Image and video restoration

Chapter VI - Sparsity, shrinkage and wavelets

Charles Deledalle
June 7, 2019

Motivations

(c) $\frac{\lambda_{i}^{2}}{\lambda_{i}^{2}+\sigma^{2}}$
(d) $\hat{z}_{i}=\frac{\lambda_{i}^{2}}{\lambda_{i}^{2}+\sigma^{2}} z_{i}$
(a) $y=x+w$
(b) $z=\boldsymbol{F} y$
(e) $\hat{x}=\boldsymbol{F}^{-1} \hat{z}$

Wiener filter (LMMSE in the Fourier domain)

- Assume Fourier coefficients to be decorrelated (white),
- Modulate frequencies based on the mean power spectral density λ_{i}^{2}.

Limits

- Linear: no adaptation to the content $\Rightarrow\left\{\begin{array}{l}\text { Unable to preserve edges, } \\ \text { Blurry solutions. }\end{array}\right.$

Motivations

Facts and consequences

- Assume Fourier coefficients to be decorrelated (white)
- Removing Gaussian noise \Rightarrow need to be adaptive \Rightarrow Non linear
- Assuming Gaussian noise + Gaussian prior \Rightarrow Linear

Deductive reasoning

Fourier coefficients of clean images are not Gaussian distributed

Underlying prior $x \mapsto p(x)$

How are Fourier coefficients distributed?

Motivations - Distribution of Fourier coefficients

How are Fourier coefficients distributed?

1. Perform whitening with DFT

$$
\begin{gathered}
\operatorname{Var}[x]=\boldsymbol{L}=\boldsymbol{E} \boldsymbol{\Lambda} \boldsymbol{E}^{*} \quad \text { with } \quad \boldsymbol{E}=\frac{1}{\sqrt{n}} \boldsymbol{F} \\
\operatorname{diag}(\boldsymbol{\Lambda})=\left(\lambda_{1}^{2}, \ldots, \lambda_{n}^{2}\right)=n^{-1} \operatorname{MPSD}
\end{gathered}
$$

Motivations - Distribution of Fourier coefficients

How are Fourier coefficients distributed?

2. Look at the histogram

- The histogram of η has a symmetric bell shape around 0 .
- It has a peak at 0 (a large number of Fourier coefficients are zero).
- It has large/heavy tails (many coefficients are "outliers" /abnormal).

(a) x

(b) Whitening η of x

(c) Histogram of η

Motivations - Distribution of Fourier coefficients

How are Fourier coefficients distributed?

3. Look for the distribution that best fits (in log scale)

- Gaussian: bell shape $\sqrt{ }$, peak \times, tail \times
- Laplacian: bell shape \times, peak $\sqrt{ }$, tail $\sqrt{ }$
- Student: bell shape $\sqrt{ }$, peak \times, tail $\sqrt{ }$ (heavier)
- Others: alpha stables and generalized Gaussian distributions

(a) Whitening η of x

(b) Histogram of η

(c) Log-histogram of η

Motivations - Distribution of Fourier coefficients

Model expression (zero mean, variance $=1$)

- Gaussian: bell shape $\sqrt{ }$, peak \times, tail \times

$$
p\left(\eta_{i}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\eta_{i}^{2}}{2}\right)
$$

- Laplacian: bell shape \times, peak $\sqrt{ }$, tail $\sqrt{ }$

$$
p\left(\eta_{i}\right)=\frac{1}{\sqrt{2}} \exp \left(-\sqrt{2}\left|\eta_{i}\right|\right)
$$

- Student: bell shape $\sqrt{ }$, peak \times, tail $\sqrt{ }$ (heavier)

$$
p\left(\eta_{i}\right)=\frac{1}{Z}\left(\frac{1}{(2 r-2)+\eta_{i}^{2}}\right)^{r+1 / 2}
$$

(Z normalization constant, $r>1$ controls the tails)

How do they look in multiple-dimensions?

Motivations - Distribution of Fourier coefficients

- Gaussian prior $\left\{\begin{array}{l}\bullet \text { images are concentrated in an elliptical cluster, } \\ \bullet \text { outliers are rare (images outside the cluster). }\end{array}\right.$
- Peaky \& heavy tailed priors: shape between a diamond and a star.

(- union of subspaces: most images lie in one of the branches of the star,
- sparsity:
- robustness: most of their coefficients η_{i} are zeros, outlier coefficients are frequent.

Shrinkage functions

Shrinkage functions

Consider the following Gaussian denoising problem

- Let $y \in \mathbb{R}^{n}$ and $x \in \mathbb{R}^{p}$ be two random vectors such that

$$
\begin{gathered}
y \mid x \sim \mathcal{N}\left(x, \sigma^{2} \operatorname{Id}_{n}\right) \\
\mathbb{E}[x]=0 \quad \text { and } \quad \operatorname{Var}[x]=\boldsymbol{L}=\boldsymbol{E} \boldsymbol{\Lambda} \boldsymbol{E}^{*}
\end{gathered}
$$

- Let $\eta=\Lambda^{-1 / 2} \boldsymbol{E}^{*} x \quad$ (whitening / decorrelation of x)

Goal: estimate x from y assuming a non-Gaussian prior p_{η} for η. (such as Laplacian or Student)

Shrinkage functions

Bayesian shrinkage functions

- Assume η_{i} are also independent and identically distributed (iid).
- Then, the MMSE and MAP estimators both read as

$$
\hat{x}^{\star}=\underbrace{\boldsymbol{E} \hat{z}}_{\text {Come back }} \text { where } \underbrace{\hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right)}_{\text {shrinkage }} \quad \text { and } \quad z=\underbrace{\boldsymbol{E}^{*} y}_{\text {Change of basis }}
$$

- The function $z_{i} \mapsto s\left(z_{i} ; \lambda_{i}, \sigma\right)$ is called shrinkage function.
- Unlike the LMMSE, s will depend on the prior distribution of η_{i}.
- As for the LMMSE, the solution can be computed in the eigenspace.
- We say that the estimator is separable in the eigenspace (ex: Fourier).

Shrinkage functions

Remark

independence \Rightarrow uncorrelation
\neg uncorrelation \Rightarrow independence correlation \Rightarrow dependence

Whitening is a necessarily step for independence but not a sufficient one.
(Except in the Gaussian case)

How are the shrinkage functions defined for the MMSE and MAP?

Shrinkage functions

- Recall that the MMSE is the posterior mean

$$
\hat{x}^{\star}=\int_{\mathbb{R}^{n}} x p(x \mid y) \mathrm{d} x=\frac{\int_{\mathbb{R}^{n}} x p(y \mid x) p(x) \mathrm{d} x}{\int_{\mathbb{R}^{n}} p(y \mid x) p(x) \mathrm{d} x}
$$

MMSE Shrinkage functions

- Under the previous assumptions

$$
\begin{aligned}
& \hat{x}^{\star}=\underbrace{\boldsymbol{E} \hat{z}}_{\text {Come back }} \text { where } \underbrace{\hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right)}_{\text {shrinkage }} \text { and } z=\underbrace{\boldsymbol{E}^{*} y}_{\text {Change of basis }} \\
& \text { with } \quad s(z ; \lambda, \sigma)=\frac{\int_{\mathbb{R}} \tilde{z} \exp \left(-\frac{(z-\tilde{z})^{2}}{2 \sigma^{2}}\right) p_{\eta}\left(\frac{\tilde{z}}{\lambda}\right) \mathrm{d} \tilde{z}}{\int_{\mathbb{R}} \exp \left(-\frac{(z-\tilde{z})^{2}}{2 \sigma^{2}}\right) p_{\eta}\left(\frac{\tilde{z}}{\lambda}\right) \mathrm{d} \tilde{z}}
\end{aligned}
$$

where p_{η} is the prior distribution on the entries of η.

- Separability: n dimensional optimization $\longrightarrow n \times 1 \mathrm{~d}$ integrations.

Shrinkage functions

- Recall that the MAP is the optimization problem

$$
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmax}} p(x \mid y)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}[-\log p(y \mid x)-\log p(x)]
$$

MAP Shrinkage functions

- Under the previous assumptions

$$
\begin{aligned}
& \hat{x}^{\star}=\underbrace{\boldsymbol{E} \hat{z}}_{\text {Come back }} \text { where } \underbrace{\hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right)}_{\text {shrinkage }} \text { and } z=\underbrace{\boldsymbol{E}^{*} y}_{\text {Change of basis }} \\
& \text { with } \quad s(z ; \lambda, \sigma)={\underset{\tilde{z} \in \mathbb{R}}{\operatorname{argmin}}\left[\frac{(z-\tilde{z})^{2}}{2 \sigma^{2}}-\log p_{\eta}\left(\frac{\tilde{z}}{\lambda}\right)\right]}^{\text {and }}=\text {, }
\end{aligned}
$$

where p_{η} is the prior distribution on the entries of η.

- Separability: n dimensional integration $\longrightarrow n \times 1$ d optimisations.

Shrinkage functions

Example (Gaussian noise + Gaussian prior)

- MMSE Shrinkage

$$
s(z ; \lambda, \sigma)=\frac{\int_{\mathbb{R}} \tilde{z} \exp \left(-\frac{(z-\tilde{z})^{2}}{2 \sigma^{2}}-\frac{\tilde{z}^{2}}{2 \lambda^{2}}\right) \mathrm{d} \tilde{z}}{\int_{\mathbb{R}} \exp \left(-\frac{(z-\tilde{z})^{2}}{2 \sigma^{2}}-\frac{\tilde{z}^{2}}{2 \lambda^{2}}\right) \mathrm{d} \tilde{z}}=\frac{\lambda^{2}}{\lambda^{2}+\sigma^{2}} z
$$

- MAP Shrinkage

$$
s(z ; \lambda, \sigma)=\underset{\tilde{z} \in \mathbb{R}}{\operatorname{argmin}}\left[\frac{(z-\tilde{z})^{2}}{2 \sigma^{2}}+\frac{\tilde{z}^{2}}{2 \lambda^{2}}\right]=\frac{\lambda^{2}}{\lambda^{2}+\sigma^{2}} z
$$

- Gaussian prior: MAP $=$ MMSE $=$ Linear shrinkage.
- We retrieve the LMMSE as expected.

Shrinkage functions

Gaussian noise + Gaussian prior

Posterior mean - Shrinkage functions - Examples

Example (Gaussian noise + Laplacian prior)

- MMSE Shrinkage

$$
\begin{aligned}
s(z ; \lambda, \sigma) & =\frac{\int \tilde{z} \exp \left(-\frac{(z-\tilde{z})^{2}}{2 \sigma^{2}}-\frac{\sqrt{2}|\tilde{z}|}{\lambda}\right) \mathrm{d} \tilde{z}}{\int \exp \left(-\frac{(z-\tilde{z})^{2}}{2 \sigma^{2}}-\frac{\sqrt{2}|\tilde{z}|}{\lambda}\right) \mathrm{d} \tilde{z}} \\
= & z-\frac{\gamma\left(\operatorname{erf}\left(\frac{z-\gamma}{\sqrt{2} \sigma}\right)-\exp \left(\frac{2 \gamma z}{\sigma^{2}}\right) \operatorname{erfc}\left(\frac{\gamma+z}{\sqrt{2} \sigma}\right)+1\right)}{\operatorname{erf}\left(\frac{z-\gamma}{\sqrt{2} \sigma}\right)+\exp \left(\frac{2 \gamma z}{\sigma^{2}}\right) \operatorname{erfc}\left(\frac{\gamma+z}{\sqrt{2} \sigma}\right)+1}, \quad \gamma=\frac{\sqrt{2} \sigma^{2}}{\lambda}
\end{aligned}
$$

- MAP Shrinkage (soft-thresholding)

$$
s(z ; \lambda, \sigma)=\underset{\tilde{z} \in \mathbb{R}}{\operatorname{argmin}}\left[\frac{(z-\tilde{z})^{2}}{2 \sigma^{2}}+\frac{\sqrt{2}|\tilde{z}|}{\lambda}\right]=\underbrace{\left\{\begin{array}{lll}
0 & \text { if } & |z|<\gamma \\
z-\gamma & \text { if } & z>\gamma \\
z+\gamma & \text { if } & z<-\gamma
\end{array}\right.}_{\operatorname{Soft}-\mathrm{T}(z, \gamma)}
$$

Non-gaussian prior: MAP \neq MMSE \rightarrow Non-linear shrinkage.

Shrinkage functions

Gaussian noise + Laplacian prior

Posterior mean - Shrinkage functions - Examples

Example (Gaussian noise + Student prior)

- MMSE Shrinkage

No simple expression, requires 1d numerical integration

- MAP Shrinkage

No simple expression, requires 1d numerical optimization

For efficiency, the 1d functions
can be evaluated offline and stored in a look-up-table.

Shrinkage functions

Gaussian noise + Student prior

Posterior mean - Shrinkage functions - Examples

SNR $=\lambda / \sigma=4$

$\lambda / \sigma=1 / 2$

$\lambda / \sigma=1 / 2$

- Coefficients are shrunk towards zero
- Signs are preserved
- Non-Gaussian priors leads to non-linear filtering:
- sparsity: small coefficients are shrunk (likely due to noise)
- robustness: large coefficients are preserved (likely encoding signal)
- Larger SNR $=\frac{\lambda}{\sigma} \Rightarrow$ shrinkage becomes close to identity.

