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Abstract

This monograph presents some new concentration inequalities for
Feynman-Kac particle processes. We analyze different types of stochas-
tic particle models, including particle profile occupation measures,
genealogical tree based evolution models, particle free energies, as well
as backward Markov chain particle models. We illustrate these results
with a series of topics related to computational physics and biology,
stochastic optimization, signal processing and Bayesian statistics, and
many other probabilistic machine learning algorithms. Special empha-
sis is given to the stochastic modeling, and to the quantitative perfor-
mance analysis of a series of advanced Monte Carlo methods, including
particle filters, genetic type island models, Markov bridge models, and
interacting particle Markov chain Monte Carlo methodologies.



1
Stochastic Particle Methods

1.1 Introduction

Stochastic particle methods have come to play a significant role in
applied probability, numerical physics, Bayesian statistics, probabilistic
machine learning, and engineering sciences.

They are increasingly used to solve a variety of problems, includ-
ing nonlinear filtering equations, data assimilation problems, rare event
sampling, hidden Markov chain parameter estimation, stochastic con-
trol problems and financial mathematics. To name a few, They are
also used in computational physics for free energy computations, and
Schrödinger operator’s ground states estimation problems, as well as
in computational chemistry for sampling the conformation of polymers
in a given solvent.

To illustrate these methods, we start with a classical filtering exam-
ple. We consider a Markov chain Xk taking values in Rd, with prior
transitions given by

P(Xk ∈ dxk | Xk−1 = xk−1) = pk(xk|xk−1) dxk, (1.1)
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Using some slight abuse of Bayesian notation, the observations Yk are
Rd′

-valued random variables defined in terms of the likelihood functions

P(Yk ∈ dyk | Xk = xk) = pk(yk|xk) dyk, (1.2)

In the above display, dxk and dyk stand for the Lebesgue measures
in Rd and Rd′

. To compute the conditional distribution of the signal
path sequence (X0, . . . ,Xn), given the observations (Y0, . . . ,Yn), we can
use the genealogical tree model associated with a genetic type inter-
acting particle model. This genetic algorithm is defined with mutation
transitions according to 1.1, and proportional selections with regard to
(w.r.t.) the fitness functions 1.2. The occupation measures of the cor-
responding genealogical tree provides an approximation of the desired
conditional distributions of the signal. More generally, for any function
f on the path space we have

lim
N↑∞

1
N

N∑
1

f(linen(i)) = E(f(X0, . . . ,Xn)|Y0 = y0, . . . ,Yn = yn) (1.3)

where linen(i) stands for the i−th ancestral line of the genealogical
tree, at time n.

More refined particle filters can be designed, including fixed param-
eter estimates in hidden Markov chain models, unbiased particle esti-
mates of the density of the observation sequence, and backward smooth-
ing models based on complete ancestral trees. Section 2 presents a more
rigorous and detailed discussion on these topics.

Rigorous understanding of these new particle Monte Carlo method-
ologies leads to fascinating mathematics related to Feynman-Kac path
integral theory and their interacting particle interpretations [17, 20, 38].
In the last two decades, this line of research has been developed by
using methods from stochastic analysis of interacting particle systems
and nonlinear semigroup models in distribution spaces, but it has also
generated difficult questions that cannot be addressed without devel-
oping new mathematical tools.

Let us survey some of the important challenges that arise.
For numerical applications, it is essential to obtain nonasymptotic

quantitative information on the convergence of the algorithms. For
instance, in the filtering problem presented at beginning of this section,
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it is important to quantify the performance of the empirical particle
estimate in 1.3. Asymptotic theory, including central limit theorems,
moderate deviations, and large deviations principles have clearly lim-
ited practical values. An overview of these asymptotic results in the
context of mean field and Feynman-Kac particle models can be found
in the series of articles [13, 28, 29, 33, 41, 43].

Furthermore, when solving a given concrete problem, it is impor-
tant to obtain explicit nonasymptotic error bounds estimates to ensure
that the stochastic algorithm is provably correct. While non asymptotic
propagation of chaos results provides some insights on the bias prop-
erties of these models, it rarely provides useful effective convergence
rates.

Last but not least, it is essential to analyze the robustness prop-
erties, and more particularly the uniform performance of particle
algorithms w.r.t. the time horizon. By construction, these important
questions are intimately related to the stability properties of com-
plex nonlinear Markov chain semigroups associated with the limit-
ing measure valued process. In the filtering example illustrated in this
section, the limiting measure valued process is given by the so-called
nonlinear filtering equation. In this context, the stability property of
these equations ensures that the optimal filter will correct any erroneous
initial conditions. This line of thought has been further developed in
the articles [13, 31, 38, 40], and in the books [17, 20].

Without any doubt, one of the most powerful mathematical tools
to analyze the deviations of Monte Carlo based approximations is the
theory of empirical processes and measure concentration theory. In the
last two decades, these new tools have become one of the most impor-
tant steps forward in infinite dimensional stochastic analysis, advanced
machine learning techniques, as well as in the development of a statis-
tical non asymptotic theory.

In recent years, much effort has been devoted to describing the
behavior of the supremum norm of empirical functionals around the
mean value of the norm. For an overview of these subjects, we refer
the reader to the seminal books of Pollard [81], Van der Vaart and
Wellner [93], Ledoux and Talagrand [72], the remarkable articles by
Giné [56], Ledoux [70, 71], and Talagrand [90, 91, 92], and the more
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recent article by Adamczak [1]. The best constants in Talagrand’s con-
centration inequalities were obtained by Klein and Rio [67]. In this
article, the authors proved the functional version of Bennett’s and
Bernstein’s inequalities for sums of independent random variables.

Two main difficulties we encountered in applying these concentra-
tion inequalities to interacting particle models are of different order:

First, all of the concentration inequalities developed in the literature
on empirical processes still involve the mean value of the supremum
norm empirical functionals. In practical situations, these tail style
inequalities can only be used if we have some precise information on the
magnitude of the mean value of the supremum norm of the functionals.

On the other hand, the range of application of the theory of
empirical processes and measure concentration theory is restricted
to independent random samples, or equivalently product measures,
and more recently to mixing Markov chain models. In the reverse
angle, stochastic particle techniques are not based on fully independent
sequences, nor on Markov chain Monte Carlo principles, but on inter-
acting particle samples combined with complex nonlinear Markov chain
semigroups. More precisely, in addition to the fact that particle models
are built sequentially using conditionally independent random samples,
their respective conditional distributions are still random. Also, in a
nonlinear way, they strongly depend on the occupation measure of the
current population.

In summary, the concentration analysis of interacting particle pro-
cesses requires the development of new stochastic perturbation style
techniques to control the interaction propagation and the degree of
independence between the samples.

Del Moral and Ledoux [36] extend empirical processes theory to
particle models. In this work, the authors proved Glivenko-Cantelli and
Donsker theorems under entropy conditions, as well as nonasymptotic
exponential bounds for Vapnik-Cervonenkis classes of sets or functions.
Nevertheless, in practical situations these non asymptotic results tend
to be a little disappointing, with very poor constants that degenerate
w.r.t. the time horizon.

The second most important result on the concentration properties
of the mean field particle model is found in [40]. This article is only
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concerned with the finite marginal model. The authors generalize the
classical Hoeffding, Bernstein and Bennett inequalities for independent
random sequences to interacting particle systems.

In this monograph, we survey some of these results, and we pro-
vide new concentration inequalities for interacting empirical processes.
We emphasize that this review does not give a comprehensive treat-
ment of the theory of interacting empirical processes. To name a few
missing topics, we do not discuss large deviation principles w.r.t. the
strong τ -topology, Donsker type fluctuation theorems, moderate devi-
ation principles, and continuous time models. The first two topics are
developed [17], the third one is developed in [32], the last one is still
an open research subject.

Here, we emphasize a single stochastic perturbation method, with
second-order expansion entering the stability properties of the limiting
Feynman-Kac semigroups. The concentration results attained are prob-
ably not the best possible of their kind. We have chosen to strive for just
enough generality to derive useful and uniform concentration inequal-
ities w.r.t. the time horizon, without having to impose complex and
often unnatural regularity conditions to squeeze them into the general
theory of empirical processes.

Some of the results are borrowed from [40], and many others are
new. This monograph should be complemented with the books and
articles [17, 20, 31, 44]. A very basic knowledge in statistics and machine
learning theory will be useful, but not necessary. Good backgrounds in
Markov chain theory and in stochastic semigroup analysis are necessary.

We have done our best to give a self-contained presentation, with
detailed proofs. However, we assume some familiarity with Feynman-
Kac models, and basic facts on the theory of Markov chains on abstract
state spaces. Only in subsection 4.6.1, have we skipped the proof of
some tools from convex analysis. We hope that the essential ideas are
still accessible to the readers.

It is clearly not the scope of this monograph to give an exhaus-
tive list of references to articles in computational physics, engineering
sciences, and machine learning, presenting heuristic-like particle algo-
rithms to solve a specific estimation problem. With a few exceptions, we
have only provided references to articles with rigorous and well founded
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mathematical treatments on particle models. We apologize in advance
for possible errors, or for references that have been omitted due to the
lack of accurate information.

This monograph grew from series of lectures the first author gave
in the Computer Science and Communications Research Unit, of the
University of Luxembourg in February and March 2011. They were
reworked, with the addition of new material on the concentration of
empirical processes for a course given at the Sino-French Summer
Institute in Stochastic Modeling and Applications (CNRS-NSFC Joint
Institute of Mathematics), held at the Academy of Mathematics and
System Science, Beijing, in June 2011. The Summer Institute was
ably organized by Fuzhou Gong, Ying Jiao, Gilles Pagès, and Mingyu
Xu, and the members of the scientific committee, including Nicole El
Karoui, Zhiming Ma, Shige Peng, Liming Wu, Jia-An Yan, and Nizar
Touzi. The first author is grateful to them for giving to him the oppor-
tunity to experiment on a receptive audience with material not entirely
polished.

In reworking the lectures, we have tried to resist the urge to push
the analysis to general classes of mean field particle models, in the spirit
of the recent joint article with E. Rio [40]. Our principal objective has
been to develop just enough analysis to handle four types of Feynman-
Kac interacting particle processes, namely, genetic dynamic population
models, genealogical tree based algorithms, particle free energies, as
well as backward Markov chain particle models. These application
models do not exhaust the possible uses of the theory developed in
these lectures.

