RELAXATION APPROXIMATION OF SOME INITIAL-BOUNDARY VALUE PROBLEM FOR P-SYSTEMS *

GILLES CARBOU ${ }^{\dagger}$ AND BERNARD HANOUZET \ddagger

Abstract

We consider the Suliciu model which is a relaxation approximation of the p-system. In the case of the Dirichlet boundary condition we prove that the local smooth solution of the p-system is the zero limit of the Suliciu model solutions.

Key words. Zero relaxation limit, p-system, Suliciu model, boundary conditions.
subject classifications.35L50, 35Q72, 35B25.

1. Introduction

We study a relaxation approximation of the following p-system

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-\partial_{x} u_{2}=0 \tag{1.1}\\
\partial_{t} u_{2}-\partial_{x} p\left(u_{1}\right)=0
\end{array}\right.
$$

For the viscoelastic case, Suliciu introduces in [19] the following approximation

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-\partial_{x} u_{2}=0 \tag{1.2}\\
\partial_{t} u_{2}-\partial_{x} v=0 \\
\partial_{t} v-\mu \partial_{x} u_{2}=\frac{1}{\varepsilon}\left(p\left(u_{1}\right)-v\right)
\end{array}\right.
$$

where ε and μ are positive.
The aim of this paper is to prove convergence results for the initial-boundary value problem when the relaxation coefficient ε tends to zero.
Under the classical assumption

$$
\begin{equation*}
\forall \xi \in \mathbb{R}, p^{\prime}(\xi)>0 \tag{1.3}
\end{equation*}
$$

the p-system is strictly hyperbolic with eigenvalues

$$
\begin{equation*}
\lambda_{1}\left(u_{1}\right)=-\sqrt{p^{\prime}\left(u_{1}\right)}<\lambda_{2}\left(u_{1}\right)=\sqrt{p^{\prime}\left(u_{1}\right)} \tag{1.4}
\end{equation*}
$$

The semi-linear approximation system (1.2) is strictly hyperbolic with 3 constant eigenvalues

$$
\begin{equation*}
\mu_{1}=-\sqrt{\mu}<\mu_{2}=0<\mu_{3}=\sqrt{\mu} \tag{1.5}
\end{equation*}
$$

In all the paper we assume that μ is chosen great enough so that the subcharacteristictype condition holds

$$
\begin{equation*}
\mu>p^{\prime}\left(u_{1}\right) \tag{1.6}
\end{equation*}
$$

[^0]for all the values of u_{1} under consideration.
Formally, when ε tends to zero, the behaviour of the solution $w^{\varepsilon}=\left(u^{\varepsilon}, v^{\varepsilon}\right)=$ $\left(\left(u_{1}^{\varepsilon}, u_{2}^{\varepsilon}\right), v^{\varepsilon}\right)$ for the relaxation system (1.2) is the following: $p\left(u_{1}^{\varepsilon}\right)-v^{\varepsilon}$ tends to zero, so that u^{ε} tends to a solution $u=\left(u_{1}, u_{2}\right)$ of the p-system (1.1).

Recent papers are devoted to the zero relaxation limit in the case of the Cauchy problem. In [22] Wen-An Yong establishes a general framework to study the strong convergence for the smooth solutions. This convergence result is obtained describing the boundary layer which appears at $t=0$. We can apply Yong's tools for the Suliciu approximation

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}^{\varepsilon}-\partial_{x} u_{2}^{\varepsilon}=0 \tag{1.7}\\
\partial_{t} u_{2}^{\varepsilon}-\partial_{x} v^{\varepsilon}=0 \\
\partial_{t} v^{\varepsilon}-\mu \partial_{x} u_{2}^{\varepsilon}=\frac{1}{\varepsilon}\left(p\left(u_{1}^{\varepsilon}\right)-v^{\varepsilon}\right)
\end{array}\right.
$$

for $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}$, with the smooth initial data:

$$
\begin{equation*}
w^{\varepsilon}(0, x)=w_{0}(x), x \in \mathbb{R} . \tag{1.8}
\end{equation*}
$$

We give more details about this question in the annex at the end of this paper.
Since the lifespan for a smooth solution u of the Cauchy problem for the p-system is generally finite (see [12]), the strong convergence of the solution u^{ε} to u can only be obtained locally in time. Nevertheless, under the assumption

$$
\begin{equation*}
\forall \xi \in \mathbb{R}, p^{\prime}(\xi) \leq \Gamma<\mu \tag{1.9}
\end{equation*}
$$

if w_{0} is smooth, the solution for the semi-linear Cauchy problem (1.7)-(1.8) is global and smooth. In this case, the question is: what about the global convergence ?
Under further additional assumptions (in particular $p^{\prime}(\xi) \geq \gamma>0$) the weak convergence to a global weak solution of the p-system is obtained by Tzavaras in [21] using the compactness methods of [17].
Other convergence results in some particular cases can be found in [8] and [10].
For other connected papers see also $[13,16,20] \ldots$
In this paper we study the zero relaxation limit for the initial-boundary value problem. To our knowledge general convergence results are not available for hyperbolic relaxation systems in domains with boundary in the literature. A special well investigated problem is the semi-linear relaxation approximation to the boundary value problem for a scalar quasilinear equation, see $[11,15,9,14]$, and $[5,1]$ for related numerical considerations.
A first example of convergence result for a particular p-system (1.1) is obtained in [4]. In that paper the p-system is the one-dimensionnal Kerr model, so p is the inverse function of $\xi \mapsto\left(1+\xi^{2}\right) \xi$. The relaxation approximation is given by the Kerr-Debye model which is the following quasilinear hyperbolic system

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}^{\varepsilon}-\partial_{x} u_{2}^{\varepsilon}=0 \\
\partial_{t} u_{2}^{\varepsilon}-\partial_{x}\left(\left(1+v^{\varepsilon}\right)^{-1} u_{1}^{\varepsilon}\right)=0 \\
\partial_{t} v^{\varepsilon}=\frac{1}{\varepsilon}\left(\left(1+v^{\varepsilon}\right)^{-2}\left(u_{1}^{\varepsilon}\right)^{2}-v^{\varepsilon}\right)
\end{array}\right.
$$

For these two models we consider the ingoing wave boundary condition. In the case of the smooth solutions we obtained a local strong convergence result. The main tool of the proof is the use of the entropic variables as proposed in [7]. In these variables, the system is symmetrized and the equilibrium manifold is linearized.
Here we study the zero relaxation limit for the Suliciu approximation

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}^{\varepsilon}-\partial_{x} u_{2}^{\varepsilon}=0 \tag{1.10}\\
\partial_{t} u_{2}^{\varepsilon}-\partial_{x} v^{\varepsilon}=0 \\
\partial_{t} v^{\varepsilon}-\mu \partial_{x} u_{2}^{\varepsilon}=\frac{1}{\varepsilon}\left(p\left(u_{1}^{\varepsilon}\right)-v^{\varepsilon}\right)
\end{array}\right.
$$

for $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$, with the null initial data

$$
\begin{equation*}
w^{\varepsilon}(0, x)=0, x \in \mathbb{R}^{+} \tag{1.11}
\end{equation*}
$$

and with the Dirichlet boundary condition

$$
\begin{equation*}
u_{2}^{\varepsilon}(t, 0)=\varphi(t), t \in \mathbb{R}^{+} \tag{1.12}
\end{equation*}
$$

For the null initial data to be in equilibrium we assume that $p(0)=0$. We prove the strong convergence of u^{ε} to the smooth solution of the initial-boundary value problem for the p-system

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-\partial_{x} u_{2}=0 \tag{1.13}\\
\partial_{t} u_{2}-\partial_{x} p\left(u_{1}\right)=0
\end{array}\right.
$$

for $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$, with the initial-boundary conditions

$$
\begin{gather*}
u(0, x)=0, x \in \mathbb{R}^{+} \tag{1.14}\\
u_{2}(t, 0)=\varphi(t), t \in \mathbb{R}^{+} . \tag{1.15}
\end{gather*}
$$

2. Main Results

Let us specify the assumptions on the source term φ in the boundary condition (1.12) or (1.15). In order to simplify we chose φ smooth enough on \mathbb{R} and such that supp $\varphi \subset[0, b]$, with $b>0$. In this case the boundary conditions and the null initial data (1.11) and (1.14) match each other so both initial-boundary value problem (1.10)-(1.11)-(1.12) and (1.13)-(1.14)-(1.15) admit local smooth solutions.

