ρ3 +H3 +F1(t,x,ερ1)ρ
2
1,

(5.29)

with ρ1 = ρ̃1−γ−
1
2 (µ−γ) 1

2 ρ3.We derivate (5.29) with respect to x and we obtain the
equation satisfied by ∂xρ3

∂t∂xρ3 +τ(t,x)∂xρ3 =

6
∑

i=1

Ti, (5.30)

with

τ = µ−1γ

(

1

ε
+γ−

1
2 (µ−γ) 1

2 ∂t(γ
−

1
2 (µ−γ) 1

2 )+ε∂ξF1(t,x,ερ1)γ
−

1
2 (µ−γ) 1

2 ρ2
1

+2F1(t,x,ερ1)ρ1γ
−

1
2 (µ−γ) 1

2 −M3(t,x)
)

,

T1 = µ−1γ
1
2 (µ−γ) 1

2 ∂t∂xρ̃1,

T2 = µ−1γ
(

∂x(γ−
1
2 (µ−γ) 1

2 )∂tρ̃1−∂x(γ−1µ)∂tρ3

−∂x(γ−
1
2 (µ−γ) 1

2 ∂t(γ
−

1
2 (µ−γ) 1

2 ))ρ3

+ (∂xM1)ρ̃1 +(∂xM2)ρ2 +(∂xM3)ρ3

)

,

T3 = µ−1γ∂xH3,

T4 = µ−1γ(M1∂xρ̃1 +M2∂xρ2),

T5 = µ−1γ
(

∂xF1(t,x,ερ1)ρ
2
1−ε∂ξF1(t,x,ερ1)∂x(γ−

1
2 (µ−γ) 1

2 )ρ2
1ρ3

−2F1(t,x,ερ1)∂x(γ−
1
2 (µ−γ) 1

2 )ρ1ρ3

)

,

T6 = µ−1γ
(

ε∂ξF1(t,x,ερ1)ρ
2
1∂xρ̃1 +2F1(t,x,ερ1)ρ1∂xρ̃1

)

.

For t∈ [0,Tε], using (5.5), (5.14) (5.15) and (5.19) we obtain that

∣

∣

∣

∣

τ(t,x)− µ−1γ

ε

∣

∣

∣

∣

≤C+C0‖ρ1‖L∞(R+).
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We define T 1
ε ≤Tε by

T 1
ε =max

{

t≤Tε, ‖ρ1‖L∞([0,t]×R+) ≤
1

2C0ε

}

, (5.31)

so there exists τ1>0 and τ2>0 such that

∀ t≤T 1
ε , ∀x>0,

τ1

ε
≤ τ(t,x)≤ τ2

ε
. (5.32)

We solve Equation (5.30) by Duhamel formula

∂xρ3 =

6
∑

i=1

Ti, (5.33)

with

Ti(t,x)=

∫ t

0

exp(−
∫ t

s

τ(σ,x)dσ)Ti(s,x)ds.

We define Ψ by

Ψ(t)=sup
[0,t]

ψ(s), (5.34)

where ψ is given by (5.24). Integrating by parts in T1 we obtain

T1(t,x)=−
∫ t

0

µ−1γ
1
2 (µ−γ) 1

2 τ(s,x)exp(−
∫ t

s

τ(σ,x)dσ)∂x ρ̃1(s,x)ds

−
∫ t

0

exp(−
∫ t

s

τ(σ,x)dσ)∂s(µ
−1γ

1
2 (µ−γ) 1

2 )(s,x)∂xρ̃1(s,x)ds

+µ−1γ
1
2 (µ−γ) 1

2 ∂xρ̃1(t,x).