1.2 A Brief Review on Particle Algorithms

Stochastic particle methods belong to the class of Monte Carlo
methods. They can be thought of as a universal particle methodology
for sampling complex distributions in highly dimensional state spaces.

We can distinguish two different classes of models, namely, diffu-
sion type interacting processes, and interacting jump particle models.
Feynman-Kac particle methods belongs to the second class of models,
with rejection-recycling jump type interaction mechanisms. In contrast
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to conventional acceptance-rejection type techniques, Feynman-Kac
particle methods are equipped with an adaptive and interacting recy-
cling strategy.

The common central feature of all the Monte Carlo particle method-
ologies developed so far is to solve discrete generation, or continu-
ous time integro-differential equations in distribution spaces. The first
heuristic-like description of these probabilistic techniques in mathemat-
ical physics goes back to the Los Alamos report [49], and the article by
Everett and Ulam in 1948 [48], and the short article by Metropolis and
Ulam [79], published in 1949.

In some instances, the flow of measures is dictated by the problem at
hand. In advanced signal processing, the conditional distributions of the
signal, given partial and noisy observations, are given by the so-called
nonlinear filtering equation in distribution space (see for instance [15,
16, 17, 20, 38], and references therein).

Free energies and Schrödinger operator’s ground states are given by
the quasi-invariant distribution of a Feynman-Kac conditional distri-
bution flow of non absorbed particles in absorbing media. We refer the
reader to the articles by Cancès, Jourdain and Lelièvre [5], El Makrini,
Jourdain and Lelièvre [46], Rousset [85], the pair of articles of Del
Moral with Miclo [38, 39], with Doucet [19], and the book [17], and the
references therein.

In mathematical biology, branching processes and infinite popula-
tion models are also expressed by nonlinear parabolic type integro-
differential equations. Further details on this subject can be found in
the articles by Dawson and his co-authors [11, 12, 14], the works of
Dynkin [45], and Le Gall [69], and more particularly the seminal book
of Ethier and Kurtz [47], and the pioneering article by Feller [50].

In other instances, we formulate a given estimation problem
in terms of a sequence of distributions with increasing complexity
on state space models with increasing dimension. These stochastic
evolutions can be related to decreasing temperature schedules in
Boltzmann-Gibbs measures, multilevel decompositions for rare event
excursion models on critical level sets, decreasing subsets strategies
for sampling tail style distributions, and many other sequential
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importance sampling plans. For a more thorough discussion on these
models we refer the reader to [21].

From a purely probabilistic point of view, any flow of probability
measures can be interpreted as the evolution of the laws of the random
states of a Markov process. In contrast to conventional Markov chain
models, the Markov transitions of these chains may depend on the dis-
tribution of the current random state. The mathematical foundations
of these discrete generation models began in 1996 in [15] within the
context of nonlinear filtering problems. Further analysis was developed
in [38]. For a more thorough discussion on the origin and the perfor-
mance analysis of these discrete generation models, we also refer the
reader to the book [17], and the joint articles Del Moral with Guionnet
[28, 29, 30, 31], and with Kouritzin [35].

The continuous time version of these nonlinear type Markov chain
models take their origins from the 1960s, with the development of fluid
mechanisms and statistical physics. We refer the reader to the pio-
neering works of McKean [61, 63], as well as the more recent treat-
ments by Bellomo and Pulvirenti [3, 4], the series of articles by Graham
and Méléard on interacting jump models [58, 59, 82], the articles by
Méléard on Boltzmann equations [75, 76, 77, 78], and the lecture notes
of Sznitman [89], and references therein.

In contrast to conventional Markov chain Monte Carlo techniques,
these McKean type nonlinear Markov chain models can be thought of
as perfect importance sampling strategies, in the sense that the desired
target measures coincide at any time step with the law of the random
states of a Markov chain. Unfortunately, as we mentioned above, the
transitions of these chains depend on the distributions of their random
states. Thus, they cannot be sampled without an additional level of
approximation. One natural solution is to use a mean field particle
interpretation model. These stochastic techniques belong to the class of
stochastic population models, with free evolutions mechanisms, coupled
with branching and/or adaptive interacting jumps. At any time step,
the occupation measure of the population of individuals approximates
the solution of the nonlinear equation, when the size of the system
tends to ∞.
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In genetic algorithms and sequential Monte Carlo literature, the
reference free evolution model is interpreted as a reference sequence
of twisted Markov chain samplers. These chains are used to perform
the mutation/proposal transitions. As in conventional Markov chain
Monte Carlo methods, the interacting jumps are interpreted as an
acceptance-rejection transition, equipped with sophisticated interact-
ing and adaptive recycling mechanism. In Bayesian statistics and engi-
neering sciences, the resulting adaptive particle sampling model is often
coined as a sequential Monte Carlo algorithm, genetic procedure, or
simply a Sampling Importance Resampling method, mainly because it
is based on importance sampling plans and online approximations of a
flow of probability measures.

Since the 1960s, the adaptive particle recycling strategy has also
been associated, in biology and engineering science, with several
heuristic-like paradigms, with a proliferation of botanical names,
depending on the application area in which they are considered: boot-
strapping, switching, replenishing, pruning, enrichment, cloning, recon-
figurations, resampling, rejuvenation, acceptance/rejection, spawning.

Of course, the idea of duplicating online better-fitted individuals
and moving them one step forward to explore state-space regions is the
basis of various stochastic search algorithms, such as:

Particle and bootstrap filters, Rao-Blackwell particle filters, sequen-
tial Monte Carlo methods, sequentially interacting Markov chain Monte
Carlo methods, genetic type search algorithms, Gibbs cloning search
techniques, interacting simulated annealing algorithms, sampling-
importance resampling methods, quantum Monte Carlo walkers,
adaptive population Monte Carlo sampling models, and many others
evolutionary type Monte Carlo methods.

For a more detailed discussion on these models, with precise refer-
ences, we refer the reader to the three books [17, 20, 44].

1.3 Feynman-Kac Path Integrals

Feynman-Kac measures represent the distribution of the paths of
a Markov process, weighted by a collection of potential functions.
These functional models encapsulate traditional changes of probability
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measures, commonly used in importance sampling, posterior distribu-
tions in Bayesian statistics, and the optimal filter in nonlinear filtering
problems.

These stochastic models are defined in terms of only two ingredients:
A Markov chain Xn, with Markov transition Mn on some measur-

able state spaces (En,En) with initial distribution η0, and a sequence
of (0,1]-valued potential functions Gn on the set En.

The Feynman-Kac path measure associated with the pairs (Mn,Gn)
is the probability measure Qn on the product state space

En := (E0 × . . . × En)

defined by the following formula

dQn :=
1
Zn

 ∏
0≤p<n

Gp(Xp)

dPn (1.4)

where Zn is a normalizing constant and Pn is the distribution of the
random paths

Xn = (X0, . . . ,Xn) ∈ En

of the Markov process Xp from the origin p = 0 with initial distribution
η0, up to the current time p = n. We also denote by

Γn = ZnQn (1.5)

its unnormalized version.
The prototype model we have in mind is the traditional particle

absorbed Markov chain model

Xc
n ∈ Ecn := En ∪ {c}

absorption ∼(1−Gn)−−−−−−−−−−−−−→ X̂c
n
exploration ∼Mn+1−−−−−−−−−−−−→ Xc

n+1.

(1.6)

The chain Xc
n starts at some initial state Xc

0 randomly chosen with
distribution η0. During the absorption stage, we set X̂c

n = Xc
n with

probability Gn(Xn), otherwise we put the particle in an auxiliary ceme-
tery state X̂c

n = c. When the particle X̂c
n is still alive (that is, if we have

X̂c
n ∈ En), it performs an elementary move X̂c

n � Xc
n+1 according to the
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Markov transition Mn+1. Otherwise, the particle is absorbed and we
set Xc

p = X̂c
p = c, for any time p > n.

If we let T be the first time X̂c
n = c, then we have the Feynman-Kac

representation formulae

Qn = Law((Xc
0, . . . ,X

c
n) | T ≥ n) and Zn = Proba(T ≥ n).

For a more thorough discussion on the variety of application domains
of Feynman-Kac models, we refer the reader to Section 2.

We also denote by ηn and γn, the n-th time marginal of Qn and Γn.
It is a simple exercise to check that

γn = γn−1Qn and ηn+1 = Φn+1(ηn) := ΨGn(ηn)Mn+1 (1.7)

with the positive integral operator

Qn(x,dy) = Gn−1(x) Mn(x,dy)

and the Boltzmann-Gibbs transformation

ΨGn(ηn)(dx) =
1

ηn(Gn)
Gn(x)ηn(dx). (1.8)

In addition, the normalizing constants Zn can be expressed in terms
of the flow of marginal measures ηp, from the origin p = 0 up to the
current time n, with the following multiplicative formulae:

Zn := γn( ) = E

 ∏
0≤p<n

Gp(Xp)

 =
∏

0≤p<n
ηp(Gp). (1.9)

This multiplicative formula is easily checked using the induction

γn+1(1) = γn(Gn) = ηn(Gn)γn(1).

The abstract formulae discussed above are more general than they
may appear. For instance, they can be used to analyze, without further
work, path spaces models, including historical processes or transition
space models, as well as finite excursion models. These functional
models also encapsulate quenched Feynman-Kac models, Brownian
type bridges and linear Gaussian Markov chains conditioned on starting
and end points.
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For a more thorough discussion on these path space models, we refer
the reader to subsections 2.4 and 2.6, Chapters 11–12 in the book [17],
as well as to the Section 2, in this monograph.

When the Markov transitions Mn are absolutely continuous with
respect to some measures λn on En, and for any (x,y) ∈ (En−1 × En)
we have

Hn(x,y) :=
dMn(x, .)
dλn

(y) > 0. (1.10)

We also have the following backward formula

Qn(d(x0, . . . ,xn)) = ηn(dxn)
n∏
q=1

Mq,ηq−1(xq,dxq−1) (1.11)

with the collection of Markov transitions defined by

Mn+1,ηn(x,dy) ∝ Gn(y)Hn+1(y,x)ηn(dy). (1.12)

The proof of this formula is postponed to subsection 3.2.
Before launching into the description of the particle approximation

of these models, we end this subsection with some connexions between
discrete generation Feynman-Kac models and more conventional con-
tinuous time models arising in physics and scientific computing.

The Feynman-Kac models presented above play a central role in
the numerical analysis of certain partial differential equations, offering
a natural way to solve these functional integral models by simulat-
ing random paths of stochastic processes. These Feynman-Kac models
were originally presented by Mark Kac in 1949 [66] for continuous time
processes.