First we consider the solutions for the second problem (1.13)-(1.14)-(1.15) and using the methods of [12] we establish that the lifespan T^{*} is generally finite with formation of shock waves.
THEOREM 2.1. Assume the property (1.3). Let $\varphi \in \mathcal{C}^{\infty}(\mathbb{R})$ with supp $\varphi \subset[0, b], b>0$, $\varphi \neq 0$. Let g the function defined by

$$
g(\xi)=\int_{0}^{\xi} \sqrt{p^{\prime}(s)} d s
$$

We assume that

$$
\begin{equation*}
p^{\prime \prime} \text { does not vanish on the interval } g^{-1}(-\varphi(\mathbb{R})) \tag{2.1}
\end{equation*}
$$

Then the local smooth solution of (1.13)-(1.14)-(1.15) exhibits a shock wave at the time $T^{*}<+\infty$ and we have

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(\left[0, T^{*}\right] \times \mathbb{R}^{+}\right)} \leq C\|\varphi\|_{L^{\infty}(\mathbb{R})} \tag{2.2}
\end{equation*}
$$

We now investigate the smooth solutions of the initial-boundary value problem (1.10)-(1.11)-(1.12) for a fixed $\varepsilon>0$. The system is semi-linear strictly hyperbolic and the boundary $\{x=0\}$ is characteristic. It is easy to prove that the local smooth solution w exists and, if the lifespan T_{ε}^{*} is finite, we have

$$
\begin{equation*}
\|w\|_{L^{\infty}\left(\left[0, T_{\varepsilon}^{*}\right] \times \mathbb{R}^{+}\right)}=+\infty \tag{2.3}
\end{equation*}
$$

(for general semi-linear hyperbolic systems, see [18]).
If we assume that p is globally lipschitz we establish that the smooth solutions are global.
ThEOREM 2.2. Assume the properties (1.3) and (1.9). Let $\varphi \in H^{3}(\mathbb{R})$ with supp $\varphi \subset \mathbb{R}^{+}$. Then the solution of (1.10)-(1.11)-(1.12) is global and

$$
\begin{equation*}
w \in \mathcal{C}^{0}\left(\mathbb{R}^{+} ; H^{1}(\mathbb{R})\right), \partial_{t} w \in \mathcal{C}^{0}\left(\mathbb{R}^{+} ; L^{2}(\mathbb{R})\right) \tag{2.4}
\end{equation*}
$$

Finally, let us describe the convergence result.
THEOREM 2.3. We suppose (1.3). Let $\varphi \in H^{3}(\mathbb{R})$ with supp $\varphi \subset \mathbb{R}^{+}$. We consider a smooth solution $u=\left(u_{1}^{0}, u_{2}^{0}\right)$ of (1.13)-(1.14)-(1.15) defined on $\left[0, T^{*}[\right.$. We suppose that

$$
\begin{equation*}
\mu>\sup _{(t, x) \in\left[0, T^{*}\left[\times \mathbb{R}^{+}\right.\right.} p^{\prime}\left(u_{1}^{0}(t, x)\right) . \tag{2.5}
\end{equation*}
$$

Let $T<T^{*}$. For ε small enough, the relaxation problem (1.10)-(1.11)-(1.12) admits a solution $w^{\varepsilon}=\left(u^{\varepsilon}, v^{\varepsilon}\right)$ defined on $[0, T]$ such that

$$
u^{\varepsilon}=u^{0}+\varepsilon u_{\varepsilon}^{1},
$$

and there exists a constant K such that

$$
\begin{equation*}
\left\|u_{\varepsilon}^{1}\right\|_{L^{\infty}\left(0, T ; H^{1}\left(\mathbb{R}^{+}\right)\right)}+\left\|\partial_{t} u_{\varepsilon}^{1}\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\mathbb{R}^{+}\right)\right)} \leq K . \tag{2.6}
\end{equation*}
$$

In this result we can remark that no boundary layer appears in the time variable because the null initial data belongs to the equilibrium manifold $\mathcal{V}=\left\{v=p\left(u_{1}\right)\right\}$. For the space variable, we have the same boundary condition for both systems, so no space boundary layer appears.
To prove Theorem 2.3 we don't use the method in [4]: as observed in [7], with the entropic variables, we lose the semi-linear character of the system (1.10). We prefer write the following expansion of w^{ε}

$$
w^{\varepsilon}=w^{0}+\varepsilon w_{\varepsilon}^{1}=\left(\left(u_{1}^{0}, u_{2}^{0}\right), p\left(u_{1}^{0}\right)\right)+\varepsilon w_{\varepsilon}^{1}
$$

so that the rest term w_{ε}^{1} satisfies a semi-linear hyperbolic system. In order to estimate w_{ε}^{1}, we use the conservative-dissipative variables introduced in [2]. With these variables the system is symmetrized and its semi-linear character is preserved. Furthermore by this method we obtain a more precise result : for ε small enough the lifespan T_{ε}^{*} is greater that the lifespan T^{*} of the limit system solution and the convergence is proved on all compact subset of $\left[0, T^{*}[\right.$.

3. Proof of Theorem 2.1

We use the methods proposed by Majda in [12] for the Cauchy problem. We denote by l and r the left and right Riemann invariants of the system (1.1):

$$
\left\{\begin{array}{l}
l=\frac{1}{2}\left(u_{2}+g\left(u_{1}\right)\right), \\
r=\frac{1}{2}\left(u_{2}-g\left(u_{1}\right)\right)
\end{array}\right.
$$

These variables define a diffeomorphism which inverse is given by

$$
\left\{\begin{array}{l}
u_{1}=g^{-1}(l-r) \\
u_{2}=l+r
\end{array}\right.
$$

These invariants (l, r) satisfy the diagonal system

$$
\left\{\begin{array}{l}
\partial_{t} l-\nu(l-r) \partial_{x} l=0 \tag{3.1}\\
\partial_{t} r+\nu(l-r) \partial_{x} r=0 \\
l(0, x)=r(0, x)=0, x>0 \\
(l+r)(t, 0)=\varphi(t), t>0
\end{array}\right.
$$

where $\nu(l-r)=\sqrt{p^{\prime}\left(g^{-1}(l-r)\right)}$. The smooth solution of (3.1) is $(0, r)$ where r is the solution of the scalar equation

$$
\left\{\begin{array}{l}
\partial_{t} r+\nu(-r) \partial_{x} r=0 \tag{3.2}\\
r(0, x)=0, x>0 \\
r(t, 0)=\varphi(t), t>0
\end{array}\right.
$$

