Problem statement

Consider the **Hard-Thresholding** (HT) estimator $y \mapsto \operatorname{HT}(y, \lambda)$ and $\operatorname{HT}(y, \lambda)_i = \begin{cases} 0 & \text{if } |y_i| < \lambda \\ y_i & \text{otherwise} \end{cases}$. which aims at recovering x_0 from the observation y of the random variable $Y = x_0 + W$ where we consider $\blacktriangleright x_0 \in \mathbb{R}^n$ the unknown **sparse** vector of interest, • $y \in \mathbb{R}^n$

- $W \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$
- $\blacktriangleright \lambda > 0$

the noisy observation of x_0 , the noise component, a regularization parameter.

How to choose the value of the parameter λ ?

Risk-based selection of λ

- Consider an estimator $y \mapsto x(y, \lambda)$ whith parameter λ .
- ▶ Risk associated to λ : measure of the expected quality of $x(y, \lambda)$ wrt x_0 ,

$$R(\lambda) = \mathbb{E}_W \| x(Y, \lambda) - x_0 \|^2 .$$

• The optimal (theoretical) λ minimizes the risk.

The risk is unknown since it depends on x_0 . Can we estimate the risk solely from $x(y, \lambda)$?

Unbiased risk estimation

Degree of freedom

► Degree Of Freedom (DOF) is defined by [Efron, 1986] as:

$$df\{x\}(x_0,\lambda) \triangleq \sum_{i=1}^n \frac{\operatorname{cov}(Y_i, x(Y_i,\lambda))}{\sigma^2} \,.$$

► The DOF plays an important role in model/parameter selection.

Risk estimation via SURE

- Assume $y \mapsto x(y, \lambda)$ is weakly differentiable.
- Define the Stein Unbiased Risk Estimator (SURE) as:

$$SURE\{x\}(Y,\lambda) = \|Y - x(Y,\lambda))\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda) = \|Y - x(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 + 2\sigma^2 \widehat{df}\{x\}(Y,\lambda)\|^2 - n\sigma^2 + 2\sigma^2 + 2\sigma^2 + 2\sigma^2 + 2$$

- where $\widehat{df}\{x\}(y,\lambda) = \operatorname{div}(x(y,\lambda))$.
- ► Steim Lemma [Stein, 1981] implies:

 $\mathbb{E}_{W}(\widehat{df}\{x\}(Y,\lambda)) = df\{x\}(x_{0},\lambda)$ and $\mathbb{E}_W(\operatorname{SURE}\{x\}(Y,\lambda)) = \mathbb{E}_W(\|x_0 - x(Y,\lambda)\|^2)$.

The Hard-Tresholding is not weakly differentiable.

The DOF cannot be unbiasedly estimated from the divergence.

Stein COnsistent Risk Estimator (SCORE) for hard thresholding

 1 IMB, CNRS-Université Bordeaux 1, 2 CEREMADE, CNRS-Université Paris–Dauphine — 3 GREYC, CNRS-ENSICAEN — 3

A biased DOF estimator for hard-thresholding

▶ Remark that the HT can be written as

 $\operatorname{HT}(y,\lambda) = \operatorname{ST}(y,\lambda) + D(y,\lambda)$ where $\operatorname{ST}(y,\lambda)_i = \begin{cases} y_i + \lambda \text{ if } y_i < -\lambda \\ 0 & \text{if } -\lambda \leqslant y_i < +\lambda \\ y_i - \lambda \text{ otherwise} \end{cases}$ and $D(y,\lambda)_i = \begin{cases} -\lambda \text{ if } y_i < -\lambda \\ 0 & \text{if } -\lambda \leqslant y_i < +\lambda \\ +\lambda \text{ otherwise} \end{cases}$

where $y \mapsto ST(y, \lambda)$ is the soft thresholding operator, and: • $y \mapsto \operatorname{ST}(y, \lambda)$: Lipschitz continuous $\Rightarrow \widehat{df} \{\operatorname{ST}\}(y, \lambda) = \#\{|y| > \lambda\},$

- ▶ Consider a smoothed version $\mathcal{G}_h \star D(., \lambda)$ where \mathcal{G}_h is a Gaussian kernel of bandwidth h:
- $y \mapsto (\mathcal{G}_h \star D(.,\lambda))(y)$: $C^{\infty} \Rightarrow$ Stein's lemma apply leading to:

 \widehat{df} {HT}(y, λ , h) is biased. How does its bias evolve w.r.t. n and h ?