Posterior mean - Shrinkage functions - Examples

Interpretation

Sparsity: zero for small values.
Robustness: remain close to the identity for large values.
Transition: bias/variance tradeoff.

Can we design our own shrinkage according to what we want?

Shrinkage functions

Shrinkage functions (a.k.a, thresholding functions)

- Pick a shrinkage function s satisfying
- Shrink: $\quad|s(z)| \leqslant|z| \quad$ (non-expansive)
- Preserve sign: $\quad z \cdot s(z) \geqslant 0$
- Kill low SNR:

$$
\lim _{\frac{\lambda}{\sigma} \rightarrow 0} s(z ; \lambda, \sigma)=0
$$

- Keep high SNR:

$$
\lim _{\frac{\lambda}{\sigma} \rightarrow \infty} s(z ; \lambda, \sigma)=z
$$

- Increasing:

$$
z_{1} \leqslant z_{2} \quad \Leftrightarrow \quad s\left(z_{1}\right) \leqslant s\left(z_{2}\right)
$$

- Beyond Bayesian: No need to relate s to a prior distribution p_{η}.

Shrinkage functions

A few examples (among many others)

- Though not necessarily related to a prior distribution,
- Often related to a penalized least square problem, ex:

$$
\operatorname{Hard}-\mathrm{T}(z)=\underset{\tilde{z} \in \mathbb{R}}{\operatorname{argmin}}\left[(z-\tilde{z})^{2}+\tau^{2} \mathbf{1}_{\{\tilde{z} \neq 0\}}\right]= \begin{cases}0 & \text { if }|z|<\tau \\ z & \text { otherwise }\end{cases}
$$

- Hard-thresholding: similar behavior to Student's shrinkage.

Shrinkage functions

Link with penalized least square (1/2)

- $\boldsymbol{D}=\boldsymbol{L}^{1 / 2}=\boldsymbol{E} \boldsymbol{\Lambda}^{1 / 2}$ is an orthogonal dictionary of n atoms/words

$$
\boldsymbol{D}=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \quad \text { with } \quad\left\|d_{i}\right\|=\lambda_{i} \quad \text { and } \quad\left\langle d_{i}, d_{j}\right\rangle=0(\text { for } i \neq j)
$$

- Goal: Look for the n coefficients η_{i}, such that \hat{x} close to y

$$
\hat{x}=\boldsymbol{D} \eta=\sum_{i=1}^{n} \eta_{i} d_{i}=\text { "linear comb. of the orthogonal atoms } d_{i} \text { of } D "
$$

- Choosing $\eta_{i}=\left\langle\frac{d_{i}}{\left\|d_{i}\right\|^{2}}, y\right\rangle$, i.e., $\eta=\boldsymbol{\Lambda}^{-1 / 2} \boldsymbol{E}^{*} y$, is optimal:

$$
\hat{x}=y
$$

but, it also reconstructs the noise component.

- Idea: penalize the coeffs to prevent from reconstructing the noise.

Shrinkage functions

Link with penalized least square (2/2)

- Penalization on the coefficients controls shrinkage and sparsity:
- $\frac{1}{2}\|y-\boldsymbol{D} \eta\|_{2}^{2}+\frac{\tau^{2}}{2}\|\eta\|_{2}^{2} \quad \Rightarrow \quad \hat{z}_{i}=\frac{\lambda_{i}^{2}}{\lambda_{i}^{2}+\tau^{2}} z_{i}$
- $\frac{1}{2}\|y-\boldsymbol{D} \eta\|_{2}^{2}+\tau\|\eta\|_{1} \quad \Rightarrow \quad \hat{z}_{i}=\operatorname{Soft}-\mathrm{T}\left(z_{i}, \gamma_{i}\right) \quad$ with $\quad \gamma_{i}=\frac{\tau}{\lambda_{i}}$
- $\frac{1}{2}\|y-\boldsymbol{D} \eta\|_{2}^{2}+\frac{\tau^{2}}{2}\|\eta\|_{0} \quad \Rightarrow \quad \hat{z}_{i}=\operatorname{Hard}-\mathrm{T}\left(z_{i}, \gamma_{i}\right) \quad$ with $\quad \gamma_{i}=\frac{\tau}{\lambda_{i}}$

Sparsity: $\|\eta\|_{0}$ small compared to n

Posterior mean - Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x
(b) $y=x+w$

sig	$=20$
\square	$=x+\operatorname{sig} * n p . r a n d o m . r a n d n(x . s h a p e)$

n1, n2 = y.shape[:2]

$$
z=\boldsymbol{F} y / \sqrt{n}
$$

$$
\mathrm{n} \quad=\mathrm{n} 1 * \mathrm{n} 2
$$

$$
\text { lbd } \quad=\text { np.sqrt(prior_mpsd(n1, n2) /n) }
$$

$$
z \quad=\operatorname{nf} . f f t 2(y, \text { axes }=(0,1)) / \operatorname{np} . \operatorname{sqrt}(n)
$$

$$
\text { zhat }=\operatorname{shrink}(z, l b d, \operatorname{sig})
$$

$$
\text { xhat }=\text { np.real }(n f . \operatorname{ifft2}(\text { zhat, axes }=(0,1))) * \text { np.sqrt }(n)
$$

Posterior mean - Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x
(b) λ

$$
\begin{aligned}
\text { sig } & =20 \\
\mathrm{y} & =\mathrm{x}+\operatorname{sig} * \mathrm{np} . \text { random.randn(x.shape) } \\
\mathrm{n} 1, \mathrm{n} 2 & =\mathrm{y} \cdot \operatorname{shape}[: 2] \\
\mathrm{n} & =\mathrm{n} 1 * \mathrm{n} 2 \\
\mathrm{lbd} & =\mathrm{np} . \operatorname{sqrt}(\text { prior_mpsd(n1, } \mathrm{n} 2) / \mathrm{n})
\end{aligned}
$$

$$
z=\boldsymbol{F} y / \sqrt{n}
$$

```
z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)
zhat = shrink(z, lbd, sig)
xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)
```


Posterior mean - Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x
(b) z
y $\quad=\mathrm{x}+\operatorname{sig} *$ np.random.randn(x.shape)
n1, n2 = y.shape[:2]

$$
z=\boldsymbol{F} y / \sqrt{n}
$$

$$
\mathrm{n} \quad=\mathrm{n} 1 * \mathrm{n} 2
$$

$$
\text { lbd } \quad=\text { np.sqrt(prior_mpsd(n1, n2) / n) }
$$

- z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)
zhat $=\operatorname{shrink}(z$, lbd, sig)
xhat $=n p . r e a l(n f . i f f t 2(z h a t, ~ a x e s=(0,1))) * n p . s q r t(n)$

Posterior mean - Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x
(b) z
(c) $\underset{(=\text { Gaussian })}{\text { Linear/Wiener }}$
(d) Soft-T
(=Laplacian)
(e) $\underset{\text { (} \approx \text { Student) }}{\text { Hard-T }}$
sig $=20$
$\mathrm{y} \quad=\mathrm{x}+\operatorname{sig} * \mathrm{np}$. random.randn(x.shape)
n1, n2 = y.shape[:2]
$z=\boldsymbol{F} y / \sqrt{n}$
$\mathrm{n} \quad=\mathrm{n} 1 * \mathrm{n} 2$
lbd $=$ np.sqrt(prior_mpsd(n1, n2) / n)
$\hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right)$
$\hat{x}=\sqrt{n} \boldsymbol{F}^{-1} \hat{z}$
$z \quad=n f . f f t 2(y, \operatorname{axes}=(0,1)) / \operatorname{np} . \operatorname{sqrt}(n)$

- zhat $=$ shrink(z, lbd, sig)
xhat $=n p . r e a l(n f . i f f t 2(z h a t, \operatorname{axes}=(0,1))) *$ np.sqrt(n)

Posterior mean - Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x
(b) $y=x+w$
(c) Linear/Wiener
(=Gaussian)
(d) $\underset{\text { (=Laplacian) }}{\text { Soft-T }}$
(e) $\underset{(\approx \text { Student })}{\text { Hard-T }}$
sig $=20$
$\mathrm{y} \quad=\mathrm{x}+\operatorname{sig} * \mathrm{np}$. random.randn(x.shape)
n1, n2 = y.shape[:2]
$z=\boldsymbol{F} y / \sqrt{n}$
$\mathrm{n} \quad=\mathrm{n} 1 * \mathrm{n} 2$
lbd $=$ np.sqrt(prior_mpsd(n1, n2) / n)
$\hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right)$
$\hat{x}=\sqrt{n} \boldsymbol{F}^{-1} \hat{z}$
$z \quad=n f . f f t 2(y, \operatorname{axes}=(0,1)) / \operatorname{np} . \operatorname{sqrt}(n)$
zhat $=$ shrink(z, lbd, sig)
\rightarrow xhat $=$ np.real (nf.ifft2(zhat, axes=(0, 1))) $* \operatorname{np} . \operatorname{sqrt}(\mathrm{n})$

Shrinkage functions - Fourier domain - Results

Shrinkage functions - Fourier domain - Results

Shrinkage functions - Fourier domain - Results

(b) $y(\sigma=60)$

(c) Linear/Wiener (=Gaussian)

(d) Soft-T (=Laplacian)

(e) Hard-T (\approx Student)

Shrinkage functions - Fourier domain - Results

(a) x

(b) $y(\sigma=120)$

(c) Linear/Wiener
(=Gaussian)

(d) Soft-T (=Laplacian)

(e) Hard-T (\approx Student)

Posterior mean - Limits of shrinkage in the Fourier domain

Limits of shrinkage in the discrete Fourier domain

(a) x
(b) y

- Linear shrinkage (Wiener) \Rightarrow Non-adaptive,
- Non-linear shrinkage \Rightarrow Adaptive convolution,
- Adapts to the frequency content,

convolution kernels

(c) $\underset{\text { (=Gaussian) }}{\text { Linear }}$

(d) $\underset{\text { (=Laplacian) }}{\text { Soft }}$

(e) $\underset{\text { (} \approx \text { Student }}{\mathrm{Hard}-T}$
- but not to the spatial content.

$$
\hat{z}_{i}=s\left(z_{i} ; \tau, \sigma\right)=\underbrace{\frac{s\left(z_{i} ; \tau, \sigma\right)}{z_{i}} \times z_{i}}_{\text {element-wise product }} \Leftrightarrow \underbrace{\hat{x}=\nu(y) * y}_{\begin{array}{c}
\text { spatial average } \\
\text { adapted to the spectrum of } y
\end{array}}
$$

Motivations

Consequences

- Modulating Fourier coefficients \Rightarrow Non spatially adaptive
- Assuming Fourier coefficients to be white+sparse \Rightarrow Shrinkage in Fourier

Deductive reasoning
Need another representation for sparsifying clean images

What transform can make signal white and sparse and captures both spatial and spectral contents?

Wavelet transforms

Canonical basis

Fourier basis

$$
\operatorname{Id}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \boldsymbol{F}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & e^{-2 \pi i 1 / 4} & e^{-2 \pi i 2 / 4} & e^{-2 \pi i 3 / 4} \\
1 & e^{-2 \pi i 2 / 4} & e^{-2 \pi i 4 / 4} & e^{-2 \pi i 6 / 4} \\
1 & e^{-2 \pi i 3 / 4} & e^{-2 \pi i 6 / 4} & e^{-2 \pi i 9 / 4}
\end{array}\right)
$$

Introduction to wavelets - Haar (1d case)

[Alfréd Haar (1909)]

Canonical basis

Fourier basis

Haar basis (1 scale) Haar basis (2 scales)

$$
\mathcal{H}^{1 \text { st }}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right) \quad \text { and } \quad \mathcal{H}^{2 \text { nd }}=\begin{array}{r}
1 / 2 \\
1 / 2 \\
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

(a) $\mathcal{H}^{1 \text { st }}(4 \times 4$ image $)$

(b) x

(c) $\mathcal{H}^{1 \mathrm{st}} x$

2d Haar representation

4 sub-bands $\left\{\begin{array}{l}\bullet \text { Coarse sub-band } \\ \bullet \text { Vertical detailed sub-band } \\ \text { • Horizontal detailed sub-band } \\ \text { • Diagonal detailed sub-band }\end{array}\right.$

(a) $\mathcal{H}^{1 \text { st }}(4 \times 4$ image $)$

(b) x

(c) $\mathcal{H}^{2 n d} x$

Multi-scale 2d Haar representation

- Repeat recursively J times
- Dyadic decomposition
- Multi-scale representation
- Related to scale spaces

(a) $\mathcal{H}^{1 \text { st }}(4 \times 4$ image $)$

(b) x

(c) $\mathcal{H}^{3 \mathrm{rd}} x$

Multi-scale 2d Haar representation

- Repeat recursively J times
- Dyadic decomposition
- Multi-scale representation
- Related to scale spaces

(a) $\mathcal{H}^{1 \text { st }}(4 \times 4$ image $)$

(b) x

(c) $\mathcal{H}^{\text {th }} x$

Multi-scale 2d Haar representation

- Repeat recursively J times
- Dyadic decomposition
- Multi-scale representation
- Related to scale spaces

Introduction to wavelets - Haar transform - Separability

Properties of the 2d Haar transform

- Separable: 1d Haar transforms in horizontal and next vertical direction
- First: perform a low pass and high pass filtering
- Next: perform decimation by a factor of 2

Can we choose other low and high pass filters to get a better transform?