Under the assumptions (1.3) and (2.1) we will prove that the lifespan T^{*} of the solution of the problem (3.2) is finite and that this solution exhibits shock waves in T^{*}.
For solving (3.2) we can use the method of characteristics. The function r is constant on the characteristic curves which are the straight lines $t=T+\frac{1}{\nu(-\varphi(T))} x, T \in \mathbb{R}$.
Denoting $\alpha(s)=\frac{1}{\nu(-s)}$ we obtain then that

$$
r(T, 0)=\varphi(T)=r(T+\alpha(\varphi(T)) x, x)
$$

Let us introduce the mapping

$$
(T, X) \mapsto \Phi(T, X)=(t, x)=(T+\alpha(\varphi(T)) X, X)
$$

This map is a diffeomorphism for $X<\bar{X}$ with

$$
\bar{X}=\left[\max _{T \in[0, b]}-\frac{d}{d T} \alpha(\varphi(T))\right]^{-1}
$$

Under assumption (2.1) we have $0<\bar{X}<+\infty$ and we have

$$
\|r\|_{L^{\infty}\left(\mathbb{R}^{+} \times[0, \bar{X}[)\right.} \leq\|\varphi\|_{L^{\infty}(\mathbb{R})} .
$$

The characteristic curves through $(0,0)$ and $(b, 0)$ cut the straight line $\{x=\bar{X}\}$ at times

4. Proof of Theorem 2.2

In this section $\varepsilon>0$ and $\mu>0$ are fixed. We rewrite system (1.10)

$$
\partial_{t} w+A \partial_{x} w=h(w)
$$

where

$$
A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
0 & -\mu & 0
\end{array}\right) \text { and } h(w)=\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{\varepsilon}\left(p\left(u_{1}\right)-v\right)
\end{array}\right)
$$

and by (1.3) and (1.9) p is globally lipschitz. As zero is an eigenvalue of the matrix A, the boundary $\{x=0\}$ is characteristic, so for completeness we give the proof of the global existence. Using (2.3) it is sufficient to prove that the solution w is bounded on any domain $[0, T] \times \mathbb{R}^{+}$. In a first step we lift the boundary condition (1.12). We set $\omega(t, x)=\varphi(t) \eta(x)$ where η is a smooth function compactly supported with $\eta(0)=1$. We replace u_{2} by $u_{2}-\omega$ and we obtain the following initial-boundary value problem

$$
\left\{\begin{array}{l}
\partial_{t} w+A \partial_{x} w=h(w)+\left(\begin{array}{c}
\partial_{x} \omega \\
-\partial_{t} \omega \\
\mu \partial_{x} \omega
\end{array}\right) \tag{4.1}\\
w(0, x)=0, x \in \mathbb{R}^{+} \\
u_{2}(t, 0)=0, t \in \mathbb{R}^{+}
\end{array}\right.
$$

We diagonalize the matrix A by the matrix $P: w=P W$ with

$$
P=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\sqrt{\mu} & 0 & -\sqrt{\mu} \\
\mu & 0 & \mu
\end{array}\right)
$$

We obtain

$$
\left\{\begin{array}{l}
\partial_{t} W+\left(\begin{array}{cccc}
-\sqrt{\mu} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \sqrt{\mu}
\end{array}\right) \partial_{x} W=H(W)+\Phi \tag{4.2}\\
W(0, x)=0, x \in \mathbb{R}^{+} \\
W_{1}(t, 0)-W_{3}(t, 0)=0, t \in \mathbb{R}^{+}
\end{array}\right.
$$

We have $H(W)=P^{-1} h(P W)$ so H is globally lipschitz

$$
\begin{equation*}
\exists K>0,\left|\partial_{W} H\right| \leq K \tag{4.3}
\end{equation*}
$$

In addition, Φ is given by

$$
\Phi=P^{-1}\left(\begin{array}{c}
\partial_{x} \omega \\
-\partial_{t} \omega \\
\mu \partial_{x} \omega
\end{array}\right) .
$$

We denote by T^{*} the lifespan of the solution W for system (4.2) and we assume that $T^{*}<+\infty$. We will prove that $\|W\|_{L^{\infty}\left(\left[0, T^{*}\right] \times \mathbb{R}^{+}\right)}<+\infty$ so that by (2.3) we obtain a contradiction.
L^{2} estimate
We take the inner product of the first equation in (4.2) by W and we obtain

$$
\frac{1}{2} \frac{d}{d t}\|W\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\int_{\mathbb{R}^{+}} \sqrt{\mu}\left(-W_{1} \partial_{x} W_{1}+W_{3} \partial_{x} W_{3}\right) d x=\int_{\mathbb{R}^{+}} H(W) W d x+\int_{\mathbb{R}^{+}} \Phi W d x
$$

Using the third equation in (4.2) and (4.3) we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|W\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2} \leq C\left(1+\|W\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}\right) \tag{4.4}
\end{equation*}
$$

H^{1} estimate

We derivate system (4.2) with respect to t and with similar computations we obtain that

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|\partial_{t} W\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2} \leq C\left(1+\left\|\partial_{t} W\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}\right) \tag{4.5}
\end{equation*}
$$

By Gronwall lemma we obtain from (4.4) and (4.5) that

$$
\begin{equation*}
\|W\|_{L^{\infty}\left(\left[0, T^{*}\right] ; L^{2}\left(\mathbb{R}^{+}\right)\right)}+\left\|\partial_{t} W\right\|_{L^{\infty}\left(\left[0, T^{*}\right] ; L^{2}\left(\mathbb{R}^{+}\right)\right)} \leq C\left(T^{*}\right) \tag{4.6}
\end{equation*}
$$

So using the first equation in (4.2) we have

$$
\begin{equation*}
\left\|\partial_{x} W_{1}\right\|_{L^{\infty}\left(\left[0, T^{*}\right] ; L^{2}\left(\mathbb{R}^{+}\right)\right)}+\left\|\partial_{x} W_{3}\right\|_{L^{\infty}\left(\left[0, T^{*}\right] ; L^{2}\left(\mathbb{R}^{+}\right)\right)} \leq C\left(T^{*}\right) \tag{4.7}
\end{equation*}
$$

In addition we have

$$
\partial_{t} \partial_{x} W_{2}-\partial_{W_{2}} H_{2}(W) \partial_{x} W_{2}=\mathcal{H}(t, x)
$$

where

$$
\mathcal{H}=\partial_{W_{1}} H_{2}(W) \partial_{x} W_{1}+\partial_{W_{3}} H_{2}(W) \partial_{x} W_{3}+\partial_{x} \Phi_{2}
$$

By (4.3) and (4.7) we have

$$
\|\mathcal{H}\|_{L^{\infty}\left(\left[0, T^{*}\right] ; L^{2}\left(\mathbb{R}^{+}\right)\right)} \leq C\left(T^{*}\right)
$$

and since

$$
\partial_{x} W_{2}(t, x)=\int_{0}^{t}\left(\exp \int_{s}^{t} \partial_{W_{2}} H_{2}(W(\tau, x)) d \tau\right) \mathcal{H}(s, x) d s
$$

we conclude that

$$
\left\|\partial_{x} W_{2}\right\|_{L^{\infty}\left(\left[0, T^{*}\right] ; L^{2}\left(\mathbb{R}^{+}\right)\right)} \leq C\left(T^{*}\right)
$$

By Sobolev injections we can apply the continuation principle and we conclude the proof of Theorem 2.2.