These continuous time models are used in molecular chemistry
and computational physics to calculate the ground state energy of
some Hamiltonian operators associated with some potential function
V describing the energy of a molecular configuration (see, for instance,
[5, 17, 39, 46, 85], and references therein). To better connect these
partial differential equation models with (1.4), let us assume that
Mn(xn−1,dxn) is the Markov probability transitionXn = xn � Xn+1 =
xn+1 coming from a discretization in time Xn = X ′

tn of a continuous
time E-valued Markov process X ′

t on a given time mesh (tn)n≥0 with
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a given time step (tn − tn−1) = ∆t. For potential functions of the form
Gn = e−V∆t, the measures Qn �∆t→0 Qtn represent the time discretiza-
tion of the following distribution:

dQt =
1
Zt

exp
(
−
∫ t

0
V (X ′

s)ds
)
dPX

′
t

where PX
′

t stands for the distribution of the random paths (X ′
s)0≤s≤t

with a given infinitesimal generator L. The marginal distributions γt at
time t of the unnormalized measures Zt dQt are the solution of the so-
called imaginary time Schrödinger equation, given in weak formulation
on sufficiently regular function f by the following integro–differential
equation

d

dt
γt(f) := γt(LV (f)) with LV = L − V.

The errors introduced by the discretization of the time are well under-
stood for regular models; we refer the interested reader to [34, 42, 68, 80]
in the context of nonlinear filtering.

1.4 Interacting Particle Systems

Our aim here is to design an interacting particle approximation of the
Feynman-Kac measures introduced in the previous subsection. These
particle methods can be interpreted in different ways, depending on the
application domain in which they are considered.

In the filtering example presented at the beginning of this mono-
graph, these particle algorithms can be seen as a stochastic adaptive
fixed approximation of the filtering equations. From a purely statisti-
cal point of view, these algorithms can also be seen as a sophisticated
acceptance-rejection technique with an interacting recycling transition.

The particle model is defined as follows:
We start with a population of N candidate possible solutions

(ξ10 , . . . , ξ
N
0 ) randomly chosen w.r.t. some distribution η0.

The coordinates ξi0 are also called individuals or phenotypes, with
1 ≤ N . The random evolution of the particles is decomposed into two
main steps : the free exploration and the adaptive selection transition.
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During the updating-selection stage, multiple individuals in the cur-
rent population (ξ1n, . . . , ξ

N
n ) at time n ∈ N are stochastically selected

based on the fitness function Gn. In practice, we choose a random pro-
portion Bi

n of an existing solution ξin in the current population with a
mean value ∝ Gn(ξin) to breed a brand new generation of “improved”
solutions (ξ̂1n, . . . , ξ̂

N
n ). For instance, for every index i, with a proba-

bility εnGn(ξin), we set ξ̂in = ξin, otherwise we replace ξin with a new
individual ξ̂in = ξjn randomly chosen from the whole population with
a probability proportional to Gn(ξ

j
n). The parameter εn ≥ 0 is a tun-

ing parameter that must satisfy the constraint εnGn(ξin) ≤ 1, for every
1 ≤ i ≤ N . During the prediction-mutation stage, every selected indi-
vidual ξ̂in moves to a new solution ξin+1 = x randomly chosen in En+1,
with a distribution Mn+1(ξ̂in,dx).

If we interpret the updating-selection transition as a birth and death
process, then the important notion of the ancestral line of a current
individual arises. More precisely, when a particle ξ̂in−1 −→ ξin evolves
to a new location ξin, we can interpret ξ̂in−1 as the parent of ξin. Looking
backwards in time and recalling that the particle ξ̂in−1 has selected a
site ξjn−1 in the configuration at time (n − 1), we can interpret this site
ξjn−1 as the parent of ξ̂in−1 and therefore as the ancestor denoted ξin−1,n
at level (n − 1) of ξin. Running backwards in time we may trace the
whole ancestral line as

ξi0,n←− ξi1,n←− ·· · ←− ξin−1,n←− ξin,n = ξin. (1.13)

Most of the terminology we have used is drawn from filtering and
genetic evolution theories.

In the filtering example presented in the subsection 1.1, the former
particle model is dictated by the two steps prediction-updating learning
equations of the conditional distributions of the signal processXk, given
some noisy and partial observations Yk. In this setting, the potential
functions represent the likelihood function of the current observation,
while the free exploration transitions are related to the Markov transi-
tions of the signal process. More formally, using the notation we used
in example (1.2), we have:

dpk(xk|xk−1) = Mk(xk−1|xk)
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and

pk(yk|xk) = Gk(xk).

In biology, the mutation-selection particle model presented above
is used to mimic genetic evolutions of biological organisms and, more
generally, natural evolution processes. For instance, in gene analysis,
each population of individuals represents a chromosome and each indi-
vidual particle is called a gene. In this setting the fitness potential
function is usually time-homogeneous and it represents the quality and
the adaptation potential value of the set of genes in a chromosome [62].
These particle algorithms are also used in population analysis to model
changes in the structure of population in time and in space.

The different types of particle approximation measures associated
with the genetic type particle model described above are summarized
in the following synthetic picture corresponding to the case N = 3.

In the next four subsections we give an overview of the four parti-
cle approximation measures that can be extracted from the interact-
ing population evolution model described above. We also provide some
basic formulation of the concentration inequalities that will be treated
in greater detail later. As a service to the reader we also provide precise
pointers to their location within each section of the monograph.

We have already mentioned that the proofs of these results are quite
subtle. In the further development of the next subsections, c1 stands
for a finite constant related to the bias of the particle model, while c2
is related to the variance of the scheme. The value of these constants
may vary from one line to another, but in all the situations they do not
depend on the time parameter.

The precise form of the constants in these exponential inequali-
ties depends on the contraction properties of Feynman-Kac flows. Our
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stochastic analysis requires us to combine the stability properties of the
nonlinear semigroup of the Feynman-Kac distribution flow ηn, with the
deep convergence results of empirical processes theory associated with
interacting random samples.

1.4.1 Last Population Models

The occupation measures of the current population, represented by the
red dots in the above figure

ηNn :=
1
N

N∑
i=1

δξin

converge to the n-th time marginals ηn of the Feynman-Kac mea-
sures Qn. We shall measure the performance of these particle estimates
through several concentration inequalities, with a special emphasis on
uniform inequalities w.r.t. the time parameter. Our results will basi-
cally be stated as follows.

1) For any time horizon n ≥ 0, any bounded function f , any N ≥ 1,
and for any x ≥ 0, the probability of the event

[ηNn − ηn](f) ≤ c1
N

(1 + x +
√
x) +

c2√
N

√
x

is greater than 1 − e−x.
We have already mentioned one important consequence of these

uniform concentration inequalities for time homogeneous Feynman-Kac
models. Under some regularity conditions, the flow of measures ηn tends
to some fixed point distribution η∞, in the sense that

‖ηn − η∞‖tv ≤ c3 e−δn (1.14)

for some finite positive constants c3 and δ. In the above display
‖ν − µ‖tv stands for the total variation distance. The connexions
between these limiting measures and the top of the spectrum of
Schrödinger operators is discussed in subsection 2.7.1. We also refer
the reader to subsection 2.7.2 for a discussion on these quasi-invariant
measures and Yaglom limits. Quantitative contraction theorems for
Feynman-Kac semigroups are developed in subsection 3.4.2. As a direct
consequence of the above inequalities, we find that for any x ≥ 0, the
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probability of the following events is greater than 1 − e−x:

[ηNn − η∞](f) ≤ c1
N

(1 + x +
√
x) +

c2√
N

√
x + c3e

−δn.

2) For any x = (xi)1≤i≤d ∈ En = Rd, we set (−∞,x] =
∏d
i=1(−∞,xi]

and we consider the repartition functions

Fn(x) = ηn(1(−∞,x]) and FNn (x) = ηNn (1(−∞,x]).

The probability of the following event
√
N‖FNn − Fn‖ ≤ c

√
d(x + 1)

is greater than 1 − e−x, for any x ≥ 0, for some universal constant
c <∞ that does not depend on the dimension, nor on the time param-
eter. In the above display ‖F‖ = supx |F (x)| stands for the uniform
norm. Furthermore, under the stability properties (1.14), if we set

F∞(x) = η∞(1(−∞,x])

then, the probability of the following event

‖FNn − F∞‖ ≤
c√
N

√
d(x + 1) + c3e

−δn

is greater than 1 − e−x, for any x ≥ 0, for some universal constant
c <∞ that does not depend on the dimension.

For more precise statements, we refer the reader to Corollary 6.4,
and Corollary 6.9, respectively.

The concentration properties of the particle measures ηNn around
their limiting values are developed in Section 6. In subsection 6.3,
we design a stochastic perturbation analysis that allows us to enter
the stability properties of the limiting Feynman-Kac semigroup. Finite
marginal models are discussed in subsection 6.4.1. Subsection 6.4.2 is
concerned with the concentration inequalities of interacting particle
processes w.r.t. some collection of functions.

1.4.2 Particle Free Energy Models

Mimicking the multiplicative formula (1.9), we set

ZNn =
∏

0≤p<n
ηNp (Gp) and γNn (dx) = ZNn × ηNn (dx). (1.15)
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We have already mentioned that these rather complex particle mod-
els provide an unbiased estimate of the unnormalized measures. That
is, we have that

E

ηNn (fn)
∏

0≤p<n
ηNp (Gp)

 = E

fn(Xn)
∏

0≤p<n
Gp(Xp)

 . (1.16)

The concentration properties of the unbiased particle free energies
ZNn around their limiting values Zn are developed in subsection 6.5.
Our results will basically be stated as follows.

For any N ≥ 1, and any ε ∈ {+1,−1}, the probability of each of the
following events

ε

n
log
ZNn
Zn
≤ c1
N

(1 + x +
√
x) +

c2√
N

√
x

is greater than 1 − e−x. A more precise statement is provided in
Corollary 6.14.

1.4.3 Genealogical Tree Model

The occupation measure of the N -genealogical tree model represented
by the lines linking the blue dots converges as N →∞ to the distribu-
tion Qn

lim
N→∞

1
N

N∑
i=1

δ(ξi0,n,ξi1,n,...,ξin,n) = Qn. (1.17)

Our concentration inequalities will basically be stated as follows.
A more precise statement is provided in Corollary 6.5.

