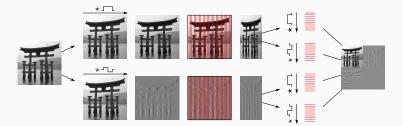
#### ECE 285

Image and video restoration

# Chapter VI – Sparsity, shrinkage and wavelets

Charles Deledalle June 7, 2019





(a) y = x + w (b) z = Fy (c)  $\frac{\lambda_i^2}{\lambda_i^2 + \sigma^2}$  (d)  $\hat{z}_i = \frac{\lambda_i^2}{\lambda_i^2 + \sigma^2} z_i$  (e)  $\hat{x} = F^{-1}\hat{z}$ 

#### Wiener filter (LMMSE in the Fourier domain)

- Assume Fourier coefficients to be decorrelated (white),
- Modulate frequencies based on the mean power spectral density λ<sup>2</sup><sub>i</sub>.

# Limits • Linear: no adaptation to the content $\Rightarrow$ Unable to preserve edges, Blurry solutions.

## Motivations

#### Facts and consequences

- Assume Fourier coefficients to be decorrelated (white)
- Removing Gaussian noise  $\Rightarrow$  need to be adaptive  $\Rightarrow$  Non linear
- Assuming Gaussian noise + Gaussian prior  $\Rightarrow$  Linear

Deductive reasoning

Fourier coefficients of clean images are not Gaussian distributed

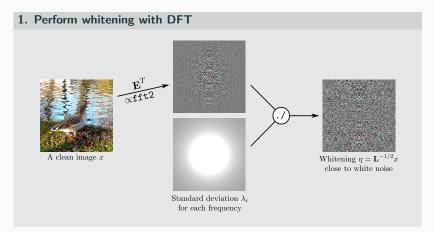


Underlying prior  $x \mapsto p(x)$ 

Gaussian prior  $x \sim \mathcal{N}(\mu; \mathbf{L})$ 

## How are Fourier coefficients distributed?

#### How are Fourier coefficients distributed?



$$Var[x] = \boldsymbol{L} = \boldsymbol{E}\boldsymbol{\Lambda}\boldsymbol{E}^* \quad \text{with} \quad \boldsymbol{E} = \frac{1}{\sqrt{n}}\boldsymbol{F}$$
$$diag(\boldsymbol{\Lambda}) = (\lambda_1^2, \dots, \lambda_n^2) = n^{-1}\mathsf{MPSD}$$

#### How are Fourier coefficients distributed?

#### 2. Look at the histogram

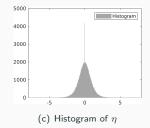
- The histogram of  $\eta$  has a symmetric bell shape around 0.
- It has a peak at 0 (a large number of Fourier coefficients are zero).
- It has large/heavy tails (many coefficients are "outliers" / abnormal).



(a) *x* 

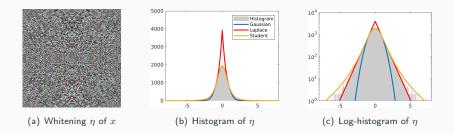


(b) Whitening  $\eta$  of x



#### How are Fourier coefficients distributed?

- 3. Look for the distribution that best fits (in log scale)
  - Gaussian: bell shape  $\sqrt{}$ , peak  $\times$ , tail  $\times$
  - Laplacian: bell shape imes, peak  $\sqrt{}$ , tail  $\sqrt{}$
  - Student: bell shape  $\sqrt{}$ , peak  $\times$ , tail  $\sqrt{}$  (heavier)
  - Others: alpha stables and generalized Gaussian distributions



#### Model expression (zero mean, variance = 1)

• Gaussian: bell shape  $\sqrt{}$ , peak  $\times$ , tail  $\times$ 

$$p(\eta_i) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\eta_i^2}{2}\right)$$

• Laplacian: bell shape imes, peak  $\sqrt{}$ , tail  $\sqrt{}$ 

$$p(\eta_i) = \frac{1}{\sqrt{2}} \exp\left(-\sqrt{2}|\eta_i|\right)$$

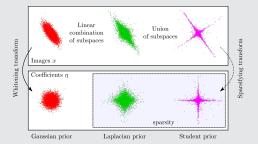
• Student: bell shape  $\sqrt{}$ , peak  $\times$ , tail  $\sqrt{}$  (heavier)

$$p(\eta_i) = \frac{1}{Z} \left( \frac{1}{(2r-2) + \eta_i^2} \right)^{r+1/2}$$

(Z normalization constant, r > 1 controls the tails)

#### How do they look in multiple-dimensions?

- Gaussian prior
- images are concentrated in an elliptical cluster, outliers are rare (images outside the cluster).
- Peaky & heavy tailed priors: shape between a diamond and a star.



- union of subspaces: most images lie in one of the branches of the star,
  - sparsity: most of their coefficients  $\eta_i$  are zeros,
  - outlier coefficients are frequent.

# Shrinkage functions

#### Consider the following Gaussian denoising problem

• Let  $y \in \mathbb{R}^n$  and  $x \in \mathbb{R}^p$  be two random vectors such that

 $y \mid x \sim \mathcal{N}(x, \sigma^2 \mathrm{Id}_n)$ 

$$\mathbb{E}[x] = 0$$
 and  $\operatorname{Var}[x] = L = E \Lambda E^{*}$ 

• Let  $\eta = \Lambda^{-1/2} E^* x$  (whitening / decorrelation of x)

Goal: estimate x from yassuming a non-Gaussian prior  $p_{\eta}$  for  $\eta$ . (such as Laplacian or Student)

## Shrinkage functions

#### Bayesian shrinkage functions

- Assume  $\eta_i$  are also independent and identically distributed (iid).
- Then, the MMSE and MAP estimators both read as



• The function  $z_i \mapsto s(z_i; \lambda_i, \sigma)$  is called shrinkage function.

- Unlike the LMMSE, s will depend on the prior distribution of  $\eta_i$ .
- As for the LMMSE, the solution can be computed in the eigenspace.
- We say that the estimator is separable in the eigenspace (ex: Fourier).

### Remark

 $\mathsf{independence} \Rightarrow \mathsf{uncorrelation}$ 

 $\neg$ uncorrelation  $\Rightarrow \neg$ independence

 $\mathsf{correlation} \Rightarrow \mathsf{dependence}$ 

Whitening is a necessarily step for independence but not a sufficient one. (Except in the Gaussian case)

#### How are the shrinkage functions defined for the MMSE and MAP?

• Recall that the MMSE is the posterior mean

$$\hat{x}^{\star} = \int_{\mathbb{R}^n} x p(x|y) \, \mathrm{d}x = \frac{\int_{\mathbb{R}^n} x p(y|x) p(x) \, \mathrm{d}x}{\int_{\mathbb{R}^n} p(y|x) p(x) \, \mathrm{d}x}$$

#### **MMSE Shrinkage functions**

• Under the previous assumptions

$$\begin{split} \hat{x}^{\star} &= \underbrace{E\hat{z}}_{\text{Come back}} \quad \text{where} \quad \underbrace{\hat{z}_i = s(z_i; \ \lambda_i, \sigma)}_{\text{shrinkage}} \quad \text{and} \quad z = \underbrace{E^{\star}y}_{\text{Change of basis}} \end{split}$$
with  $s(z; \ \lambda, \sigma) = \frac{\int_{\mathbb{R}} \tilde{z} \exp\left(-\frac{(z-\tilde{z})^2}{2\sigma^2}\right) p_{\eta}\left(\frac{\tilde{z}}{\lambda}\right) \, \mathrm{d}\tilde{z}}{\int_{\mathbb{R}} \exp\left(-\frac{(z-\tilde{z})^2}{2\sigma^2}\right) p_{\eta}\left(\frac{\tilde{z}}{\lambda}\right) \, \mathrm{d}\tilde{z}}$ 

where  $p_{\eta}$  is the prior distribution on the entries of  $\eta$ .

• Separability: n dimensional optimization  $\longrightarrow n \times 1d$  integrations.

• Recall that the MAP is the optimization problem

$$\hat{x}^* \in \underset{x \in \mathbb{R}^n}{\operatorname{argmax}} p(x|y) = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left[ -\log p(y|x) - \log p(x) \right]$$

#### **MAP Shrinkage functions**

• Under the previous assumptions

$$\hat{x}^{*} = \underbrace{E\hat{z}}_{\text{Come back}} \text{ where } \underbrace{\hat{z}_{i} = s(z_{i}; \lambda_{i}, \sigma)}_{\text{shrinkage}} \text{ and } z = \underbrace{E^{*}y}_{\text{Change of basis}}$$
with  $s(z; \lambda, \sigma) = \operatorname*{argmin}_{\tilde{z} \in \mathbb{R}} \left[ \frac{(z - \tilde{z})^{2}}{2\sigma^{2}} - \log p_{\eta} \left( \frac{\tilde{z}}{\lambda} \right) \right]$ 

where  $p_{\eta}$  is the prior distribution on the entries of  $\eta$ .

• Separability: n dimensional integration  $\rightarrow n \times 1d$  optimisations.

## Example (Gaussian noise + Gaussian prior)

• MMSE Shrinkage

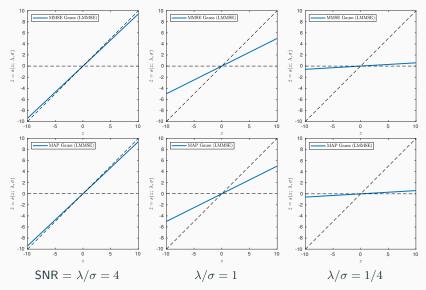
$$s(z; \lambda, \sigma) = \frac{\int_{\mathbb{R}} \tilde{z} \exp\left(-\frac{(z-\tilde{z})^2}{2\sigma^2} - \frac{\tilde{z}^2}{2\lambda^2}\right) d\tilde{z}}{\int_{\mathbb{R}} \exp\left(-\frac{(z-\tilde{z})^2}{2\sigma^2} - \frac{\tilde{z}^2}{2\lambda^2}\right) d\tilde{z}} = \frac{\lambda^2}{\lambda^2 + \sigma^2} z$$

MAP Shrinkage

$$s(z; \ \lambda, \sigma) = \operatorname*{argmin}_{\tilde{z} \in \mathbb{R}} \ \left[ \frac{(z - \tilde{z})^2}{2\sigma^2} + \frac{\tilde{z}^2}{2\lambda^2} \right] = \frac{\lambda^2}{\lambda^2 + \sigma^2} z$$

- Gaussian prior: MAP = MMSE = Linear shrinkage.
- We retrieve the LMMSE as expected.





## Posterior mean – Shrinkage functions – Examples

#### Example (Gaussian noise + Laplacian prior)

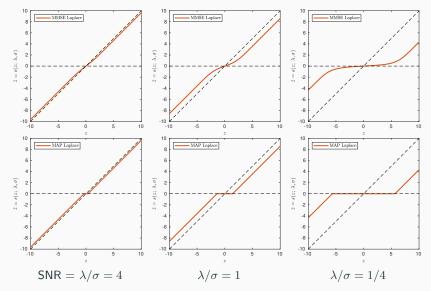
• MMSE Shrinkage

$$\begin{split} s(z;\ \lambda,\sigma) &= \frac{\int \tilde{z} \exp\left(-\frac{(z-\tilde{z})^2}{2\sigma^2} - \frac{\sqrt{2}|\tilde{z}|}{\lambda}\right) \,\mathrm{d}\tilde{z}}{\int \exp\left(-\frac{(z-\tilde{z})^2}{2\sigma^2} - \frac{\sqrt{2}|\tilde{z}|}{\lambda}\right) \,\mathrm{d}\tilde{z}} \\ &= z - \frac{\gamma\left(\operatorname{erf}\left(\frac{z-\gamma}{\sqrt{2}\sigma}\right) - \exp\left(\frac{2\gamma z}{\sigma^2}\right)\operatorname{erfc}\left(\frac{\gamma+z}{\sqrt{2}\sigma}\right) + 1\right)}{\operatorname{erf}\left(\frac{z-\gamma}{\sqrt{2}\sigma}\right) + \exp\left(\frac{2\gamma z}{\sigma^2}\right)\operatorname{erfc}\left(\frac{\gamma+z}{\sqrt{2}\sigma}\right) + 1}, \quad \gamma = \frac{\sqrt{2}\sigma^2}{\lambda} \end{split}$$

• MAP Shrinkage (soft-thresholding)

$$s(z; \ \lambda, \sigma) = \underset{\tilde{z} \in \mathbb{R}}{\operatorname{argmin}} \left[ \frac{(z - \tilde{z})^2}{2\sigma^2} + \frac{\sqrt{2}|\tilde{z}|}{\lambda} \right] = \underbrace{\begin{cases} 0 & \text{if } |z| < \gamma \\ z - \gamma & \text{if } z > \gamma \\ z + \gamma & \text{if } z < -\gamma \\ \hline Soft-T(z, \gamma) \end{cases}}_{\text{Soft-T}(z, \gamma)}$$

Non-gaussian prior: MAP  $\neq$  MMSE  $\rightarrow$  Non-linear shrinkage.