5. Proof of Theorem 2.3

We denote by T^{*} the lifespan of the smooth solution $u^{0}=\left(u_{1}^{0}, u_{2}^{0}\right)$ of system (1.13)-(1.14)-(1.15). Since the boundary data φ belongs to $H^{3}(\mathbb{R})$ we have

$$
\begin{equation*}
\partial_{t}^{i} u^{0} \in \mathcal{C}^{0}\left(\left[0, T^{*}\left[; H^{3-i}\left(\mathbb{R}^{+}\right)\right), i=0,1,2,3\right.\right. \tag{5.1}
\end{equation*}
$$

We define the profile w^{0} by

$$
\begin{equation*}
w^{0}=\left(u^{0}, v^{0}\right)=\left(\left(u_{1}^{0}, u_{2}^{0}\right), p\left(u_{1}^{0}\right)\right) \tag{5.2}
\end{equation*}
$$

We denote

$$
\begin{gather*}
\gamma(t, x)=p^{\prime}\left(u_{1}^{0}(t, x)\right), t<T^{*}, x>0 \tag{5.3}\\
\Gamma=\sup _{(t, x) \in\left[0, T^{*}\left[\times \mathbb{R}^{+}\right.\right.} \gamma(t, x) \tag{5.4}
\end{gather*}
$$

and by (2.2), $\Gamma<+\infty$. We fix μ such that

$$
\begin{equation*}
\mu>\Gamma \tag{5.5}
\end{equation*}
$$

We will construct the solution w^{ε} of the relaxation problem (1.10)-(1.11)-(1.12) writing

$$
w^{\varepsilon}=w^{0}+\varepsilon\left(\begin{array}{c}
0 \tag{5.6}\\
0 \\
v^{1}
\end{array}\right)+\varepsilon r
$$

where

$$
\begin{equation*}
v^{1}=-\partial_{t} v^{0}+\mu \partial_{x} u_{2}^{0} \tag{5.7}
\end{equation*}
$$

so that r satisfies the following system

$$
\left\{\begin{array}{l}
\partial_{t} r_{1}-\partial_{x} r_{2}=0 \tag{5.8}\\
\partial_{t} r_{2}-\partial_{x} r_{3}=\partial_{x} v^{1} \\
\partial_{t} r_{3}-\mu \partial_{x} r_{2}=\frac{1}{\varepsilon}\left(p^{\prime}\left(u_{1}^{0}\right) r_{1}-r_{3}\right)+F\left(t, x, \varepsilon r_{1}\right)\left(r_{1}\right)^{2}-\partial_{t} v^{1}
\end{array}\right.
$$

for $(t, x) \in\left[0, T^{*}\left[\times \mathbb{R}^{+}\right.\right.$, with the initial-boundary conditions

$$
\left\{\begin{array}{l}
r(0, x)=0, x \in \mathbb{R}^{+} \tag{5.9}\\
r_{2}(t, 0)=0,0 \leq t<T^{*}
\end{array}\right.
$$

The function F is defined by

$$
\begin{equation*}
F(t, x, \xi)=\int_{0}^{1}(1-s) p^{\prime \prime}\left(u_{1}^{0}(t, x)+s \xi\right) d s \tag{5.10}
\end{equation*}
$$

First step: we want to construct a suitable symmetrization for system (5.8). We denote by A and B the matrices

$$
A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
0 & -\mu & 0
\end{array}\right), B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\gamma(t, x) & 0 & -1
\end{array}\right)
$$

With this object, we will use the conservative-dissipative form introduced in [2]. We first need a symmetric positive definite matrix A_{0} such that $A A_{0}$ is a symmetric matrix, and such that

$$
B A_{0}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -d
\end{array}\right) \text { with } d>0
$$

Following [7], such a matrix can be constructed using the entropic variables. For the special case of the Suliciu model we have

$$
A_{0}(t, x)=\left(\begin{array}{ccc}
(\gamma(t, x))^{-1} & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & \mu
\end{array}\right)=\left(\begin{array}{cc}
A_{0,11} & A_{0,12} \\
& \\
A_{0,21} & A_{0,22}
\end{array}\right) .
$$

We obtain

$$
A A_{0}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & -\mu \\
0 & -\mu & 0
\end{array}\right), B A_{0}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \gamma-\mu
\end{array}\right)
$$

and we remark that with (5.5), we have $\mu-\gamma \geq \mu-\Gamma>0$. Finally we can apply Proposition 2.7 in [2]: the conservative-dissipative variables ρ is defined by $\rho=P(t, x) r$ with

$$
P(t, x)=\left(\begin{array}{cc}
\left(A_{0,11}\right)^{-\frac{1}{2}} & 0 \\
\left(\left(A_{0}^{-1}\right)_{22}\right)^{-\frac{1}{2}}\left(A_{0}^{-1}\right)_{21} & \left(\left(A_{0}^{-1}\right)_{22}\right)^{\frac{1}{2}}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma^{\frac{1}{2}} & 0 & 0 \\
0 & 1 & 0 \\
-\gamma(\mu-\gamma)^{-\frac{1}{2}} & 0 & (\mu-\gamma)^{-\frac{1}{2}}
\end{array}\right) .
$$

In these variables, system (5.8) is equivalent to

$$
\partial_{t} \rho+A_{1} \partial_{x} \rho+L \rho=-\frac{1}{\varepsilon}\left(\begin{array}{c}
0 \tag{5.11}\\
0 \\
\rho_{3}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1}^{2}
\end{array}\right)+H
$$

for $(t, x) \in\left[0, T^{*}\left[\times \mathbb{R}^{+}\right.\right.$, with the initial-boundary conditions

$$
\begin{equation*}
\rho(0, x)=0 \text { for } x \in \mathbb{R}^{+} \text {and } \rho_{2}(t, 0)=0 \text { for } t \in\left[0, T^{*}[\right. \tag{5.12}
\end{equation*}
$$

The matrix $A_{1}=P A P^{-1}$ is symmetric

$$
A_{1}(t, x)=\left(\begin{array}{ccc}
0 & -\gamma^{\frac{1}{2}} & 0 \\
-\gamma^{\frac{1}{2}} & 0 & -(\mu-\gamma)^{\frac{1}{2}} \\
0 & -(\mu-\gamma)^{\frac{1}{2}} & 0
\end{array}\right)
$$

The matrix L is given by $L(t, x)=P \partial_{t} P^{-1}+P A \partial_{x} P^{-1}$. In addition, F_{1} and H are given by

$$
\begin{equation*}
F_{1}(t, x, \xi)=\gamma^{-1}(\mu-\gamma)^{-\frac{1}{2}} F\left(t, x, \gamma^{-\frac{1}{2}} \xi\right) \tag{5.13}
\end{equation*}
$$

$$
H(t, x)=\left(\begin{array}{c}
0 \\
\partial_{x} v^{1} \\
-(\mu-\gamma)^{-\frac{1}{2}} \partial_{t} v^{1}
\end{array}\right)
$$

From (5.1) we have

$$
\begin{equation*}
\partial_{t}^{i} \gamma \in \mathcal{C}^{0}\left(\left[0, T^{*}\left[; H^{3-i}\left(\mathbb{R}^{+}\right)\right), i=0,1,2,3\right.\right. \tag{5.14}
\end{equation*}
$$

and using (2.2) there exists $\alpha>0$ such that

$$
\begin{equation*}
\gamma(t, x) \geq \alpha \text { for }(t, x) \in\left[0, T^{*}\left[\times \mathbb{R}^{+}\right.\right. \tag{5.15}
\end{equation*}
$$

Using (5.14), (5.15) and (5.5) we have

$$
\begin{gather*}
A_{1}, \partial_{t} A_{1}, \partial_{x} A_{1} \in \mathcal{C}^{0}\left(\left[0, T^{*}\left[; L^{\infty}\left(\mathbb{R}^{+}\right)\right)\right.\right. \tag{5.16}\\
L, \partial_{t} L, \partial_{x} L \in \mathcal{C}^{0}\left(\left[0, T^{*}\left[; L^{\infty}\left(\mathbb{R}^{+}\right)\right)\right.\right. \tag{5.17}
\end{gather*}
$$