Discrete wavelets

Discrete wavelet transform (DWT) (1/3)
 (1d and n even)

- Let $h \in \mathbb{R}^{n}$ (with periodical boundary conditions) satisfying

$$
\begin{array}{r}
\sum_{i=0}^{n-1} h_{i}=0 \\
\sum_{i=0}^{n-1} h_{i}^{2}=1 \\
\text { and } \quad \sum_{i=0}^{n-1} h_{i} h_{i+2 k}=0 \quad \text { for all integer } k \neq 0
\end{array}
$$

Example (Haar as a particular case)

$$
h=\frac{1}{\sqrt{2}}(0 \ldots 0-1 \quad+1 \quad 0 \ldots 0)
$$

Discrete wavelets

Discrete wavelet transform (DWT) ($2 / 3$)

(1 d and n even)

- Define the high and low pass filters $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ as

$$
\begin{aligned}
& (H x)_{k}=(h * x)_{k}=\sum_{i=0}^{n-1} h_{i} x_{k-i} \\
& (G x)_{k}=(g * x)_{k}=\sum_{i=0}^{n-1} g_{i} x_{k-i} \quad \text { where } g_{i}=(-1)^{i} h_{n-1-i}
\end{aligned}
$$

- Note: necessarily $\sum_{i=0}^{n-1} g_{i}=\sqrt{2}$

Example (Haar as a particular case)

$$
\begin{aligned}
& h=\frac{1}{\sqrt{2}}(0 \ldots 0 \quad-1 \quad+1 \quad 0 \ldots 0) \\
& g=\frac{1}{\sqrt{2}}(0 \ldots 0+1 \quad+1 \quad 0 \ldots 0)
\end{aligned}
$$

Discrete wavelets

- Define the decimation by 2 of a matrix $M \in \mathbb{R}^{n \times n}$ as

$$
M \downarrow_{2}=" \mathrm{M}[:: 2, \quad:]^{\prime \prime} \in \mathbb{R}^{n / 2 \times n}
$$

i.e., the matrix obtained by removing every two rows.

- $\boldsymbol{M} \downarrow_{2} x$: apply \boldsymbol{M} to x and next remove every two entries.

Discrete wavelet transform (DWT) (3/3)
(1d and n even)

$$
\text { Let } \boldsymbol{W}=\binom{G \downarrow_{2}}{H \downarrow_{2}} \in \mathbb{R}^{n \times n}
$$

Then $\left\{\begin{array}{l}\bullet x \mapsto \boldsymbol{W} x: \\ \bullet \text { Columns of } \boldsymbol{W}: \\ \bullet z=\boldsymbol{W} x:\end{array}\right.$
orthonormal discrete wavelet transform,
orthonormal discrete wavelet basis, wavelet coefficients of x.

Multi-scale discrete wavelets

Multi-scale DWT (1d and n multiple of 2^{J})
[Mallat, 1989]

$$
\text { Defined recursively as } \boldsymbol{W}^{J-\mathrm{th}}=\left(\begin{array}{cc}
\boldsymbol{W}^{(J-1)-\mathrm{th}} & O \\
0 & \mathrm{Id}
\end{array}\right) \boldsymbol{W}
$$

Multi-scale discrete wavelets

```
Implementation of 2D DWT
( }\mp@subsup{n}{1}{}\mathrm{ and }\mp@subsup{n}{2}{}\mathrm{ multiple of }\mp@subsup{2}{}{J}\mathrm{ )
```

```
def dwt(x, J, h, g):
```

def dwt(x, J, h, g):
if J == 0:
if J == 0:
return x
return x
n1, n2 = x.shape[:2]
n1, n2 = x.shape[:2]
m1, m2 = (int(n1 / 2), int(n2 / 2))
m1, m2 = (int(n1 / 2), int(n2 / 2))
z = dwt1d(x, h, g)
z = dwt1d(x, h, g)
z = flip(dwt1d(flip(z), h, g))
z = flip(dwt1d(flip(z), h, g))
z[:m1, :m2] = dwt(z[:m1, :m2], J - 1, h, g)
z[:m1, :m2] = dwt(z[:m1, :m2], J - 1, h, g)
return z

```
    return z
```

```
def dwt1d(x, h, g):
    # 1d and 1scale
    coarse = convolve(x, g)
    detail = convolve(x, h)
    z = np.concatenate((coarse[::2, :], detail[::2, :]), axis=0)
    return z
```


Multi-scale discrete wavelets

Multi-scale Inverse DWT (1d and n multiple of 2^{J})

$$
\begin{aligned}
& \text { Defined recursively as }\left(\boldsymbol{W}^{J \text {-th }}\right)^{-1}=\boldsymbol{W}^{-1}\left(\begin{array}{cc}
\left(\boldsymbol{W}^{(J-1)-\text {-t }}\right)^{-1} & O \\
0 & \text { Id }
\end{array}\right) \\
& \text { where } \boldsymbol{W}^{-1}=\boldsymbol{W}^{*}=\left(\begin{array}{ll}
G^{*} \uparrow_{2} & H^{*} \uparrow_{2}
\end{array}\right) \in \mathbb{R}^{n \times n} \\
& \text { and } \boldsymbol{M} \uparrow_{2} \text { : remove every two columns. }
\end{aligned}
$$

$M \uparrow_{2} x$: insert 0 every two entries in x and next apply M.

Multi-scale discrete wavelets

Implementation of 2D IDWT

```
def idwt(z, J, h, g): # 2d and multi-scale
    if J == 0:
            return z
    n1, n2 = z.shape[:2]
    m1, m2 = (int(n1 / 2), int(n2 / 2))
    x = z.copy()
    x[:m1, :m2] = idwt(x[:m1, :m2], J - 1, h, g)
    x = flip(idwt1d(flip(x), h, g))
    x = idwt1d(x, h, g)
    return x
```

```
def idwt1d(z,h, g): # 1d and 1scale
    n1 = z.shape[0]
    m1 = int(n1 / 2)
    coarse, detail = np.zeros(z.shape), np.zeros(z.shape)
    coarse[::2, :], detail[::2, :] = z[:m1, :], z[m1:, :]
    x = convolve(coarse, g[::-1]) + convolve(detail, h[::-1])
    return x
```


Discrete wavelets - Limited support

Discrete wavelet with limited support

- Consider a high pass filter with finite support of size $m=2 p$ (even). For instance for $m=4$
- Then h defines a wavelet transform if it satisfies the three conditions

$$
\sum h_{i}=0 \quad \text { and } \quad \sum h_{i}^{2}=1 \quad \text { and } \quad \sum h_{i} h_{i+2 k}=0 \quad \text { for } k=1 \text { to } p-1
$$

- This system has $2 p$ unknowns and $1+p$ independent equations.
- If $p=1,2 p=1+p$, this implies that the solution is unique (Haar).
- Otherwise, one has $p-1$ degrees of freedom.

Discrete wavelets - Daubechies' wavelets

Daubechies' wavelets (1988)

- Daubechies suggests adding the $p-1$ constraints

$$
\sum_{i=0}^{2 p-1} i^{q} h_{i}=0 \quad \text { for } q=1 \text { to } p-1 \quad \text { (vanishing } q \text {-order moments) }
$$

- For $p=2$, the (orthonormal) Daubechies' wavelets are defined as

$$
\left\{\begin{array}{l}
h_{0}^{2}+h_{1}^{2}+h_{2}^{2}+h_{3}^{2}=1 \\
h_{0}+h_{1}+h_{2}+h_{3}=0 \\
h_{0} h_{2}+h_{1} h_{3} \\
h_{1}+2 h_{2}+3 h_{3}
\end{array} \quad=0 \quad 1 \Leftrightarrow h= \pm \frac{1}{\sqrt{2}}\left(\begin{array}{l}
\frac{1+\sqrt{3}}{4} \\
\frac{3+\sqrt{3}}{4} \\
\frac{3-\sqrt{3}}{4} \\
\frac{1-\sqrt{3}}{4}
\end{array}\right)\right.
$$

- The corresponding DWT is referred to as Daubechies-2 (or Db2).

As for the Fourier transform, there also exists a continuous version.

Continuous wavelets

Continuous wavelet transform (CWT)

- Continuum of locations $t \in \mathbb{R}$ and scales $a>0$,
- Continuous wavelet transform of $x: \mathbb{R} \rightarrow \mathbb{R}$

$$
\underbrace{c(a, t)}_{\text {wavelet coefficient }}=\int_{-\infty}^{+\infty} \psi_{a, t}^{*}\left(t^{\prime}\right) x\left(t^{\prime}\right) \mathrm{d} t^{\prime}=\langle\underbrace{x}_{\text {signal }}, \underbrace{\psi_{a, t}}_{\text {wavelet }}\rangle
$$

where * is the complex conjugate.

- $\psi_{a, t}$: daughter wavelets, translated and scaled versions of Ψ

$$
\psi_{a, t}\left(t^{\prime}\right)=\frac{1}{\sqrt{a}} \Psi\left(\frac{t^{\prime}-t}{a}\right)
$$

- Ψ : the mother wavelets satisfying

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \Psi(t) \mathrm{d} t=0 & \text { and } \quad \int_{-\infty}^{+\infty}|\Psi(t)|^{2} \mathrm{~d} t=1<\infty \\
\quad(\text { zero-mean) } \quad & \text { (unit-norm / square-integrable) }
\end{aligned}
$$

Continuous wavelets

Inverse CWT

- The inverse continuous wavelet transform is given by

$$
x(t)=\frac{1}{C_{\Psi}} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} \frac{1}{|a|^{2}} c\left(a, t^{\prime}\right) \psi_{a, t}\left(t^{\prime}\right) \mathrm{d} a \mathrm{~d} t^{\prime}
$$

with $C_{\Psi}=\int_{0}^{+\infty} \frac{|\hat{\Psi}(u)|^{2}}{u} \mathrm{~d} u$ where $\hat{\Psi}$ is the Fourier transform of Ψ.

Relation between CWT/DWT

- The DWT can be seen as the discretization of the CWT
- Diadic discretization in scale: $a=1,2,4, \ldots, 2^{J}$
- Uniform discretization in time at scale j with step $2^{j}: t=1: 2^{j}: n$

Continuous wavelets

Twin-scale relation

- The CWT is orthogonal (inverse $=$ adjoint), if and only if Ψ satisfies

$$
\Psi(t)=\sqrt{2} \sum_{i=0}^{m-1} h_{i} \Phi(2 t-i) \quad \text { and } \quad \Phi(t)=\sqrt{2} \sum_{i=0}^{m-1} g_{i} \Phi(2 t-i)
$$

where h and g are high- and low-pass filters defining a DWT.

- Φ is called father wavelet or scaling function.
- Note: potentially $m=\infty$.

Twin-scale relation: allows to define a CWT from DWT and vice-versa. The CWT may not have a closed form (approximated by the cascade algorithm)

Continuous and discrete wavelets

Popular wavelets are:

Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);
Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.
Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets). Two filters for the direct, and two others for the inverse.

Continuous and discrete wavelets

Popular wavelets are:

Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);
Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);
Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.
Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets). Two filters for the direct, and two others for the inverse.

Continuous and discrete wavelets

Popular wavelets are:

Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);
Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);
Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.
Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets). Two filters for the direct, and two others for the inverse.

Continuous and discrete wavelets

Popular wavelets are:

Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);
Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.
Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets). Two filters for the direct, and two others for the inverse.

Continuous and discrete wavelets

Popular wavelets are:

Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);
Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.
Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets). Two filters for the direct, and two others for the inverse.

Continuous and discrete wavelets

Popular wavelets are:

Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);
Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.
Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets). Two filters for the direct, and two others for the inverse.

Continuous and discrete wavelets

Popular wavelets are:

Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);
Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.
Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets). Two filters for the direct, and two others for the inverse.

Wavelets and sparsity

Wavelets perform image compression

- Haar encodes constant signals with one coefficient,
- Db- p encodes ($p-1$)-order polynomials with p coefficients.

Consequences:

- Polynomial/Smooth signals are encoded with very few coefficients,
- Coarse coefficients encode the smooth underlying signal,
- Detailed coefficients encode non-smooth content of the signal,
- Typical signals are concentrated on few coefficients,
- The remaining coefficients capture only noise components.

Wavelets and sparsity

Wavelets perform image compression

- Haar encodes constant signals with one coefficient,
- Db- p encodes ($p-1$)-order polynomials with p coefficients.

Consequences:

- Polynomial/Smooth signals are encoded with very few coefficients,
- Coarse coefficients encode the smooth underlying signal,
- Detailed coefficients encode non-smooth content of the signal,
- Typical signals are concentrated on few coefficients,
- The remaining coefficients capture only noise components.
\Rightarrow Heavy tailed distribution with a peak at zero, i.e., wavelets favor sparsity.