#### Gaussian noise + Laplacian prior

#### Example (Gaussian noise + Student prior)

• MMSE Shrinkage

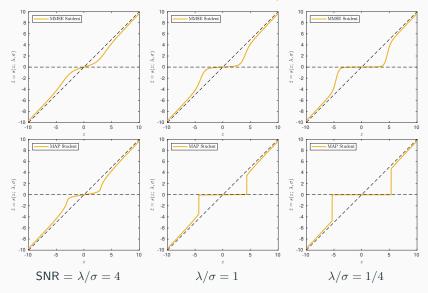
No simple expression, requires 1d numerical integration

MAP Shrinkage

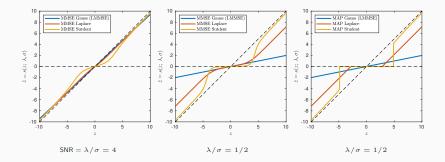
No simple expression, requires 1d numerical optimization

For efficiency, the 1d functions can be evaluated offline and stored in a look-up-table.

#### Gaussian noise + Student prior



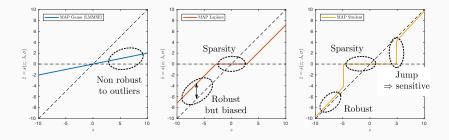
## Posterior mean – Shrinkage functions – Examples



- Coefficients are shrunk towards zero
   Signs are
- Signs are preserved
- Non-Gaussian priors leads to non-linear filtering:
  - sparsity: small coefficients are shrunk (likely due to noise)
  - robustness: large coefficients are preserved (likely encoding signal)
- Larger SNR =  $\frac{\lambda}{\sigma} \Rightarrow$  shrinkage becomes close to identity.

## Posterior mean – Shrinkage functions – Examples

#### Interpretation



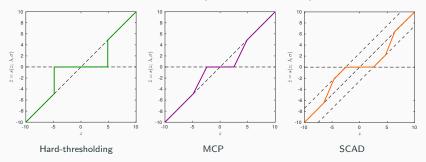
Sparsity: zero for small values. Robustness: remain close to the identity for large values. Transition: bias/variance tradeoff.

Can we design our own shrinkage according to what we want?

#### Shrinkage functions (a.k.a, thresholding functions)

- Pick a shrinkage function s satisfying
  - Shrink:  $|s(z)| \leq |z|$  (non-expansive)
  - Preserve sign:  $z \cdot s(z) \ge 0$
  - Kill low SNR:  $\lim_{\frac{\lambda}{2} \to 0} s(z; \ \lambda, \sigma) = 0$
  - Keep high SNR:  $\lim_{\substack{\lambda \\ \sigma \to \infty}} s(z; \lambda, \sigma) = z$
  - Increasing:  $z_1 \leqslant z_2 \quad \Leftrightarrow \quad s(z_1) \leqslant s(z_2)$
- **Beyond Bayesian:** No need to relate s to a prior distribution  $p_{\eta}$ .

A few examples (among many others)



- Though not necessarily related to a prior distribution,
- Often related to a penalized least square problem, ex:

$$\mathsf{Hard-T}(z) = \operatorname*{argmin}_{\tilde{z} \in \mathbb{R}} \left[ (z - \tilde{z})^2 + \tau^2 \mathbf{1}_{\{\tilde{z} \neq 0\}} \right] = \begin{cases} 0 & \text{if } |z| < \tau \\ z & \text{otherwise} \end{cases}$$

• Hard-thresholding: similar behavior to Student's shrinkage.

## Shrinkage functions

## Link with penalized least square (1/2)

•  $D = L^{1/2} = E \Lambda^{1/2}$  is an orthogonal dictionary of n atoms/words

 $D = (d_1, d_2, \dots, d_n)$  with  $||d_i|| = \lambda_i$  and  $\langle d_i, d_j \rangle = 0$  (for  $i \neq j$ )

• Goal: Look for the n coefficients  $\eta_i$ , such that  $\hat{x}$  close to y

$$\hat{x} = oldsymbol{D}\eta = \sum_{i=1}^n \eta_i d_i$$
 = "linear comb. of the orthogonal atoms  $d_i$  of  $D$ "

• Choosing 
$$\eta_i = \left\langle rac{d_i}{\|d_i\|^2}, y 
ight
angle$$
, *i.e.*,  $\eta = \mathbf{\Lambda}^{-1/2} oldsymbol{E}^* y$ , is optimal:

$$\hat{x} = y$$

but, it also reconstructs the noise component.

Idea: penalize the coeffs to prevent from reconstructing the noise.

## Shrinkage functions

## Link with penalized least square (2/2)

• Penalization on the coefficients controls shrinkage and sparsity:

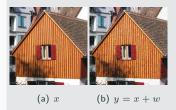
• 
$$\frac{1}{2} \|y - D\eta\|_2^2 + \frac{\tau^2}{2} \|\eta\|_2^2 \Rightarrow \hat{z}_i = \frac{\lambda_i^2}{\lambda_i^2 + \tau^2} z_i$$
  
•  $\frac{1}{2} \|y - D\eta\|_2^2 + \tau \|\eta\|_1 \Rightarrow \hat{z}_i = \text{Soft-T}(z_i, \gamma_i) \text{ with } \gamma_i = \frac{\tau}{\lambda_i}$   
•  $\frac{1}{2} \|y - D\eta\|_2^2 + \frac{\tau^2}{2} \|\eta\|_0 \Rightarrow \hat{z}_i = \text{Hard-T}(z_i, \gamma_i) \text{ with } \gamma_i = \frac{\tau}{\lambda_i}$ 

 $\ell_0$  pseudo-norm:  $\|\eta\|_0 = \lim_{p \to 0} \left(\sum_{i=1}^n \eta_i^p\right)^{1/p} =$ "# of non-zero coefficients"

**Sparsity:**  $\|\eta\|_0$  small compared to n

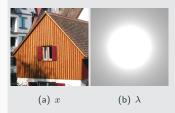
 $\lambda_i$ 

## Shrinkage in the discrete Fourier domain



sig = 20  
▶ y = x + sig \* np.random.randn(x.shape)  
n1, n2 = y.shape[:2] z = 
$$Fy/\sqrt{n}$$
  
n = n1 \* n2  
lbd = np.sqrt(prior\_mpsd(n1, n2) / n)  $\hat{x} = \sqrt{n}F^{-1}\hat{z}$   
z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)  
zhat = shrink(z, lbd, sig)  
xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) \* np.sqrt(n)

#### Shrinkage in the discrete Fourier domain



```
sig = 20

y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2] z = Fy/\sqrt{n}

n = n1 * n2

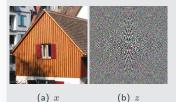
▶ 1bd = np.sqrt(prior_mpsd(n1, n2) / n) \hat{x} = \sqrt{n}F^{-1}\hat{z}

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

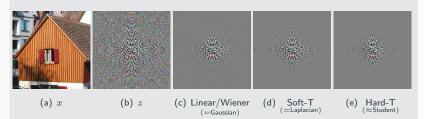
zhat = shrink(z, 1bd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)
```

#### Shrinkage in the discrete Fourier domain



#### Shrinkage in the discrete Fourier domain



sig = 20  
y = x + sig \* np.random.randn(x.shape)  
n1, n2 = y.shape[:2] 
$$z = Fy/\sqrt{n}$$
  
n = n1 \* n2  
lbd = np.sqrt(prior\_mpsd(n1, n2) / n)  $\hat{x}_i = s(z_i; \lambda_i, \sigma)$   
z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)  
> zhat = shrink(z, lbd, sig)  
xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) \* np.sqrt(n)

#### Shrinkage in the discrete Fourier domain

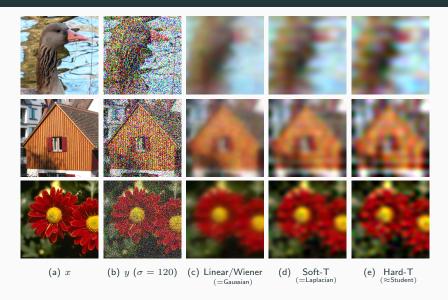


$$\begin{array}{lll} \text{sig} &= 20\\ \text{y} &= \text{x} + \text{sig} * \text{np.random.randn}(\text{x.shape})\\ \text{n1, n2} &= \text{y.shape[:2]} & z = Fy/\sqrt{n}\\ \text{n} &= \text{n1} * \text{n2} & \hat{z}_i = s(z_i; \lambda_i, \sigma)\\ \text{lbd} &= \text{np.sqrt}(\text{prior_mpsd}(\text{n1, n2}) \ / \ \text{n}) & \hat{x} = \sqrt{n}F^{-1}\hat{z}\\ \text{z} &= \text{nf.fft2}(\text{y, axes=(0, 1)}) \ / \ \text{np.sqrt}(\text{n})\\ \text{zhat} &= \text{shrink}(\text{z, lbd, sig})\\ \text{xhat} &= \text{np.real}(\text{nf.ifft2}(\text{zhat, axes=(0, 1)})) * \text{np.sqrt}(\text{n}) \end{array}$$







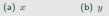


$$\textbf{Bias} \longleftrightarrow \textbf{Variance}$$

## Posterior mean - Limits of shrinkage in the Fourier domain

#### Limits of shrinkage in the discrete Fourier domain



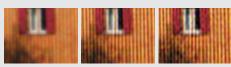


- Linear shrinkage (Wiener)
   ⇒ Non-adaptive,
- Non-linear shrinkage
   ⇒ Adaptive convolution,
- Adapts to the frequency content,
- but not to the spatial content.

$$\hat{z}_i = s(z_i; \tau, \sigma) = \underbrace{\frac{s(z_i; \tau, \sigma)}{z_i} \times z_i}_{\text{element-wise product}}$$

(c)

 $\Leftrightarrow$ 



convolution kernels



(e) Hard-T (≈Student)

$$\underbrace{\hat{x} = \nu(y) * y}_{\text{transform}}$$

spatial average adapted to the spectrum of y.

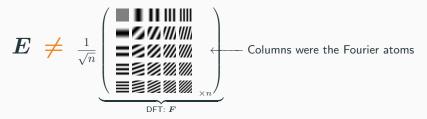
## Motivations

#### Consequences

- Modulating Fourier coefficients  $\Rightarrow$  Non spatially adaptive
- Assuming Fourier coefficients to be white+sparse  $\Rightarrow$  Shrinkage in Fourier

Deductive reasoning

Need another representation for sparsifying clean images



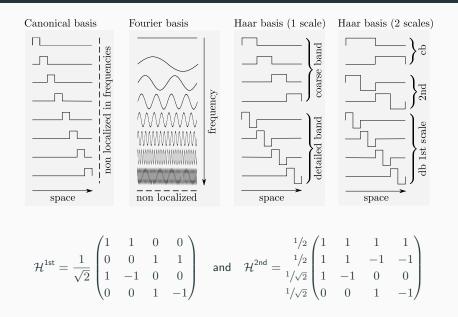
What transform can make signal white and sparse and captures both spatial and spectral contents?

# Wavelet transforms

# Canonical basis Fourier basis non localized in frequencies frequency non localized space

$$\mathrm{Id} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{F} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & e^{-2\pi i 1/4} & e^{-2\pi i 2/4} & e^{-2\pi i 3/4} \\ 1 & e^{-2\pi i 2/4} & e^{-2\pi i 6/4} \\ 1 & e^{-2\pi i 3/4} & e^{-2\pi i 6/4} & e^{-2\pi i 9/4} \end{pmatrix}$$

[Alfréd Haar (1909)]





| 2d Haar representation |                                                                      |
|------------------------|----------------------------------------------------------------------|
| 4 sub-bands 〈          | <ul><li>Coarse sub-band</li><li>Vertical detailed sub-band</li></ul> |
|                        | Vertical detailed sub-band                                           |
|                        | Horizontal detailed sub-band                                         |
|                        | Diagonal detailed sub-band                                           |



(a)  $\mathcal{H}^{1st}$  (4 × 4 image)





## Multi-scale 2d Haar representation

- Repeat recursively J times
- Dyadic decomposition
- Multi-scale representation
- Related to scale spaces



(a)  $\mathcal{H}^{1st}$  (4 × 4 image)





## Multi-scale 2d Haar representation

- Repeat recursively J times
- Dyadic decomposition
- Multi-scale representation
- Related to scale spaces



(a)  $\mathcal{H}^{1st}$  (4 × 4 image)

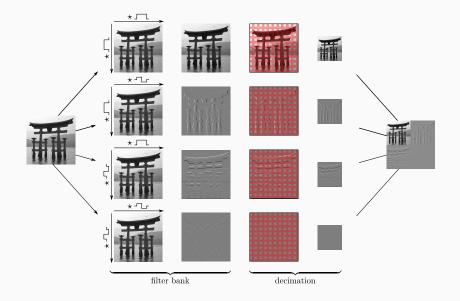


(c)  $\mathcal{H}^{4th}x$ 

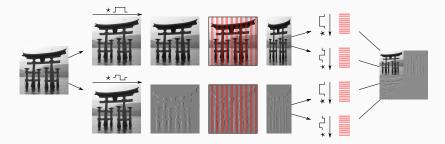
## Multi-scale 2d Haar representation

- Repeat recursively J times
- Dyadic decomposition
- Multi-scale representation
- Related to scale spaces

## Introduction to wavelets - Haar transform - Filter bank



#### Introduction to wavelets - Haar transform - Separability



#### Properties of the 2d Haar transform

- Separable: 1d Haar transforms in horizontal and next vertical direction
- First: perform a low pass and high pass filtering
- Next: perform decimation by a factor of 2

Can we choose other low and high pass filters to get a better transform?