Using (5.1) and (5.7) we have

$$
\begin{equation*}
\partial_{t}^{i} H \in \mathcal{C}^{0}\left(\left[0, T^{*}\left[; H^{1-i}\left(\mathbb{R}^{+}\right)\right), i=0,1\right.\right. \tag{5.18}
\end{equation*}
$$

We recall that by (5.10) and (5.13) we have

$$
F_{1}(t, x, \xi)=\gamma^{-1}(t, x)(\mu-\gamma(t, x))^{-\frac{1}{2}} \int_{0}^{1}(1-s) p^{\prime \prime}\left(u_{1}^{0}(t, x)+s \gamma^{-\frac{1}{2}}(t, x) \xi\right) d s
$$

so, by (5.14), (5.15) and (5.5) we have

$$
\begin{equation*}
F_{1}, \partial_{t} F_{1}, \partial_{x} F_{1}, \partial_{\xi} F_{1} \in \mathcal{C}^{0}\left(\left[0, T^{*}\left[; L^{\infty}\left(\mathbb{R}^{+} \times[-1,1]\right)\right)\right.\right. \tag{5.19}
\end{equation*}
$$

Now we fix $T<T^{*}$ and we introduce T_{ε} defined by

$$
\begin{equation*}
T_{\varepsilon}=\sup \left\{t \leq T,\|\rho\|_{L^{\infty}\left([0, t] \times \mathbb{R}^{+}\right)} \leq \frac{1}{\varepsilon}\right\} \tag{5.20}
\end{equation*}
$$

We will prove that, for ε small enough, $T_{\varepsilon}=T$ and that there exists K such that for all ε small enough,

$$
\begin{equation*}
\|\rho\|_{L^{\infty}\left([0, T] ; H^{1}\left(\mathbb{R}^{+}\right)\right)}+\left\|\partial_{t} \rho\right\|_{L^{\infty}\left([0, T] ; L^{2}\left(\mathbb{R}^{+}\right)\right)} \leq K . \tag{5.21}
\end{equation*}
$$

First, by variational methods, we obtain L^{2}-estimates on ρ and $\partial_{t} \rho$. To obtain L^{2} estimates on $\partial_{x} \rho$ we use the equations taking into account that the boundary $\{x=0\}$ is characteristic.

Second step: variational estimates

We take the inner product of system (5.11) by ρ and we obtain that

$$
\begin{array}{r}
\frac{1}{2} \frac{d}{d t}\|\rho\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\int_{\mathbb{R}^{+}} A_{1} \partial_{x} \rho \cdot \rho d x+\int_{\mathbb{R}^{+}} L \rho \cdot \rho d x+\frac{1}{\varepsilon} \int_{\mathbb{R}^{+}} \rho_{3}^{2} d x=\int_{\mathbb{R}^{+}} F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1}^{2} \rho_{3} \\
+\int_{\mathbb{R}^{+}} H \cdot \rho d x .
\end{array}
$$

Using (5.12) we obtain that

$$
\int_{\mathbb{R}+} A_{1} \partial_{x} \rho \cdot \rho d x=-\frac{1}{2} \int_{\mathbb{R}^{+}}\left(\partial_{x} A_{1}\right) \rho \cdot \rho d x
$$

With the estimates $(5.16), . .,(5.19)$ and since $\varepsilon|\rho| \leq 1$ on $\left[0, T_{\varepsilon}\right] \times \mathbb{R}^{+}$, there exists a constant $C>0$ such that, for $t \leq T_{\varepsilon}$,

$$
\frac{1}{2} \frac{d}{d t}\|\rho\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\frac{1}{\varepsilon} \int_{\mathbb{R}^{+}} \rho_{3}^{2} d x \leq C\left(1+\|\rho\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\left\|\rho_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{+}\right)}\left\|\rho_{1}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}\left\|\rho_{3}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}\right)
$$

Therefore we obtain that for $t \leq T_{\varepsilon}$,

$$
\begin{equation*}
\frac{d}{d t}\|\rho\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\frac{1}{\varepsilon} \int_{\mathbb{R}^{+}} \rho_{3}^{2} d x \leq C\left(1+\|\rho\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\varepsilon\left\|\rho_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{+}\right)}^{2}\left\|\rho_{1}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}\right) \tag{5.22}
\end{equation*}
$$

We can derivate (5.11)-(5.12) with respect to t

$$
\begin{aligned}
& \partial_{t} \partial_{t} \rho+A_{1} \partial_{x} \partial_{t} \rho+ L \partial_{t} \rho+\frac{1}{\varepsilon}\left(\begin{array}{c}
0 \\
0 \\
\partial_{t} \rho_{3}
\end{array}\right)=-\partial_{t} A_{1} \partial_{x} \rho-\partial_{t} L \rho+\left(\begin{array}{c}
0 \\
0 \\
\partial_{t} F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1}^{2}
\end{array}\right) \\
&+\left(\begin{array}{c}
0 \\
0 \\
0 \\
\varepsilon \partial_{\xi} F_{1}\left(t, x, \varepsilon \rho_{1}\right) \partial_{t} \rho_{1} \rho_{1}^{2}
\end{array}\right)+\left(\begin{array}{c}
\\
2 F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1} \partial_{t} \rho_{1}
\end{array}\right)+\partial_{t} H .
\end{aligned}
$$

With the same arguments as before we obtain that there exists $C>0$ such that for $\leq T_{\varepsilon}$,

$$
\begin{align*}
\frac{d}{d t}\left\|\partial_{t} \rho\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\frac{1}{\varepsilon} \int_{\mathbb{R}^{+}}\left(\partial_{t} \rho_{3}\right)^{2} d x \leq & C\left(1+\|\rho\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\left\|\partial_{t} \rho\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\left\|\partial_{x} \rho\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}\right) \\
& \left.+C \varepsilon\left\|\rho_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{+}\right)}^{2}\left(\left\|\rho_{1}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\left\|\partial_{t} \rho_{1}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}\right)\right) \tag{5.23}
\end{align*}
$$

We define ψ by

$$
\begin{equation*}
\psi(t)=\left(\|\rho(t)\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\left\|\partial_{t} \rho(t)\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}\right)^{\frac{1}{2}} \tag{5.24}
\end{equation*}
$$

so we obtain by (5.22) and (5.23) the L^{2}-estimate: there exists $C>0$ such that for $t \leq T_{\varepsilon}$,

$$
\begin{array}{r}
\frac{d}{d t}(\psi(t))^{2}+\frac{1}{\varepsilon}\left(\left\|\rho_{3}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}+\left\|\partial_{t} \rho_{3}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}\right) \leq C\left(1+(\psi(t))^{2}\right. \tag{5.25}\\
\left.+\varepsilon\left\|\rho_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{+}\right)}^{2}(\psi(t))^{2}+\left\|\partial_{x} \rho\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}^{2}\right) .
\end{array}
$$

Third step

We now estimate $\partial_{x} \rho$ using the equations

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{1}-\gamma^{\frac{1}{2}} \partial_{x} \rho_{2}+(L \rho)_{1}=0, \tag{5.26}\\
\partial_{t} \rho_{2}-\gamma^{\frac{1}{2}} \partial_{x} \rho_{1}-(\mu-\gamma)^{\frac{1}{2}} \partial_{x} \rho_{3}+(L \rho)_{2}=H_{2}, \\
\partial_{t} \rho_{3}-(\mu-\gamma)^{\frac{1}{2}} \partial_{x} \rho_{2}+(L \rho)_{3}+\frac{1}{\varepsilon} \rho_{3}=F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1}^{2}+H_{3}
\end{array}\right.
$$

