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Problem statement

Consider the Hard-Thresholding (HT) estimator

y 7→ HT(y, λ) and HT(y, λ)i =

{
0 if |yi| < λ ,
yi otherwise .

which aims at recovering x0 from the observation y of the random variable

Y = x0 + W

where we consider

I x0 ∈ Rn the unknown sparse vector of interest,

I y ∈ Rn the noisy observation of x0,

I W ∼ N (0, σ2Idn) the noise component,

I λ > 0 a regularization parameter.

How to choose the value of the parameter λ?

Risk-based selection of λ

I Consider an estimator y 7→ x(y, λ) whith parameter λ.

I Risk associated to λ: measure of the expected quality of x(y, λ) wrt x0,

R(λ) = EW ||x(Y, λ)− x0||2 .
I The optimal (theoretical) λ minimizes the risk.

The risk is unknown since it depends on x0.

Can we estimate the risk solely from x(y,λ)?

Unbiased risk estimation

Degree of freedom

I Degree Of Freedom (DOF) is defined by [Efron, 1986] as:

df{x}(x0, λ) ,
n∑
i=1

cov(Yi, x(Yi, λ))

σ2
.

I The DOF plays an important role in model/parameter selection.

Risk estimation via SURE

I Assume y 7→ x(y, λ) is weakly differentiable.

I Define the Stein Unbiased Risk Estimator (SURE) as:

SURE{x}(Y, λ) = ||Y − x(Y, λ))||2−nσ2+2σ2d̂f{x}(Y, λ)

where d̂f{x}(y, λ) = div (x(y, λ)) .

I Steim Lemma [Stein, 1981] implies:

EW (d̂f{x}(Y, λ)) = df{x}(x0, λ)

and EW (SURE{x}(Y, λ)) = EW (||x0 − x(Y, λ)||2) .

The Hard-Tresholding is not weakly differentiable.

The DOF cannot be unbiasedly estimated from the divergence.

A biased DOF estimator for hard-thresholding

I Remark that the HT can be written as

HT(y, λ) = ST(y, λ) + D(y, λ)

where ST(y, λ)i =

 yi + λ if yi < −λ
0 if − λ 6 yi < +λ
yi − λ otherwise

and D(y, λ)i =

−λ if yi < −λ
0 if − λ 6 yi < +λ
+λ otherwise

,

where y 7→ ST(y, λ) is the soft thresholding operator, and:

I y 7→ ST(y, λ): Lipschitz continuous ⇒ d̂f{ST}(y, λ) = #{|y| > λ},

I y 7→ D(y, λ): Piece-wise constant with discontinuities at ±λ ⇒ Stein’s lemma does not apply.

I Consider a smoothed version Gh ? D(., λ) where Gh is a Gaussian kernel of bandwidth h:

I y 7→ (Gh ? D(., λ))(y): C∞ ⇒ Stein’s lemma apply leading to:

y 7→ d̂f{HT}(y, λ, h) = #{|y| > λ} + λ
√
σ2+h2√
2πσh

n∑
i=1

[
exp

(
−(yi+λ)2

2h2

)
+exp

(
−(yi−λ)2

2h2

)]
.

d̂f{HT}(y, λ,h) is biased. How does its bias evolve w.r.t. n and h ?

Theorem (Stein’s Consistent DOF estimator)

Let Y = x0 + W for W ∼ N (x0, σ
2Idn).

Take ĥ(n) such that limn→∞ ĥ(n) = 0 and limn→∞ n−1ĥ(n)−1 = 0.
Then

plimn→∞
1
n

(
d̂f{HT}(Y, λ, ĥ(n))− df{HT}(x0, λ)

)
= 0 .

In particular

1. lim
n→∞

EW
[1
nd̂f{HT}(Y, λ, ĥ(n))

]
= lim
n→∞

1
ndf{HT}(x0, λ), and

2. lim
n→∞

VW
[1
nd̂f{HT}(Y, λ, ĥ(n))

]
= 0 ,

where VW is the variance w.r.t. W .

If h decreases slower than 1
n, the bias vanishes when n increases.

Corollary (Stein’s Consistent Risk estimator)

Let Y = x0 + W for W ∼ N (x0, σ
2Idn), and assume that ||x0||4 = o(n1/2).

Take ĥ(n) such that limn→∞ ĥ(n) = 0 and limn→∞ n−1ĥ(n)−1 = 0.
Then, the Stein COnsistent Risk Estimator (SCORE) evaluated at a realization y of Y

SCORE{HT}(y, λ, ĥ(n)) =

n∑
i=1

(
I(|yi| < λ)y2

i

)
− nσ2 + 2σ2d̂f{HT}(y, λ, ĥ(n)) ,

where I(ω) is the indicator for an event ω, is such that

plimn→∞
1

n

(
SCORE{HT}(Y, λ, ĥ(n))− EW ||HT(Y, λ)− x0||2

)
= 0 .

If h decreases slower than 1
n, the SCORE is consistent.

Numerical example – Recovering of a compressible vector

I Consider x0 a compressible vector of length n = 2E5 whose sorted values in magnitude decay as

|x0|(i) = 1/iγ for γ > 0

I Consider σ chosen such that the SNR of y is of about 5.65dB
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I Compare to Jansen’s estimator [Jansen, 2011]
n∑
i=1

(
I(|yi| < λ)y2

i

)
− nσ2 + 2σ2#{|y| > λ} +

2σλ√
2π

n∑
i=1

exp

(
− λ2

2σ2

))

Numerical example – Image denoising

I Consider x0 an image quantified on [0, 255] and σ = 10.

I Assume Ψx0 is sparse where Ψ is an orthonormal wavelet basis.

I Since W is white and using Parseval identity:

1

n
SCORE{HT}(ΨY, λ, ĥ(n)) consistently estimates

1

n
EW ||Ψ−1HT(ΨY, λ)− x0||2

(a) x0 (b) y

(c) Ψ−1HT(Ψy, λopt)
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(d) Choice of λopt

Perspectives

I Deeper investigation of the choice of ĥ(n).
I Extend to other non-continuous estimators and inverse problems:

I Iterative Hard-Thresholding,
I Ill-conditioned observation operators,
I Redundant dictionnaries.
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