For any n ≥ 0, any bounded function fn on the path space En,
such that (s.t.) ‖fn‖ ≤ 1, and any N ≥ 1, the probability of each of the
following events[

1
N

N∑
i=1

fn(ξi0,n, ξ
i
1,n, . . . , ξ

i
n,n) − Qn(fn)

]

≤ c1
n + 1
N

(1 + x +
√
x) + c2

√
(n + 1)
N

√
x

is greater than 1 − e−x.



244 Stochastic Particle Methods

The concentration properties of genealogical tree occupation mea-
sures can be derived more or less directly from those of the current
population models. This rather surprising assertion comes from the
fact that the n-th time marginal ηn of a Feynman-Kac measure asso-
ciated with a reference historical Markov process has the same form
as in the measure (1.4). This equivalence principle between Qn and
the marginal measures are developed in subsection 3.2, dedicated to
historical Feynman-Kac models.

Using these properties, we prove concentration properties for inter-
acting empirical processes associated with genealogical tree models.
Our concentration inequalities will basically be stated as follows.
A more precise statement is provided in subsection 6.4.2. We let Fn
be the set of product functions of cell indicators in the path space
En = (Rd0 × . . . ,×Rdn), for some dp ≥ 1, p ≥ 0. We also denote by ηNn
the occupation measure of the genealogical tree model. In this notation,
the probability of the following event

sup
fn∈Fn

|ηNn (fn) − Qn(fn)| ≤ c(n + 1)

√∑
0≤p≤n dp

N
(x + 1)

is greater than 1 − e−x, for any x ≥ 0, for some universal constant
c <∞ that does not depend on the dimension.

1.4.4 Complete Genealogical Tree Models

Mimicking the backward model (1.11) and the above formulae, we set

ΓNn = ZNn × QN
n (1.18)

with

QN
n (d(x0, . . . ,xn)) = ηNn (dxn)

n∏
q=1

Mq,ηNq−1
(xq,dxq−1).

Notice that the computation of sums w.r.t. these particle measures
are reduced to summations over the particle locations ξin. It is therefore
natural to identify a population of individuals (ξ1n, . . . , ξ

N
n ) at time n

to the ordered set of indexes {1, . . . ,N}. In this case, the occupation
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measures and the functions are identified with the following line and
column vectors

ηNn :=
[

1
N
,. . . ,

1
N

]
and fn :=

fn(ξ1n)
...

fn(ξNn )


and the matrices Mn,ηNn−1

by the (N × N) matrices

Mn,ηNn−1
:=


Mn,ηNn−1

(ξ1n, ξ
1
n−1) · · · Mn,ηNn−1

(ξ1n, ξ
N
n−1)

...
...

...
Mn,ηNn−1

(ξNn , ξ
1
n−1) · · · Mn,ηNn−1

(ξNn , ξ
N
n−1)

 (1.19)

with the (i, j)-entries

Mn,ηNn−1
(ξin, ξ

j
n−1) =

Gn−1(ξ
j
n−1)Hn(ξ

j
n−1, ξ

i
n)∑N

k=1Gn−1(ξkn−1)Hn(ξkn−1, ξ
i
n)
.

For instance, the Qn-integration of normalized additive linear function-
als of the form

fn(x0, . . . ,xn) =
1

n + 1

∑
0≤p≤n

fp(xp) (1.20)

is given the particle matrix approximation model

QN
n (fn) =

1
n + 1

∑
0≤p≤n

ηNn Mn,ηNn−1
Mn−1,ηNn−2

. . .Mp+1,ηNp (fp).

These type of additive functionals arise in the calculation of the
sensitivity measures discussed in subsection 2.4.1.

The concentration properties of the particle measures QN
n around

the Feynman-Kac measures Qn are developed in subsection 6.6. Spe-
cial emphasis is given to the additive functional models (1.20). In
subsection 6.6.3, we extend the stochastic perturbation methodology
developed in subsection 6.3 for time marginal models to the particle
backward Markov chain associated with the random stochastic matrices
(1.19). This technique allows us to enter not only the stability prop-
erties of the limiting Feynman-Kac semigroup, but also those of the
particle backward Markov chain model.
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Our concentration inequalities will basically be stated as follows.
A more precise statement is provided in Corollary 6.20 and in Corol-
lary 6.24.

For any n ≥ 0, any normalized additive functional of the form (1.20),
with max0≤p≤n ‖fp‖ ≤ 1, and any N ≥ 1, the probability of each of the
following events

[QN
n − Qn](fn) ≤ c1

1
N

(1 + x +
√
x) + c2

√
x

N(n + 1)

is greater than 1 − e−x.
For any a = (ai)1≤i≤d ∈ En = Rd, we denote by Ca the cell

Ca := (−∞,a] =
d∏
i=1

(−∞,ai]

and fa,n the additive functional

fa,n(x0, . . . ,xn) =
1

n + 1

∑
0≤p≤n

1(−∞,a](xp).

The probability of the following event

sup
a∈Rd
|QN

n (fa,n) − Qn(fa,n)| ≤ c
√

d

N
(x + 1)

is greater than 1 − e−x, for any x ≥ 0, for some constant c <∞ that
does not depend on the dimension, nor on the time horizon.

Remark 1.1. One way to turn all of these inequalities into of Bern-
stein style concentration inequalities is as follows. For any exponential
inequality of the form

∀x ≥ 0 P(X ≤ ax +
√

2bx + c) ≤ 1 − e−x

for some non negative constants (a,b,c), we also have

∀y ≥ 0 P(X ≤ y + c) ≤ 1 − exp
(
− y2

2(b + ay)

)
.

A proof of this result is provided in Lemma 4.13.
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1.5 Basic Notation

Here we provide some background from stochastic analysis and integral
operator theory, which we require for our proofs. Most of the results
with detailed proofs can be located in the book [17] on Feynman-Kac
formulae and interacting particle methods. Our proofs also contain
cross-references to this rather well known material, so the reader may
wish to skip this subsection and proceed directly to Section 2, which is
dedicated to some application domains of Feynman-Kac models.

1.5.1 Integral Operators

We denote respectively byM(E),M0(E), P(E), and B(E), the set of
all finite signed measures on some measurable space (E,E), the con-
vex subset of measures with null mass, the set of all probability mea-
sures, and the Banach space of all bounded and measurable functions
f equipped with the uniform norm ‖f‖. We also denote by Osc1(E),
and by B1(E) the set of E-measurable functions f with oscillations
osc(f) ≤ 1, and respectively with ‖f‖ ≤ 1. We let

µ(f) =
∫
µ(dx)f(x)

be the Lebesgue integral of a function f ∈ B(E), with respect to a
measure µ ∈M(E).

We recall that the total variation distance on M(E) is defined for
any µ ∈M(E) by

‖µ‖tv =
1
2

sup
(A,B)∈E2

(µ(A) − µ(B)).

We recall that a bounded integral operatorM turned from a measurable
space (E,E) into an auxiliary measurable space (F,F) is an operator
f →M(f) from B(F ) into B(E) such that the functions

M(f)(x) :=
∫
F
M(x,dy)f(y)

are E-measurable and bounded, for any f ∈ B(F ). A Markov kernel is a
positive and bounded integral operator M with M(1) = 1. Given a pair
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of bounded integral operators (M1,M2), we let (M1M2) represent the
composition operator defined by (M1M2)(f) = M1(M2(f)). For time
homogeneous state spaces, we denote by Mm = Mm−1M = MMm−1

the m-th composition of a given bounded integral operator M , with
m ≥ 1. A bounded integral operator M turned from a measurable space
(E,E) into an auxiliary measurable space (F,F) also generates a dual
operator

µ(dx) → (µM)(dx) =
∫
µ(dy)M(y,dx)

fromM(E) intoM(F ) defined by (µM)(f) := µ(M(f)). We also used
the notation

K([f − K(f)]2)(x) := K([f − K(f)(x)]2)(x)

for some bounded integral operator K and some bounded function f .
We prefer to avoid unnecessary abstraction and technical assump-

tions, so we frame the standing assumption that all the test functions
are in the unit sphere, and the integral operators, and all the random
variables are sufficiently regular so that we are justified in computing
integral transport equations, regular versions of conditional expecta-
tions, and so forth.

1.5.2 Contraction Coefficients

When the bounded integral operator M has a constant mass, that is,
when M(1)(x) = M(1)(y) for any (x,y) ∈ E2, the operator µ → µM

maps M0(E) into M0(F ). In this situation, we let β(M) be the
Dobrushin coefficient of a bounded integral operator M defined by the
formula

β(M) := sup {osc(M(f)); f ∈ Osc(F )}.

Notice that β(M) is the operator norm of M on M0(E), and we have
the equivalent formulations

β(M) = sup{‖M(x, .) −M(y, .)‖tv ; (x,y) ∈ E2}

= sup
µ∈M0(E)

‖µM‖tv/‖µ‖tv.
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A detailed proof of these well known formulae can be found in [17].
Given a positive and bounded potential function G on E, we also

denote by ΨG the Boltzmann-Gibbs mapping from P(E) into itself,
defined for any µ ∈ P(E) by

ΨG(µ)(dx) =
1

µ(G)
G(x)µ(dx).

For [0,1]-valued potential functions, we also mention that ΨG(µ) can
be expressed as a non linear Markov transport equation

ΨG(µ) = µSµ,G (1.21)

with the Markov transitions

Sµ,G(x,dy) = G(x)δx(dy) + (1 − G(x))ΨG(µ)(dy).

We notice that

ΨG(µ) − ΨG(ν) = (µ − ν)Sµ + ν(Sµ − Sν)

and

ν(Sµ − Sν) = (1 − ν(G))[ΨG(µ) − ΨG(ν)]

from which we find the formula

ΨG(µ) − ΨG(ν) =
1

ν(G)
(µ − ν)Sµ.

In addition, using the fact that

∀(x,A) ∈ (E,E) Sµ(x,A) ≥ (1 − ‖G‖)ΨG(µ)(A)

we prove that β(Sµ) ≤ ‖G‖ and

‖ΨG(µ) − ΨG(ν)‖tv ≤
‖G‖

µ(G) ∨ ν(G)
‖µ − ν‖tv.