Wavelets as a sparsifying transform

(a) x

(b) $\boldsymbol{F} x$

(c) λ

(d) $(\boldsymbol{F} x)_{i} / \lambda_{i}$

Fourier (u_{i}, v_{i} freq. of component i)

- $\boldsymbol{E}^{*}=\boldsymbol{F} / \sqrt{n}$
- $\lambda_{i}^{2}=n^{-1}$ MPSD and ∞ if $i=0$
- Arbitrary DC component

Wavelets as a sparsifying transform

(a) x

(e) x

(b) $\boldsymbol{F} x$

(f) $\boldsymbol{W} x$

(c) λ

(g) λ

(d) $(\boldsymbol{F} x)_{i} / \lambda_{i}$

(h) $(\boldsymbol{W} x)_{i} / \lambda_{i}$

Fourier $\quad\left(u_{i}, v_{i}\right.$ freq. of component $\left.i\right)$

- $\boldsymbol{E}^{*}=\boldsymbol{F} / \sqrt{n}$
- $\lambda_{i}^{2}=n^{-1}$ MPSD and ∞ if $i=0$
- Arbitrary DC component

Distribution of wavelet coefficients

(a) x

(c) Histogram of η

(b) $\eta_{i}=(\boldsymbol{W} x)_{i} / \lambda_{i}$

(d) Histogram of η

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y

$$
\begin{aligned}
\operatorname{sig} & =20 & \\
\mathrm{y} & =\mathrm{x}+\operatorname{sig} * \mathrm{nr} \cdot \operatorname{randn}(* \mathrm{x} . \text { shape }) & \\
& & z=\boldsymbol{W} y \\
\mathrm{z} & =\operatorname{im} \cdot \operatorname{dwt}(\mathrm{y}, 3, \mathrm{~h}, \mathrm{~g}) & \hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right) \\
\text { zhat } & =\operatorname{shrink}(\mathrm{z}, \operatorname{lbd}, \operatorname{sig}) & \hat{x}=\boldsymbol{W}^{-1} \hat{z}
\end{aligned}
$$

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y

(b) z (Haar)

$$
\begin{array}{llrl}
\operatorname{sig} & =20 & \\
\mathrm{y} & =\mathrm{x}+\operatorname{sig} * \mathrm{nr} \cdot \operatorname{randn}(* \mathrm{x} . \text { shape }) & \\
& & z=\boldsymbol{W} y \\
\mathrm{z} & =\operatorname{im} \cdot \operatorname{dwt}(\mathrm{y}, 3, \mathrm{~h}, \mathrm{~g}) & \hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right) \\
\text { zhat } & =\operatorname{shrink}(\mathrm{z}, \operatorname{lbd}, \operatorname{sig}) & \hat{x}=\boldsymbol{W}^{-1} \hat{z}
\end{array}
$$

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y

(b) \hat{z} (Haar+LMMSE)

$$
\begin{aligned}
\operatorname{sig} & =20 & \\
\mathrm{y} & =\mathrm{x}+\operatorname{sig} * \mathrm{nr} \cdot \operatorname{randn}(* \mathrm{x} . \text { shape }) & \\
& & \\
\mathrm{z} & =\operatorname{im} \cdot \operatorname{dwt}(\mathrm{y}, 3, \mathrm{~h}, \mathrm{~g}) & \hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right) \\
\text { zhat } & =\operatorname{shrink}(\mathrm{z}, \operatorname{lbd}, \operatorname{sig}) & \hat{x}=\boldsymbol{W}^{-1} \hat{z}
\end{aligned}
$$

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y

(b) \hat{z} (Haar+LMMSE)

(c) \hat{x}

$$
\begin{array}{llrl}
\operatorname{sig} & =20 & \\
\mathrm{y} & =\mathrm{x}+\operatorname{sig} * \mathrm{nr} \cdot \operatorname{randn}(* \mathrm{x} . \text { shape }) & \\
& & \\
\mathrm{z} & =\operatorname{im} \cdot \operatorname{dwt}(\mathrm{y}, 3, \mathrm{~h}, \mathrm{~g}) & \hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right) \\
\text { zhat } & =\operatorname{shrink}(\mathrm{z}, \text { lbd, sig) } & \hat{x}=\boldsymbol{W}^{-1} \hat{z}
\end{array}
$$

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y

(b) \hat{z} (Daubechies+LMMSE)

(c) \hat{x}

$$
\begin{array}{llrl}
\operatorname{sig} & =20 & \\
\mathrm{y} & =\mathrm{x}+\operatorname{sig} * \mathrm{nr} \cdot \operatorname{randn}(* \mathrm{x} . \text { shape }) & z=\boldsymbol{W} y \\
\mathrm{z} & =\operatorname{im} \cdot \operatorname{dwt}(\mathrm{y}, 3, \mathrm{~h}, \mathrm{~g}) & \hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right) \\
\text { zhat }=\operatorname{shrink}(\mathrm{z}, \operatorname{lbd}, \operatorname{sig}) & \hat{x}=\boldsymbol{W}^{-1} \hat{z}
\end{array}
$$

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y

(b) \hat{z} (Daubechies+Soft-T)

(c) \hat{x}

$$
\begin{array}{llrl}
\operatorname{sig} & =20 & \\
\mathrm{y} & =\mathrm{x}+\operatorname{sig} * \mathrm{nr} \cdot \operatorname{randn}(* \mathrm{x} . \text { shape }) & \\
& & \\
\mathrm{z} & =\operatorname{im} \cdot \operatorname{dwt}(\mathrm{y}, 3, \mathrm{~h}, \mathrm{~g}) & \hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right) \\
\text { zhat } & =\operatorname{shrink}(\mathrm{z}, \operatorname{lbd}, \operatorname{sig}) & \hat{x}=\boldsymbol{W}^{-1} \hat{z}
\end{array}
$$

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y

(b) \hat{z} (Daubechies+Hard-T)

(c) \hat{x}

$$
\begin{array}{llrl}
\operatorname{sig} & =20 & \\
\mathrm{y} & =\mathrm{x}+\operatorname{sig} * \mathrm{nr} \cdot \operatorname{randn}(* \mathrm{x} . \text { shape }) & \\
& & \\
\mathrm{z} & =\operatorname{im} \cdot \operatorname{dwt}(\mathrm{y}, 3, \mathrm{~h}, \mathrm{~g}) & \hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma\right) \\
\text { zhat } & =\operatorname{shrink}(\mathrm{z}, \operatorname{lbd}, \operatorname{sig}) & \hat{x}=\boldsymbol{W}^{-1} \hat{z}
\end{array}
$$

Shrinkage in the wavelet domain

For large noise: Blocky effects and Ringing artifacts

Shrinkage in the wavelet domain

For large noise: Blocky effects and Ringing artifacts

Shrinkage in the wavelet domain

For large noise: Blocky effects and Ringing artifacts

Shrinkage in the wavelet domain

For large noise: Blocky effects and Ringing artifacts

Undecimated wavelet transforms

Limits of the discrete wavelet transform

- While Fourier shrinkage is translation invariant:

$$
\psi\left(y^{\tau}\right)=\psi(y)^{\tau} \quad \text { where } \quad y^{\tau}(s)=y(s+\tau)
$$

- Wavelet shrinkage is not translation invariant.
- This is due to the decimation step:

$$
\left.\boldsymbol{W}=\binom{G \downarrow_{2}}{H \downarrow_{2}} \in \mathbb{R}^{n \times n} \quad \text { where } \quad M \downarrow_{2}=\text { "M[::2, } \quad:\right] "
$$

- This explains the blocky artifacts that we observe.

Undecimated discrete wavelet transform (UDWT)

Figure 1 - Haar DWT

- Haar transform groups pixels by clusters of 4 .
- Blocks are treated independently to each other.
- When similar neighbor blocks are shrunk differently, it becomes clearly visible in the image.
- This arises all the more as the noise level is large.

What if we do not decimate?
\Rightarrow UDWT, aka, stationary or translation-invariant wavelet transform.

Undecimated discrete wavelet transform (UDWT)

Haar discrete wavelet transform (DWT)

1-scale DWT

- For a 4×4 image:

$$
4 \times 4 \text { coefficients. }
$$

- For n pixels: $K=n$ coefficients.

Haar undecimated discrete wavelet transform (UDWT)

1-scale UDWT

- For a 4×4 image:

$$
8 \times 8 \text { coefficients }
$$

- For n pixels: $K=4 n$ coeffs.

Undecimated discrete wavelet transform（UDWT）

A trous algorithm（with holes）

（Holschneider et al．，1989）

Interleave rows and columns of zeros

$$
g=\boxed{L}
$$

Haar UDWT，first scale

$g^{: 1}=$ 几几 $h^{11}=$ 凡ぃ
Haar UDWT，second scale

Instead of decimating the coefficients at each scale j ，upsample the filters h and g by injecting $2^{j}-1$ zeros between each entries．

Undecimated discrete wavelet transform (UDWT)

DWT: Mallat's dyadic pyramidal multi-resolution scheme

UDWT: A trous algorithm $\quad-\quad G^{: p}$: inject p zeros between each filter coeffs

Multi-scales: $K=\left(1+J\left(2^{d}-1\right)\right) n$ coeffs $\quad(J: \#$ scales, $d=2$ for images $)$

Undecimated discrete wavelet transform (UDWT)

Implementation of 2D UDWT (A trous algorithm)

```
def udwt(x, J, h, g):
    if J == 0:
        return x[:, :, np.newaxis]
    tmph = flip(convolve(flip(x), h)) / 2
    tmpg = flip(convolve(flip(x), g)) / 2
    detail = np.stack((convolve(tmpg, h),
        convolve(tmph, g),
        convolve(tmph, h)), axis=2)
    coarse = convolve(tmpg, g)
    h2 = interleave0(h)
    g2 = interleave0(g)
    z = np.concatenate((udwt(coarse, J - 1, h2, g2), detail), axis=2)
    return z
```


Linear complexity.

Can be easily modified to reduce memory usage.

Undecimated discrete wavelet transform (UDWT)

(a) DWT $(\mathrm{J}=2)$
(e) Detailed Scale \#3

(b) UDWT Coarse Sc.

(f) Detailed Scale \#4

(c) Detailed Scale \#1

(g) Detailed Scale \#5
(d) Detailed Scale \#2

(h) Detailed Scale \#6

What about its inverse transform?

Undecimated discrete wavelet transform (UDWT)

DWT - Wavelet basis - and inverse DWT

- The DWT $\boldsymbol{W} \in \mathbb{R}^{n \times n}$ has n columns and n rows.
- The n columns/rows of \boldsymbol{W} are orthonormal.
- The inverse DWT is $\boldsymbol{W}^{-1}=\boldsymbol{W}^{*}$.
- One-to-one relationship between an image and its wavelet coefficients.

UDWT - Redundant wavelet dictionary

- The UDWT $\overline{\boldsymbol{W}} \in \mathbb{R}^{K \times n}$ has $K=\left(1+J\left(2^{d}-1\right)\right) n$ rows and n columns.
- The rows of \bar{W} cannot be linearly independent: not a basis.
- They are said to form a redundant/overcomplete wavelet dictionary.
- Since $\overline{\boldsymbol{W}}$ is non square, it is not invertible.

Note: redundant dictionaries necessarily favor sparsity.

Undecimated discrete wavelet transform (UDWT)

Pseudo-inverse UDWT

- Nevertheless, the n columns are orthonormal, then: $\overline{\boldsymbol{W}}^{*}=\overline{\boldsymbol{W}}^{+}$
- It satisfies $\overline{\boldsymbol{W}}^{+} \overline{\boldsymbol{W}}=\mathrm{Id}_{n}$, but $\overline{\boldsymbol{W}} \overline{\boldsymbol{W}}^{+} \neq \mathrm{Id}_{K}$
- image $\xrightarrow{\bar{W}}$ coefficients $\xrightarrow{\bar{W}^{+}}$back to the original image,
- coefficients $\xrightarrow{\bar{W}^{+}}$image $\xrightarrow{\bar{W}}$ not necessarily the same coefficients.
- Satisfies the Parseval equality

$$
\langle\overline{\boldsymbol{W}} x, \overline{\boldsymbol{W}} y\rangle=\left\langle x, \overline{\boldsymbol{W}}^{*} \overline{\boldsymbol{W}} y\right\rangle=\left\langle x, \overline{\boldsymbol{W}}^{+} \overline{\boldsymbol{W}} y\right\rangle=\langle x, y\rangle
$$

- In the vocabulary of linear algebra: $\overline{\boldsymbol{W}}$ is called a tight-frame.

Consequence: an algorithm for \bar{W}^{+}can be obtained.

Undecimated discrete wavelet transform (UDWT)

Implementation of 2D Inverse UDWT

```
def iudwt(z, J, h, g):
    if J == 0:
        return z[:,, :, 0]
    h2 = interleave0(h)
    g2 = interleave0(g)
    coarse = iudwt(z[:, :, :-3], J - 1, h2, g2)
    tmpg = convolve(coarse, g[::-1]) + \
        convolve(z[:, :, -3], h[::-1])
    tmph = convolve(z[:, :, -2], g[::-1]) + \
        convolve(z[:, :, -1], h[::-1])
    x = (flip(convolve(flip(tmpg), g[::-1])) +
        flip(convolve(flip(tmph), h[::-1]))) / 2
    return x
```

Linear complexity again.
Can also be easily modified to reduce memory usage.
Can we be more efficient?

Multi-scale discrete wavelets

Filter bank

- The UDWT of x for subband $k, x \mapsto(\boldsymbol{W} x)_{k}$ is

$$
\begin{aligned}
& \text { linear and translation invariant (LTI) } \\
& \quad \Rightarrow \text { It's a convolution. }
\end{aligned}
$$

- The UDWT is a filter bank:
a set of band-pass filters that separates
the input image into multiple components.
- Each filter can be represented by its frequential response.
- Direct and inverse transform: implementation in the Fourier domain.