Theorem (Stein's Consistent DOF estimator)

Let $Y = x_0 + W$ for $W \sim \mathcal{N}(x_0, \sigma^2 \mathrm{Id}_n)$. Take $\widehat{h}(n)$ such that $\lim_{n\to\infty} \widehat{h}(n) = 0$ and $\lim_{n\to\infty} n^{-1} \widehat{h}(n)^{-1} = 0$. Then

 $\operatorname{plim}_{n \to \infty} \frac{1}{n} \left(\widehat{df} \{ \operatorname{HT} \} (Y, \lambda, \widehat{h}(n)) - df \{ \operatorname{HT} \} (x_0, \lambda) \right) = 0 \; .$

In particular

1. $\lim_{n \to \infty} \mathbb{E}_W \left[\frac{1}{n} \widehat{df} \{ \mathrm{HT} \} (Y, \lambda, \widehat{h}(n)) \right] = \lim_{n \to \infty} \frac{1}{n} df \{ \mathrm{HT} \} (x_0, \lambda), \text{ and }$ 2. $\lim_{n \to \infty} \mathbb{V}_W \left[\frac{1}{n} \widehat{df} \{ \mathrm{HT} \} (Y, \lambda, \widehat{h}(n)) \right] = 0 ,$

where \mathbb{V}_W is the variance w.r.t. W.

If h decreases slower than $\frac{1}{n}$, the bias vanishes when n increases.

Corollary (Stein's Consistent Risk estimator)

Let $Y = x_0 + W$ for $W \sim \mathcal{N}(x_0, \sigma^2 \mathrm{Id}_n)$, and assume that $||x_0||_4 = o(n^{1/2})$. Take $\widehat{h}(n)$ such that $\lim_{n\to\infty} \widehat{h}(n) = 0$ and $\lim_{n\to\infty} n^{-1}\widehat{h}(n)^{-1} = 0$. Then, the Stein COnsistent Risk Estimator (SCORE) evaluated at a realization y of Y

$$\operatorname{SCORE}\{\operatorname{HT}\}(y,\lambda,\widehat{h}(n)) = \sum_{i=1}^{n} \left(I(|y_i| < \lambda) y_i^2 \right) - n\sigma^2 + 2\sigma^2 \widehat{df}\{\operatorname{HT}\}(y,\lambda,\widehat{h}(n)) ,$$

where $I(\omega)$ is the indicator for an event ω , is such that

$$\lim_{n \to \infty} \frac{1}{n} \left(\operatorname{SCORE} \{ \operatorname{HT} \} (Y, \lambda, \widehat{h}(n)) - \mathbb{E}_W \| \operatorname{HT}(Y, \lambda) - x_0 \|^2 \right) = 0$$

If h decreases slower than $\frac{1}{n}$, the SCORE is consistent.

 (λ, λ)

- $y \mapsto D(y, \lambda)$: Piece-wise constant with discontinuities at $\pm \lambda \Rightarrow$ Stein's lemma does not apply.

$$\left[\exp\left(-\frac{(y_i+\lambda)^2}{2h^2}\right) + \exp\left(-\frac{(y_i-\lambda)^2}{2h^2}\right)\right] .$$

Numerical example – Recovering of a compressible vector

- Consider σ chosen such that the SNR of y is of about 5.65dB

- Compare to Jansen's estimator [Jansen, 2011]

$$\sum_{i=1} \left(I(|y_i| < \lambda) y_i^2 \right) - n$$

Numerical example – Image denoising

- Consider x_0 an image quantified on [0, 255] and $\sigma = 10$.
- Assume Ψx_0 is sparse where Ψ is an orthonormal wavelet basis.
- ► Since W is white and using Parseval identity:

(c) Ψ^{-1} HT $(\Psi y, \lambda^{opt})$

Perspectives

 Deeper investigation of the choice of h Extend to other non-continuous estima Iterative Hard-Thresholding, Ill-conditioned observation operators, Redundant dictionnaries.
References
Efron, B. (1986). How biased is the apparent error rate of a prediction rule? <i>Journal of the American Statistical Association</i> , 81(394):4
Jansen, M. (2011). Information criteria for variable selection under sparsity. Technical report, Technical report, ULB.
Stein, C. (1981).

Estimation of the mean of a multivariate normal distribution. The Annals of Statistics, 9(6):1135–1151.

 $\sum_{i=1}^{n} \left(I(|y_i| < \lambda) y_i^2 \right) - n\sigma^2 + 2\sigma^2 \#\{|y| > \lambda\} + \frac{2\sigma\lambda}{\sqrt{2\pi}} \sum_{i=1}^{n} \exp\left(-\frac{\lambda^2}{2\sigma^2}\right) \right)$

 $\dot{h}(n)$. ators and inverse problems:

):461–470.