If we set Φ(µ) = ΨG(µ)M , for some Markov transition M , then we
have the decomposition

Φ(µ) − Φ(ν) =
1

ν(G)
(µ − ν)SµM (1.22)
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for any couple of measures ν,µ on E. From the previous discussion, we
also find the following Lipschitz estimates

‖Φ(µ) − Φ(ν)‖tv ≤
‖G‖

µ(G) ∨ ν(G)
β(M)‖µ − ν‖tv. (1.23)

We end this subsection with an interesting contraction property of a
Markov transition

MG(x,dy) =
M(x,dy)G(y)
M(G)(x)

= ΨG(δxM)(dy) (1.24)

associated with a ]0,1]-valued potential function G, with

g = sup
x,y

G(x)/G(y) <∞. (1.25)

It is easily checked that

|MG(f)(x) −MG(f)(y)| = |ΨG(δxM)(f) − ΨG(δyM)(f)|

≤ g‖δxM − δyM‖tv

from which we conclude that

β(MG) ≤ gβ(M). (1.26)

1.5.3 Orlicz Norms and Gaussian Moments

We let πψ[Y ] be the Orlicz norm of an R-valued random variable Y
associated with the convex function ψ(u) = eu

2 − 1, and defined by

πψ(Y ) = inf {a ∈ (0,∞) :E(ψ(|Y |/a)) ≤ 1}

with the convention inf∅ =∞. Notice that

πψ(Y ) ≤ c⇐⇒ E(ψ(Y/c)) ≤ 1.

For instance, the Orlicz norm of a Gaussian and centered random
variable U , s.t. E(U2) = 1, is given by πψ(U) =

√
8/3. We also recall

that

E(U2m) = b(2m)2m := (2m)m 2−m

E(|U |2m+1) ≤ b(2m + 1)2m+1 :=
(2m + 1)(m+1)√

m + 1/2
2−(m+1/2) (1.27)
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with (q + p)p := (q + p)!/q!. The second assertion comes from the fact
that

E(U2m+1)2 ≤ E(U2m)E(U2(m+1))

and therefore

b(2m + 1)2(2m+1) = E(U2m)E(U2(m+1))

= 2−(2m+1) (2m)m (2(m + 1))(m+1).

This formula is a direct consequence of the following decompositions

(2(m + 1))(m+1) =
(2(m + 1))!
(m + 1)!

= 2
(2m + 1)!

m!
= 2(2m + 1)(m+1)

and

(2m)m =
1

2m + 1
(2m + 1)!

m!
=

1
2m + 1

(2m + 1)(m+1).

We also mention that

b(m) ≤ b(2m). (1.28)

Indeed, for even numbers m = 2p we have

b(m)2m = b(2p)4p = E(U2p)2 ≤ E(U4p) = b(4p)4p = b(2m)2m

and for odd numbers m = (2p + 1), we have

b(m)2m = b(2p + 1)2(2p+1) = E(U2p)E(U2(p+1))

≤ E

(
(U2p)

(2p+1)
p

) p
2p+1

E

(
(U2(p+1))

(2p+1)
p+1

) p+1
2p+1

= E(U2(2p+1)) = b(2(2p + 1))2(2p+1) = b(2m)2m.



2
Some Application Domains

2.1 Introduction

Particle methods have been used in physics, biology, and engineering
science since the beginning of the 1950’s. We refer the reader to [17]
for a detailed survey on their application domains, and a list of precise
bibliographic references.

Surprisingly, most of these interacting particle methods can be
encapsulated in a single mathematical model. This model is given by
the Feynman-Kac measures presented in subsection 1.3. The corre-
sponding methodology developed in subsection 1.4 is termed quantum
Monte Carlo methods in computational physics, genetic algorithms in
computer sciences, and particle filters and/or sequential Monte Carlo
methods in information theory, as well as in Bayesian statistics.

The mathematical foundations of these advanced interacting Monte
Carlo methodologies are now fifteen years old [15]. Since this period,
many descriptions and variants of these models have been published in
applied probability, signal processing and Bayesian statistic literature.

252
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For a detailed discussion on their application domains with a precise
bibliography of who first did what when, we refer the reader to any of
the following references [17, 20, 38, 44].

Here, we merely content ourselves in illustrating the rather abstract
models (1.4) with the Feynman-Kac representations of 20 more or less
well known conditional distributions, including three more recent appli-
cations related to island particle models, functional kinetic parameter
derivatives, and gradient analysis of Markov semigroups.

The forthcoming series of examples, combined with their mean field
particle interpretation models described in subsection 1.4, also illus-
trate the ability of the Feynman-Kac particle methodology to solve
complex conditional distribution flows as well as their normalizing con-
stants.

Of course, this selected list of applications does not attempt to
be exhaustive. The topics selection is largely influenced by the per-
sonal taste of the authors. A complete description on how particle
methods are applied in each application model area would of course
require separate volumes, with precise computer simulations and com-
parisons with different types of particle models and other existing
algorithms.

We also limit ourselves to describing the key ideas in a simple
way, often sacrificing generality. Some applications are nowadays rou-
tine, and in this case we provide precise pointers to existing, more
application-related, articles in the literature. Readers who wish to know
more about some specific application of these particle algorithms are
invited to consult the referenced papers.

One natural path of “easy reading” will probably be to choose a
familiar or attractive application area and to explore some selected
parts of the monograph in terms of this choice. Nevertheless, this advice
must not be taken too literally. To see the impact of particle methods,
it is essential to understand the full force of Feynman-Kac modeling
techniques on various research domains. Upon doing so, the reader will
have a powerful weapon for the discovery of new particle interpretation
models. The principal challenge is to understand the theory well enough
to reduce it to practice.
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2.2 Boltzmann-Gibbs Measures

2.2.1 Interacting Markov Chain Monte Carlo (MCMC)
Methods

Suppose we are given a sequence of target probability measures on some
measurable state space E of the following form

µn(dx) =
1
Zn

 ∏
0≤p<n

hp(x)

λ(dx) (2.1)

with some sequence of bounded nonnegative potential functions

hn : x ∈ E → hn(x) ∈ (0,∞)

and some reference probability measure λ on E. In the above displayed
formula, Zn stands for a normalizing constant. We use the convention∏

∅ = 1 and µ0 = λ.
We further assume that we have a dedicated Markov chain Monte

Carlo transition Mn with prescribed target invariant measures µn, at
any time step, in the sense that µn = µnMn. Using the fact that

µn+1 = Ψhn(µn)

with the Boltzmann-Gibbs transformations defined in (1.8), we prove
that

µn+1 = µn+1Mn+1 = Ψhn(µn)Mn+1

from which we conclude that

µn(f) = E

f(Xn)
∏

0≤p<n
hp(Xp)

/E

 ∏
0≤p<n

hp(Xp)


with the reference Markov chain

P(Xn ∈ dx | Xn−1) = Mn(Xn−1,dx).

In addition, we have

Zn+1 =
∫  ∏

0≤p<n
hp(x)

hn(x)µ(dx) = Znµn(hn) =
∏

0≤p≤n
µp(hp).
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We illustrate these rather abstract models with two applications
related to probability restriction models and stochastic optimization
simulated annealing type models, respectively. For a more thorough
discussion on these interacting MCMC models, and related sequential
Monte Carlo methods, we refer the reader to [17, 21, 22].

2.2.2 Probability Restrictions

If we choose Markov chain Monte Carlo type local moves

µn = µnMn

with some prescribed target Boltzmann-Gibbs measures

µn(dx) ∝ 1An(x) λ(dx)

associated with a sequence of decreasing subsets An ↓, and some refer-
ence measure λ, then we find that µn = ηn and Zn = λ(An), as soon as
the potential functions in (1.4) and (2.1) are chosen, so that

Gn = hn = 1An+1 .

This stochastic model arises in several application domains. In
computer science literature, the corresponding particle approximation
models are sometimes called subset methods, sequential sampling
plans, randomized algorithms, or level splitting algorithms. They were
used to solve complex NP-hard combinatorial counting problems [55],
extreme quantile probabilities [9, 60], and uncertainty propagations in
numerical codes [7].

2.2.3 Stochastic Optimization

If we choose Markov chain Monte Carlo type local moves µn = µnMn

with some prescribed target Boltzmann-Gibbs measures

µn(dx) ∝ e−βnV (x) λ(dx)

associated with a sequence of increasing inverse temperature parame-
ters βn ↑, and some reference measure λ, then we find that µn = ηn and
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Zn = λ(e−βnV ) as soon as the potential functions in (1.4) and (2.1) are
chosen, so that

Gn = hn = e−(βn+1−βn)V .

For instance, we can assume that the Markov transition Mn =Mmn
n,βn

is the mn-iterate of the following Metropolis-Hasting transitions

Mn,βn(x,dy) = Kn(x,dy)min(1,e−βn(V (y)−V (x)))

+
(

1 −
∫
z
Kn(x,dz) min(1,e−βn(V (z)−V (x)))

)
δx(dy).

We finish with an assorted collection of enriching comments on
interacting Markov chain Monte Carlo algorithms associated with the
Feynman-Kac models described above.

Conventional Markov chain Monte Carlo methods with time varying
target measures µn can be seen as a single particle model with only
mutation explorations according to the Markov transitions Mn = Kmn

n ,
where Kmn

n stands for the iteration of an MCMC transition Kn s.t.
µn = µnKn. In this situation, we choose a judicious increasing sequence
mn so that the non homogeneous Markov chain is sufficiently stable,
even if the target measures become more and more complex to sample.
When the target measure is fixed, say of the form µT for some large T ,
the MCMC sampler again uses a single particle, which behaves as a
Markov chain with time homogeneous transitions MT . The obvious
drawback with these two conventional MCMC samplers is that the
user does not know how many steps are really needed to be close to the
equilibrium target measure. A wrong choice will return samples with a
distribution far from the desired target measure.

Interacting MCMC methods run a population of MCMC samplers
that interact with each other through a recycling-updating mechanism
so that the occupation measure of the current measure converges to the
target measure, when we increase the population sizes. In contrast with
conventional MCMC methods, there are no burn-in time questions, nor
any quantitative analysis to estimate the convergence to equilibrium of
the MCMC chain.
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2.2.4 Island Particle Models

Here, we provide a brief discussion on interacting colonies and island
particle models arising in mathematical biology and evolutionary
computing literature [87, 96]. The evolution of these stochastic island
models is again defined in terms of a free evolution and a selection
transition. During the free evolution, each island evolves separately
as a single mean field particle model with mutation-selection mecha-
nism between the individual and the island population. The selection
pressure between islands is related to the average fitness of the individ-
uals in the island population. A colony with poor fitness is killed, and
replaced by brand new generations of “improved” individuals coming
from better fitted islands.