#### **Discrete wavelets**

# Discrete wavelet transform (DWT) (1/3)

• Let  $h \in \mathbb{R}^n$  (with periodical boundary conditions) satisfying

$$\begin{aligned} \sum_{i=0}^{n-1}h_i &= 0\\ \sum_{i=0}^{n-1}h_i^2 &= 1 \end{aligned}$$
 and 
$$\begin{aligned} \sum_{i=0}^{n-1}h_ih_{i+2k} &= 0 \quad \text{for all integer } k \neq 0 \end{aligned}$$

Example (Haar as a particular case)

$$h = \frac{1}{\sqrt{2}} (0 \dots 0 \quad -1 \quad +1 \quad 0 \dots 0)$$

(1d and n even)

#### **Discrete wavelets**

#### Discrete wavelet transform (DWT) (2/3) (1d and *n* even)

• Define the high and low pass filters  $H:\mathbb{R}^n\to\mathbb{R}^n$  and  $G:\mathbb{R}^n\to\mathbb{R}^n$  as

$$(Hx)_{k} = (h * x)_{k} = \sum_{i=0}^{n-1} h_{i} x_{k-i}$$
$$(Gx)_{k} = (g * x)_{k} = \sum_{i=0}^{n-1} g_{i} x_{k-i} \text{ where } g_{i} = (-1)^{i} h_{n-1-i}$$

• Note: necessarily 
$$\sum_{i=0}^{n-1} g_i = \sqrt{2}$$

Example (Haar as a particular case)

$$h = \frac{1}{\sqrt{2}} (0 \dots 0 \quad -1 \quad +1 \quad 0 \dots 0)$$
$$g = \frac{1}{\sqrt{2}} (0 \dots 0 \quad +1 \quad +1 \quad 0 \dots 0)$$

• Define the decimation by 2 of a matrix  $oldsymbol{M} \in \mathbb{R}^{n imes n}$  as

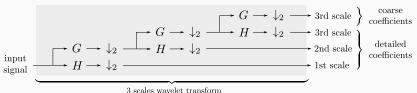
$$M\downarrow_2 = ``M[::2, :]" \in \mathbb{R}^{n/2 imes n}$$

*i.e.*, the matrix obtained by removing every two rows.

•  $M\downarrow_2 x$ : apply M to x and next remove every two entries.

Discrete wavelet transform (DWT) (3/3) (1d and n even) Let  $W = \begin{pmatrix} G \downarrow_2 \\ H \downarrow_2 \end{pmatrix} \in \mathbb{R}^{n \times n}$ Then  $\begin{cases} \bullet x \mapsto Wx: & \text{orthonormal discrete wavelet transform,} \\ \bullet & \text{Columns of } W: & \text{orthonormal discrete wavelet basis,} \\ \bullet & z = Wx: & \text{wavelet coefficients of } x. \end{cases}$ 

#### Multi-scale discrete wavelets



Multi-scale DWT (1d and n multiple of  $2^{J}$ ) [Mallat, 1989] Defined recursively as  $\boldsymbol{W}^{J\text{-th}} = \begin{pmatrix} \boldsymbol{W}^{(J\text{-}1)\text{-th}} & O \\ 0 & \text{Id} \end{pmatrix} \boldsymbol{W}$ 

#### Implementation of 2D DWT

## ( $n_1$ and $n_2$ multiple of $2^J$ )

#### Multi-scale discrete wavelets

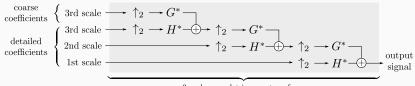
Multi-scale Inverse DWT (1d and n multiple of  $2^{J}$ )

Defined recursively as 
$$(\boldsymbol{W}^{J-\text{th}})^{-1} = \boldsymbol{W}^{-1} \begin{pmatrix} (\boldsymbol{W}^{(J-1)-\text{th}})^{-1} & O \\ 0 & \text{Id} \end{pmatrix}$$

where 
$$oldsymbol{W}^{-1} = oldsymbol{W}^* = egin{pmatrix} G^* \uparrow_2 & H^* \uparrow_2 \end{pmatrix} \in \mathbb{R}^{n imes n}$$

and  $M\uparrow_2$ : remove every two columns.

 $M\uparrow_2 x$ : insert 0 every two entries in x and next apply M.



3 scales wavelet inverse transform

#### Implementation of 2D IDWT

( $n_1$  and  $n_2$  multiple of  $2^J$ )

#### Discrete wavelets – Limited support

#### Discrete wavelet with limited support

• Consider a high pass filter with finite support of size m = 2p (even). For instance for m = 4

$$H = \begin{pmatrix} h_2 & h_3 & 0 & & \dots & & 0 & h_0 & h_1 \\ h_0 & h_1 & h_2 & h_3 & 0 & & \dots & & 0 \\ & 0 & h_0 & h_1 & h_2 & h_3 & 0 & & \dots & & \\ & & & & \ddots & & & & \\ 0 & & & \dots & & 0 & h_0 & h_1 & h_2 & h_3 \\ h_2 & h_3 & 0 & & \dots & & 0 & h_0 & h_1 & h_2 \end{pmatrix}$$

• Then h defines a wavelet transform if it satisfies the three conditions

$$\sum h_i = 0$$
 and  $\sum h_i^2 = 1$  and  $\sum h_i h_{i+2k} = 0$  for  $k = 1$  to  $p-1$ 

- This system has 2p unknowns and 1 + p independent equations.
- If p = 1, 2p = 1 + p, this implies that the solution is unique (Haar).
- Otherwise, one has p-1 degrees of freedom.

#### Daubechies' wavelets (1988)

 $\bullet\,$  Daubechies suggests adding the p-1 constraints

$$\sum_{i=0}^{2p-1} i^q h_i = 0 \quad \text{for } q = 1 \text{ to } p-1 \qquad \text{(vanishing $q$-order moments)}$$

• For p = 2, the (orthonormal) Daubechies' wavelets are defined as

$$\begin{cases} h_0^2 + h_1^2 + h_2^2 + h_3^2 &= 1\\ h_0 + h_1 + h_2 + h_3 &= 0\\ h_0 h_2 + h_1 h_3 &= 0\\ h_1 + 2h_2 + 3h_3 &= 0 \end{cases} \Leftrightarrow h = \pm \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1 \pm \sqrt{3}}{4} \\ \frac{3 \pm \sqrt{3}}{4} \\ \frac{3 - \sqrt{3}}{4} \\ \frac{1 - \sqrt{3}}{4} \end{pmatrix}$$

• The corresponding DWT is referred to as Daubechies-2 (or Db2).

#### As for the Fourier transform, there also exists a continuous version.

#### **Continuous wavelets**

#### Continuous wavelet transform (CWT)

- Continuum of locations  $t \in \mathbb{R}$  and scales a > 0,
- Continuous wavelet transform of  $x : \mathbb{R} \to \mathbb{R}$

$$\underbrace{c(a,t)}_{\text{velet coefficient}} = \int_{-\infty}^{+\infty} \psi_{a,t}^* \left(t'\right) x(t') \, \mathrm{d}t' = \langle \underbrace{x}_{\text{signal}}, \underbrace{\psi_{a,t}}_{\text{wavelet}} \rangle$$

where \* is the complex conjugate.

wa

•  $\psi_{a,t}$ : daughter wavelets, translated and scaled versions of  $\Psi$ 

$$\psi_{a,t}(t') = \frac{1}{\sqrt{a}}\Psi\left(\frac{t'-t}{a}\right)$$

•  $\Psi$ : the mother wavelets satisfying

$$\int_{-\infty}^{+\infty} \Psi(t) \, dt = 0 \quad \text{and} \quad \int_{-\infty}^{+\infty} |\Psi(t)|^2 \, dt = 1 < \infty$$
(zero-mean) (unit-norm / square-integrable)

(1d)

#### Inverse CWT

• The inverse continuous wavelet transform is given by

$$x(t) = \frac{1}{C_{\Psi}} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} \frac{1}{|a|^2} c(a, t') \psi_{a, t}(t') \, \mathrm{d}a \, \mathrm{d}t'$$

with 
$$C_{\Psi} = \int_{0}^{+\infty} \frac{|\hat{\Psi}(u)|^2}{u} \, \mathrm{d}u$$
 where  $\hat{\Psi}$  is the Fourier transform of  $\Psi$ .

#### Relation between CWT/DWT

- The DWT can be seen as the discretization of the CWT
  - Diadic discretization in scale:  $a = 1, 2, 4, \dots, 2^{J}$
  - Uniform discretization in time at scale j with step  $2^j$ :  $t = 1:2^j:n$

(1d)

(1d)

#### Twin-scale relation

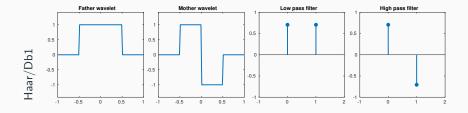
• The CWT is orthogonal (inverse = adjoint), if and only if  $\Psi$  satisfies

$$\Psi(t) = \sqrt{2} \sum_{i=0}^{m-1} h_i \Phi(2t-i) \quad \text{and} \quad \Phi(t) = \sqrt{2} \sum_{i=0}^{m-1} g_i \Phi(2t-i)$$

where h and g are high- and low-pass filters defining a DWT.

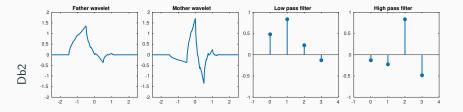
- $\Phi$  is called father wavelet or scaling function.
- Note: potentially  $m = \infty$ .

**Twin-scale relation:** allows to define a CWT from DWT and vice-versa. The CWT may not have a closed form (approximated by the cascade algorithm)



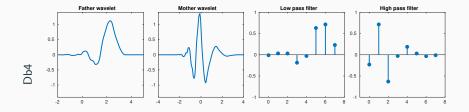
# Popular wavelets are: Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980); Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.



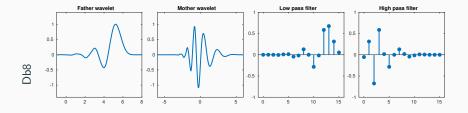
# Popular wavelets are: Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980); Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.



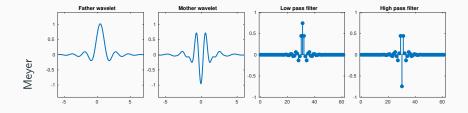
# Popular wavelets are: Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980); Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.



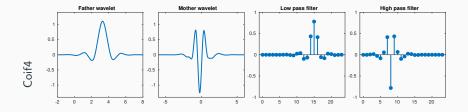
# Popular wavelets are: Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980); Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.



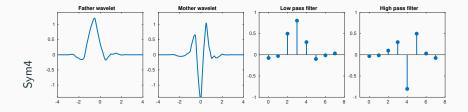
# Popular wavelets are: Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980); Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.



# Popular wavelets are: Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980); Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.



# Popular wavelets are: Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980); Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990); Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

## Wavelets and sparsity

#### Wavelets perform image compression

- Haar encodes constant signals with one coefficient,
- Db-p encodes (p-1)-order polynomials with p coefficients.

Consequences:

- Polynomial/Smooth signals are encoded with very few coefficients,
- Coarse coefficients encode the smooth underlying signal,
- Detailed coefficients encode non-smooth content of the signal,
- Typical signals are concentrated on few coefficients,
- The remaining coefficients capture only noise components.

## Wavelets and sparsity

#### Wavelets perform image compression

- Haar encodes constant signals with one coefficient,
- Db-p encodes (p-1)-order polynomials with p coefficients.

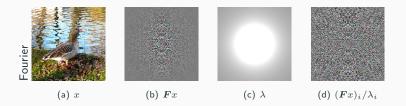
Consequences:

- Polynomial/Smooth signals are encoded with very few coefficients,
- Coarse coefficients encode the smooth underlying signal,
- Detailed coefficients encode non-smooth content of the signal,
- Typical signals are concentrated on few coefficients,
- The remaining coefficients capture only noise components.

 $\Rightarrow$  Heavy tailed distribution with a peak at zero,

*i.e.*, wavelets favor sparsity.