Using (5.32), (5.5), (5.14), (5.15) and (5.28) we have

‖T1(t, ·)‖L2(R+) ≤
∫ t

0

exp(−τ1
ε

(t−s))C(ψ(s)+1)(1+
τ2

ε
)ds+C(ψ(t)+1),

and we obtain that

∀ t≤T 1
ε , ‖T1‖L2(R+) ≤C(1+Ψ(t)). (5.35)

Using (5.5) (5.14) (5.15) (5.24) (5.34) and also (5.18) for T3 and (5.27) and (5.28) for
T4, we obtain

∀ t≤T 1
ε , ‖T2‖L2(R+) +‖T3‖L2(R+) +‖T4‖L2(R+) ≤Cε(1+Ψ(t)). (5.36)

For the nonlinear terms T5 and T6 we use in addition (5.19) (5.20) and we obtain

∀ t≤T 1
ε , ‖T5‖L2(R+) +‖T6‖L2(R+)≤C(1+Ψ(t)). (5.37)

Therefore we obtain the following estimation for ∂xρ using (5.27) (5.28) (5.33) (5.35)
(5.36) (5.37)

∀ t≤T 1
ε , ‖∂xρ‖L2(R+) ≤C(1+Ψ(t)), (5.38)
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so we have

∀ t≤T 1
ε , ‖ρ‖L∞(R+)≤C1(1+Ψ(t)). (5.39)

Fourth step

By a comparison method we estimate Ψ. For t≤T 1
ε , integrating (5.25) from 0 to t,

using (5.38) and (5.39) we obtain that

(Ψ(t))2 ≤C2

∫ t

0

(1+(Ψ(s))2 +ε(Ψ(s))4)ds. (5.40)

We introduce the differential equation

y′ε =C2(1+yε +εy2
ε), yε(0)=0. (5.41)

There exists ε0>0 such that, for ε≤ ε0, the lifespan of yε is greater than T . So we
have

∀ ε≤ ε0,∀ t≤T,yε(t)≤yε0
(t)≤yε0

(T )=C3.

By comparison principle we deduce from (5.40) that

∀ ε≤ ε0,∀ t≤T 1
ε ,(Ψ(t))2 ≤C3,

and from (5.39),

∀ ε≤ ε0,∀ t≤T 1
ε ,‖ρ‖L∞(R+) ≤C1(1+

√

C3).

Let ε1>0 such that ε1≤ ε0 such that

∀ ε≤ ε1,C1(1+
√

C3)≤
1

2C0ε
.

So, by (5.20) and (5.31), we have for ε≤ ε1, T 1
e =Tε =T and we conclude the proof

by the estimate

∃K>0, ∀ ε≤ ε1, ‖ρ‖L∞([0,T ];H1(R+)) +‖∂tρ‖L∞([0,T ];L2(R+))≤K.

6. Annex

Using the method in W.A. Yong [22] we show the convergence result for the Cauchy
problem



























∂tu
ε
1−∂xu

ε
2 =0,

∂tu
ε
2−∂xv

ε =0,

∂tv
ε−µ∂xu

ε
2 =

1

ε
(p(uε

1)−vε),

(6.1)

for (t,x)∈R
+×R with the smooth initial data

wε(0,x)=w0(x)=(u0(x),v0(x)) for x∈R. (6.2)
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Let us introduce u0 the smooth solution of the Cauchy problem






∂tu
0
1−∂xu

0
2 =0,

∂tu
0
2−∂xp(u

0
1)=0,

(6.3)

with the initial data

u0(0,x)=u0(x). (6.4)

As in Tzavaras [21] we assume that there exists γ>0 and Γ>0 such that

∀ ξ∈R, γ≤p′(ξ)≤Γ<µ, (6.5)

so the problem (6.1)-(6.2) admits a global solution wε =(uε,vε) such that

wε ∈C0(R+;Hs(R))∩C1(R+;Hs−1(R)).