From the first equation in (5.26), and with (5.15) and (5.17) we have for $t \in\left[0, T_{\varepsilon}\right]$

$$
\begin{equation*}
\left\|\partial_{x} \rho_{2}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)} \leq C \psi \tag{5.27}
\end{equation*}
$$

Let us introduce $\tilde{\rho}_{1}=\rho_{1}+\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}} \rho_{3}$. From the second equation in (5.26) we have

$$
\partial_{t} \rho_{2}-\gamma^{\frac{1}{2}} \partial_{x} \tilde{\rho}_{1}+\gamma^{\frac{1}{2}} \partial_{x}\left(\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}\right) \rho_{3}+(L \rho)_{2}=H_{2}
$$

so, by $(5.15),(5.14),(5.17)$ and (5.18) we obtain that

$$
\begin{equation*}
\left\|\partial_{x} \tilde{\rho}_{1}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)} \leq C(1+\psi) \tag{5.28}
\end{equation*}
$$

We cannot estimate $\partial_{x} \rho_{1}$ or $\partial_{x} \rho_{3}$ by the same method because the boundary $\{x=0\}$ is characteristic. We rewrite the third equation in (5.26)

$$
\partial_{t} \rho_{3}+\frac{1}{\varepsilon} \rho_{3}=\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}\left(\partial_{t} \rho_{1}+(L \rho)_{1}\right)-(L \rho)_{3}+F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1}^{2}+H_{3}
$$

So eliminating ρ_{1} we obtain

$$
\begin{array}{r}
\mu \gamma^{-1} \partial_{t} \rho_{3}+\frac{1}{\varepsilon} \rho_{3}=\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}\left[\partial_{t} \tilde{\rho}_{1}-\partial_{t}\left(\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}\right) \rho_{3}\right]+M_{1}(t, x) \tilde{\rho}_{1}+M_{2}(t, x) \rho_{2} \\
+M_{3}(t, x) \rho_{3}+H_{3}+F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1}^{2} \tag{5.29}
\end{array}
$$

with $\rho_{1}=\tilde{\rho}_{1}-\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}} \rho_{3}$. We derivate (5.29) with respect to x and we obtain the equation satisfied by $\partial_{x} \rho_{3}$

$$
\begin{equation*}
\partial_{t} \partial_{x} \rho_{3}+\tau(t, x) \partial_{x} \rho_{3}=\sum_{i=1}^{6} T_{i} \tag{5.30}
\end{equation*}
$$

with

$$
\begin{aligned}
\tau= & \mu^{-1} \gamma\left(\frac{1}{\varepsilon}+\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}} \partial_{t}\left(\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}\right)+\varepsilon \partial_{\xi} F_{1}\left(t, x, \varepsilon \rho_{1}\right) \gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}} \rho_{1}^{2}\right. \\
& \left.+2 F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1} \gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}-M_{3}(t, x)\right), \\
T_{1}= & \mu^{-1} \gamma^{\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}} \partial_{t} \partial_{x} \tilde{\rho}_{1}, \\
T_{2}= & \mu^{-1} \gamma\left(\partial_{x}\left(\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}\right) \partial_{t} \tilde{\rho}_{1}-\partial_{x}\left(\gamma^{-1} \mu\right) \partial_{t} \rho_{3}\right. \\
& -\partial_{x}\left(\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}} \partial_{t}\left(\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}\right)\right) \rho_{3} \\
& \left.+\left(\partial_{x} M_{1}\right) \tilde{\rho}_{1}+\left(\partial_{x} M_{2}\right) \rho_{2}+\left(\partial_{x} M_{3}\right) \rho_{3}\right) \\
T_{3}= & \mu^{-1} \gamma \partial_{x} H_{3}, \\
T_{4}= & \mu^{-1} \gamma\left(M_{1} \partial_{x} \tilde{\rho}_{1}+M_{2} \partial_{x} \rho_{2}\right), \\
T_{5}= & \mu^{-1} \gamma\left(\partial_{x} F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1}^{2}-\varepsilon \partial_{\xi} F_{1}\left(t, x, \varepsilon \rho_{1}\right) \partial_{x}\left(\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}\right) \rho_{1}^{2} \rho_{3}\right. \\
& \left.-2 F_{1}\left(t, x, \varepsilon \rho_{1}\right) \partial_{x}\left(\gamma^{-\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}\right) \rho_{1} \rho_{3}\right), \\
T_{6}= & \mu^{-1} \gamma\left(\varepsilon \partial_{\xi} F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1}^{2} \partial_{x} \tilde{\rho}_{1}+2 F_{1}\left(t, x, \varepsilon \rho_{1}\right) \rho_{1} \partial_{x} \tilde{\rho}_{1}\right) .
\end{aligned}
$$

For $t \in\left[0, T_{\varepsilon}\right]$, using (5.5), (5.14) (5.15) and (5.19) we obtain that

$$
\left|\tau(t, x)-\frac{\mu^{-1} \gamma}{\varepsilon}\right| \leq C+C_{0}\left\|\rho_{1}\right\|_{L^{\infty}\left(\mathbb{R}^{+}\right)}
$$

We define $T_{\varepsilon}^{1} \leq T_{\varepsilon}$ by

$$
\begin{equation*}
T_{\varepsilon}^{1}=\max \left\{t \leq T_{\varepsilon},\left\|\rho_{1}\right\|_{L^{\infty}\left([0, t] \times \mathbb{R}^{+}\right)} \leq \frac{1}{2 C_{0} \varepsilon}\right\} \tag{5.31}
\end{equation*}
$$

so there exists $\tau_{1}>0$ and $\tau_{2}>0$ such that

$$
\begin{equation*}
\forall t \leq T_{\varepsilon}^{1}, \forall x>0, \frac{\tau_{1}}{\varepsilon} \leq \tau(t, x) \leq \frac{\tau_{2}}{\varepsilon} \tag{5.32}
\end{equation*}
$$

We solve Equation (5.30) by Duhamel formula

$$
\begin{equation*}
\partial_{x} \rho_{3}=\sum_{i=1}^{6} \mathcal{T}_{i} \tag{5.33}
\end{equation*}
$$

with

$$
\mathcal{T}_{i}(t, x)=\int_{0}^{t} \exp \left(-\int_{s}^{t} \tau(\sigma, x) d \sigma\right) T_{i}(s, x) d s
$$

We define Ψ by

$$
\begin{equation*}
\Psi(t)=\sup _{[0, t]} \psi(s) \tag{5.34}
\end{equation*}
$$

where ψ is given by (5.24). Integrating by parts in \mathcal{T}_{1} we obtain

$$
\begin{array}{r}
\mathcal{T}_{1}(t, x)=-\int_{0}^{t} \mu^{-1} \gamma^{\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}} \tau(s, x) \exp \left(-\int_{s}^{t} \tau(\sigma, x) d \sigma\right) \partial_{x} \tilde{\rho}_{1}(s, x) d s \\
-\int_{0}^{t} \exp \left(-\int_{s}^{t} \tau(\sigma, x) d \sigma\right) \partial_{s}\left(\mu^{-1} \gamma^{\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}}\right)(s, x) \partial_{x} \tilde{\rho}_{1}(s, x) d s \\
+\mu^{-1} \gamma^{\frac{1}{2}}(\mu-\gamma)^{\frac{1}{2}} \partial_{x} \tilde{\rho}_{1}(t, x)
\end{array}
$$