Undecimated discrete wavelet transform (UDWT)

(a) Coarse 2 (b) Details 2 (c) Details 2 (d) Details 2 (e) Details 1 (f) Details 1 (g) Details 1

Haar with $J=2$ levels of decomposition

Undecimated discrete wavelet transform (UDWT)

(a) Coarse 2 (b) Details 2 (c) Details 2 (d) Details 2 (e) Details 1 (f) Details 1 (g) Details 1 Haar: band pass with side lobes. Db8: closer to ideal band pass.

Undecimated discrete wavelet transform (UDWT)

Db4 with $J=6$ levels of decomposition

How to create such a filter bank?

Undecimated discrete wavelet transform (UDWT)

UDWT: Creation of the filter bank (offline)

```
def udwt_create_fb(n1, n2, J, h, g, ndim=3):
    if J == 0:
        return np.ones((n1, n2, 1, *[1] * (ndim - 2)))
    h2 = interleave0(h)
    g2 = interleave0(g)
    fbrec = udwt_create_fb(n1, n2, J - 1, h2, g2, ndim=ndim)
    gf1 = nf.fft(fftpad(g, n1), axis=0)
    hf1 = nf.fft(fftpad(h, n1), axis=0)
    gf2 = nf.fft(fftpad(g, n2), axis=0)
    hf2 = nf.fft(fftpad(h, n2), axis=0)
    fb = np.zeros((n1, n2, 4), dtype=np.complex128)
    fb[:, :, 0] = np.outer(gf1, gf2) / 2
    fb[:, :, 1] = np.outer(gf1, hf2) / 2
    fb[:, :, 2] = np.outer(hf1, gf2) / 2
    fb[:, :, 3] = np.outer(hf1, hf2) / 2
    fb = fb.reshape(n1, n2, 4, *[1] * (ndim - 2))
    fb = np.concatenate((fb[:, :, 0:1] * fbrec, fb[:, :, -3:]),
    axis=2)
    return fb
```


Undecimated discrete wavelet transform (UDWT)

UDWT: Direct transform using the filter bank (online)

```
def fb_apply(x, fb):
    x = nf.fft2(x, axes=(0, 1))
    z = fb * x[:, :, np.newaxis]
    z = np.real(nf.ifft2(z, axes=(0, 1)))
    return z
```

UDWT: Inverse transform using the filter bank (online)

```
def fb_adjoint(z, fb):
    z = nf.fft2(z, axes=(0, 1))
    x = (np.conj(fb) * z).sum(axis=2)
    x = np.real(nf.ifft2(x, axes=(0, 1)))
    return x
```

Much more efficient than previous implementation when $J>1$

Reconstruction with the UDWT

Shrinkage with UDWT

- Consider a denoising problem $y=x+w$ with noise variance σ^{2}.
- Shrink the $K \geqslant n$ coefficients independently.

$$
\hat{x}^{\star}=\underbrace{\overline{\boldsymbol{W}}^{+} \hat{z}}_{\text {Pseudo-inverse }} \quad \text { where } \underbrace{\hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma_{i}\right)}_{\text {shrinkage }} \quad \text { and } \quad z=\underbrace{\overline{\boldsymbol{W}} y}_{\text {Redundant representation }}
$$

Rule of thumb for soft-thresholding:

- For the orthonormal DWT \boldsymbol{W} : increase λ_{i} as $\sqrt{2}^{d\left(j_{i}-1\right)}$.
- For the tight-frame UDWT $\overline{\boldsymbol{W}}$: increase λ_{i} as: $2^{d\left(j_{i}-1 / 2\right)}$.
(j_{i} scale for coefficient $i, d=2$ for images).

Reconstruction with the UDWT

(a) y

(b) DWT(3) + Haar +HT

(c) $\mathrm{DWT}(3)+\mathrm{Db} 2+\mathrm{HT}$

(e) UDWT(3)+Db2+HT

Reconstruction with the UDWT

(a) y
(c) $\mathrm{DWT}(3)+\mathrm{Db} 2+\mathrm{HT}$

(d) UDWT(3)+Haar +HT
(b) $\operatorname{DWT}(3)+\mathrm{Haar}+\mathrm{HT}$

(e) UDWT(3)+Db2+HT

(f) $\operatorname{UDWT}(3)+\mathrm{Db} 8+\mathrm{HT}$

Reconstruction with the UDWT

(a) y

(d) UDWT (1) $+\mathrm{Db} 2+\mathrm{HT}$

(b) $\mathrm{DWT}(3)+\mathrm{Haar}+\mathrm{HT}$

(e) $\operatorname{UDWT}(3)+\mathrm{Db} 2+\mathrm{HT}$

(c) $\mathrm{DWT}(3)+\mathrm{Db} 2+\mathrm{HT}$

(f) $\operatorname{UDWT}(5)+\mathrm{Db} 2+\mathrm{HT}$

Reconstruction with the UDWT

(a) y

(d) UDWT(3)+Db2+Linear

(b) $\operatorname{DWT}(3)+\mathrm{Haar}+\mathrm{HT}$

(e) UDWT(3)+Db2+HT

(c) $\mathrm{DWT}(3)+\mathrm{Db} 2+\mathrm{HT}$

(f) $\operatorname{UDWT}(3)+\mathrm{Db} 2+\mathrm{ST}$

Reconstruction with the UDWT

(a) $y(\sigma=20)$
(b) UDWT+Lin.
(c) UDWT +HT
(d) $\mathrm{DWT}+\mathrm{HT}$

Reconstruction with the UDWT

Reconstruction with the UDWT

Reconstruction with the UDWT

Reconstruction with the UDWT

$$
\hat{x}^{\star}=\underbrace{\overline{\boldsymbol{W}}^{+} \hat{z}}_{\text {Pseudo-inverse }} \text { where } \underbrace{\hat{z}_{i}=s\left(z_{i} ; \lambda_{i}, \sigma_{i}\right)}_{\text {shrink } K \text { coefficients }} \quad \text { and } \quad z=\underbrace{\overline{\boldsymbol{W}} y}_{\text {Redundant representation }}
$$

Connection with Bayesian shrinkage?

- Since the rows of \bar{W} are linearly dependent, the coefficients z_{i} are necessarily correlated (non-white).
- Shrink the $K \geqslant n$ coefficients independently, even though they cannot be assumed independent.
- This estimator has no Bayesian interpretation, it does not correspond to the MMSE or MAP.

How to use the UDWT in the Bayesian context?

Reconstruction with the UDWT

Bayesian analysis model

Whitening model: Consider $\eta=\boldsymbol{\Lambda}^{-1 / 2} \boldsymbol{W} x$ (η coeffs) such that $\mathbb{E}[\eta]=0_{n}$ and $\operatorname{Var}[\eta]=\operatorname{Id}_{n}$

Analysis: images can be transformed to white coeffs.
Non-sense when rows of \boldsymbol{W} are redundant.

Bayesian synthesis model

Generative model: Consider $x=\overline{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1 / 2} \eta$ (η code) such that $\mathbb{E}[\eta]=0_{K}$ and $\operatorname{Var}[\eta]=\operatorname{Id}_{K}$

Synthesis: images can be generated from a white code.
© Always well-founded.

Reconstruction with the UDWT

Forward model: $y=x+w$
Maximum a Posteriori for the Synthesis model

- Instead of looking for x, consider the MAP for the code η

$$
\begin{aligned}
\hat{\eta}^{\star} & \in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmax}} p(\eta \mid y) \\
& =\underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}}[-\log p(y \mid \eta)-\log p(\eta)] \\
& =\underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}}\left[\frac{1}{2}\left\|y-\overline{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1 / 2} \eta\right\|_{2}^{2}-\log p(\eta)\right]
\end{aligned}
$$

- Once you get $\hat{\eta}^{\star}$, generate the image \hat{x}^{\star} as

$$
\hat{x}^{\star}=\overline{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1 / 2} \hat{\eta}^{\star}
$$

What interpretation?

Reconstruction with the UDWT

Penalized least square with redundant dictionary

- Consider the redundant wavelet dictionary $\boldsymbol{D}=\overline{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1 / 2}$

$$
\boldsymbol{D}=(\underbrace{d_{1}, d_{2}, \ldots, d_{K}}_{\text {linearly dependent atoms }}), \quad\left\|d_{i}\right\|=\lambda_{i}, \quad K \geqslant n
$$

- Goal: Look for a code $\eta \in \mathbb{R}^{K}$, such that \hat{x} close to y

$$
\hat{x}=\boldsymbol{D} \eta=\sum_{i=1}^{K} \eta_{i} d_{i}=\text { "linear comb. of the redundant atoms } d_{i} \text { of } \boldsymbol{D} \text { " }
$$

- Since \boldsymbol{D} is redundant, different codes η produce the same image x.
- Penalize independently each η_{i} to select a relevant one

$$
\hat{\eta}^{\star} \in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}}\left[\frac{1}{2}\left\|y-\overline{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1 / 2} \eta\right\|_{2}^{2}-\sum_{i=1}^{K} \log p\left(\eta_{i}\right)\right]
$$

Reconstruction with the UDWT

Penalized least square with redundant dictionary

- $\frac{1}{2}\|y-\boldsymbol{D} \eta\|_{2}^{2}+\frac{\tau^{2}}{2}\|\eta\|_{2}^{2}, \quad\|\eta\|_{2}^{2}=\sum_{i} \eta_{i}^{2}$
\leftarrow Ridge regression
- $\frac{1}{2}\|y-\boldsymbol{D} \eta\|_{2}^{2}+\tau\|\eta\|_{1}, \quad\|\eta\|_{1}=\sum_{i}\left|\eta_{i}\right|$
\leftarrow LASSO
- $\frac{1}{2}\|y-\boldsymbol{D} \eta\|_{2}^{2}+\frac{\tau^{2}}{2}\|\eta\|_{0}, \quad\|\eta\|_{0}=\sum_{i} \mathbf{1}_{\left\{\eta_{\mathbf{i}} \neq \mathbf{0}\right\}}$
\leftarrow Sparse regression

When D is redundant, these problems are no longer separable. They require large-scale optimization techniques.

Regularizations and optimization

Ridge regression

Ridge/Smooth regression

- Convex energy:
- Gradient:

$$
\begin{aligned}
& E(\eta)=\frac{1}{2}\|y-\boldsymbol{D} \eta\|_{2}^{2}+\frac{\tau^{2}}{2}\|\eta\|_{2}^{2} \\
& \nabla E(\eta)=\boldsymbol{D}^{*}(\boldsymbol{D} \eta-y)+\tau^{2} \eta \\
& \hat{\eta}^{\star}=\left(\boldsymbol{D}^{*} \boldsymbol{D}+\tau^{2} \operatorname{Id}_{K}\right)^{-1} \boldsymbol{D}^{*} y
\end{aligned}
$$

- Optimality conditions:
- For UDWT:
this is an LTI filter \equiv convolution (non adaptive)

(a) y

(b) Linear shrink

(c) Ridge

(d) Difference

Ridge $\not \equiv$ Linear shrinkage (except if D is orthogonal).

Sparse regression

Sparse regression / ℓ_{0} regularization ($1 / 3$)

- Energy:

$$
E(\eta)=\frac{1}{2}\|y-\boldsymbol{D} \eta\|_{2}^{2}+\frac{\tau^{2}}{2}\|\eta\|_{0}
$$

- Penalty:

$$
\|\eta\|_{0}=\# \text { non zero elements in } \eta
$$

- Non-convex:

$$
0.5=\frac{1}{2}\left(\|0\|_{0}+\|1\|_{0}\right)<\|0.5\|_{0}=1
$$

- Produces optimal sparse solutions adapted to the signal ©
- But, non-differentiable and discontinuous. ©

Sparse regression

Sparse regression / ℓ_{0} regularization (2/3)

- If \boldsymbol{D} is orthogonal: solution given by the Hard-Thresholding.
- Otherwise, exact solution obtained by brute force:
- For all possible support $\mathcal{I} \subseteq\{1, \ldots, K\}$ (set of non-zero coefficients)
- Solve the least square estimation problem:

$$
\underset{\left(\eta_{i}\right)_{i \in \mathcal{I}}}{\operatorname{argmin}} \frac{1}{2}\left\|y-\sum_{i \in \mathcal{I}} \eta_{i} a_{i}\right\|_{2}^{2}
$$

- Pick the solution that minimizes E.
- NP-hard combinatorial problem:

$$
\# \text { subsets }=\sum_{k=0}^{K}\binom{K}{k}=2^{K}
$$

Sparse regression

Sparse regression / ℓ_{0} regularization (3/3)

- Sub-optimal solutions can be obtained by greedy algorithms.
- Matching pursuit (MP):
(1) Initialization: $r \leftarrow y, \eta \leftarrow 0, k \leftarrow 0$
(2) Choose i maximizing $\left|\boldsymbol{D}^{*} r\right|_{i}=\left|\left\langle d_{i}, r\right\rangle\right|$
(3) Compute $\alpha=\left\langle r, d_{i}\right\rangle /\left\|d_{i}\right\|_{2}^{2}$
(4) Update $r \leftarrow r-\alpha d_{i}$
(9) Update $\eta_{i}=\alpha$
(- Update $k \leftarrow k+1$
- Back to step 2 while $E(\eta)=\frac{1}{2}\|r\|_{2}^{2}+\frac{\tau^{2}}{2} k$ decreases
- Lots of iterations: complexity $O(k n)$, with k the sparsity of the solution.
- Each iteration requires to compute an UDWT.
- Extensions: OMP (Tropp \& Gilbert, 2007), CoSaMP (Needel \& Tropp, 2009)

Least Absolute Shrinkage and Selection Operator (LASSO)

Convex relaxation: Take the best of both worlds: sparsity and convexity

LASSO / ℓ_{1} regularization

(Tibshirani 1996)

- Convex energy:

$$
E(\eta)=\frac{1}{2}\|y-\boldsymbol{D} \eta\|_{2}^{2}+\tau\|\eta\|_{1}
$$

- Non-smooth penalty:

$$
\|\eta\|_{1}=\sum_{i=1}^{K}\left|\eta_{i}\right|
$$

- If \boldsymbol{D} is orthogonal: solution given by the Soft-Thresholding.
- Produces also sparse solutions adapted to the signal ©

(a) Input
(b) ST+UDWT (1s)
(c) LASSO+UDWT (30s)
(d) Difference

Though the solutions look alike, their codes η are very different.