We will prove the following convergence theorem.
Theorem 6.1. Under assumption (6.5), if w0 ∈Hs(R) with s≥2, then there exists
T1>0 such that when ε tends to zero, uε tends to u0 in L∞([0,T1];H

s(R)).
Remark 6.1. It would be possible to relax hypothesis (6.5) as in Theorem 2.3; in this
case, the lifespan of wε is uniformly greater that T1.
Remark 6.2. In fact it appears a boundary layer in time which affects only the third
component of wε.

Sketch of the proof

First step: the stability assumption in [22] are satisfied. As in [21] and [7], we
consider the strictly convex entropy function for the system (6.1)

E(u1,u2,v)=
1

2
u2

2 +u1v−
µ

2
u2

1−
∫ v−µu1

0

h−1(y)dy,

where h(ξ)=p(ξ)−µξ which is strictly decreasing by (6.5). So A0(w)=E ′′(w) is a
symmetrizer for the system. Denoting a=(h−1)′(v−µu1) we obtain

A0(w)=





−µ−µ2a 0 1+µa
0 1 0

1+µa 0 −a



,

and the system (6.1) is equivalent to the quasilinear symmetric system

A0(w)∂tw+





0 0 0
0 0 −1
0 −1 0



∂xw=
1

ε
(p(u1)−v)





1+µa
0
−a



 . (6.6)

We denote

Q(w)=





0
0

p(u1)−v



 and P (w)=





1 0 0
0 1 0

−p′(u1) 0 1



,

and we obtain

P (w)Q′(w)P−1(w)=





0 0 0
0 0 0
0 0 −1



 . (6.7)
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On the equilibrium manifold V ={v=p(u1)}, we have

A0(w)Q′(w)+Q′(w)A0(w)=
2

p′(u1)−µ





(p′(u1))
2 0 −p′(u1)

0 0 0
−p′(u1) 0 1



. (6.8)

Using (6.6), (6.7) and (6.8) we obtain the stability conditions in [22].

Second step: we use Theorems 6.1 and 6.2 in [22]. We introduce the interior profile
w0 =((u0

1,u2),p(u
0
1)) and the boundary layer term I0 = Ĩ0−w0(0,x) where Ĩ0 is the

solution of

dĨ0

dτ
=Q(Ĩ0), Ĩ(τ =0)=w0(x).

We have I0
1 = I0

2 =0 and

I0
3 (τ,x)=(v0(x)−p(u1,0))e−τ ,

and we obtain

wε(t,x)=w0(t,x)+I0(
t

ε
,x)+O(ε),

so we conclude the proof of Theorem 6.1.
Remark 6.3. If w0 belongs to the equilibrium manifold then the order zero boundary
layer term vanishes.
Remark 6.4. In fact using more precisely [22] and the appendix of [3] we can prove
that T1 can be arbitrarily close to the lifespan of u0 as in Theorem 2.3.
Remark 6.5. In this annex the matrix P introduced in [22] plays an analogous role
as the matrix P in section 5.
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[1] Denise Aregba-Driollet and Vuk Milǐsić, Kinetic approximation of a boundary value problem
for conservation laws, Numer. Math., 97 (4), 595–633, 2004.

[2] Stefano Bianchini, Bernard Hanouzet and Roberto Natalini, Asymptotic Behaviour of Smooth
Solutions for Partially Dissipative Hyperbolic Systems with a Convex Entropy, Preprint
2005, to appear in Comm. Pure Appl. Math..

[3] Y. Brenier and W.-A. Yong, Derivation of particle, string, and membrane motions from the
Born-Infeld electromagnetism, J. Math. Phys., 46, 062305, 2005.

[4] Gilles Carbou and Bernard Hanouzet, Relaxation approximation of some nonlinear Maxwell
initial-boundary value problem, Comm. Math. Sci., 4(2), 331–344, 2006.

[5] A. Chalabi and D. Seghir, Convergence of relaxation schemes for initial boundary value prob-
lems for conservation laws, Comput. Math. Appl., 43(8-9), 1079–1093, 2002.

[6] Olivier Guès, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Dif-
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