For any measurable function fn on En, we set

X(0)
n = Xn ∈ E(0)

n := En and f (0)
n = fn

and we denote by

X(1)
n = (X(1,i)

n )1≤i≤N1 ∈ E(1)
n := (E(0)

n )N1

the N1-particle model associated with the reference Markov chain X(0)
n ,

and the potential function G(0)
n .

To go one step further, we denote by f (1)
n the empirical mean valued

function on E(1)
n defined by

f (1)
n (X(1)

n ) =
1
N1

N1∑
i=1

f (0)
n (X(1,i)

n ).

In this notation, the potential value of the random state X(1)
n is given

by the formula

G(1)
n (X(1)

n ) :=
1
N1

N∑
i=1

G(0)
n (X(1,i)

n ).

By construction, we have the almost sure property

N1 = 1 =⇒ X(0)
n = X(1)

n and G(1)
n (X(1)

n ) = G(0)
n (X(0)

n ).
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More interestingly, by the unbiased properties (1.16) we have for any
population size N1

E

f (1)
n (X(1)

n )
∏

0≤p<n
G(1)
p (X(1)

p )

 = E

f (0)
n (X(0)

n )
∏

0≤p<n
G(0)
p (X(0)

p )

 .

Iterating this construction, we let

X(2)
n = (X(2,i)

n )1≤i≤N2 ∈ E(2)
n := (E(1)

n )N2

represent the N2-particle model associated with the reference Markov
chain X

(1)
n , and the potential function G

(1)
n . For any function f

(1)
n on

E
(1)
n , we denote by f

(2)
n the empirical mean valued function on E

(2)
n

defined by

f (2)
n (X(2)

n ) =
1
N2

N2∑
i=1

f (1)
n (X(2,i)

n ).

In this notation, the potential value of the random state X(2)
n is given

by the formula

G(2)
n (X(2)

n ) :=
1
N2

N∑
i=1

G(1)
n (X(2,i)

n )

and for any population size N2

E

f (2)
n (X(2)

n )
∏

0≤p<n
G(2)
p (X(2)

p )

 = E

f (0)
n (X(0)

n )
∏

0≤p<n
G(0)
p (X(0)

p )

.
2.2.5 Particle Markov Chain Monte Carlo Methods

Now, we present an interacting particle version of the particle Markov
chain Monte Carlo method developed in the recent seminal article by
Andrieu, Doucet, and Holenstein [2].

We consider a collection of Markov transition and positive potential
functions (Mθ,n,Gθ,n) that depend on some random variable Θ = θ,
with distribution ν on some state space S. We let ηθ,n be the n-time
marginal of the Feynman-Kac measures defined as in (1.4), by replacing
(Mn,Gn) by (Mθ,n,Gθ,n). We also consider the probability distribution
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P (θ,dξ) of the N -particle model

ξ := (ξθ,0, ξθ,1, . . . , ξθ,T )

on the interval [0,T ], with mutation transitions Mθ,n, and potential
selection functions Gθ,n, with n ≤ T . We fix a time horizon T , and for
any 0 ≤ n ≤ T , we set

µn(d(ξ,θ)) =
1
Zn

 ∏
0≤p<n

hp(ξ,θ)

λ(d(ξ,θ)) (2.2)

with some sequence of bounded nonnegative potential functions

hn : (ξ,θ) ∈

 ∏
0≤p≤T

ENp

 × S → hn(ξ,θ) ∈ (0,∞)

and with the reference measure λ given by

λ(d(ξ,θ)) = ν(dθ)P (θ,dξ)

and some normalizing constants Zn. Firstly, we observe that these
target measures have the same form as in (2.1). Thus, they can be
sampled using the Interacting Markov chain Monte Carlo methodology
presented in subsection 2.2.1.

Now, we examine the situation where hp is given by the empirical
mean value of the potential function Gθ,p w.r.t. the occupation mea-
sures ηNθ,p of the N -particle model ξθ,p = (ξiθ,p)1≤i≤N associated with
the realization Θ = θ; more formally, we have that

hp(ξ,θ) =
1
N

∑
1≤i≤N

Gθ,p(ξiθ,p) = ηNθ,p(Gθ,p).

Using the unbiased property of the particle free energy models pre-
sented in (1.16), we clearly have∫

P (θ,dξ)

 ∏
0≤p<n

hp(ξ,θ)

 = E

 ∏
0≤p<n

ηNθ,p (Gθ,p)


=

∏
0≤p<n

ηθ,p(Gθ,p)
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from which we conclude that the Θ-marginal of µn is given by the
following equation

(µn ◦ Θ−1)(dθ) =
1
Zn

 ∏
0≤p<n

ηθ,p(Gθ,p)

ν(dθ).

We end with some comments on these distributions.
As the initiated reader may certainly have noticed, the marginal

analysis derived above coincides with one developed in subsection 2.2.4
dedicated to island particle models.

The measures µn introduced in (2.2) can be approximated using
the interacting Markov chain Monte Carlo methodology presented in
subsection 2.2.1, or the particle MCMC methods introduced in the
article [2].

Last but not least, we observe that

∏
0≤p<n

ηθ,p(Gθ,p) = E

 ∏
0≤p<n

Gθ,p(Xθ,p)

 = Zn(θ)

where Xθ,n stands for the Markov chain with transitions Mθ,n, and
initial distribution ηθ,0. In the right-hand side (r.h.s.) of the above
displayed formulae, Zn(θ) stands for the normalizing constant of the
Feynman-Kac measures defined as in (1.4), by replacing (Mn,Gn) by
(Mθ,n,Gθ,n). This shows that

(µn ◦ Θ−1)(dθ) =
1
Zn
Zn(θ) ν(dθ).

The goal of some stochastic optimization problems is to extract the
parameter θ that minimizes some mean value functional of the form

θ → Zn(θ) = E

 ∏
0≤p<n

Gθ,n(Xθ,p)

 .

For convex functionals, we can use gradient type techniques using
the Backward Feynman-Kac derivative interpretation models developed
in subsection 2.4.1 (see also [23, 24, 25]).
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When ν is the uniform measure over some compact set S, an alter-
native approach is to estimate the measures (2.2) by some empirical
measure

1
N

∑
1≤i≤N

δ
(ξ(i)n ,θ

(i)
n )
∈ P

 ∏
0≤p≤n

ENp

 × S


and to select the sampled state

(ξ(i)n ,θ(i)
n ) := (((ξ(i,j)0,n )1≤j≤N ,(ξ

(i,j)
1,n )1≤j≤N , . . . ,(ξ(i,j)n,n )1≤j≤N ),θ(i)

n )

∈ ((EN0 × EN1 × ·· · × ENn ) × S)

that maximizes the empirical objective functional

i ∈ {1, . . . ,N} →
∏

0≤p<n

1
N

∑
1≤j≤N

G
θ
(i)
n ,p

(ξ(i,j)p,n ,θ
(i)
n ).

2.2.6 Markov Bridges and Chains with
Fixed Terminal Value

In many applications, it is important to sample paths of Markov chains
with prescribed fixed terminal conditions.

When the left end starting point is distributed w.r.t. to a given reg-
ular probability measure π, we can use the time reversal Feynman-Kac
formula presented in [18]. More precisely, for time homogeneous models
(Gn,Mn) = (G,M) in transition spaces, if we consider the Metropolis-
Hasting ratio

G(x1,x2) =
π(dx2)K(x2,dx1)
π(dx1)M(x1,dx2)

then we find that

Qn = LawK
π ((X0, . . . ,Xn) | Xn = xn)

where LawK
π stands for the distribution of the Markov chain starting

with an initial condition π and evolving according to some Markov
transition K. The proofs of these formulae are rather technical, so we
refer the reader to the article [18] and to the book [17].
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For initial and terminal fixed end-points, we need to consider the
paths distribution of Markov bridges. As we mentioned in the intro-
duction, these Markov bridges are particular instances of the reference
Markov chains of the abstract Feynman-Kac model (1.4). Depending
on the choice of the potential functions in (1.4), these Markov bridge
models can be associated with several application domains, including
filtering problems or rare event analysis of bridge processes.

We assume that the elementary Markov transitions Mn of the
chain Xn satisfy the regularity condition (1.10) for some density func-
tions Hn and some reference measure λn. In this situation, the semi-
group Markov transitions Mp,n+1 = Mp+1Mp+2 . . .Mn+1 are absolutely
continuous with respect to the measure λn+1, for any 0 ≤ p ≤ n, and
we have

Mp,n+1(xp,dxn+1) = Hp,n+1(xp,xn+1) λn+1(dxn+1)

with the density function

Hp,n+1(xp,xn+1) = Mp,n(Hn+1(.,xn+1))(xp).

Thanks to these regularity conditions, we readily check that the paths
distribution of a Markov bridge starting at x0 and ending at xn+1 at
the final time horizon (n + 1) are given by

B(0,x0),(n+1,xn+1)(d(x1, . . . ,xn))

:= P((X1, . . . ,Xn) ∈ d(x1, . . . ,xn) | X0 = x0, Xn+1 = xn+1)

=
∏

1≤p≤n
Mp(xp−1,dxp)

dMp,n+1(xp, .)
dMp−1,n+1(xp−1, .)

(xn+1)

=
∏

1≤p≤n

Mp(xp−1,dxp) Hp,n+1(xp,xn+1)
Mp(Hp,n+1(.,xn+1))(xp−1)

.

Using some abuse of Bayesian notation, we can rewrite these for-
mulae as follows

p((x1, . . . ,xn) | (x0,xn+1))

=
p(xn+1|xn)
p(xn+1|xn−1)

p(xn|xn−1) . . .
p(xn+1|xp)
p(xn+1|xp−1)

p(xp|xp−1)

. . .
p(xn+1|x1)
p(xn+1|x0)

p(x1|x0)
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with

dMp(xp−1, .)
dλp

(xp) = p(xp|xp−1) and Hp,n+1(xp,xn+1) = p(xn+1|xp).

For linear-Gaussian models, the Markov bridge transitions

Mp(xp−1,dxp) Hp,n+1(xp,xn+1)
Mp(Hp,n+1(.,xn+1))(xp−1)

=
p(xn+1|xp)
p(xn+1|xp−1)

p(xp|xp−1)λp(dxp)

can be explicitly computed using the traditional regression formula, or,
equivalently, the updating step of the Kalman filter.