Least Absolute Shrinkage and Selection Operator

(a) Image (b) Coarse 5 (c) Scale 5 (d) Scale 5 (e) Scale 5 (f) Scale 1 (g) Scale 1

The LASSO creates much sparser codes than ST only.

Least Absolute Shrinkage and Selection Operator

Why use the LASSO if shrinkage in the UDWT provides similar results?

- Shrinkage in the UDWT domain can only be applied for denoising problems.
- The LASSO can be adapted to inverse-problems:

$$
\hat{x}^{\star}=\boldsymbol{D} \hat{\eta}^{\star} \quad \text { with } \quad \hat{\eta}^{\star} \in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}}\left[\frac{1}{2}\|y-\boldsymbol{H} \boldsymbol{D} \eta\|_{2}^{2}+\tau\|\eta\|_{1}\right]
$$

But it requires solving a non-smooth convex optimization problem. Solution: use sub-differential and Fermat's rule.

Non-smooth convex optimization

Definition (Sub-differential)

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function, $u \in \mathbb{R}^{n}$ is a sub-gradient of f at x^{*}, if for all $x \in \mathbb{R}^{n}$

$$
f(x) \geqslant f\left(x^{*}\right)+\left\langle u, x-x^{*}\right\rangle .
$$

- The sub-differential is the set of sub-gradients

$$
\partial f\left(x^{*}\right)=\left\{u \in \mathbb{R}^{n}: \forall x \in \mathbb{R}^{n}, f(x) \geqslant f\left(x^{*}\right)+\left\langle u, x-x^{*}\right\rangle\right\}
$$

If the sub-gradient is unique, f is differentiable and $\partial f(x)=\{\nabla f(x)\}$.

Non-smooth convex optimization

Definition (Sub-differential)

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function, $u \in \mathbb{R}^{n}$ is a sub-gradient of f at x^{*}, if for all $x \in \mathbb{R}^{n}$

$$
f(x) \geqslant f\left(x^{*}\right)+\left\langle u, x-x^{*}\right\rangle .
$$

- The sub-differential is the set of sub-gradients

$$
\partial f\left(x^{*}\right)=\left\{u \in \mathbb{R}^{n}: \forall x \in \mathbb{R}^{n}, f(x) \geqslant f\left(x^{*}\right)+\left\langle u, x-x^{*}\right\rangle\right\}
$$

If the sub-gradient is unique, f is differentiable and $\partial f(x)=\{\nabla f(x)\}$.

Non-smooth convex optimization

Definition (Sub-differential)

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function, $u \in \mathbb{R}^{n}$ is a sub-gradient of f at x^{*}, if for all $x \in \mathbb{R}^{n}$

$$
f(x) \geqslant f\left(x^{*}\right)+\left\langle u, x-x^{*}\right\rangle .
$$

- The sub-differential is the set of sub-gradients

$$
\partial f\left(x^{*}\right)=\left\{u \in \mathbb{R}^{n}: \forall x \in \mathbb{R}^{n}, f(x) \geqslant f\left(x^{*}\right)+\left\langle u, x-x^{*}\right\rangle\right\}
$$

If the sub-gradient is unique, f is differentiable and $\partial f(x)=\{\nabla f(x)\}$.

Non-smooth convex optimization

Definition (Sub-differential)

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function, $u \in \mathbb{R}^{n}$ is a sub-gradient of f at x^{*}, if for all $x \in \mathbb{R}^{n}$

$$
f(x) \geqslant f\left(x^{*}\right)+\left\langle u, x-x^{*}\right\rangle .
$$

- The sub-differential is the set of sub-gradients

$$
\partial f\left(x^{*}\right)=\left\{u \in \mathbb{R}^{n}: \forall x \in \mathbb{R}^{n}, f(x) \geqslant f\left(x^{*}\right)+\left\langle u, x-x^{*}\right\rangle\right\}
$$

If the sub-gradient is unique, f is differentiable and $\partial f(x)=\{\nabla f(x)\}$.

Non-smooth convex optimization

Theorem (Fermat's rule)

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function, then

$$
x^{*} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x) \quad \Leftrightarrow \quad 0_{n} \in \partial f\left(x^{*}\right)
$$

If f is also differentiable, this corresponds to the standard rule $\nabla f\left(x^{*}\right)=0_{n}$.

Minimizers are the only points with a horizontal tangent

Non-smooth convex optimization

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)
$\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } x^{*} \in(-\infty, 0) \\ \{+1\} & \text { if } x^{*} \in(0, \infty) \\ {[-1,1]} & \text { if } x^{*}=0\end{cases}$

Non-smooth convex optimization

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)
$\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } x^{*} \in(-\infty, 0) \\ \{+1\} & \text { if } x^{*} \in(0, \infty) \\ {[-1,1]} & \text { if } x^{*}=0\end{cases}$

Non-smooth convex optimization

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)
$\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } x^{*} \in(-\infty, 0) \\ \{+1\} & \text { if } x^{*} \in(0, \infty) \\ {[-1,1]} & \text { if } x^{*}=0\end{cases}$

Non-smooth convex optimization

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)
$\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } x^{*} \in(-\infty, 0) \\ \{+1\} & \text { if } x^{*} \in(0, \infty) \\ {[-1,1]} & \text { if } x^{*}=0\end{cases}$

Non-smooth convex optimization

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)
$\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } x^{*} \in(-\infty, 0) \\ \{+1\} & \text { if } x^{*} \in(0, \infty) \\ {[-1,1]} & \text { if } x^{*}=0\end{cases}$

Non-smooth convex optimization

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)
$\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } x^{*} \in(-\infty, 0) \\ \{+1\} & \text { if } x^{*} \in(0, \infty) \\ {[-1,1]} & \text { if } x^{*}=0\end{cases}$

Non-smooth convex optimization

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)
$\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } x^{*} \in(-\infty, 0) \\ \{+1\} & \text { if } x^{*} \in(0, \infty) \\ {[-1,1]} & \text { if } x^{*}=0\end{cases}$

Non-smooth convex optimization

Function (abs):

$$
f: \begin{cases}\mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto|x|\end{cases}
$$

Sub-differential (sign)
$\partial f\left(x^{*}\right)= \begin{cases}\{-1\} & \text { if } x^{*} \in(-\infty, 0) \\ \{+1\} & \text { if } x^{*} \in(0, \infty) \\ {[-1,1]} & \text { if } x^{*}=0\end{cases}$

Non-smooth convex optimization

Proximal operator

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function (+ some technical conditions). The proximal operator of f is

$$
\operatorname{Prox}_{f}(x)=\underset{z \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|z-x\|_{2}^{2}+f(z)
$$

- Remark: this minimization problem always has a unique solution, so the proximal operator is without ambiguity a function $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- Always non-expansive:

$$
\left\|\operatorname{Prox}_{f}\left(x_{1}\right)-\operatorname{Prox}_{f}\left(x_{2}\right)\right\| \leqslant\left\|x_{1}-x_{2}\right\|
$$

- Can be interpreted as a denoiser/shrinkage for the regularity f.

Property

$$
\operatorname{Prox}_{\gamma f}(x)=(\operatorname{Id}+\gamma \partial f)^{-1} x
$$

Non-smooth convex optimization

Proof.

$$
\begin{aligned}
\underset{z}{\operatorname{argmin}} \frac{1}{2}\|z-x\|_{2}^{2}+\gamma f(z) & \Leftrightarrow \quad 0 \in \partial\left[\frac{1}{2}\|z-x\|_{2}^{2}+\gamma f(z)\right] \\
& \Leftrightarrow \quad 0 \in \partial\left[\frac{1}{2}\|z-x\|_{2}^{2}\right]+\gamma \partial f(z) \\
& \Leftrightarrow \quad 0 \in z-x+\gamma \partial f(z) \\
& \Leftrightarrow \quad x \in z+\gamma \partial f(z) \\
& \Leftrightarrow \quad x \in(\operatorname{Id}+\gamma \partial f)(z) \\
& \Leftrightarrow \quad z=(\operatorname{Id}+\gamma \partial f)^{-1} x
\end{aligned}
$$

Even though $\partial f(x)$ is a set, the pre-image by $\operatorname{Id}+\gamma \partial f$ is unique.

Non-smooth convex optimization

Soft-thresholding

$$
\begin{aligned}
\operatorname{Prox}_{\gamma|\cdot|}(x) & =\underset{z \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2}(z-x)^{2}+\gamma|z| \\
& =(\operatorname{Id}+\gamma \partial|\cdot|)^{-1} x= \begin{cases}x-\gamma & \text { if } x>\gamma \\
x+\gamma & \text { if } x<-\gamma \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Non-smooth convex optimization

Proximal operator of simple functions

Name	$f(x)$	$\operatorname{Prox}_{\gamma f}(x)$				
Indicator of convex set \mathcal{C}	$\begin{cases}0 & \text { if } x \in \mathcal{C} \\ \infty & \text { otherwise }\end{cases}$	$\operatorname{Proj}_{\mathcal{C}}(x)$				
Square	$\frac{1}{2}\\|x\\|_{2}^{2}$	$\frac{x}{1+\gamma}$				
Abs	$\\|x\\|_{1}$	Soft-T(x, γ)				
Euclidean	$\\|x\\|_{2}$	$\left(1-\frac{\gamma}{\max \left(\\|x\\|_{2}, \gamma\right)}\right) x$				
Square+Affine	$\frac{1}{2}\\|A x+b\\|_{2}^{2}$	$\left(\mathrm{Id}+\gamma A^{*} A\right)^{-1}\left(x-\gamma A^{*} b\right)$				
Separability for $x=\binom{x_{1}}{x_{2}}$	$g\left(x_{1}\right)+h\left(x_{2}\right)$	$\binom{\operatorname{Prox}_{\gamma g}\left(x_{1}\right)}{\operatorname{Prox}_{\gamma h}\left(x_{2}\right)}$				

More exhaustive list: http://proximity-operator.net

Non-smooth convex optimization

Proximal minimization

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function (+ some technical conditions). Then, whatever the initialization x^{0} and $\gamma>0$, the sequence

$$
x^{k+1}=\operatorname{Prox}_{\gamma f}\left(x^{k}\right)
$$

converges towards a global minimizer of f.

$$
\operatorname{Prox}_{\gamma f}\left(x^{k}\right)=(\operatorname{Id}+\gamma \partial f)^{-1} x^{k}=\underset{z}{\operatorname{argmin}} \frac{1}{2}\left\|z-x^{k}\right\|_{2}^{2}+\gamma f(z)
$$

Compared to gradient descent

- No need to be differentiable,
- No need to have Lipschitz gradient,
- Works whatever the parameter γ,
- Requires to solve an optimization problem at each step.

Non-smooth convex optimization

Gradient descent:

read x^{k} on the x-axis and evaluate its image by the function $x-\gamma \nabla F(x)$.

Non-smooth convex optimization

Proximal minimization:
Look at the set $x+\gamma \partial F(x)$

Non-smooth convex optimization

Proximal minimization:

read x^{k} on the y-axis and evaluate its pre-image by $x+\gamma \nabla F(x)$.

Non-smooth convex optimization

Proximal minimization:
the larger γ the faster, but the inversion becomes harder (ill-conditioned).

Non-smooth convex optimization

Toy example

- Consider the smoothing regularization problem

$$
F(x)=\frac{1}{2}\|\nabla x\|_{2,2}^{2}
$$

- Its sub-gradient is thus given by

$$
\partial F(x)=\{\nabla F(x)=-\Delta x\}
$$

- The proximal minimization reads as

$$
\begin{aligned}
x^{k+1} & =(\operatorname{Id}+\gamma \partial F)^{-1} x^{k} \\
& =(\operatorname{Id}-\gamma \Delta)^{-1} x^{k}
\end{aligned}
$$

- This is exactly the implicit Euler scheme for the Heat equation.

Non-smooth convex optimization

Can we apply proximal minimization for the LASSO?

Proximal splitting methods

- The proximal operator may not have a closed form.
- Computing it may be as difficult as solving the original problem ()
- Solution: use proximal splitting methods, a family of techniques developed for non-smooth convex problems.
- Idea: split the problem into subproblems, that involve
- gradient descent steps for smooth terms,
- proximal steps for simple convex terms.