Using (5.32), (5.5), (5.14), (5.15) and (5.28) we have

$$
\left\|\mathcal{T}_{1}(t, \cdot)\right\|_{L^{2}\left(\mathbb{R}^{+}\right)} \leq \int_{0}^{t} \exp \left(-\frac{\tau_{1}}{\varepsilon}(t-s)\right) C(\psi(s)+1)\left(1+\frac{\tau_{2}}{\varepsilon}\right) d s+C(\psi(t)+1)
$$

and we obtain that

$$
\begin{equation*}
\forall t \leq T_{\varepsilon}^{1},\left\|\mathcal{T}_{1}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)} \leq C(1+\Psi(t)) \tag{5.35}
\end{equation*}
$$

Using (5.5) (5.14) (5.15) (5.24) (5.34) and also (5.18) for T_{3} and (5.27) and (5.28) for T_{4}, we obtain

$$
\begin{equation*}
\forall t \leq T_{\varepsilon}^{1},\left\|\mathcal{T}_{2}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}+\left\|\mathcal{T}_{3}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}+\left\|\mathcal{T}_{4}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)} \leq C \varepsilon(1+\Psi(t)) \tag{5.36}
\end{equation*}
$$

For the nonlinear terms T_{5} and T_{6} we use in addition (5.19) (5.20) and we obtain

$$
\begin{equation*}
\forall t \leq T_{\varepsilon}^{1},\left\|\mathcal{T}_{5}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)}+\left\|\mathcal{T}_{6}\right\|_{L^{2}\left(\mathbb{R}^{+}\right)} \leq C(1+\Psi(t)) \tag{5.37}
\end{equation*}
$$

Therefore we obtain the following estimation for $\partial_{x} \rho$ using (5.27) (5.28) (5.33) (5.35) (5.36) (5.37)

$$
\begin{equation*}
\forall t \leq T_{\varepsilon}^{1},\left\|\partial_{x} \rho\right\|_{L^{2}\left(\mathbb{R}^{+}\right)} \leq C(1+\Psi(t)) \tag{5.38}
\end{equation*}
$$

so we have

$$
\begin{equation*}
\forall t \leq T_{\varepsilon}^{1},\|\rho\|_{L^{\infty}\left(\mathbb{R}^{+}\right)} \leq C_{1}(1+\Psi(t)) \tag{5.39}
\end{equation*}
$$

Fourth step

By a comparison method we estimate Ψ. For $t \leq T_{\varepsilon}^{1}$, integrating (5.25) from 0 to t, using (5.38) and (5.39) we obtain that

$$
\begin{equation*}
(\Psi(t))^{2} \leq C_{2} \int_{0}^{t}\left(1+(\Psi(s))^{2}+\varepsilon(\Psi(s))^{4}\right) d s \tag{5.40}
\end{equation*}
$$

We introduce the differential equation

$$
\begin{equation*}
y_{\varepsilon}^{\prime}=C_{2}\left(1+y_{\varepsilon}+\varepsilon y_{\varepsilon}^{2}\right), y_{\varepsilon}(0)=0 \tag{5.41}
\end{equation*}
$$

There exists $\varepsilon_{0}>0$ such that, for $\varepsilon \leq \varepsilon_{0}$, the lifespan of y_{ε} is greater than T. So we have

$$
\forall \varepsilon \leq \varepsilon_{0}, \forall t \leq T, y_{\varepsilon}(t) \leq y_{\varepsilon_{0}}(t) \leq y_{\varepsilon_{0}}(T)=C_{3} .
$$

By comparison principle we deduce from (5.40) that

$$
\forall \varepsilon \leq \varepsilon_{0}, \forall t \leq T_{\varepsilon}^{1},(\Psi(t))^{2} \leq C_{3}
$$

and from (5.39),

$$
\forall \varepsilon \leq \varepsilon_{0}, \forall t \leq T_{\varepsilon}^{1},\|\rho\|_{L^{\infty}\left(\mathbb{R}^{+}\right)} \leq C_{1}\left(1+\sqrt{C_{3}}\right)
$$

Let $\varepsilon_{1}>0$ such that $\varepsilon_{1} \leq \varepsilon_{0}$ such that

$$
\forall \varepsilon \leq \varepsilon_{1}, C_{1}\left(1+\sqrt{C_{3}}\right) \leq \frac{1}{2 C_{0} \varepsilon}
$$

So, by (5.20) and (5.31), we have for $\varepsilon \leq \varepsilon_{1}, T_{e}^{1}=T_{\varepsilon}=T$ and we conclude the proof by the estimate

$$
\exists K>0, \forall \varepsilon \leq \varepsilon_{1},\|\rho\|_{L^{\infty}\left([0, T] ; H^{1}\left(\mathbb{R}^{+}\right)\right)}+\left\|\partial_{t} \rho\right\|_{L^{\infty}\left([0, T] ; L^{2}\left(\mathbb{R}^{+}\right)\right)} \leq K
$$

6. Annex

Using the method in W.A. Yong [22] we show the convergence result for the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}^{\varepsilon}-\partial_{x} u_{2}^{\varepsilon}=0 \tag{6.1}\\
\partial_{t} u_{2}^{\varepsilon}-\partial_{x} v^{\varepsilon}=0 \\
\partial_{t} v^{\varepsilon}-\mu \partial_{x} u_{2}^{\varepsilon}=\frac{1}{\varepsilon}\left(p\left(u_{1}^{\varepsilon}\right)-v^{\varepsilon}\right)
\end{array}\right.
$$

for $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}$ with the smooth initial data

$$
\begin{equation*}
w^{\varepsilon}(0, x)=w_{0}(x)=\left(u_{0}(x), v_{0}(x)\right) \text { for } x \in \mathbb{R} \tag{6.2}
\end{equation*}
$$

Let us introduce u^{0} the smooth solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}^{0}-\partial_{x} u_{2}^{0}=0 \tag{6.3}\\
\partial_{t} u_{2}^{0}-\partial_{x} p\left(u_{1}^{0}\right)=0
\end{array}\right.
$$

with the initial data

$$
\begin{equation*}
u^{0}(0, x)=u_{0}(x) \tag{6.4}
\end{equation*}
$$

As in Tzavaras [21] we assume that there exists $\gamma>0$ and $\Gamma>0$ such that

$$
\begin{equation*}
\forall \xi \in \mathbb{R}, \gamma \leq p^{\prime}(\xi) \leq \Gamma<\mu \tag{6.5}
\end{equation*}
$$

so the problem (6.1)-(6.2) admits a global solution $w^{\varepsilon}=\left(u^{\varepsilon}, v^{\varepsilon}\right)$ such that

$$
w^{\varepsilon} \in \mathcal{C}^{0}\left(\mathbb{R}^{+} ; H^{s}(\mathbb{R})\right) \cap \mathcal{C}^{1}\left(\mathbb{R}^{+} ; H^{s-1}(\mathbb{R})\right)
$$

We will prove the following convergence theorem.
Theorem 6.1. Under assumption (6.5), if $w_{0} \in H^{s}(\mathbb{R})$ with $s \geq 2$, then there exists $T_{1}>0$ such that when ε tends to zero, u^{ε} tends to u^{0} in $L^{\infty}\left(\left[0, T_{1}\right] ; H^{s}(\mathbb{R})\right)$.
REmARK 6.1. It would be possible to relax hypothesis (6.5) as in Theorem 2.3; in this case, the lifespan of w^{ε} is uniformly greater that T_{1}.
REMARK 6.2. In fact it appears a boundary layer in time which affects only the third component of w^{ε}.