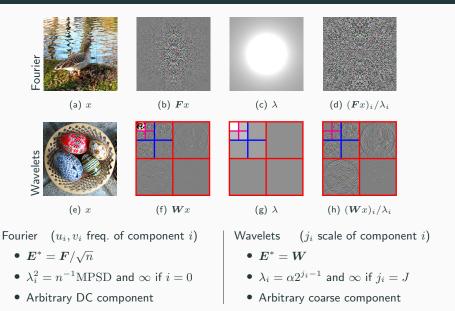
## Wavelets as a sparsifying transform



Fourier  $(u_i, v_i \text{ freq. of component } i)$ 

- $\boldsymbol{E}^* = \boldsymbol{F}/\sqrt{n}$
- $\lambda_i^2 = n^{-1} \mathrm{MPSD}$  and  $\infty$  if i = 0
- Arbitrary DC component

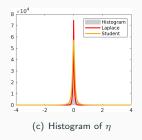
### Wavelets as a sparsifying transform

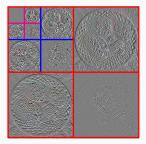


## Distribution of wavelet coefficients

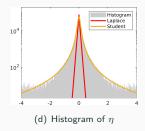


(a) x





(b) 
$$\eta_i = (\boldsymbol{W}\boldsymbol{x})_i / \lambda_i$$



## Shrinkage in the wavelet domain

## Shrinkage in the discrete wavelet domain





sig = 20  
y = x + sig \* nr.randn(\*x.shape)  
z = im.dwt(y, 3, h, g)  
zhat = shrink(z, 1bd, sig)  
xhat = im.idwt(zhat, 3, h, g)  

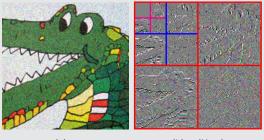
$$z = Wy$$

$$\hat{z}_i = s(z_i; \lambda_i, \sigma)$$

$$\hat{x} = W^{-1}\hat{z}$$

# Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain



(a) y

(b) *z* (Haar)

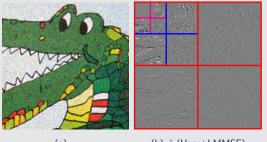
sig = 20  
y = x + sig \* nr.randn(\*x.shape)  
> z = im.dwt(y, 3, h, g)  
zhat = shrink(z, lbd, sig)  
xhat = im.idwt(zhat, 3, h, g)  

$$z = Wy$$

$$\hat{z}_i = s(z_i; \lambda_i, \sigma)$$

$$\hat{x} = W^{-1}\hat{z}$$

#### Shrinkage in the discrete wavelet domain



(a) y

(b)  $\hat{z}$  (Haar+LMMSE)

$$sig = 20$$
  

$$y = x + sig * nr.randn(*x.shape)$$
  

$$z = im.dwt(y, 3, h, g)$$
  

$$int = shrink(z, lbd, sig)$$
  

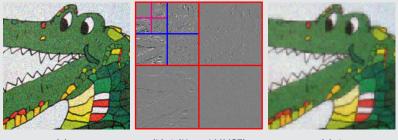
$$xhat = im.idwt(zhat, 3, h, g)$$
  

$$z = Wy$$
  

$$\hat{z}_i = s(z_i; \lambda_i, \sigma)$$
  

$$\hat{x} = W^{-1}\hat{z}$$

#### Shrinkage in the discrete wavelet domain



(a) y

(b)  $\hat{z}$  (Haar+LMMSE)

sig = 20  
y = x + sig \* nr.randn(\*x.shape)  
z = im.dwt(y, 3, h, g)  
zhat = shrink(z, lbd, sig)  
> xhat = im.idwt(zhat, 3, h, g)  

$$\hat{z} = Wy$$

$$\hat{z}_i = s(z_i; \lambda_i, \sigma)$$

$$\hat{x} = W^{-1}\hat{z}$$

#### Shrinkage in the discrete wavelet domain



(a) y

(b)  $\hat{z}$  (Daubechies+LMMSE)

sig = 20  
y = x + sig \* nr.randn(\*x.shape)  
z = im.dwt(y, 3, h, g)  
zhat = shrink(z, lbd, sig)  
> xhat = im.idwt(zhat, 3, h, g)  

$$\hat{z}_{i} = s(z_{i}; \lambda_{i}, \sigma)$$

$$\hat{x} = W^{-1}\hat{z}$$

#### Shrinkage in the discrete wavelet domain



(a) y

(b)  $\hat{z}$  (Daubechies+Soft-T)

sig = 20  
y = x + sig \* nr.randn(\*x.shape)  
z = im.dwt(y, 3, h, g)  
zhat = shrink(z, lbd, sig)  
> xhat = im.idwt(zhat, 3, h, g)  

$$\hat{z} = Wy$$

$$\hat{z}_i = s(z_i; \lambda_i, \sigma)$$

$$\hat{x} = W^{-1}\hat{z}$$

#### Shrinkage in the discrete wavelet domain



(a) y

(b)  $\hat{z}$  (Daubechies+Hard-T)

sig = 20  
y = x + sig \* nr.randn(\*x.shape)  
z = im.dwt(y, 3, h, g)  
zhat = shrink(z, lbd, sig)  
> xhat = im.idwt(zhat, 3, h, g)  

$$\hat{z} = Wy$$

$$\hat{z}_i = s(z_i; \lambda_i, \sigma)$$

$$\hat{x} = W^{-1}\hat{z}$$



(a)  $y (\sigma = 20)$  (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T



(a)  $y (\sigma = 40)$  (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T



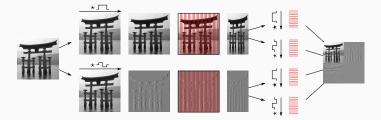
(a)  $y (\sigma = 60)$  (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T



(a)  $y (\sigma = 120)$  (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T

Undecimated wavelet transforms

## Limits of the discrete wavelet transform



• While Fourier shrinkage is translation invariant:

$$\psi(y^{\tau}) = \psi(y)^{\tau}$$
 where  $y^{\tau}(s) = y(s+\tau)$ 

- Wavelet shrinkage is not translation invariant.
- This is due to the decimation step:

$$\boldsymbol{W} = \begin{pmatrix} G \downarrow_2 \\ H \downarrow_2 \end{pmatrix} \in \mathbb{R}^{n \times n}$$
 where  $M \downarrow_2 = \text{``M[::2, :]''}$ 

• This explains the **blocky** artifacts that we observe.

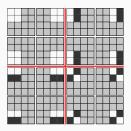


Figure 1 – Haar DWT

- Haar transform groups pixels by clusters of 4.
- Blocks are treated independently to each other.
- When similar neighbor blocks are shrunk differently, it becomes clearly visible in the image.
- This arises all the more as the noise level is large.

What if we do not decimate?

⇒ UDWT, aka, stationary or translation-invariant wavelet transform.

## Undecimated discrete wavelet transform (UDWT)



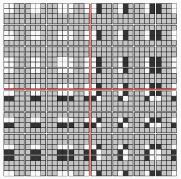
Haar discrete wavelet transform (DWT)

#### 1-scale DWT

• For a  $4 \times 4$  image:

 $4 \times 4$  coefficients.

• For n pixels: K = n coefficients.



Haar undecimated discrete wavelet transform (UDWT)

#### 1-scale UDWT

• For a  $4 \times 4$  image:

 $8 \times 8$  coefficients.

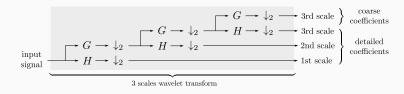
• For n pixels: K = 4n coeffs.

## What about multi-scale?

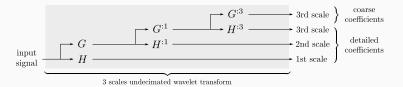
# (Holschneider et al., 1989) A trous algorithm (with holes) Interleave rows and columns of zeros $q = \Box \Box$ $h = \Box_{\Box}$ $g^{:1} = \Box \Box \Box h^{:1} = \Box \Box \Box$ Haar UDWT, first scale Haar UDWT, second scale

Instead of decimating the coefficients at each scale j, upsample the filters h and g by injecting  $2^j - 1$  zeros between each entries.

#### DWT: Mallat's dyadic pyramidal multi-resolution scheme



**UDWT:** A trous algorithm –  $G^{:p}$ : inject p zeros between each filter coeffs



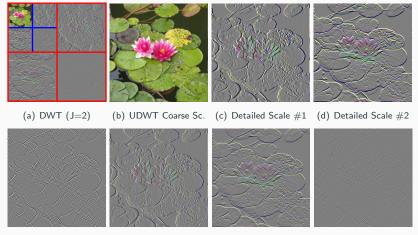
Multi-scales:  $K = (1 + J(2^d - 1))n$  coeffs (J: #scales, d = 2 for images)

#### Implementation of 2D UDWT (A trous algorithm)

## Linear complexity.

Can be easily modified to reduce memory usage.

## Undecimated discrete wavelet transform (UDWT)



(e) Detailed Scale #3 (f) Detailed Scale #4 (g) Detailed Scale #5 (h) Detailed Scale #6

What about its inverse transform?

## Undecimated discrete wavelet transform (UDWT)

#### DWT – Wavelet basis – and inverse DWT

- The DWT  $\boldsymbol{W} \in \mathbb{R}^{n \times n}$  has n columns and n rows.
- The n columns/rows of  $\boldsymbol{W}$  are orthonormal.
- The inverse DWT is  $W^{-1} = W^*$ .
- One-to-one relationship between an image and its wavelet coefficients.

## UDWT – Redundant wavelet dictionary

- The UDWT  $\bar{W} \in \mathbb{R}^{K \times n}$  has  $K = (1 + J(2^d 1))n$  rows and n columns.
- The rows of  $ar{W}$  cannot be linearly independent: not a basis.
- They are said to form a redundant/overcomplete wavelet dictionary.
- Since  $ar{W}$  is non square, it is not invertible.

## Note: redundant dictionaries necessarily favor sparsity.

## Pseudo-inverse UDWT

- Nevertheless, the n columns are orthonormal, then:  $ar{W}^* = ar{W}^+$
- It satisfies  $\bar{W}^+ \bar{W} = \mathrm{Id}_n$ , but  $\bar{W} \bar{W}^+ \neq \mathrm{Id}_K$ 
  - image  $\xrightarrow{\bar{W}}$  coefficients  $\xrightarrow{\bar{W}^+}$  back to the original image,
  - coefficients  $\stackrel{\bar{W}^+}{\rightarrow}$  image  $\stackrel{\bar{W}}{\rightarrow}$  not necessarily the same coefficients.
- Satisfies the Parseval equality

$$\left\langle \bar{\boldsymbol{W}}x,\,\bar{\boldsymbol{W}}y\right\rangle = \left\langle x,\,\bar{\boldsymbol{W}}^{*}\bar{\boldsymbol{W}}y\right\rangle = \left\langle x,\,\bar{\boldsymbol{W}}^{+}\bar{\boldsymbol{W}}y\right\rangle = \left\langle x,\,y\right\rangle$$

• In the vocabulary of linear algebra:  $\bar{W}$  is called a tight-frame.

## Consequence: an algorithm for $\overline{W}^+$ can be obtained.

Implementation of 2D Inverse UDWT

Linear complexity again.

Can also be easily modified to reduce memory usage. Can we be more efficient?

#### Filter bank

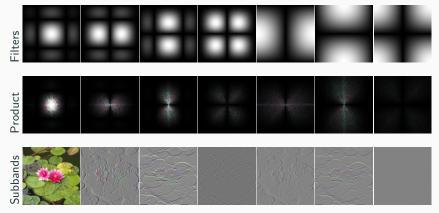
• The UDWT of x for subband  $k, x \mapsto (\mathbf{W}x)_k$  is

linear and translation invariant (LTI)  $\Rightarrow$  It's a convolution.

• The UDWT is a filter bank:

a set of band-pass filters that separates the input image into multiple components.

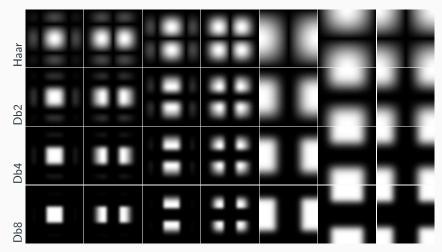
- Each filter can be represented by its frequential response.
- Direct and inverse transform: implementation in the Fourier domain.



(a) Coarse 2 (b) Details 2 (c) Details 2 (d) Details 2 (e) Details 1 (f) Details 1 (g) Details 1

Haar with J = 2 levels of decomposition

## Undecimated discrete wavelet transform (UDWT)

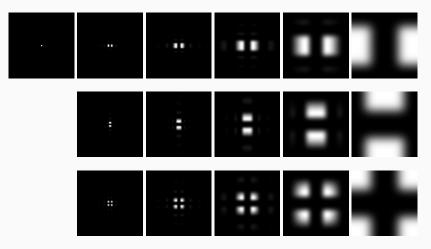


(a) Coarse 2 (b) Details 2 (c) Details 2 (d) Details 2 (e) Details 1 (f) Details 1 (g) Details 1

Haar: band pass with side lobes.

Db8: closer to ideal band pass.

## Undecimated discrete wavelet transform (UDWT)



## Db4 with J = 6 levels of decomposition

How to create such a filter bank?

UDWT: Creation of the filter bank (offline)

```
def udwt_create_fb(n1, n2, J, h, g, ndim=3):
   if J == 0:
        return np.ones((n1, n2, 1, *[1] * (ndim - 2)))
   h2 = interleave0(h)
   g2 = interleave0(g)
   fbrec = udwt_create_fb(n1, n2, J - 1, h2, g2, ndim=ndim)
   gf1 = nf.fft(fftpad(g, n1), axis=0)
   hf1 = nf.fft(fftpad(h, n1), axis=0)
   gf2 = nf.fft(fftpad(g, n2), axis=0)
   hf2 = nf.fft(fftpad(h, n2), axis=0)
   fb = np.zeros((n1, n2, 4), dtype=np.complex128)
   fb[:, :, 0] = np.outer(gf1, gf2) / 2
   fb[:, :, 1] = np.outer(gf1, hf2) / 2
   fb[:, :, 2] = np.outer(hf1, gf2) / 2
   fb[:, :, 3] = np.outer(hf1, hf2) / 2
   fb = fb.reshape(n1, n2, 4, *[1] * (ndim - 2))
   fb = np.concatenate((fb[:, :, 0:1] * fbrec, fb[:, :, -3:]),
                        axis=2)
```

return fb

#### UDWT: Direct transform using the filter bank (online)

```
def fb_apply(x, fb):
    x = nf.fft2(x, axes=(0, 1))
    z = fb * x[:, :, np.newaxis]
    z = np.real(nf.ifft2(z, axes=(0, 1)))
    return z
```

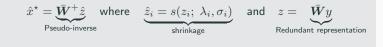
UDWT: Inverse transform using the filter bank (online)

```
def fb_adjoint(z, fb):
    z = nf.fft2(z, axes=(0, 1))
    x = (np.conj(fb) * z).sum(axis=2)
    x = np.real(nf.ifft2(x, axes=(0, 1)))
    return x
```

#### Much more efficient than previous implementation when J > 1

### Shrinkage with UDWT

- Consider a denoising problem y = x + w with noise variance  $\sigma^2$ .
- Shrink the  $K \ge n$  coefficients independently.