Non-smooth convex optimization

$$
\min _{x \in \mathbb{R}^{n}}\{E(x)=F(x)+G(x)\}
$$

Proximal forward-backward algorithm

- Assume F is convex and differentiable with L-Lipschitz gradient

$$
\left\|\nabla F\left(x_{1}\right)-\nabla F\left(x_{2}\right)\right\|_{2} \leqslant L\left\|x_{1}-x_{2}\right\|_{2}, \quad \text { for all } x_{1}, x_{2} .
$$

- Assume G is convex and simple, i.e., its prox is known in closed form

$$
\operatorname{Prox}_{\gamma G}(x)=\underset{z}{\operatorname{argmin}} \frac{1}{2}\|z-x\|_{2}^{2}+\gamma G(z)
$$

- The proximal forward-backward algorithm reads

$$
x^{k+1}=\operatorname{Prox}_{\gamma G}\left(x^{k}-\gamma \nabla F\left(x^{k}\right)\right)
$$

- For $0<\gamma<2 / L$, it converges to a minimizer of $E=F+G$.

Aka, explicit-implicit scheme by analogy with PDE discretization schemes.

Non-smooth convex optimization

The LASSO problem: $\quad E(\eta)=\underbrace{\frac{1}{2}\|y-\boldsymbol{A} \eta\|_{2}^{2}}_{F(\eta)}+\underbrace{\tau\|\eta\|_{1}}_{G(\eta)=\sum_{i}\left|\eta_{i}\right|}, \quad \boldsymbol{A}=\boldsymbol{H} \boldsymbol{D}$

Iterative Soft-Thresholding Algorithm (ISTA)

(Daubechies, 2004)

- F is convex and differentiable with L-Lipschitz gradient

$$
\nabla F(\eta)=\boldsymbol{A}^{*}(\boldsymbol{A} \eta-y) \quad \text { with } \quad L=\|\boldsymbol{A}\|_{2}^{2}
$$

- G is convex and simple, in fact separable:

$$
\operatorname{Prox}_{\gamma G}(\eta)_{i}=\operatorname{Soft}-\mathrm{T}\left(\eta_{i}, \gamma \tau\right)
$$

- The proximal forward-backward algorithm reads for $0<\gamma<2 / L$

$$
\eta^{k+1}=\operatorname{Soft}-\mathrm{T}\left(\eta^{k}-\gamma\left(\boldsymbol{A}^{*} \boldsymbol{A} \eta^{k}-\boldsymbol{A}^{*} y\right), \gamma \tau\right)
$$

and is known as Iterative Soft-Thresholding Algorithm (ISTA).

- Finally:

$$
\hat{x}^{\star}=\overline{\boldsymbol{D}} \hat{\eta}^{\star}
$$

Non-smooth convex optimization

Preconditioned ISTA (1/2)

- Remark

$$
\begin{aligned}
\hat{\eta}^{\star} & \in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{A} \eta\|_{2}^{2}+\tau\|\eta\|_{1}, \quad \boldsymbol{A}=\boldsymbol{H} \underbrace{\overline{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1 / 2}}_{\boldsymbol{D}} \\
& \in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}} \frac{1}{2}\left\|y-\boldsymbol{H} \overline{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1 / 2} \eta\right\|_{2}^{2}+\tau\|\eta\|_{1}
\end{aligned}
$$

- $\Lambda^{1 / 2}$ invertible: bijection between $z=\Lambda^{1 / 2} \eta$ and $\eta=\Lambda^{-1 / 2} z$
- Solving for η is equivalent to solve a weighted LASSO for z

$$
\begin{aligned}
\hat{z}^{\star} & \underset{z \in \mathbb{R}^{K}}{\operatorname{argmin}} \frac{1}{2}\left\|y-\boldsymbol{H} \overline{\boldsymbol{W}}^{+} z\right\|_{2}^{2}+\tau\left\|\boldsymbol{\Lambda}^{-1 / 2} z\right\|_{1} \\
& \in \underset{z \in \mathbb{R}^{K}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{B} z\|_{2}^{2}+\sum_{i=1}^{K} \frac{\tau}{\lambda_{i}}\left|z_{i}\right|, \quad \boldsymbol{B}=\boldsymbol{H} \overline{\boldsymbol{W}}^{+}
\end{aligned}
$$

- In practice, this equivalent problem has better conditioning.

Non-smooth convex optimization

Equivalent to:

$$
E(z)=\underbrace{\frac{1}{2}\|y-\boldsymbol{B} z\|_{2}^{2}}_{F(z)}+\underbrace{\tau\left\|\boldsymbol{\Lambda}^{-1 / 2} z\right\|_{1}}_{G(z)=\sum_{i} \frac{\tau}{\lambda_{i}}\left|z_{i}\right|}, \quad \boldsymbol{B}=\boldsymbol{H} \overline{\boldsymbol{W}}^{+}
$$

Preconditioned ISTA (2/2)

$$
\begin{aligned}
\nabla F(z) & =\boldsymbol{B}^{*}(\boldsymbol{B} z-y) \quad \text { with } \quad L=\|\boldsymbol{B}\|_{2}^{2} \\
\operatorname{Prox}_{\gamma G}(z)_{i} & =\text { Soft-T }\left(z_{i}, \frac{\gamma \tau}{\lambda_{i}}\right)
\end{aligned}
$$

- ISTA becomes for $0<\gamma<2 / L$

$$
z^{k+1}=\text { Soft-T }\left(z^{k}-\gamma\left(\boldsymbol{B}^{*} \boldsymbol{B} z^{k}-\boldsymbol{B}^{*} y\right), \frac{\gamma \tau}{\lambda_{i}}\right)
$$

- Finally:

$$
\hat{x}^{\star}=\bar{W}^{+} \hat{z}^{\star}
$$

- Leads to larger steps γ, better conditioning, and faster convergence.

Non-smooth convex optimization

$$
\begin{aligned}
z^{k+1} & =\operatorname{Prox}_{\gamma G}\left(z^{k}-\gamma \nabla F\left(z^{k}\right)\right) \\
& =\operatorname{Soft}-\mathrm{T}\left(z^{k}-\gamma\left(\boldsymbol{B}^{*} \boldsymbol{B} z^{k}-\boldsymbol{B}^{*} y\right), \frac{\gamma \tau}{\lambda_{i}}\right) \quad \text { with } \quad \boldsymbol{B}=\boldsymbol{H} \overline{\boldsymbol{W}}^{+}
\end{aligned}
$$

Bredies \& Lorenz (2007): $E\left(z^{k}\right)-E\left(z^{*}\right)$ decays with rate $O(1 / k)$

Fast ISTA (FISTA)

$$
\begin{aligned}
z^{k+1} & =\operatorname{Prox}_{\gamma G}\left(\tilde{z}^{k}-\gamma \nabla F\left(\tilde{z}^{k}\right)\right) \\
\tilde{z}^{k+1} & =z^{k+1}+\frac{t_{k}-1}{t_{k+1}}\left(z^{k+1}-z^{k}\right) \\
t_{k+1} & =\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}, t_{0}=1
\end{aligned}
$$

Beck \& Teboulle (2009): $E\left(z^{k}\right)-E\left(z^{\star}\right)$ decays with rate $O\left(1 / k^{2}\right)$

Non-smooth convex optimization

(a) Input y : motion blur + noise $(\sigma=2)$

(c) Deconvolution ISTA(300)+UDWT

(b) Convergence profiles

(d) Deconvolution FISTA(300)+UDWT

FISTA converges faster: sparser codes given a limited time budget

Sparsity: synthesis vs analysis

Sparse reconstruction: synthesis vs analysis

Sparse synthesis model with UDWT

- LASSO: $\quad \hat{\eta}^{\star} \in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}} \frac{1}{2}\left\|y-\boldsymbol{H} \overline{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1 / 2} \eta\right\|_{2}^{2}+\tau\|\eta\|_{1}$
- Using the change of variable $\eta=\Lambda^{-1 / 2} z$:

$$
\hat{z}^{\star} \in \underset{z \in \mathbb{R}^{K}}{\operatorname{argmin}} \frac{1}{2}\left\|y-\boldsymbol{H} \overline{\boldsymbol{W}}^{+} z\right\|_{2}^{2}+\tau\left\|\boldsymbol{\Lambda}^{-1 / 2} z\right\|_{1}
$$

Sparse analysis model with UDWT

- What about?

$$
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\left\|\boldsymbol{\Lambda}^{-1 / 2} \overline{\boldsymbol{W}} x\right\|_{1}
$$

- The change of variable $\eta=\Lambda^{-1 / 2} \overline{\boldsymbol{W}} x$ is not one-to-one.
- The two problems are not equivalent (unless \bar{W} is invertible).

Sparse reconstruction: synthesis vs analysis

Sparse reconstruction: synthesis vs analysis

Analysis versus synthesis (Elad, Milanfar, Rubinstein, 2007)
Generative: generate good images
$\hat{x}^{\star}=\boldsymbol{D} \hat{\eta}^{\star} \quad$ with $\quad \hat{\eta}^{\star} \in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} \boldsymbol{D} \eta\|_{2}^{2}+\tau\|\eta\|_{p}^{p}, \quad p \geqslant 0$
Synthesis: images are linear combinations of a few columns of \boldsymbol{D}.
Bayesian interpretation: MAP for the sparse code η.

Discriminative: discriminate between good and bad images

$$
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{p}^{p}, \quad p \geqslant 0
$$

Analysis: images are correlated with a few rows of $\boldsymbol{\Gamma}$.
Bayesian interpretation: MAP for x with an improper Gibbs prior.

Sparse reconstruction: synthesis vs analysis

$$
\begin{array}{ll}
\hat{\eta}^{\star} \in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} \boldsymbol{D} \eta\|_{2}^{2}+\tau\|\eta\|_{p}^{p} & \left(\ell_{p}^{p}\right. \text {-synthesis) } \\
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{p}^{p} & \left(\ell_{p}^{p} \text {-analysis }\right)
\end{array}
$$

Common properties

	Solution	Problem
$p=0$	Optimal sparse	Non-convex \& discontinuous (NP-hard)
$0<p<1$	Sparse	Non-convex \& continuous but non-smooth
$p=1$	Sparse	Convex \& continuous but non-smooth
$p>1$	Smooth	Convex \& differentiable
$p=2$	Linear	Quadratic

- $\boldsymbol{\Gamma}$ square and invertible \Rightarrow equivalent for $\boldsymbol{D}=\boldsymbol{\Gamma}^{-1}$.
- $\boldsymbol{\Gamma}$ full-rank and $p=2 \Rightarrow$ equivalent for $\boldsymbol{D}=\boldsymbol{\Gamma}^{+}$.
- LTI dictionaries \Rightarrow redundant filter bank.

Sparse reconstruction: synthesis vs analysis

$$
\begin{array}{ll}
\hat{\eta}^{\star} \in \underset{\in \in \mathbb{R}^{K}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} \boldsymbol{D} \eta\|_{2}^{2}+\tau\|\eta\|_{p}^{p} & \left(\ell_{p}^{p} \text {-synthesis }\right) \\
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{p}^{p} & \left(\ell_{p}^{p} \text {-analysis }\right)
\end{array}
$$

Synthesis

- D: synthesis dictionary.
- Atoms need to span images.
\Rightarrow Low- \& high-pass filters
$\Rightarrow \operatorname{Im}[\boldsymbol{D}] \approx \mathbb{R}^{n}$
- Redundancy favor sparsity.
- K dimensional problem (> n).
- Prior separable.

Analysis

- Γ : analysis dictionary.
- Atoms need to sparsify images.
\Rightarrow High-pass filters only
$\Rightarrow \operatorname{Ker}[\boldsymbol{\Gamma}] \neq \emptyset$ (ว DC, coarse)
- Redundancy decreases sparsity.
- n dimensional problem ($<K$).
- Prior non-separable.

Quiz: What analysis dictionary is LTI and not too redundant?

Sparse reconstruction: synthesis vs analysis

$$
\begin{array}{ll}
\hat{\eta}^{\star} \in \underset{\in \in \mathbb{R}^{K}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} \boldsymbol{D} \eta\|_{2}^{2}+\tau\|\eta\|_{p}^{p} & \left(\ell_{p}^{p} \text {-synthesis }\right) \\
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{p}^{p} & \left(\ell_{p}^{p} \text {-analysis }\right)
\end{array}
$$

Link between analysis models and variational methods

- $p=2: \quad$ Analysis model $=$ Tikhonov regularization.
- $p=1 \& \boldsymbol{\Gamma}=\nabla: \quad$ Analysis model $=$ anisotropic Total-Variation (TV)

TV filter bank $=$ Horizontal and vertical gradient

Spatial filter bank

Can we use proximal forward-backward for ℓ_{1}-analysis prior?

Non-smooth optimization

$$
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \underbrace{\frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}}_{F(x)}+\underbrace{\tau\|\boldsymbol{\Gamma} x\|_{1}}_{G(x)} \quad \text { (} \ell_{1} \text {-analysis) }
$$

Proximal forward-backward for the ℓ_{1}-analysis problem?

- F convex and differentiable
- G convex but not simple (not separable)
\longrightarrow cannot use proximal forward backward $)^{*}$
- Exception: for denoising $\boldsymbol{H}=\mathrm{Id}_{n} \quad$ (see: Chambolle algorithm, 2004)

Need another proximal optimization technique.