2.3 Rare Event Analysis

2.3.1 Importance Sampling and Twisted Measures

Computing the probability of some events of the form {Vn(Xn) ≥ a},
for some energy-like function Vn and some threshold a is often per-
formed using the importance sampling distribution of the state vari-
able Xn with some multiplicative Boltzmann weight function eβVn(Xn)

associated with some temperature parameter β. These twisted mea-
sures can be described by a Feynman-Kac model in transition space by
setting

Gn(Xn−1,Xn) = eβ[Vn(Xn)−Vn−1(Xn−1)].

For instance, it is easily checked that

P(Vn(Xn) ≥ a) = E(fn(Xn) eVn(Xn))

= E

fn(Xn)
∏

0≤p<n
Gp(Xp)


with

Xn = (Xn,Xn+1) and Gn(Xn) = eVn+1(Xn+1)−Vn(Xn)

and the test function

fn(Xn) = 1Vn(Xn)≥a e
−Vn(Xn).
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In the same vein, we have

E(ϕn(X0, . . . ,Xn) | Vn(Xn) ≥ a)

= E(Fn,ϕn(X0, . . . ,Xn) eVn(Xn))/E(Fn,1(X0, . . . ,Xn) eVn(Xn))

= Qn(Fn,ϕn)/Qn(Fn,1)

with the function

Fn,ϕn(X0, . . . ,Xn) = ϕn(X0, . . . ,Xn)1Vn(Xn)≥ae
−Vn(Xn).

We illustrate these rather abstract formulae with a Feynman-Kac for-
mulation of European style call options with exercise price a at time n.
The prices of these financial contracts are given by formulae of the
following form

E((Vn(Xn) − a)+)

= E((Vn(Xn) − a) 1Vn(Xn)≥a)

= P(Vn(Xn) ≥ a) × E((Vn(Xn) − a) | Vn(Xn) ≥ a).

It is now a simple exercise to check that these formulae fit with the
Feynman-Kac importance sampling model discussed above. Further
details on these models, including applications in fiber optics commu-
nication and financial risk analysis can also be found in [6, 26, 27].

2.3.2 Rare Event Excursion Models

If we consider Markov excursion type models between a sequence of
decreasing subsets An or hitting an absorbing level B, then choosing
an indicator potential function that detects if the n-th excursion hits
An before B we find that

Qn = Law(X hits An | X hits An before B)

and

P(X hits An before B) = E

 ∏
0≤p≤n

1Ap(XTp)

 = E

 ∏
0≤p<n

Gp(Xp)
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with the random times

Tn := inf {p ≥ Tn−1 :Xp ∈ (An ∪ B)}

and the excursion models

Xn = (Xp)p∈[Tn,Tn+1] & Gn(Xn) = 1An+1(XTn+1).

In this notation, it is also easily checked that

E(fn(X[0,Tn+1]) | X hits An before B) = Qn(fn).

For a more thorough discussion on these excursion particle models, we
refer the reader to the series of articles [8, 10, 17, 37, 64].

2.4 Sensitivity Measures

2.4.1 Kinetic Sensitivity Measures

We let θ ∈ Rd be some parameter that may represent some kinetic
type parameters related to the free evolution model or to the adap-
tive potential functions. We assume that the free evolution model X(θ)

k

associated to some value of the parameter θ, is given by a one-step
probability transition of the form

M
(θ)
k (x,dx′) := P(X(θ)

k ∈ dx
′|X(θ)

k−1 = x) = H
(θ)
k (x,x′) λk(dx′)

for some positive density functions H
(θ)
k and some reference mea-

sures λk. We also consider a collection of functions G(θ)
k = e−V

(θ)
k that

depend on θ. We also assume that the gradient and the Hessian of the
logarithms of these functions w.r.t. the parameter θ are well defined.
We let Γθn be the Feynman-Kac measure associated with a given value
of θ defined for any function fn on the path space En by

Γθn(fn) = E

fn(X(θ)
0 , . . . ,X(θ)

n )
∏

0≤p<n
G(θ)
p (X(θ)

p )

 . (2.3)

We denote by Γ(θ,N)
n the N -particle approximation measures associated

with a given value of the parameter θ and defined in (1.18).
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By using simple derivation calculations, we prove that the first-order
derivative of the option value w.r.t. θ is given by

∇Γ(θ)
n (fn) = Γ(θ)

n (fnΛ(θ)
n )

∇2Γ(θ)
n (fn) = Γ(θ)

n [fn(∇L(θ)
n )′(∇L(θ)

n ) + fn∇2L(θ)
n ]

with

Λ(θ)
n :=∇L(θ)

n

and the additive functional

L(θ)
n (x0, . . . ,xn) :=

n∑
p=1

log(G(θ)
p−1(xp−1)H(θ)

p (xp−1,xp)).

These quantities are approximated by the unbiased particle models

∇NΓ(θ)
n (fn) := Γ(θ,N)

n (fnΛ(θ)
n )

∇2
NΓ(θ)

n (fn) = Γ(θ,N)
n [fn(∇L(θ)

n )′(∇L(θ)
n ) + fn∇2L(θ)

n ].

For a more thorough discussion on these Backward Feynman-Kac mod-
els, we refer the reader to [23, 24, 25].

2.4.2 Gradient Estimation of a Markov Semigroup

We assume that the underlying stochastic evolution is given by an
iterated Rd-valued random process given by the following equation

Xn+1 := Fn(Xn) = (Fn ◦ Fn−1 ◦ · · · ◦ F0)(X0) (2.4)

starting at some random state X0, with a sequence of random smooth
functions of the form

Fn(x) = Fn(x,Wn) (2.5)

with some smooth collection of functions

Fn : (x,w) ∈ Rd+d′ → Fn(x,w) ∈ Rd

and some collection of independent, and independent of s, random vari-
ables Wn taking values in some Rd′

, with d′ ≥ 1. The semigroup of the
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Markov chain Xn is the expectation operator defined for any regular
function fn and any state x by

Pn+1(fn+1)(x) := E(fn+1(Xn+1) | X0 = x) = E(f(Xn+1(x)))

with the random flows (Xn(x))n≥0 defined for any n ≥ 0 by the follow-
ing equation

Xn+1(x) = Fn(Xn(x))

with the initial condition X0(x) = x.
By construction, for any 1 ≤ i, j ≤ d and any x ∈ Rd we have the

first variational equation

∂Xi
n+1

∂xj
(x) =

∑
1≤k≤d

∂F in
∂xk

(Xn(x))
∂Xk

n

∂xj
(x). (2.6)

This clearly implies that

∂Pn+1(f)
∂xj

(x) = E

 ∑
1≤i≤d

∂f

∂xi
(Xn+1(x))

∂Xi
n+1

∂xj
(x)

 . (2.7)

We denote by Vn = (V (i,j)
n )1≤i,j≤d and An = (A(i,j)

n )1≤i,j≤d the ran-
dom (d × d) matrices with the i-th line and j-th column entries

V (i,j)
n (x) =

∂Sin
∂xj

(x)

and

A(i,j)
n (x) =

∂F in
∂xj

(x) =
∂F in(.,Wn)

∂xj
(x) := A(i,j)

n (x,Wn).

In this notation, the Equation (2.6) can be rewritten in terms of the
following random matrix formulae

Vn+1(x) = An(Xn(x)) Vn(x) :=
n∏
p=0

Ap(Xp(x)) (2.8)

with a product
∏n
p=0Ap of noncommutative random elements Ap taken

in the order An, An−1,. . . , A0. In the same way, the Equation (2.7) can
be rewritten as

∇Pn+1(fn+1)(x) = E(∇fn+1(Xn+1) Vn+1 | X0 = x) (2.9)
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with

Vn+1 :=
∏

0≤p≤n
Ap(Xp).

We equip the space Rd with some norm ‖.‖. We assume that for
any state U0 in the unit sphere Sd−1, we have

‖Vn+1U0‖ > 0.

In this situation, we have the multiplicative formulae

∇fn+1(Xn+1) Vn+1U0 = [∇fn+1(Xn+1)Un+1]
∏

0≤p≤n
‖Ap(Xp)Up‖

with the well defined Sd−1-valued Markov chain defined by

Un+1 = An(Xn)Un/‖An(Xn)Un‖
(
⇔ Un+1 =

Vn+1 U0

‖Vn+1U0‖

)
.

If we choose U0 = u0, then we obtain the following Feynman-Kac inter-
pretation of the gradient of a semigroup

∇Pn+1(fn+1)(x)u0 = E

Fn+1(Xn+1)
∏

0≤p≤n
Gp(Xp)

 . (2.10)

In the above display, Xn is the Markov chain sequence

Xn := (Xn,Un,Wn)

starting at (x,u0,W0), and the functions Fn+1 and Gn are defined by

Fn+1(x,u,w) :=∇fn+1(x)u and Gn(x,u,w) := ‖An(x,w)u‖.

In computational physics literature, the mean particle approxima-
tions of these non commutative Feynman-Kac models are often referred
to as Resampled Monte Carlo methods [94].

Roughly speaking, in addition to the fact that formula (2.10) pro-
vides an explicit functional Feynman-Kac description of the the gradi-
ent of a Markov semigroup, the random evolution model Un on the
unite sphere may be degenerate. More precisely, the Markov chain
Xn = (Xn,Un,Wn) may not satisfy the regularity properties stated in
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subsection 3.4.1. We end with some rather crude upper bounds that
can be estimated uniformly w.r.t. the time parameter under appropri-
ate regularity conditions on the reduced Markov chain model (Xn,Wn).
First, we notice that

Gn(x,u,w) := ‖An(x,w)u‖ ≤ Gn(x,w) := ‖An(x,w)‖
:= sup

u∈Sd−1
‖An(x,w) u‖.

This implies that

‖∇Pn+1(fn+1)(x)‖ := sup
1≤i≤d

∣∣∣∣ ∂∂xi Pn+1(fn+1)(x)
∣∣∣∣

≤ ‖Fn+1‖ × E

 ∏
0≤p≤n

Gp(Xp,Wp)

 .

The r.h.s. functional expectation in the above equation can be approx-
imated using the particle approximation (1.15) of the multiplicative
Feyman-Kac formulae (1.9), with reference Markov chain (Xn,Wn) and
potential functions Gn.

2.5 Partial Observation Models

2.5.1 Nonlinear Filtering Models

Next, we introduce one of the most important examples of an estima-
tion problem with partial observation, namely the nonlinear filtering
model. This model has been the starting point of the application of par-
ticle models to engineering sciences, and more particularly to advanced
signal processing.

