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Abstract. We introduced with C. Bachoc and G. Nebe a notion of
design (resp. code) in Grassmannian spaces. This extends the classical
notions of spherical design (resp. code), which in this setting corre-
sponds to the Grassmannian space G1,n, the set of lines in Rn. This
paper will survey on various results and applications, in particular to
the study of Rankin invariants of lattices. We also give some bounds for
the size of designs and codes which were obtained in collaboration with
E. Bannai.

1. Introduction.

This a survey on recent work with C. Bachoc, E. Bannai and G. Nebe.
To start with, let us recall the classical notions of spherical designs and
codes (see [5]). We endow the sphere Sn−1 with its canonical O(n)-invariant
measure dx, normalized so as

∫
Sn−1 dx = 1.

Definition 1.1. A finite subset set X of Sn−1 is a t-design, t a positive
integer, if for any homogeneous polynomial f of degree at most t one has∫

Sn−1

f(x)dx =
1
|X|

∑
x∈X

f(x)(1)

Definition 1.2. A finite subset set X of Sn−1 is an s-code, s a positive
integer, if the scalar products of pairwise distinct vectors in X take at most
s values

|{x · y, x 6= y ∈ X}| ≤ s(2)

Examples of designs arise in the theory of Euclidean lattices: if L is a
lattice in Rn, i.e. a discrete subgroup of Rn of maximal rank, one defines the
set S(L) of minimal vectors of L as the (finite) set of nonzero vectors in L
with minimal length. One can of course view S(L), conveniently rescaled,
as a finite subset of Sn−1. The following theorem, due to B. Venkov, is one
of the motivation for our work on generalized designs:

Theorem 1.3 ([11]). If S(L) is a 4-design, then L achieves a local maxi-
mum of the Hermite function γ(L) = minL

(detL)1/n

Recall that minL stands for the minimal squared length of nonzero vectors
in L, and detL = vol(Rn/L)2, so that γ(L)n/2 is proportional to the density
of the sphere packing associated to L.
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Our definition of designs in general Grassmanian spaces give rise to similar
results for higher dimensional analogues of the Hermite invariants, the so-
called Rankin invariants ([10]), see section 5.

It is natural to ask for a lower (resp. upper) bound for the size of a t-design
(resp. s-code). Such bounds were exhibited in [5], and the notion of tight-
design and code (i.e. achieving these bounds) was introduced. Moreover, a
kind of duality between tight-designs and tight-codes was brought to the
fore. In section 6, we give similar bounds for designs and codes in general
Grassmanian spaces.

2. Grassmannnians.

The Grassmannian space Gm,n (resp. G◦m,n) is the set of m-dimensional
subspaces (resp. oriented subspaces) of Rn. They are homogeneous spaces
isomorphic respectively to O(n)/O(m)×O(n−m) and O(n)/SO(m)×O(n−
m), and G◦m,n is a 2 to 1 covering of Gm,n.

G◦m,n
(2:1)

��

' O(n)/SO(m)×O(n−m)

Gm,n ' O(n)/O(m)×O(n−m)

Example: m = 1
G◦1,n

(2:1)

��

= Sn−1

G1,n = P
n−1

We need to characterize the relative positions of two m-dimensional sub-
spaces of Rn, or, in more sophisticated words, to characterize the O(n)-orbit
of a couple (p, q) ∈ Gm,n2. If m = 1, the relative positions of two lines
through 0 is determined by their angle. In general, we define a m-tuple of
principal angles as follows: we fix a base point p0, for instance p0 := the m-
dimensional subspace generated by the first m vectors of the canonical basis
of Rn. Then, each couple (p, q) ∈ Gm,n2 can be written as (p, q) = (g.p0, h.p0)
for suitable g and h in O(n). We decompose the matrix g−1h into blocks

g−1h =
(
A B
C D

)
with A ∈Mm(R), and denote by 1 ≥ y1 ≥ y2 ≥ · · · ≥ ym ≥ 0 the eigenvalues
of the real symmetric matrix AAt. Finally, we let ti :=

√
yi = cos θi ∈ [0, 1].