Rule of thumb for soft-thresholding:

- For the orthonormal DWT W: increase  $\lambda_i$  as  $\sqrt{2}^{d(j_i-1)}$ .
- For the tight-frame UDWT  $\overline{W}$ : increase  $\lambda_i$  as:  $2^{d(j_i-1/2)}$ .

 $(j_i \text{ scale for coefficient } i, d = 2 \text{ for images}).$ 



(a) y

(b) DWT(3)+Haar+HT

#### (c) DWT(3)+Db2+HT



(e) UDWT(3)+Db2+HT



(a) y

(b) DWT(3)+Haar+HT

#### (c) DWT(3)+Db2+HT



(d) UDWT(3)+Haar+HT

(e) UDWT(3)+Db2+HT

(f) UDWT(3)+Db8+HT



(a) y

(b) DWT(3)+Haar+HT

#### (c) DWT(3)+Db2+HT



(d) UDWT(1)+Db2+HT

(e) UDWT(3)+Db2+HT

(f) UDWT(5)+Db2+HT



(a) y

(b) DWT(3)+Haar+HT

#### (c) DWT(3)+Db2+HT



(d) UDWT(3)+Db2+Linear

(e) UDWT(3)+Db2+HT

(f) UDWT(3)+Db2+ST



(a)  $y (\sigma = 20)$  (b) UDWT+Lin. (c) UDWT+HT (d) DWT+HT

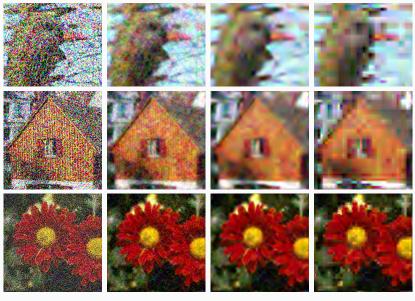


(a)  $y (\sigma = 40)$  (b) UDWT+Lin. (c) UDWT+HT (d) DWT+HT



(a)  $y (\sigma = 60)$  (b) UDWT+Lin. (c) UDWT+HT

(d) DWT+HT



(a)  $y (\sigma = 120)$  (b) UDWT+Lin. (c) UDWT+HT

(d) DWT+HT

$$\hat{x}^{\star} = \underbrace{\bar{W}^{+}}_{\text{Pseudo-inverse}} \text{ where } \underbrace{\hat{z}_{i} = s(z_{i}; \lambda_{i}, \sigma_{i})}_{\text{shrink } K \text{ coefficients}} \text{ and } z = \underbrace{\bar{W}y}_{\text{Redundant representation}}$$

## Connection with Bayesian shrinkage?

• Since the rows of  $ar{W}$  are linearly dependent,

the coefficients  $z_i$  are necessarily correlated (non-white).

- Shrink the K ≥ n coefficients independently, even though they cannot be assumed independent.
- This estimator has no Bayesian interpretation,

it does not correspond to the MMSE or MAP.

#### How to use the UDWT in the Bayesian context?

Bayesian analysis model

Whitening model: Consider  $\eta = \Lambda^{-1/2} W x$  ( $\eta$  coeffs) such that  $\mathbb{E}[\eta] = 0_n$  and  $\operatorname{Var}[\eta] = \operatorname{Id}_n$ 

Analysis: images can be transformed to white coeffs.

 $\wedge$  Non-sense when rows of W are redundant.

Bayesian synthesis model

Generative model: Consider  $x = \overline{W}^+ \Lambda^{1/2} \eta$  ( $\eta$  code) such that  $\mathbb{E}[\eta] = 0_K$  and  $\operatorname{Var}[\eta] = \operatorname{Id}_K$ 

Synthesis: images can be generated from a white code.

© Always well-founded.

Forward model: y = x + w

### Maximum a Posteriori for the Synthesis model

• Instead of looking for x, consider the MAP for the code  $\eta$ 

$$\hat{\boldsymbol{\eta}}^{\star} \in \operatorname*{argmax}_{\boldsymbol{\eta} \in \mathbb{R}^{K}} p(\boldsymbol{\eta}|\boldsymbol{y})$$
  
= 
$$\operatorname*{argmin}_{\boldsymbol{\eta} \in \mathbb{R}^{K}} \left[ -\log p(\boldsymbol{y}|\boldsymbol{\eta}) - \log p(\boldsymbol{\eta}) \right]$$
  
= 
$$\operatorname*{argmin}_{\boldsymbol{\eta} \in \mathbb{R}^{K}} \left[ \frac{1}{2} \|\boldsymbol{y} - \bar{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1/2} \boldsymbol{\eta} \|_{2}^{2} - \log p(\boldsymbol{\eta}) \right]$$

• Once you get  $\hat{\eta}^{\star}$ , generate the image  $\hat{x}^{\star}$  as

$$\hat{x}^{\star} = \bar{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1/2} \hat{\eta}^{\star}$$

#### What interpretation?

### Reconstruction with the UDWT

Penalized least square with redundant dictionary

• Consider the redundant wavelet dictionary  $D = ar{W}^+ \Lambda^{1/2}$ 

$$D = (\underbrace{d_1, d_2, \dots, d_K}_{\text{linearly dependent atoms}}), \quad ||d_i|| = \lambda_i, \quad K \ge n$$

• Goal: Look for a code  $\eta \in \mathbb{R}^{K}$ , such that  $\hat{x}$  close to y

$$\hat{x} = oldsymbol{D}\eta = \sum_{i=1}^{K} \eta_i d_i$$
 = "linear comb. of the redundant atoms  $d_i$  of  $oldsymbol{D}$ "

- Since D is redundant, different codes  $\eta$  produce the same image x.
- Penalize independently each  $\eta_i$  to select a relevant one

$$\hat{\eta}^{\star} \in \operatorname*{argmin}_{\eta \in \mathbb{R}^{K}} \left[ \frac{1}{2} \| y - \bar{\boldsymbol{W}}^{+} \boldsymbol{\Lambda}^{1/2} \eta \|_{2}^{2} - \sum_{i=1}^{K} \log p(\eta_{i}) \right]$$

What choice for  $\log p(\eta_i)$ ?

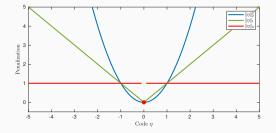
## Reconstruction with the UDWT

#### Penalized least square with redundant dictionary

• 
$$\frac{1}{2} \|y - D\eta\|_2^2 + \frac{\tau^2}{2} \|\eta\|_2^2$$
,  $\|\eta\|_2^2 = \sum_i \eta_i^2$   $\leftarrow$  Ridge regression

•  $\frac{1}{2} \|y - D\eta\|_2^2 + \tau \|\eta\|_1$ ,  $\|\eta\|_1 = \sum_i |\eta_i|$   $\leftarrow$  LASSO

• 
$$\frac{1}{2} \|y - D\eta\|_2^2 + \frac{\tau^2}{2} \|\eta\|_0$$
,  $\|\eta\|_0 = \sum_i \mathbf{1}_{\{\eta_i \neq 0\}}$   $\leftarrow$  Sparse regression



When D is redundant, these problems are no longer separable. They require large-scale optimization techniques.

**Regularizations and optimization** 

### Ridge/Smooth regression

- Convex energy:
- Gradient:
- Optimality conditions:
- For UDWT:

$$E(\eta) = \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{D}\eta \|_2^2 + \frac{\tau^2}{2} \| \eta \|_2^2$$
$$\nabla E(\eta) = \boldsymbol{D}^* (\boldsymbol{D}\eta - \boldsymbol{y}) + \tau^2 \eta$$
$$\hat{\eta}^* = (\boldsymbol{D}^* \boldsymbol{D} + \tau^2 \mathrm{Id}_K)^{-1} \boldsymbol{D}^* \boldsymbol{y}$$

this is an LTI filter  $\equiv$  convolution (non adaptive)



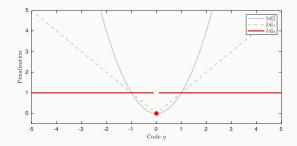
(a) y (b) Linear shrink (c) Ridge

Ridge  $\not\equiv$  Linear shrinkage (except if *D* is orthogonal).

(d) Difference

### Sparse regression / $\ell_0$ regularization (1/3)

- Energy:  $E(\eta) = \frac{1}{2} \|y D\eta\|_2^2 + \frac{\tau^2}{2} \|\eta\|_0$
- Penalty:  $\|\eta\|_0 = \#$ non zero elements in  $\eta$
- Non-convex:  $0.5 = \frac{1}{2}(\|0\|_0 + \|1\|_0) < \|0.5\|_0 = 1$
- Produces optimal sparse solutions adapted to the signal ③
- But, non-differentiable and discontinuous. 🐵



### Sparse regression

### Sparse regression / $\ell_0$ regularization (2/3)

- If D is orthogonal: solution given by the Hard-Thresholding.
- Otherwise, exact solution obtained by brute force:
  - For all possible support  $\mathcal{I} \subseteq \{1, \ldots, K\}$  (set of non-zero coefficients)
  - Solve the least square estimation problem:

$$\mathop{\mathrm{argmin}}_{(\eta_i)_{i\in\mathcal{I}}}\frac{1}{2}\|y-\sum_{i\in\mathcal{I}}\eta_i a_i\|_2^2$$

- Pick the solution that minimizes *E*.
- NP-hard combinatorial problem:

$$\# \mathsf{subsets} = \sum_{k=0}^{K} \binom{K}{k} = 2^{K}$$

# Sparse regression / $\ell_0$ regularization (3/3)

- Sub-optimal solutions can be obtained by greedy algorithms.
- Matching pursuit (MP): (Mallat, 1993)
  Initialization: r ← y, η ← 0, k ← 0
  Choose i maximizing |D\*r|<sub>i</sub> = | ⟨d<sub>i</sub>, r⟩ |
  Compute α = ⟨r, d<sub>i</sub>⟩ /||d<sub>i</sub>||<sup>2</sup><sub>2</sub>
  Update r ← r − αd<sub>i</sub>
  Update η<sub>i</sub> = α
  Update k ← k + 1
  Back to step 2 while E(η) = ½||r||<sup>2</sup><sub>2</sub> + <sup>τ<sup>2</sup></sup>/<sub>2</sub>k decreases
- Lots of iterations: complexity O(kn), with k the sparsity of the solution.
- Each iteration requires to compute an UDWT.
- Extensions: OMP (Tropp & Gilbert, 2007), CoSaMP (Needel & Tropp, 2009)

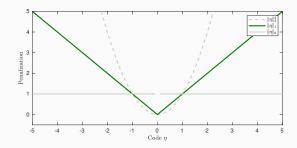
# Least Absolute Shrinkage and Selection Operator (LASSO)

#### Convex relaxation: Take the best of both worlds: sparsity and convexity

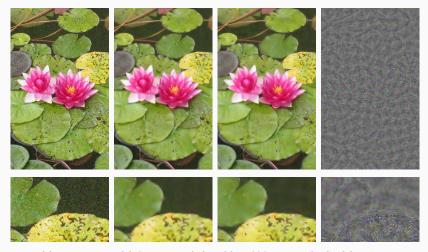
### LASSO / $\ell_1$ regularization

#### (Tibshirani 1996)

- Convex energy:  $E(\eta) = \frac{1}{2} \|y D\eta\|_2^2 + \tau \|\eta\|_1$
- Non-smooth penalty:  $\|\eta\|_1 = \sum_{i=1}^K |\eta_i|$
- If D is orthogonal: solution given by the Soft-Thresholding.
- Produces also sparse solutions adapted to the signal ©

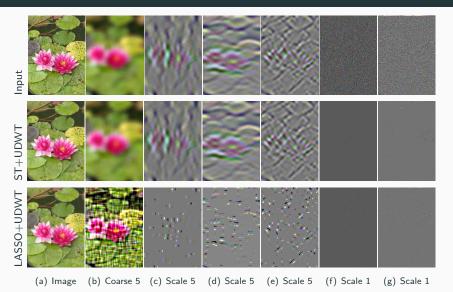


# Least Absolute Shrinkage and Selection Operator



(a) Input (b) ST+UDWT (1s) (c) LASSO+UDWT (30s) (d) Difference Though the solutions look alike, their codes  $\eta$  are very different.

# Least Absolute Shrinkage and Selection Operator



The LASSO creates much sparser codes than ST only.

#### Why use the LASSO if shrinkage in the UDWT provides similar results?

• Shrinkage in the UDWT domain can only be applied for denoising problems.