Non-smooth optimization

$$
\min _{x \in \mathbb{R}^{n}}\{E(x)=F(x)+G(x)\}
$$

Alternating direction method of multipliers (ADMM)

- Assume F and G are convex and simple (+ some mild conditions).
- For any initialization x^{0}, \tilde{x}^{0} and d^{0}, the ADMM algorithm reads as

$$
\begin{aligned}
x^{k+1} & =\operatorname{Prox}_{\gamma F}\left(\tilde{x}^{k}+d^{k}\right) \\
\tilde{x}^{k+1} & =\operatorname{Prox}_{\gamma G}\left(x^{k+1}-d^{k}\right) \\
d^{k+1} & =d^{k}-x^{k+1}+\tilde{x}^{k+1}
\end{aligned}
$$

- For $\gamma>0, x^{k}$ converges to a minimizer of $E=F+G$.

Fast version: FADMM, similar idea as for FISTA (Goldstein et al., 2014).
Related concepts: Lagrange multipliers, Duality, Legendre transform.
How to use it for ℓ_{1} analysis priors?

Non-smooth optimization

$$
\begin{equation*}
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{1} \tag{1}
\end{equation*}
$$

ADMM + Variable splitting (1/3)

- Define: $\quad X=\binom{x}{z} \in \mathbb{R}^{n+K}$
- Consider: $\quad E(X)=F(X)+G(X)$
with: $\quad\left\{\begin{array}{l}F\binom{x}{z}=\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|z\|_{1} \\ G\binom{x}{z}= \begin{cases}0 & \text { if } \boldsymbol{\Gamma} x=z \\ \infty & \text { otherwise }\end{cases} \end{array}\right.$
- Remark 1: \quad Minimizing E solves the ℓ_{1}-analysis problem.
- Remark 2: $\quad F$ and G are convex and simple \Rightarrow ADMM applies.

Non-smooth optimization

$$
\begin{equation*}
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{1} \tag{1}
\end{equation*}
$$

ADMM + Variable splitting (2/3)

Applying formula from slide 92:

$$
\begin{aligned}
& F\binom{x}{z}=\| \operatorname{Prox}_{\gamma F}\binom{x}{z}=\binom{\left(\operatorname{Id}_{n}+\gamma \boldsymbol{H}^{*} \boldsymbol{H}\right)^{-1}\left(x+\gamma \boldsymbol{H}^{*} y\right)}{\operatorname{Soft}-\boldsymbol{T}(z, \gamma \tau)} \\
& G\binom{x}{z}=\underbrace{ \begin{cases}0 & \text { if } \quad \boldsymbol{\Gamma} x=z \\
\infty & \text { otherwise }\end{cases} }_{\begin{array}{c}
\text { Indicator of the convex set } \\
\mathcal{C}=\{(x, z) ; \boldsymbol{\Gamma} x=z\}
\end{array}} \quad \longrightarrow \operatorname{Prox}_{\gamma G}\binom{x}{z}=\underbrace{\binom{\operatorname{Id}_{n}}{\boldsymbol{\Gamma}}\left(\operatorname{Id}_{n}+\boldsymbol{\Gamma}^{*} \boldsymbol{\Gamma}\right)^{-1}\left(x+\boldsymbol{\Gamma}^{*} z\right)}_{\text {Projection on } \mathcal{C}}
\end{aligned}
$$

Non-smooth optimization

$$
\begin{equation*}
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{1} \tag{1}
\end{equation*}
$$

ADMM + Variable splitting (3/3)

$$
\begin{aligned}
x^{k+1} & =\left(\operatorname{Id}_{n}+\gamma \boldsymbol{H}^{*} \boldsymbol{H}\right)^{-1}\left(\tilde{x}^{k}+d_{x}^{k}+\gamma \boldsymbol{H}^{*} y\right) \\
z^{k+1} & =\operatorname{Soft}-\mathrm{T}\left(\tilde{z}^{k}+d_{z}^{k}, \gamma \tau\right) \\
\tilde{x}^{k+1} & =\left(\operatorname{Id}_{n}+\boldsymbol{\Gamma}^{*} \boldsymbol{\Gamma}\right)^{-1}\left(x^{k+1}-d_{x}^{k}+\boldsymbol{\Gamma}^{*}\left(z^{k+1}-d_{z}^{k}\right)\right) \\
\tilde{z}^{k+1} & =\boldsymbol{\Gamma} \tilde{x}^{k+1} \\
d_{x}^{k+1} & =d_{x}^{k}-x^{k+1}+\tilde{x}^{k+1} \\
d_{z}^{k+1} & =d_{z}^{k}-z^{k+1}+\tilde{z}^{k+1}
\end{aligned}
$$

If \boldsymbol{H} is a blur, and $\boldsymbol{\Gamma}$ a filter bank, $\left(\operatorname{Id}_{n}+\gamma \boldsymbol{H}^{*} \boldsymbol{H}\right)^{-1}$ and $\left(\operatorname{Id}_{n}+\boldsymbol{\Gamma}^{*} \boldsymbol{\Gamma}\right)^{-1}$ can be computed in the Fourier domain in $O(n \log n)$.

Non-smooth optimization

$$
\begin{equation*}
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{1} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
x^{k+1} & =\left(\operatorname{Id}_{n}+\gamma \boldsymbol{H}^{*} \boldsymbol{H}\right)^{-1}\left(\tilde{x}^{k}+d_{x}^{k}+\gamma \boldsymbol{H}^{*} y\right) \\
z^{k+1} & =\operatorname{Soft}-\mathrm{T}\left(\tilde{z}^{k}+d_{z}^{k}, \gamma \tau\right) \\
\tilde{x}^{k+1} & =\left(\operatorname{Id}_{n}+\nabla^{*} \nabla\right)^{-1}\left(x^{k+1}-d_{x}^{k}+\nabla^{*}\left(z^{k+1}-d_{z}^{k}\right)\right) \\
\tilde{z}^{k+1} & =\nabla \tilde{x}^{k+1} \\
d_{x}^{k+1} & =d_{x}^{k}-x^{k+1}+\tilde{x}^{k+1} \\
d_{z}^{k+1} & =d_{z}^{k}-z^{k+1}+\tilde{z}^{k+1}
\end{aligned}
$$

$$
\nabla^{*}=-\operatorname{div} \quad \text { and } \quad \nabla^{*} \nabla=-\Delta
$$

Non-smooth optimization

$$
\begin{equation*}
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{1} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& x^{k+1}=\left(\operatorname{Id}_{n}+\gamma \boldsymbol{H}^{*} \boldsymbol{H}\right)^{-1}\left(\tilde{x}^{k}+d_{x}^{k}+\gamma \boldsymbol{H}^{*} y\right) \\
& z^{k+1}=\operatorname{Soft}-\mathrm{T}\left(\tilde{z}^{k}+d_{z}^{k}, \gamma \tau\right) \\
& \tilde{x}^{k+1}=\left(\operatorname{Id}_{n}-\Delta\right)^{-1}\left(x^{k+1}-d_{x}^{k}-\operatorname{div}\left(z^{k+1}-d_{z}^{k}\right)\right) \\
& \tilde{z}^{k+1}=\nabla \tilde{x}^{k+1} \\
& d_{x}^{k+1}=d_{x}^{k}-x^{k+1}+\tilde{x}^{k+1} \\
& d_{z}^{k+1}=d_{z}^{k}-z^{k+1}+\tilde{z}^{k+1}
\end{aligned}
$$

$$
\nabla^{*}=-\operatorname{div} \quad \text { and } \quad \nabla^{*} \nabla=-\Delta
$$

Non-smooth optimization

$$
\begin{equation*}
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{1} \tag{1}
\end{equation*}
$$

Application to sparse analysis with UDWT
$\boldsymbol{\Gamma}=\boldsymbol{\Lambda}^{-1 / 2} \overline{\boldsymbol{W}}$

$$
\begin{aligned}
x^{k+1} & =\left(\operatorname{Id}_{n}+\gamma \boldsymbol{H}^{*} \boldsymbol{H}\right)^{-1}\left(\tilde{x}^{k}+d_{x}^{k}+\gamma \boldsymbol{H}^{*} y\right) \\
z^{k+1} & =\operatorname{Soft}-\mathrm{T}\left(\tilde{z}^{k}+d_{z}^{k}, \frac{\gamma \tau}{\lambda_{i}}\right) \\
\tilde{x}^{k+1} & =\left(\operatorname{Id}_{n}+\overline{\boldsymbol{W}}^{*} \overline{\boldsymbol{W}}\right)^{-1}\left(x^{k+1}-d_{x}^{k}+\overline{\boldsymbol{W}}^{*}\left(z^{k+1}-d_{z}^{k}\right)\right) \\
\tilde{z}^{k+1} & =\overline{\boldsymbol{W}} \tilde{x}^{k+1} \\
d_{x}^{k+1} & =d_{x}^{k}-x^{k+1}+\tilde{x}^{k+1} \\
d_{z}^{k+1} & =d_{z}^{k}-z^{k+1}+\tilde{z}^{k+1}
\end{aligned}
$$

Tight-frame: $\quad \bar{W}^{*} \overline{\boldsymbol{W}}=\operatorname{Id}_{n}$

Non-smooth optimization

$$
\begin{equation*}
\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{H} x\|_{2}^{2}+\tau\|\boldsymbol{\Gamma} x\|_{1} \tag{1}
\end{equation*}
$$

Application to sparse analysis with UDWT
$\boldsymbol{\Gamma}=\boldsymbol{\Lambda}^{-1 / 2} \overline{\boldsymbol{W}}$

$$
\begin{aligned}
x^{k+1} & =\left(\operatorname{Id}_{n}+\gamma \boldsymbol{H}^{*} \boldsymbol{H}\right)^{-1}\left(\tilde{x}^{k}+d_{x}^{k}+\gamma \boldsymbol{H}^{*} y\right) \\
z^{k+1} & =\operatorname{Soft}-\mathrm{T}\left(\tilde{z}^{k}+d_{z}^{k}, \frac{\gamma \tau}{\lambda_{i}}\right) \\
\tilde{x}^{k+1} & =\frac{1}{2}\left(x^{k+1}-d_{x}^{k}+\overline{\boldsymbol{W}}^{*}\left(z^{k+1}-d_{z}^{k}\right)\right) \\
\tilde{z}^{k+1} & =\overline{\boldsymbol{W}} \tilde{x}^{k+1} \\
d_{x}^{k+1} & =d_{x}^{k}-x^{k+1}+\tilde{x}^{k+1} \\
d_{z}^{k+1} & =d_{z}^{k}-z^{k+1}+\tilde{z}^{k+1}
\end{aligned}
$$

Tight-frame: $\quad \bar{W}^{*} \overline{\boldsymbol{W}}=\operatorname{Id}_{n}$

Sparse analysis - Results

Deconvolution with UDWT (5 levels, Db2)

(a) Blurry image y (noise $\sigma=2$)
(b) Synthesis (FISTA)
(c) Analysis (FADMM)

Sparse analysis - Results

Analysis allows for less decomposition levels. \Rightarrow leads to faster algorithms.

Sparse analysis - Results

(a) Noisy $(\sigma=40)$
(b) Analysis UDWT(4)
(c) +block (orien.+col.)
(d) Difference

- As for TV, group coefficients across orientations/color using $\ell_{2,1}$ norms:

$$
\|\boldsymbol{\Gamma} z\|_{2,1}
$$

- The soft-thresholding becomes the group soft-thresholding:

$$
\left[\operatorname{Prox}_{\gamma\|\cdot\|_{2,1}}(z)\right]_{i}= \begin{cases}z_{i}-\gamma \frac{z_{i}}{\left\|z_{i}\right\|_{2}} & \text { if }\left\|z_{i}\right\|_{2}>\gamma \\ 0 & \text { otherwise }\end{cases}
$$

Shrinkage, Sparsity and Wavelets - What's next?

Reminder from last class:

Modeling the distribution of images is complex (large degree of freedom).
Applying LMMSE on patches \rightarrow increase performance

Next class:

What if we use sparse priors, not for the distribution of images, but for the distribution of patches?

Shrinkage, Sparsity and Wavelets - Further reading

For further reading

Sparsity, shrinkage and recovery guarantee:

- Donoho \& Johnstone (1994); Moulin \& Liu (1999); Donoho and Elad (2003); Gribonval and Nielsen (2003); Candès and Tao (2005); Zhang (2008); Candès and Romberg (2007).
- Book: Statistical Learning with Sparsity (Hastie, Tibshirani, Wainwright, 2015).

Wavelet related transforms:

- Warblet/Chirplet (Mann, Mihovilovic et al., 1991-1992), Curvelet (Candès \& Donoho, 2000), Noiselet (Coifman, 2001), Contourlet (Do \& Vetterli, 2002), Ridgelet (Do \& Vetterli, 2003), Shearlets (Kanghui et al., 2005), Bandelet (Le Pennec, Peyré, Mallat, 2005), Empirical wavelets (Gilles, 2013).
- Book: A wavelet tour of signal processing (Mallat, 2008)

Non-smooth convex optimization:

- Douglas-Rachford splitting (Combettes \& Pesquet, 2007), Split Bregman (Goldstein \& Osher, 2009), Primal-Dual (Chambolle \& Pock, 2011), Generalized FB (Raguet et al., 2013), Condat algorithm (2014).
- Book: Convex Optimization (Boyd, 2004).

Questions?

Next class: Patch models and dictionary learning

Sources, images courtesy and acknowledgment

L. Condat
A. Horodniceanu
J. Salmon
G. Peyré
Wikipedia