Then, the O(n)-orbit of (p, q) is characterized by the m-tuple (t1, · · · , tm)

O(n).(p, q)↔ (t1, · · · , tm).(3)

Remark. it is readily seen that this definition of the principal angles is
equivalent to the classical one, as given in [7], p.584, for instance.
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As for the O(n)-orbit of a couple (p̃, q̃) ∈ G◦m,n2, one needs one more
invariant, namely ε := detA

| detA| :

O(n).(p̃, q̃)↔ (ε, t1, · · · , tm).(4)

3. Some harmonic analysis. Zonal functions.

The space of square integrable functions on Gm,n, resp G◦m,n splits into
O(n)-irreducible modules Hµ

m,n, indexed by partitions µ = µ1 ≥ · · · ≥ µm
of an integer k in at most m nonzero parts, as follows (see [8] p. 546 or [2]):
we say that a partition µ = µ1 ≥ · · · ≥ µm ≥ 0 of an integer k is admissible
if

µi ≡ µj mod 2 for all (i, j),(5)

and that µ is even (resp. odd), if its components are even (resp. odd). The
integer k =

∑
µi, denoted by |µ|, is the degree of µ. We the have:

L2(G◦m,n) =
⊕

µ admissibleH
µ
m,n

L2(Gm,n)
?�

OO

=
⊕

µadmissible
and even

Hµ
m,n

Example: m = 1, µ = k, Hk
1,n = Harmk[X1, · · · , Xn], the space of

harmonic polynomials of degree k.

It is worth noticing that the Hµ
m,n do depend only on n and µ, that is

to say, if m ≤ m′ and µ is a partition with at most m nonzero parts, then
Hµ
m,n ' Hµ

m′,n.
To each irreducible constituent Hµ

m,n is attached a zonal function Pµ on
G◦m,n × G◦m,n, characterized by:

1. Pµ(p, .) ∈ Hµ
m,n for all p ∈ G◦m,n, Pµ(., q) ∈ Hµ

m,n for all q ∈ G◦m,n
2. Pµ(σp, σq) = Pµ(p, q) for all σ ∈ O(n), (p, q) ∈ G◦m,n2.

If µ is even, one has

Pµ(p, q) = pµ(y1(p, q), · · · , ym(p, q)),

where pµ(Y1, · · · , Ym) is a symmetric polynomial of degree |µ|2 , whereas if µ
is odd

Pµ(p, q) = (εt1 · · · tm)pµ(y1, · · · , ym),

with pµ(Y1, · · · , Ym) a symmetric polynomial of degree |µ|−m2 .
From now on, we normalize the zonal functions so as:

Pµ(p, p) = 1.

We then have the two following properties:

1. 〈Pµ(p, .), Pλ(q, .)〉 = δλ,µ
dµ
Pµ(p, q),

where dµ = dimHµ
m,n.
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2. PλPµ =
∑

τ cλ,µ(τ)Pτ , with cλ,µ(τ) ≥ 0.

4. Designs.

For any integer k ≥ 1, we define

H+
k :=

⊕
|µ|≤k
µeven

Hµ
m,n ⊂ L2(Gm,n) ⊂ L2(G◦m,n)

and H−k :=
⊕
|µ|≤k
µodd

Hµ
m,n ⊂ L2(Gm,n)⊥ ⊂ L2(G◦m,n).

Definition 4.1 ([2]). A subset D ⊂ Gm,n is a 2k-design if

∀ϕ ∈ H+
2k ,

∫
Gm,n

ϕ(p)dp =
1
|D|

∑
p∈D

ϕ(p)

Notice that, since the definition is given in the setting of non oriented
grassmannians, what we get for m = 1 is not exactly the definition of spher-
ical designs, but more restrictively, the notion of antipodal design (see [5]).

There are several criteria to test whether a given subset of a Grassmannian
space is a design. The first one involves the zonal functions Pµ mentioned
above.

Proposition 4.2 ([2]). The following properties, for a subset D ⊂ Gm,n,
are equivalent:

1. D is a 2k-design.
2. ∀µ with 2 ≤ |µ| ≤ 2k,

∑
p∈D Pµ(p, ·) = 0.

3. ∀µ with 2 ≤ |µ| ≤ 2k,
∑

(p,q)∈D2 Pµ(p, q) = 0.

In order to apply this proposition, one has to compute explicitly the
polynomials Pµ. This is done in [9]. For m = 1, the Pµ are the classical
Gegenbauer polynomials [5].

We also have criteria of a completely different kind, involving group the-
ory. The orthogonal group O(n) acts on the set of n by n symmetric matrices
SMn by g.S = (gt)−1Sg−1, which in turn induces a representation of O(n)
in Homk(SMn), the space of homogeneous polynomials of degree k in the
matrix argument S = (Si,j) ∈ SMn

g.P (S) := P (g−1.S) = P (gtSg).(6)

We then have the following theorem:

Theorem 4.3 ([2]). Let G be a finite subgroup of O(n). Then, the following
properties are equivalent:

1. ∀m ≤ n
2 , ∀p ∈ Gm,n, G · p is a 2k-design.

2. Homk(SMn)G = Homk(SMn)O(n).
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This applies in particular when G = AutL is the automorphism group of
a lattice L. For instance, if L = D4,E6 or E7, theorem (4.3) applies with
k = 2, if L = E8, it applies with k = 3, and if L = Λ24 (the Leech lattice),
with k = 5 (see [2]).