• The LASSO can be adapted to inverse-problems:

$$\hat{x}^{\star} = \boldsymbol{D}\hat{\eta}^{\star}$$
 with  $\hat{\eta}^{\star} \in \operatorname*{argmin}_{\eta \in \mathbb{R}^{K}} \left[ \frac{1}{2} \|y - \boldsymbol{H} \boldsymbol{D} \eta\|_{2}^{2} + \tau \|\eta\|_{1} \right]$ 

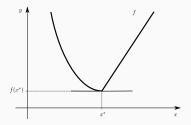
But it requires solving a non-smooth convex optimization problem. Solution: use sub-differential and Fermat's rule.

#### **Definition (Sub-differential)**

• Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a convex function,  $u \in \mathbb{R}^n$  is a sub-gradient of f at  $x^*$ , if for all  $x \in \mathbb{R}^n$ 

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle.$$

• The sub-differential is the set of sub-gradients



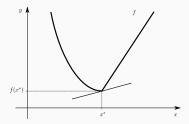
If the sub-gradient is unique, f is differentiable and  $\partial f(x) = \{\nabla f(x)\}$ .

#### **Definition (Sub-differential)**

• Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a convex function,  $u \in \mathbb{R}^n$  is a sub-gradient of f at  $x^*$ , if for all  $x \in \mathbb{R}^n$ 

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle.$$

• The sub-differential is the set of sub-gradients



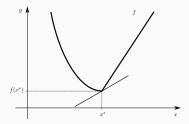
If the sub-gradient is unique, f is differentiable and  $\partial f(x) = \{\nabla f(x)\}$ .

#### **Definition (Sub-differential)**

• Let  $f : \mathbb{R}^n \to \mathbb{R}$  be a convex function,  $u \in \mathbb{R}^n$  is a sub-gradient of f at  $x^*$ , if for all  $x \in \mathbb{R}^n$ 

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle.$$

The sub-differential is the set of sub-gradients



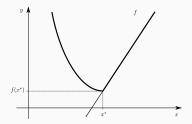
If the sub-gradient is unique, f is differentiable and  $\partial f(x) = \{\nabla f(x)\}$ .

#### **Definition (Sub-differential)**

• Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a convex function,  $u \in \mathbb{R}^n$  is a sub-gradient of f at  $x^*$ , if for all  $x \in \mathbb{R}^n$ 

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle.$$

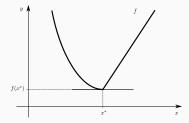
• The sub-differential is the set of sub-gradients



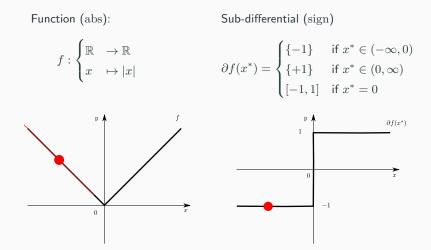
If the sub-gradient is unique, f is differentiable and  $\partial f(x) = \{\nabla f(x)\}$ .

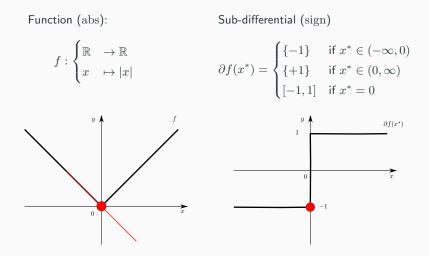
**Theorem (Fermat's rule)** Let  $f : \mathbb{R}^n \to \mathbb{R}$  be a convex function, then $x^* \in \operatorname*{argmin}_{x \in \mathbb{R}^n} f(x) \quad \Leftrightarrow \quad 0_n \in \partial f(x^*)$ 

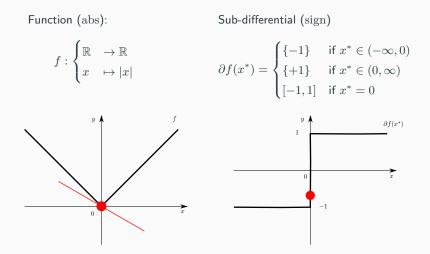
If f is also differentiable, this corresponds to the standard rule  $\nabla f(x^*) = 0_n$ .

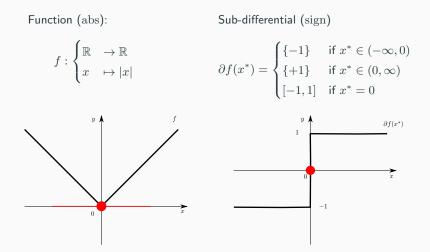


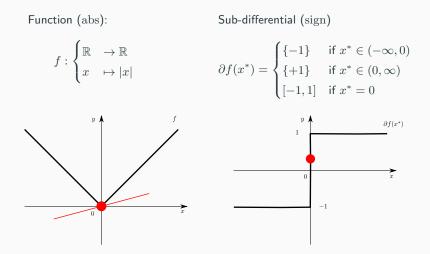
Minimizers are the only points with a horizontal tangent

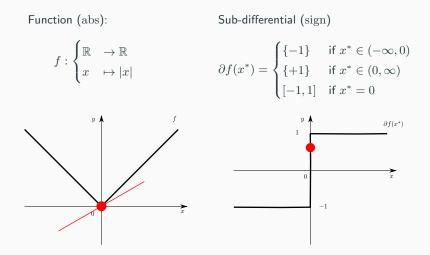


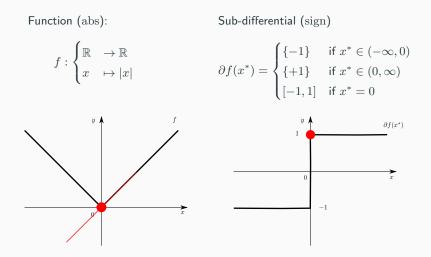


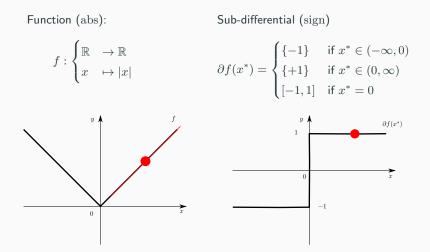












### **Proximal operator**

• Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a convex function (+ some technical conditions). The proximal operator of f is

$$\operatorname{Prox}_{f}(x) = \operatorname*{argmin}_{z \in \mathbb{R}^{n}} \frac{1}{2} \|z - x\|_{2}^{2} + f(z)$$

- Remark: this minimization problem always has a unique solution, so the proximal operator is without ambiguity a function ℝ<sup>n</sup> → ℝ<sup>n</sup>.
- Always non-expansive:

$$\|\operatorname{Prox}_{f}(x_{1}) - \operatorname{Prox}_{f}(x_{2})\| \leq \|x_{1} - x_{2}\|$$

• Can be interpreted as a denoiser/shrinkage for the regularity f.

#### Property

$$\operatorname{Prox}_{\gamma f}(x) = (\operatorname{Id} + \gamma \partial f)^{-1} x$$

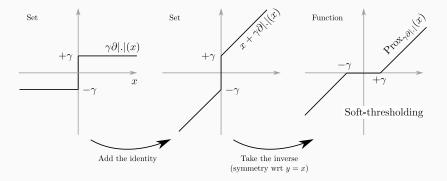
# Proof.

$$\begin{aligned} \underset{z}{\operatorname{argmin}} \ \frac{1}{2} \|z - x\|_{2}^{2} + \gamma f(z) & \Leftrightarrow \quad 0 \in \partial \left[ \frac{1}{2} \|z - x\|_{2}^{2} + \gamma f(z) \right] \\ & \Leftrightarrow \quad 0 \in \partial \left[ \frac{1}{2} \|z - x\|_{2}^{2} \right] + \gamma \partial f(z) \\ & \Leftrightarrow \quad 0 \in z - x + \gamma \partial f(z) \\ & \Leftrightarrow \quad x \in z + \gamma \partial f(z) \\ & \Leftrightarrow \quad x \in (\operatorname{Id} + \gamma \partial f)(z) \\ & \Leftrightarrow \quad z = (\operatorname{Id} + \gamma \partial f)^{-1} x \end{aligned}$$

Even though  $\partial f(x)$  is a set, the pre-image by  $\mathrm{Id} + \gamma \partial f$  is unique.

# Soft-thresholding

$$\operatorname{Prox}_{\gamma|.|}(x) = \underset{z \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2}(z-x)^2 + \gamma|z|$$
$$= (\operatorname{Id} + \gamma \partial|.|)^{-1}x = \begin{cases} x - \gamma & \text{if } x > \gamma \\ x + \gamma & \text{if } x < -\gamma \\ 0 & \text{otherwise} \end{cases}$$



| Proximal operator of simple functions |                                                                 |                                                                                                                 |                                                                                                            |
|---------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                       | Name                                                            | f(x)                                                                                                            | $\operatorname{Prox}_{\gamma f}(x)$                                                                        |
|                                       | Indicator of convex set $\mathcal C$                            | $\left\{ \begin{array}{ll} 0 & \text{ if } x \in \mathcal{C} \\ \infty & \text{ otherwise} \end{array} \right.$ | $Proj_{\mathcal{C}}(x)$                                                                                    |
|                                       | Square                                                          | $\frac{1}{2} \ x\ _2^2$                                                                                         | $\frac{x}{1+\gamma}$                                                                                       |
|                                       | Abs                                                             | $\ x\ _1$                                                                                                       | $Soft\text{-}T(x,\gamma)$                                                                                  |
|                                       | Euclidean                                                       | $\ x\ _2$                                                                                                       | $\left(1 - \frac{\gamma}{\max(\ x\ _2, \gamma)}\right) x$                                                  |
|                                       | Square+Affine                                                   | $\frac{1}{2} \ Ax + b\ _2^2$                                                                                    | $(\mathrm{Id} + \gamma A^* A)^{-1} (x - \gamma A^* b)$                                                     |
|                                       | Separability for $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ | $g(x_1) + h(x_2)$                                                                                               | $\begin{pmatrix} \operatorname{Prox}_{\gamma g}(x_1) \\ \operatorname{Prox}_{\gamma h}(x_2) \end{pmatrix}$ |

More exhaustive list: http://proximity-operator.net

#### Proximal minimization

• Let  $f : \mathbb{R}^n \to \mathbb{R}$  be a convex function (+ some technical conditions). Then, whatever the initialization  $x^0$  and  $\gamma > 0$ , the sequence

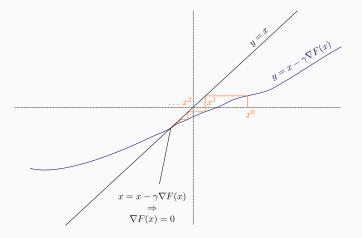
$$x^{k+1} = \operatorname{Prox}_{\gamma f}(x^k)$$

converges towards a global minimizer of f.

$$\operatorname{Prox}_{\gamma f}(x^k) = (\operatorname{Id} + \gamma \partial f)^{-1} x^k = \operatorname{argmin}_z \frac{1}{2} \|z - x^k\|_2^2 + \gamma f(z)$$

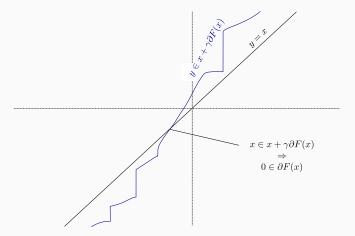
#### Compared to gradient descent

- No need to be differentiable,
- No need to have Lipschitz gradient,
- Works whatever the parameter  $\gamma$ ,
- Requires to solve an optimization problem at each step.



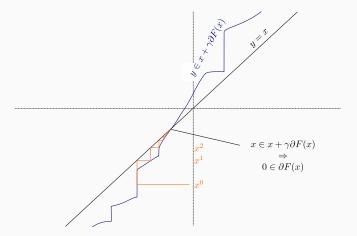
### Gradient descent:

read  $x^k$  on the x-axis and evaluate its image by the function  $x - \gamma \nabla F(x)$ .



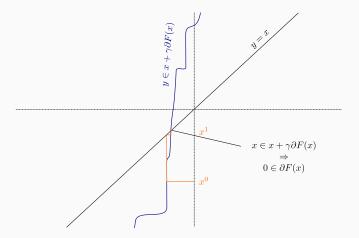
**Proximal minimization:** 

Look at the set  $x + \gamma \partial F(x)$ 



**Proximal minimization:** 

read  $x^k$  on the y-axis and evaluate its pre-image by  $x + \gamma \nabla F(x)$ .



**Proximal minimization:** 

the larger  $\gamma$  the faster, but the inversion becomes harder (ill-conditioned).

### Toy example

• Consider the smoothing regularization problem

$$F(x) = \frac{1}{2} \|\nabla x\|_{2,2}^2$$

Its sub-gradient is thus given by

$$\partial F(x) = \{\nabla F(x) = -\Delta x\}$$

• The proximal minimization reads as

$$x^{k+1} = (\mathrm{Id} + \gamma \partial F)^{-1} x^k$$
$$= (\mathrm{Id} - \gamma \Delta)^{-1} x^k$$

• This is exactly the implicit Euler scheme for the Heat equation.