Sketch of the proof

First step: the stability assumption in [22] are satisfied. As in [21] and [7], we consider the strictly convex entropy function for the system (6.1)

$$
\mathcal{E}\left(u_{1}, u_{2}, v\right)=\frac{1}{2} u_{2}^{2}+u_{1} v-\frac{\mu}{2} u_{1}^{2}-\int_{0}^{v-\mu u_{1}} h^{-1}(y) d y
$$

where $h(\xi)=p(\xi)-\mu \xi$ which is strictly decreasing by (6.5). So $A_{0}(w)=\mathcal{E}^{\prime \prime}(w)$ is a symmetrizer for the system. Denoting $a=\left(h^{-1}\right)^{\prime}\left(v-\mu u_{1}\right)$ we obtain

$$
A_{0}(w)=\left(\begin{array}{ccc}
-\mu-\mu^{2} & a & 1+\mu a \\
0 & 1 & 0 \\
1+\mu a & 0 & -a
\end{array}\right)
$$

and the system (6.1) is equivalent to the quasilinear symmetric system

$$
A_{0}(w) \partial_{t} w+\left(\begin{array}{ccc}
0 & 0 & 0 \tag{6.6}\\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) \partial_{x} w=\frac{1}{\varepsilon}\left(p\left(u_{1}\right)-v\right)\left(\begin{array}{c}
1+\mu a \\
0 \\
-a
\end{array}\right)
$$

We denote

$$
Q(w)=\left(\begin{array}{c}
0 \\
0 \\
p\left(u_{1}\right)-v
\end{array}\right) \text { and } P(w)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-p^{\prime}\left(u_{1}\right) & 0 & 1
\end{array}\right)
$$

and we obtain

$$
P(w) Q^{\prime}(w) P^{-1}(w)=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{6.7}\\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

On the equilibrium manifold $\mathcal{V}=\left\{v=p\left(u_{1}\right)\right\}$, we have

$$
A_{0}(w) Q^{\prime}(w)+Q^{\prime}(w) A_{0}(w)=\frac{2}{p^{\prime}\left(u_{1}\right)-\mu}\left(\begin{array}{ccc}
\left(p^{\prime}\left(u_{1}\right)\right)^{2} & 0 & -p^{\prime}\left(u_{1}\right) \tag{6.8}\\
0 & 0 & 0 \\
-p^{\prime}\left(u_{1}\right) & 0 & 1
\end{array}\right)
$$

Using (6.6), (6.7) and (6.8) we obtain the stability conditions in [22].
Second step: we use Theorems 6.1 and 6.2 in [22]. We introduce the interior profile $w^{0}=\left(\left(u_{1}^{0}, u_{2}\right), p\left(u_{1}^{0}\right)\right)$ and the boundary layer term $I^{0}=\tilde{I}^{0}-w^{0}(0, x)$ where \tilde{I}^{0} is the solution of

$$
\frac{d \tilde{I}_{0}}{d \tau}=Q\left(\tilde{I}_{0}\right), \tilde{I}(\tau=0)=w_{0}(x)
$$

We have $I_{1}^{0}=I_{2}^{0}=0$ and

$$
I_{3}^{0}(\tau, x)=\left(v_{0}(x)-p\left(u_{1}, 0\right)\right) e^{-\tau}
$$

and we obtain

$$
w^{\varepsilon}(t, x)=w^{0}(t, x)+I^{0}\left(\frac{t}{\varepsilon}, x\right)+\mathcal{O}(\varepsilon)
$$

so we conclude the proof of Theorem 6.1.
REMARK 6.3. If w_{0} belongs to the equilibrium manifold then the order zero boundary layer term vanishes.
REMARK 6.4. In fact using more precisely [22] and the appendix of [3] we can prove that T_{1} can be arbitrarily close to the lifespan of u^{0} as in Theorem 2.3.
REMARK 6.5. In this annex the matrix P introduced in [22] plays an analogous role as the matrix P in section 5 .

REFERENCES

[1] Denise Aregba-Driollet and Vuk Milišić, Kinetic approximation of a boundary value problem for conservation laws, Numer. Math., 97 (4), 595-633, 2004.
[2] Stefano Bianchini, Bernard Hanouzet and Roberto Natalini, Asymptotic Behaviour of Smooth Solutions for Partially Dissipative Hyperbolic Systems with a Convex Entropy, Preprint 2005, to appear in Comm. Pure Appl. Math..
[3] Y. Brenier and W.-A. Yong, Derivation of particle, string, and membrane motions from the Born-Infeld electromagnetism, J. Math. Phys., 46, $062305,2005$.
[4] Gilles Carbou and Bernard Hanouzet, Relaxation approximation of some nonlinear Maxwell initial-boundary value problem, Comm. Math. Sci., 4(2), 331-344, 2006.
[5] A. Chalabi and D. Seghir, Convergence of relaxation schemes for initial boundary value problems for conservation laws, Comput. Math. Appl., 43(8-9), 1079-1093, 2002.
[6] Olivier Guès, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations, 15(5), 595-645, 1990.
[7] B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Arch. Ration. Mech. Anal., 169(2), 89-117, 2003.
[8] L. Hsiao and R. Pan, Zero relaxation limit to centered rarefaction waves for a rate-type viscoelastic system, J. Differential Equations, 157(1), 20-40, 1999.
[9] Wendy Kress, Asymptotic behavior of hyperbolic boundary value problems with relaxation term, In Hyperbolic problems: theory, numerics, applications, Vol. I, II (Magdeburg, 2000), volume 141 of Internat. Ser. Numer. Math., 140, pages 633-642. Birkhäuser, Basel, 2001.
[10] H. Li and R. Pan, Zero relaxation limit for piecewise smooth solutions to a rate-type viscoelastic system in the presence of shocks, J. Math. Anal. Appl., 252(1), 298-324, 2000.
[11] Hailiang Liu and Wen-An Yong, Time-asymptotic stability of boundary-layers for a hyperbolic relaxation system, Comm. Partial Differential Equations, 26(7-8), 1323-1343, 2001.
[12] A. Majda. Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984.
[13] A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Ration. Mech. Anal., 146(1), 1-22, 1999.
[14] Vuk Milišić, Stability and convergence of discrete kinetic approximations to an initial-boundary value problem for conservation laws, Proc. Amer. Math. Soc., 131(6), 1727-1737 (electronic), 2003.
[15] Roberto Natalini and Andrea Terracina, Convergence of a relaxation approximation to a boundary value problem for conservation laws, Comm. Partial Differential Equations, 26(7-8), 1235-1252, 2001.
[16] K. Nishihara and T. Yang, Boundary effect on asymptotic behaviour of solutions to the psystem with linear damping, J. Differential Equations, 156(2), 439-458, 1999.
[17] D. Serre and J. Shearer, Convergence with physical viscosity for nonlinear elasticity, Preprint 1993.
[18] F. Sueur, Couches limites semilinéaires, Ann. Fac. Sci. Toulouse Math. (6), 15(2), 323-380, 2006.
[19] I. Suliciu, On modelling phase transition by means of rate-type constitutive equations, shock wave structure, Int. J. Ing. Sci., 28, 827-841, 1990.
[20] S. Tang and H. Zhao, Stability of Suliciu model for phase transitions, Commun. Pure Appl. Anal., 3(4), 545-556, 2004.
[21] A. E. Tzavaras, Materials with internal variables and relaxation to conservation laws, Arch. Ration. Mech. Anal., 146(2), 129-155, 1999.
[22] Wen-An Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differential Equations, 155(1), 89-132, 1999.

[^0]: \dagger Université Bordeaux 1, Institut de Mathématiques de Bordeaux, 351 cours de la Libération, 33405 Talence cedex, France, (carbou@math.u-bordeaux1.fr).
 \ddagger Université Bordeaux 1, Institut de Mathématiques de Bordeaux, 351 cours de la Libération, 33405 Talence cedex, France, (hanouzet@math.u-bordeaux1.fr).