5. Rankin invariants.

Besides the classical Hermite function γ (= γ1 in what follows), which
we mentioned in the introduction, Rankin [10] defined a collection of func-
tions γm, in the following way : let L be a lattice in Rn, endowed with the
usual scalar product denoted x · y, and 1 ≤ m ≤ dimL an integer. One
defines

δm(L) = inf
p∈L(m)

det p,(7)

in which L(m) stands for the set of m-dimensional sublattices of L, and

γm(L) = δm(L)/(detL)
m
n(8)

For m = 1, γ1(L) is the classical Hermite invariant of L. In general, the
function γm is bounded on the set of n-dimensional positive definite lattices
([10]), and the supremum, which actually is a maximum, is denoted by γm,n.
The lattices achieving a local maximum for γm are called m-extreme (see
[4] for a characterization of m-extreme lattices in terms of m-perfection and
m-eutaxy).

We define the set of minimal m-sections of L as

Sm(L) = {p ∈ L(m) | det p = δm(L)}(9)

which is a finite set. The map p 7→ Rp (the m-dimensional subspace spanned
by p) induces an embedding of Sm(L) in Gm,n (this is because Rp/p is torsion-
free, by the minimality of p). So, we can view Sm(L) as a subset of Gm,n. We
then have the following theorem, analogous to Venkov’s theorem mentioned
in the introduction:

Theorem 5.1 ([2]). Sm(L) is a 4-design ⇒ L is m-extreme.

The proof relies on the characterization of m-extreme lattices in terms of
m-perfection and m-eutaxy mentioned above. This theorem, together with
theorem 4.3, allows to check that some classical lattices are extreme with
respect to all Rankin invariants:

Proposition 5.2. If L = D4,E6,E7,E8 or Λ24, then L is m-extreme for
any m, 1 ≤ m ≤ dimL

2 .

This kind of results would be out of reach without the help of theorem
4.3 and 5.1.
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6. Codes in Grassmannian varieties. Bounds.

Definition 6.1 ([1]). Let f(Y1, · · · , Ym) be a symmetric polynomial such
that f(1, · · · , 1) = 1.

A subset D ⊂ Gm,n is an f-code if for all (p, q) ∈ D2, p 6= q one has

f(y1(p, q), · · · , ym(p, q)) = 0.

Remark. For m = 1, one recovers the usual definition of an s-code, i.e. a
set of points on the sphere such that the mutual distances take at most s
distinct values.

Let d+
k = dimH+

k and d−k = dimH−k . These dimensions can be easily
calculated from the dimensions dµn of the irreducible components Hµ

m,n, as
given for instance in [6], chapter 24. They are involved in the following two
theorems, which give bounds for the size of designs and codes in Gm,n.

Theorem 6.2 ([1]). Let D ⊂ Gm,n be a 2k-design. Then

|D| ≥ max(d+
k , d

−
k ).

If equality holds, then D is an f-code with respect to

f =
1
d+
k

∑
|µ|≤k
µ even

dµpµ or
y1 · · · ym
d−k

∑
|µ|≤k
µ odd

dµpµ

(d+
k > d−k ) (d−k > d+

k )

Definition 6.3 ([1]). An f-code has type 1 if Y1 · · ·Ym divides f , type 0
otherwise.

Theorem 6.4 ([1]). Any f-code D ⊂ Gm,n satisfies

|D| ≤ d+
k ,

where k = 2 deg f . If moreover f has type 1, then D ⊂ Gm,n satisfies

|D| ≤ d−k ,
where k = 2 deg f −m.

If equality holds, then

f =
1
d+
k

∑
|µ|≤k
µ even

dµpµ (type 0),

resp.

f =
y1 · · · ym
d−k

∑
|µ|≤k
µ odd

dµpµ (type 1)

and D is a 2k-design.

Designs, resp. codes, achieving the bound of theorem 6.2, resp. 6.4, are
called tight.

Example. In [3], §5, an infinite family Dp of packings in G p−1
2
,p, p a

prime which is either 3 or congruent to −1 modulo 8, is defined. It consists
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on p(p+1)
2 = d[0,··· ,0] + d[2,0,··· ,0] = d+

2 subspaces with same pairwise chordal

distance d2 = (p+1)2

4(p+2) . Since d2 =
∑

sin2 θi = p−1
2 −

∑
yi, Dp is an f -code,

with f = 4(p+2)(
∑
Yi)−(p2−5)

p2−5
, and theorem 6.4 applies, so that:

Proposition 6.5 ([1]). For any prime p which is either 3 or congruent to
−1 modulo 8, Dp is a tight 4-design in G p−1

2
,p.
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