## Can we apply proximal minimization for the LASSO?

## **Proximal splitting methods**

- The proximal operator may not have a closed form.
- Computing it may be as difficult as solving the original problem  $\ensuremath{\textcircled{\sc s}}$
- Solution: use **proximal splitting methods**, a family of techniques developed for non-smooth convex problems.
- Idea: split the problem into subproblems, that involve
  - gradient descent steps for smooth terms,
  - proximal steps for simple convex terms.

$$\min_{x \in \mathbb{R}^n} \left\{ E(x) = F(x) + G(x) \right\}$$

Proximal forward-backward algorithm

• Assume F is convex and differentiable with L-Lipschitz gradient

$$\|\nabla F(x_1) - \nabla F(x_2)\|_2 \leqslant L \|x_1 - x_2\|_2$$
, for all  $x_1, x_2$ .

• Assume G is convex and simple, *i.e.*, its prox is known in closed form

$$\operatorname{Prox}_{\gamma G}(x) = \operatorname{argmin}_{z} \frac{1}{2} \|z - x\|_{2}^{2} + \gamma G(z)$$

The proximal forward-backward algorithm reads

$$x^{k+1} = \operatorname{Prox}_{\gamma G}(x^k - \gamma \nabla F(x^k))$$

• For  $0 < \gamma < 2/L$ , it converges to a minimizer of E = F + G.

Aka, explicit-implicit scheme by analogy with PDE discretization schemes.

The LASSO problem: 
$$E(\eta) = \underbrace{\frac{1}{2} \|y - A\eta\|_2^2}_{F(\eta)} + \underbrace{\tau \|\eta\|_1}_{G(\eta) = \sum_i |\eta_i|}, \quad A = HD$$

Iterative Soft-Thresholding Algorithm (ISTA) (Daubechies, 2004)

• F is convex and differentiable with L-Lipschitz gradient

$$abla F(\eta) = oldsymbol{A}^*(oldsymbol{A}\eta-y) \quad ext{with} \quad L = \|oldsymbol{A}\|_2^2$$

• G is convex and **simple**, in fact separable:

$$\operatorname{Prox}_{\gamma G}(\eta)_i = \operatorname{Soft-T}(\eta_i, \gamma \tau)$$

• The proximal forward-backward algorithm reads for  $0 < \gamma < 2/L$ 

$$\eta^{k+1} = \mathsf{Soft-T}(\eta^k - \gamma(\boldsymbol{A}^*\boldsymbol{A}\eta^k - \boldsymbol{A}^*\boldsymbol{y}), \gamma\tau)$$

and is known as Iterative Soft-Thresholding Algorithm (ISTA).

• Finally:  $\hat{x}^{\star} = \bar{D}\hat{\eta}^{\star}$ 

## Preconditioned ISTA (1/2)

• Remark

$$\begin{split} \hat{\eta}^{\star} &\in \operatorname*{argmin}_{\eta \in \mathbb{R}^{K}} \ \frac{1}{2} \| y - \boldsymbol{A} \eta \|_{2}^{2} + \tau \| \eta \|_{1}, \quad \boldsymbol{A} = \boldsymbol{H} \underbrace{ \boldsymbol{\bar{W}}^{+} \boldsymbol{\Lambda}^{1/2} }_{\boldsymbol{D}} \\ &\in \operatorname*{argmin}_{\eta \in \mathbb{R}^{K}} \ \frac{1}{2} \| y - \boldsymbol{H} \boldsymbol{\bar{W}}^{+} \boldsymbol{\Lambda}^{1/2} \eta \|_{2}^{2} + \tau \| \eta \|_{1} \end{split}$$

•  ${f \Lambda}^{1/2}$  invertible: bijection between  $z={f \Lambda}^{1/2}\eta$  and  $\eta={f \Lambda}^{-1/2}z$ 

- Solving for  $\eta$  is equivalent to solve a weighted LASSO for z

$$\hat{z}^{\star} \in \underset{z \in \mathbb{R}^{K}}{\operatorname{argmin}} \ \frac{1}{2} \| y - H\bar{W}^{+}z \|_{2}^{2} + \tau \| \mathbf{\Lambda}^{-1/2}z \|_{1}$$
$$\in \underset{z \in \mathbb{R}^{K}}{\operatorname{argmin}} \ \frac{1}{2} \| y - Bz \|_{2}^{2} + \sum_{i=1}^{K} \frac{\tau}{\lambda_{i}} |z_{i}|, \quad B = H\bar{W}^{+}$$

• In practice, this equivalent problem has better conditioning.

Equivalent to:

$$E(z) = \underbrace{\frac{1}{2} \|y - Bz\|_{2}^{2}}_{F(z)} + \underbrace{\tau \| \Lambda^{-1/2} z \|_{1}}_{G(z) = \sum_{i} \frac{\tau}{\lambda_{i}} |z_{i}|}, \quad B = H\bar{W}^{+}$$

Preconditioned ISTA (2/2)

$$\nabla F(z) = \boldsymbol{B}^* (\boldsymbol{B} z - y) \quad \text{with} \quad L = \|\boldsymbol{B}\|_2^2$$
$$\operatorname{Prox}_{\gamma G}(z)_i = \operatorname{Soft-T}\left(z_i, \frac{\gamma \tau}{\lambda_i}\right)$$

• ISTA becomes for  $0 < \gamma < 2/L$ 

$$z^{k+1} = \mathsf{Soft-T}\left(z^k - \gamma(\boldsymbol{B}^*\boldsymbol{B} z^k - \boldsymbol{B}^* y), \frac{\gamma\tau}{\lambda_i}\right)$$

- Finally:  $\hat{x}^{\star} = \bar{W}^+ \hat{z}^{\star}$
- Leads to larger steps  $\gamma$ , better conditioning, and faster convergence.

$$z^{k+1} = \operatorname{Prox}_{\gamma G}(z^k - \gamma \nabla F(z^k))$$
  
= Soft-T  $\left( z^k - \gamma (\boldsymbol{B}^* \boldsymbol{B} z^k - \boldsymbol{B}^* y), \frac{\gamma \tau}{\lambda_i} \right)$  with  $\boldsymbol{B} = \boldsymbol{H} \bar{\boldsymbol{W}}^+$ 

Bredies & Lorenz (2007):  $E(z^k) - E(z^\star)$  decays with rate O(1/k)

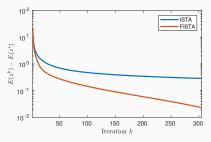
## Fast ISTA (FISTA)

$$z^{k+1} = \operatorname{Prox}_{\gamma G} \left( \tilde{z}^k - \gamma \nabla F(\tilde{z}^k) \right)$$
$$\tilde{z}^{k+1} = z^{k+1} + \frac{t_k - 1}{t_{k+1}} (z^{k+1} - z^k)$$
$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}, t_0 = 1$$

Beck & Teboulle (2009):  $E(z^k) - E(z^\star)$  decays with rate  $O(1/k^2)$ 



(a) Input y: motion blur + noise ( $\sigma = 2$ )



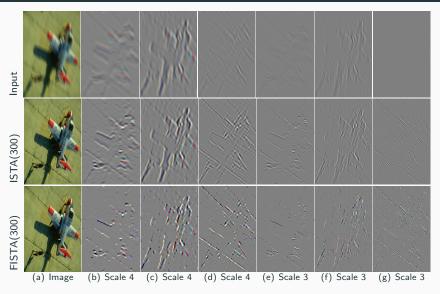
(b) Convergence profiles



(c) Deconvolution ISTA(300)+UDWT



(d) Deconvolution FISTA(300)+UDWT



FISTA converges faster: sparser codes given a limited time budget

Sparsity: synthesis vs analysis

#### Sparse synthesis model with UDWT

• LASSO: 
$$\hat{\eta}^* \in \operatorname*{argmin}_{\eta \in \mathbb{R}^K} \frac{1}{2} \|y - H\bar{W}^+ \Lambda^{1/2} \eta\|_2^2 + \tau \|\eta\|_1$$

• Using the change of variable  $\eta = \Lambda^{-1/2} z$ :

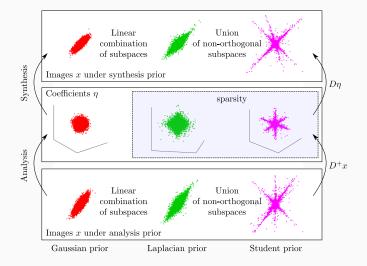
$$\hat{z}^{\star} \in \operatorname*{argmin}_{z \in \mathbb{R}^{K}} \frac{1}{2} \|y - H\bar{W}^{+}z\|_{2}^{2} + \tau \|\Lambda^{-1/2}z\|_{1}$$

#### Sparse analysis model with UDWT

• What about?

$$\hat{x}^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Hx\|_2^2 + \tau \|\mathbf{\Lambda}^{-1/2} \bar{W}x\|_1$$

- The change of variable  $\eta = \Lambda^{-1/2} \bar{W} x$  is not one-to-one.
- The two problems are not equivalent (unless  $\overline{W}$  is invertible).



Analysis versus synthesis (Elad, Milanfar, Rubinstein, 2007)

Generative: generate good images

$$\hat{x}^{\star} = \boldsymbol{D}\hat{\eta}^{\star}$$
 with  $\hat{\eta}^{\star} \in \operatorname*{argmin}_{\eta \in \mathbb{R}^{K}} rac{1}{2} \|y - \boldsymbol{H}\boldsymbol{D}\eta\|_{2}^{2} + \tau \|\eta\|_{p}^{p}, \quad p \geqslant 0$ 

Synthesis: images are linear combinations of a few columns of D. Bayesian interpretation: MAP for the sparse code  $\eta$ .

Discriminative: discriminate between good and bad images

$$\hat{x}^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Hx\|_2^2 + \tau \|\Gamma x\|_p^p, \quad p \ge 0$$

Analysis: images are correlated with a few rows of  $\Gamma$ . Bayesian interpretation: MAP for x with an improper Gibbs prior.

$$\begin{split} \hat{\eta}^{\star} &\in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}} \ \frac{1}{2} \| y - HD\eta \|_{2}^{2} + \tau \| \eta \|_{p}^{p} \qquad \qquad (\ell_{p}^{p} \text{-synthesis}) \\ \hat{x}^{\star} &\in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \ \frac{1}{2} \| y - Hx \|_{2}^{2} + \tau \| \Gamma x \|_{p}^{p} \qquad \qquad (\ell_{p}^{p} \text{-analysis}) \end{split}$$

#### **Common properties**

|       | Solution       | Problem                                |
|-------|----------------|----------------------------------------|
| p = 0 | Optimal sparse | Non-convex & discontinuous (NP-hard)   |
| $0$   | Sparse         | Non-convex & continuous but non-smooth |
| p = 1 | Sparse         | Convex & continuous but non-smooth     |
| p > 1 | Smooth         | Convex & differentiable                |
| p=2   | Linear         | Quadratic                              |

- $\Gamma$  square and invertible  $\Rightarrow$  equivalent for  $D = \Gamma^{-1}$ .
- $\Gamma$  full-rank and  $p = 2 \Rightarrow$  equivalent for  $D = \Gamma^+$ .
- LTI dictionaries  $\Rightarrow$  redundant filter bank.

$$\begin{split} \hat{\eta}^{\star} &\in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}} \ \frac{1}{2} \| y - HD\eta \|_{2}^{2} + \tau \| \eta \|_{p}^{p} \qquad \qquad (\ell_{p}^{p} \text{-synthesis}) \\ \hat{x}^{\star} &\in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \ \frac{1}{2} \| y - Hx \|_{2}^{2} + \tau \| \Gamma x \|_{p}^{p} \qquad \qquad (\ell_{p}^{p} \text{-analysis}) \end{split}$$

## Synthesis

- D: synthesis dictionary.
- Atoms need to span images.
  - $\Rightarrow$  Low- & high-pass filters
  - $\Rightarrow \operatorname{Im}[D] \approx \mathbb{R}^n$
- Redundancy favor sparsity.
- K dimensional problem (> n).
- Prior separable.

## Analysis

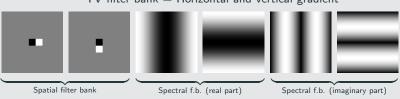
- Γ: analysis dictionary.
- Atoms need to sparsify images.
  - $\Rightarrow$  High-pass filters only
  - $\Rightarrow \operatorname{Ker}[\Gamma] \neq \emptyset \ (\supset \mathsf{DC}, \mathsf{ coarse})$
- Redundancy decreases sparsity.
- n dimensional problem (< K).
- Prior non-separable.

Quiz: What analysis dictionary is LTI and not too redundant?

$$\begin{split} \hat{\eta}^{\star} &\in \underset{\eta \in \mathbb{R}^{K}}{\operatorname{argmin}} \ \frac{1}{2} \|y - HD\eta\|_{2}^{2} + \tau \|\eta\|_{p}^{p} \qquad \qquad (\ell_{p}^{p} \text{-synthesis}) \\ \hat{x}^{\star} &\in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \ \frac{1}{2} \|y - Hx\|_{2}^{2} + \tau \|\Gamma x\|_{p}^{p} \qquad \qquad (\ell_{p}^{p} \text{-analysis}) \end{split}$$

Link between analysis models and variational methods

- p = 2: Analysis model = Tikhonov regularization.
- $p = 1 \& \Gamma = \nabla$ : Analysis model = anisotropic Total-Variation (TV)



TV filter bank = Horizontal and vertical gradient

Can we use proximal forward-backward for  $\ell_1$ -analysis prior?

$$\hat{x}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \underbrace{\frac{1}{2} \|y - Hx\|_{2}^{2}}_{F(x)} + \underbrace{\tau \|\Gamma x\|_{1}}_{G(x)} \qquad (\ell_{1} \text{-analysis})$$

Proximal forward-backward for the  $\ell_1$ -analysis problem?

- F convex and differentiable
- G convex but **not simple** (not separable)

 $\longrightarrow$  cannot use proximal forward backward  $\circledast$ 

• Exception: for denoising  $H = Id_n$  (see: Chambolle algorithm, 2004)

#### Need another proximal optimization technique.

$$\min_{x \in \mathbb{R}^n} \left\{ E(x) = F(x) + G(x) \right\}$$

## Alternating direction method of multipliers (ADMM) (~1970)

- Assume F and G are convex and simple (+ some mild conditions).
- For any initialization  $x^0, \tilde{x}^0$  and  $d^0$ , the ADMM algorithm reads as

$$x^{k+1} = \operatorname{Prox}_{\gamma F}(\tilde{x}^{k} + d^{k})$$
  

$$\tilde{x}^{k+1} = \operatorname{Prox}_{\gamma G}(x^{k+1} - d^{k})$$
  

$$d^{k+1} = d^{k} - x^{k+1} + \tilde{x}^{k+1}$$

• For  $\gamma > 0$ ,  $x^k$  converges to a minimizer of E = F + G.

Fast version:FADMM, similar idea as for FISTA (Goldstein *et al.*, 2014).Related concepts:Lagrange multipliers, Duality, Legendre transform.

How to use it for  $\ell_1$  analysis priors?

$$\hat{x}^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Hx\|_2^2 + \tau \|\Gamma x\|_1 \qquad (\ell_1 \text{-analysis})$$

ADMM + Variable splitting (1/3)• Define:
$$X = \begin{pmatrix} x \\ z \end{pmatrix} \in \mathbb{R}^{n+K}$$
• Consider: $E(X) = F(X) + G(X)$ with: $\begin{cases} F\begin{pmatrix} x \\ z \end{pmatrix} = \|y - Hx\|_2^2 + \tau \|z\|_1 \\ G\begin{pmatrix} x \\ z \end{pmatrix} = \begin{cases} 0 & \text{if } \Gamma x = z \\ \infty & \text{otherwise} \end{cases}$ • Remark 1:Minimizing E solves the  $\ell_1$ -analysis problem.

• Remark 2: F and G are convex and simple  $\Rightarrow$  ADMM applies.

$$\hat{x}^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Hx\|_2^2 + \tau \|\Gamma x\|_1 \qquad (\ell_1 \text{-analysis})$$

# ADMM + Variable splitting (2/3)

Applying formula from slide 92:

$$F\begin{pmatrix}x\\z\end{pmatrix} = \|y - \mathbf{H}x\|_{2}^{2} + \tau \|z\|_{1} \longrightarrow \operatorname{Prox}_{\gamma F}\begin{pmatrix}x\\z\end{pmatrix} = \begin{pmatrix}(\operatorname{Id}_{n} + \gamma \mathbf{H}^{*}\mathbf{H})^{-1}(x + \gamma \mathbf{H}^{*}y)\\\operatorname{Soft-T}(z, \gamma \tau)\end{pmatrix}$$

$$G\begin{pmatrix} x\\ z \end{pmatrix} = \underbrace{\begin{cases} 0 & \text{if } \Gamma x = z\\ \infty & \text{otherwise} \\ Indicator of the convex set \\ \mathcal{C} = \{(x,z) \ ; \ \Gamma x = z \} \end{cases}}_{\text{Indicator of the convex set}} \longrightarrow \operatorname{Prox}_{\gamma G} \begin{pmatrix} x\\ z \end{pmatrix} = \underbrace{\begin{pmatrix} \mathrm{Id}_n\\ \Gamma \end{pmatrix} (\mathrm{Id}_n + \Gamma^* \Gamma)^{-1} (x + \Gamma^* z)}_{\text{Projection on } \mathcal{C}}$$

$$\hat{x}^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Hx\|_2^2 + \tau \|\Gamma x\|_1 \qquad (\ell_1 \text{-analysis})$$

ADMM + Variable splitting (3/3)

$$\begin{aligned} x^{k+1} &= (\mathrm{Id}_n + \gamma H^* H)^{-1} (\tilde{x}^k + d_x^k + \gamma H^* y) \\ z^{k+1} &= \mathrm{Soft-T} (\tilde{z}^k + d_z^k, \gamma \tau) \\ \tilde{x}^{k+1} &= (\mathrm{Id}_n + \Gamma^* \Gamma)^{-1} (x^{k+1} - d_x^k + \Gamma^* (z^{k+1} - d_z^k)) \\ \tilde{z}^{k+1} &= \Gamma \tilde{x}^{k+1} \\ d_x^{k+1} &= d_x^k - x^{k+1} + \tilde{x}^{k+1} \\ d_z^{k+1} &= d_z^k - z^{k+1} + \tilde{z}^{k+1} \end{aligned}$$

If H is a blur, and  $\Gamma$  a filter bank,  $(\mathrm{Id}_n + \gamma H^* H)^{-1}$  and  $(\mathrm{Id}_n + \Gamma^* \Gamma)^{-1}$  can be computed in the Fourier domain in  $O(n \log n)$ .

$$\hat{x}^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Hx\|_2^2 + \tau \|\Gamma x\|_1 \qquad (\ell_1 \text{-analysis})$$

## **Application to Total-Variation**

 $\Gamma = 
abla$ 

$$\begin{aligned} x^{k+1} &= (\mathrm{Id}_n + \gamma H^* H)^{-1} (\tilde{x}^k + d_x^k + \gamma H^* y) \\ z^{k+1} &= \mathsf{Soft-T} (\tilde{z}^k + d_z^k, \gamma \tau) \\ \tilde{x}^{k+1} &= (\mathrm{Id}_n + \nabla^* \nabla)^{-1} (x^{k+1} - d_x^k + \nabla^* (z^{k+1} - d_z^k)) \\ \tilde{z}^{k+1} &= \nabla \tilde{x}^{k+1} \\ d_x^{k+1} &= d_x^k - x^{k+1} + \tilde{x}^{k+1} \\ d_z^{k+1} &= d_z^k - z^{k+1} + \tilde{z}^{k+1} \end{aligned}$$

 $abla^* = -\operatorname{div}$  and  $abla^* 
abla = -\Delta$ 

$$\hat{x}^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Hx\|_2^2 + \tau \|\Gamma x\|_1 \qquad (\ell_1 \text{-analysis})$$

## **Application to Total-Variation**

 $\Gamma = 
abla$ 

$$\begin{aligned} x^{k+1} &= (\mathrm{Id}_n + \gamma H^* H)^{-1} (\tilde{x}^k + d_x^k + \gamma H^* y) \\ z^{k+1} &= \mathsf{Soft-T} (\tilde{z}^k + d_z^k, \gamma \tau) \\ \tilde{x}^{k+1} &= (\mathrm{Id}_n - \Delta)^{-1} (x^{k+1} - d_x^k - \operatorname{div}(z^{k+1} - d_z^k)) \\ \tilde{z}^{k+1} &= \nabla \tilde{x}^{k+1} \\ d_x^{k+1} &= d_x^k - x^{k+1} + \tilde{x}^{k+1} \\ d_z^{k+1} &= d_z^k - z^{k+1} + \tilde{z}^{k+1} \end{aligned}$$

 $abla^* = -\operatorname{div}$  and  $abla^* 
abla = -\Delta$ 

$$\hat{x}^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Hx\|_2^2 + \tau \|\Gamma x\|_1 \qquad (\ell_1 \text{-analysis})$$

Application to sparse analysis with UDWT

 $\Gamma = \Lambda^{-1/2} \bar{W}$ 

$$\begin{aligned} x^{k+1} &= (\mathrm{Id}_n + \gamma H^* H)^{-1} (\tilde{x}^k + d_x^k + \gamma H^* y) \\ z^{k+1} &= \mathrm{Soft-T} (\tilde{z}^k + d_z^k, \frac{\gamma \tau}{\lambda_i}) \\ \tilde{x}^{k+1} &= (\mathrm{Id}_n + \bar{W}^* \bar{W})^{-1} (x^{k+1} - d_x^k + \bar{W}^* (z^{k+1} - d_z^k)) \\ \tilde{z}^{k+1} &= \bar{W} \tilde{x}^{k+1} \\ d_x^{k+1} &= d_x^k - x^{k+1} + \tilde{x}^{k+1} \\ d_z^{k+1} &= d_z^k - z^{k+1} + \tilde{z}^{k+1} \end{aligned}$$

Tight-frame:  $ar{oldsymbol{W}}^*ar{oldsymbol{W}}=\mathrm{Id}_n$ 

$$\hat{x}^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Hx\|_2^2 + \tau \|\Gamma x\|_1 \qquad (\ell_1 \text{-analysis})$$

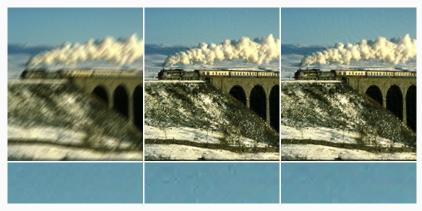
Application to sparse analysis with UDWT

 $\Gamma = \Lambda^{-1/2} ar{W}$ 

$$\begin{aligned} x^{k+1} &= (\mathrm{Id}_n + \gamma \boldsymbol{H}^* \boldsymbol{H})^{-1} (\tilde{x}^k + d_x^k + \gamma \boldsymbol{H}^* y) \\ z^{k+1} &= \mathrm{Soft-T}(\tilde{z}^k + d_z^k, \frac{\gamma \tau}{\lambda_i}) \\ \tilde{x}^{k+1} &= \frac{1}{2} (x^{k+1} - d_x^k + \bar{\boldsymbol{W}}^* (z^{k+1} - d_z^k)) \\ \tilde{z}^{k+1} &= \bar{\boldsymbol{W}} \tilde{x}^{k+1} \\ d_x^{k+1} &= d_x^k - x^{k+1} + \tilde{x}^{k+1} \\ d_z^{k+1} &= d_z^k - z^{k+1} + \tilde{z}^{k+1} \end{aligned}$$

Tight-frame:  $ar{m{W}}^*ar{m{W}}=\mathrm{Id}_n$ 

#### Deconvolution with UDWT (5 levels, Db2)



(a) Blurry image y (noise  $\sigma = 2$ ) (b) Synthesis (FISTA)

(c) Analysis (FADMM)

# Sparse analysis – Results



 $(a) \ 1 \ {\rm level} \qquad (b) \ 2 \ {\rm level} \qquad (c) \ 3 \ {\rm level} \qquad (d) \ 4 \ {\rm level} \qquad (e) \ 5 \ {\rm level}$ 

Analysis allows for less decomposition levels.  $\Rightarrow$  leads to faster algorithms.

## Sparse analysis – Results



(a) Noisy ( $\sigma = 40$ ) (b) Analysis UDWT(4) (c) +block (orien.+col.) (d) Difference

• As for TV, group coefficients across orientations/color using  $\ell_{2,1}$  norms:

# $\|\mathbf{\Gamma} z\|_{2,1}$

• The soft-thresholding becomes the group soft-thresholding:

$$\left[\operatorname{Prox}_{\gamma \|\cdot\|_{2,1}}(z)\right]_{i} = \begin{cases} z_{i} - \gamma \frac{z_{i}}{\|z_{i}\|_{2}} & \text{if } \|z_{i}\|_{2} > \gamma \\ 0 & \text{otherwise} \end{cases}$$

## Reminder from last class:

Modeling the distribution of images is complex (large degree of freedom). Applying LMMSE on patches  $\rightarrow$  increase performance

Next class:

What if we use sparse priors, not for the distribution of images, but for the distribution of patches?

#### For further reading

#### Sparsity, shrinkage and recovery guarantee:

- Donoho & Johnstone (1994); Moulin & Liu (1999); Donoho and Elad (2003); Gribonval and Nielsen (2003); Candès and Tao (2005); Zhang (2008); Candès and Romberg (2007).
- Book: Statistical Learning with Sparsity (Hastie, Tibshirani, Wainwright, 2015).

#### Wavelet related transforms:

- Warblet/Chirplet (Mann, Mihovilovic et al., 1991–1992), Curvelet (Candès & Donoho, 2000), Noiselet (Coifman, 2001), Contourlet (Do & Vetterli, 2002), Ridgelet (Do & Vetterli, 2003), Shearlets (Kanghui et al., 2005), Bandelet (Le Pennec, Peyré, Mallat, 2005), Empirical wavelets (Gilles, 2013).
- Book: A wavelet tour of signal processing (Mallat, 2008)

#### Non-smooth convex optimization:

- Douglas-Rachford splitting (Combettes & Pesquet, 2007), Split Bregman (Goldstein & Osher, 2009), Primal-Dual (Chambolle & Pock, 2011), Generalized FB (Raguet et al., 2013), Condat algorithm (2014).
- Book: Convex Optimization (Boyd, 2004).

# **Questions?**

# Next class: Patch models and dictionary learning

Sources, images courtesy and acknowledgment

L. Condat

A. Horodniceanu

J. Salmon

G. Peyré

Wikipedia