The first rigorous investigation of stochastic modeling, and the rig-
orous theoretical analysis of particle filters began in the mid-1990’s in
the article [15]. For a detailed discussion on the application domains of
particle filtering, with a precise bibliography we refer the reader to any
of the following references [17, 20, 38, 44].

The typical model is given by a reference Markov chain model Xn,
and some partial and noisy observation Yn. The pair process (Xn,Yn)
usually forms a Markov chain on some product space EX × EY with
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elementary transitions given as

P((Xn,Yn) ∈ d(x,y) | (Xn−1,Yn−1)) = Mn(Xn−1,dx)gn(x,y)λn(dy)

(2.11)

for some positive likelihood function gn, and some reference probability
measure λn on EY , and the elementary Markov transitions Mn of the
Markov chain Xn. If we take

Gn(xn) = pn(yn|xn) = gn(xn,yn) (2.12)

the likelihood function of a given observation Yn = yn and a signal state
Xn = xn associated with a filtering or an hidden Markov chain problem,
then we find that

Qn = Law((X0, . . . ,Xn) | ∀0 ≤ p < nYp = yp)

and Zn+1 is the density of the sequence y0, . . . ,yn w.r.t. the product
measure λ0 ⊗ ·· · ⊗ λn evaluated on the sequence of observation Yp =
yp, p ≤ n.

In this context, the optimal one-step predictor ηn and the optimal
filter η̂n are given by the n-th time marginal distribution

η[y0,...,yn−1]
n = ηn = Law(Xn | ∀0 ≤ p < nYp = yp) (2.13)

and

η̂[y0,...,yn]
n = η̂n = ΨGn(ηn) = Law(Xn | ∀0 ≤ p ≤ n Yp = yp) . (2.14)

In Bayesian literature, the potential function Gn(xn) = gn(xn,yn)
is often written as pn(yn|xn). In this slight abuse of notation, the nor-
malizing constant Zn+1 is also written as Zn+1 = pn(y0, . . . ,yn).

Remark 2.1. We can combine these filtering models with the proba-
bility restriction models discussed in subsection 2.2.2, or with the rare
event analysis presented in subsection 2.3. For instance, if we replace
the potential likelihood function Gn defined in (2.12) by the function

Gn(xn) = gn(xn,yn) 1An(xn)

then we find that

Qn = Law((X0, . . . ,Xn) | ∀0 ≤ p < n Yp = yp, Xp ∈ Ap).



2.5 Partial Observation Models 271

2.5.2 Approximated Filtering Models

We return to the stochastic filtering model discussed in subsection 2.5.1.
In some instances, the likelihood functions xn → gn(xn,yn) in (2.12) are
computationally intractable, or too expensive to evaluate.

To solve this problem, a natural solution is to sample pseudo-
observations. The central idea is to sample the signal-observation
Markov chain

Xn = (Xn,Yn) ∈ EX = (EX × EY )

and compare the values of the sampled observations with the real obser-
vations.

To describe these models with some precision, we notice that the
transitions of Xn are given by

Mn(Xn−1,d(x,y)) = Mn(Xn−1,dx)gn(x,y)λn(dy).

To simplify the presentation, we further assume that EY = Rd, for some
d ≥ 1, and we let g be a Borel bounded non negative function such that∫

g(u)du = 1
∫
ug(u)du = 0 and

∫
|u|3g(u)du <∞.

Then, we set for any ε > 0, and any x = (x,y) ∈ (EX × EY )

gε,n((x,y),z) = ε−d g ((y − z)/ε) .

Finally, we let (Xn,Yε
n) be the Markov chain on the augmented

state space (EX × EY ) = ((EX × EY ) × EY ) with transitions given

P((Xn,Yε
n) ∈ d(x,y) | (Xn−1,Yε

n−1))

= Mn(Xn−1,dx)gε,n(x,y)dy. (2.15)

This approximated filtering problem has exactly the same form as the
one introduced in (2.11). Here, the particle approximation models are
defined in terms of signal-observation valued particles, and the selection
potential function is given by the pseudo-likelihood functions gε,n(.,yn),
where yn stands for the value of the observation sequence at time n.

For a more detailed discussion on these particle models, including
the convergence analysis of the approximated filtering model, we refer
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the reader to the articles [33, 34]. These particle models are some-
times called convolution particle filters [95]. In Bayesian literature,
these approximated filtering models are termed Approximate Bayesian
Computation (and often abbreviated with the acronym ABC).

2.5.3 Parameter Estimation in Hidden Markov Chain
Models

We consider a pair signal-observation filtering model (X,Y ) that
depends on some random variable Θ with distribution µ on some state
space S. Arguing as above, and using the same notations as in subsec-
tion 2.5.1, if we take

Gθ,n(xn) = pn(yn|xn,θ)

the likelihood function of a given observation Yn = yn and a signal state
Xn = xn and a realization of the parameter Θ = θ, then the n-th time
marginal of Qn is given by

ηθ,n = Law(Xn | ∀0 ≤ p < n Yp = yp,θ).

Using the multiplicative formula (1.9), we prove that

Zn+1(θ) = pn(y0, . . . ,yn|θ) =
∏

0≤p≤n
ηθ,p(Gθ,p)

with

ηθ,p(Gθ,p) = p(yp|y0, . . . ,yp−1,θ)

=
∫
p(yp|xp,θ)dp(xp|θ,y0, . . . ,yp−1)

=
∫
Gθ,p(xp) ηθ,p(dxp)

from which we conclude that

P(Θ ∈ dθ | ∀0 ≤ p ≤ n Yp = yp) =
1
Zn
Zn(θ)µ(dθ)

with

Zn :=
∫
Zn(θ) µ(dθ).
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In some instances, such as in conditionally linear Gaussian models,
the normalizing constants Zn(θ) can be computed explicitly, and we can
use a Metropolis-Hasting style Markov chain Monte Carlo method to
sample the target measures µn. As in subsection 2.2.1, we can also turn
this scheme into an interacting Markov chain Monte Carlo algorithm.

Indeed, let us choose a Markov chain Monte Carlo type local moves
µn = µnMn with prescribed target measures

µn(dθ) :=
1
Zn
Zn(θ) µ(dθ).

Notice that

Zn+1(θ) = Zn(θ) × ηθ,n(Gθ,n)⇒ µn+1 = ΨGn(µn)

with the Boltzmann-Gibbs transformations defined in (1.8) associated
with the potential function

Gn(θ) = ηθ,n(Gθ,n).

By construction, we have

µn+1 = µn+1Mn+1 = ΨGn(µn)Mn+1

from which we conclude that

µn(f) = E

f(θn)
∏

0≤p<n
Gp(θp)

/E

 ∏
0≤p<n

Gp(θp)


with the reference Markov chain

P(θn ∈ dθ|θn−1) = Mn(θn−1,dθ).

In addition, we have

Zn+1 =
∫
Zn(θ) Gn(θ)µ(dθ) = Znµn(Gn) =

∏
0≤p≤n

µp(Gp).

Remark 2.2. For more general models, we can use the particle Markov
chain Monte Carlo methodology presented in subsection 2.2.5. When
the likelihood functions are too expensive to evaluate, we can also com-
bine these particle models with the pseudo-likelihood stochastic models
(2.15) discussed in subsection 2.5.2.
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2.5.4 Interacting Kalman-Bucy Filters

We use the same notation as above, but we assume that Θ = (Θn)n≥0

is a random sample of a stochastic process Θn taking values in some
state spaces Sn. If we consider the Feynman-Kac model associated with
the Markov chain Xn = (Θn,ηΘ,n) and the potential functions

Gn(Xn) = ηΘ,n(GΘ,n)

then we find that

Qn = Law(Θ0, . . . ,Θn | ∀0 ≤ p < n Yp = yp)

and the n-th time marginals are clearly given by

ηn = Law(Θn | ∀0 ≤ p < n Yp = yp).

Assuming that the pair (X,Y ) is a linear and Gaussian filtering
model given Θ, the measures ηΘ,n coincide with the one-step predictor
of the Kalman-Bucy filter, and the potential functions Gn(Xn) can be
easily computed by Gaussian integral calculations. In this situation,
using the same notations as in subsection 2.5.1, the conditional distri-
bution of the parameter Θ is given by a Feynman-Kac model Qn of a the
free Markov chain Xn weighted by some Boltzmann-Gibbs exponential
weight function ∏

0≤p<n
Gp(Xp) = pn(y0, . . . ,yn|Θ0, . . . ,Θn)

that reflects the likelihood of the path sequence (Θ0, . . . ,Θn). For a
more thorough discussion on these interacting Kalman filters, we refer
the reader to Sections 2.6 and 12.6 in the book [17].

2.5.5 Multi-Target Tracking Models

Multiple-target tracking problems deal with correctly estimating sev-
eral maneuvering and interacting targets simultaneously given a
sequence of noisy and partial observations. At every time n, the first
moment of the occupation measure Xn :=

∑Nn
i=1 δXi

n
of some spatial

branching signal is given for any regular function f by the following
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formula:

γn(f) := E(Xn(f)) with Xn(f) :=
∫

f(x) Xn(dx).

For null spontaneous birth measures, these measures coincide with that
of an unnormalized Feynman-Kac model with some spatial branching
potential functions Gn and some free evolution target model Xn.

In more general situations, the approximate filtering equation is
given by the Mahler’s multi-objective filtering approximation based on
the propagation of the first conditional moments of Poisson approxi-
mation models [73, 74]. These evolution equations are rather complex
to introduce and are notationally consuming. Nevertheless, as the first
moment of evolution of any spatial and marked branching process, they
can be abstracted by an unnormalized Feynman-Kac model with non-
linear potential functions [52, 53, 54].

2.5.6 Optimal Stopping Problems with Partial Observations

We consider the partially observed Markov chain model discussed in
(2.11). The Snell envelope associated with an optimal stopping prob-
lem with finite horizon, payoff style function fn(Xn,Yn), and noisy
observations Yn as some Markov process, is given by

Uk := sup
τ∈T Yk

E(fτ (Xτ ,Yτ )|(Y0, . . . ,Yk))

where T Yk stands for the set of all stopping times τ taking values in
{k, . . . ,n}, whose values are measurable w.r.t. the sigma field generated
by the observation sequence Yp, from p = 0 up to the current time k. We
denote by η[y0,...,yn−1]

n and η̂[y0,...,yn]
n the conditional distributions defined

in (2.13) and (2.14). In this notation, for any 0 ≤ k ≤ n we have that

E(fτ (Xτ ,Yτ )|(Y0, . . . ,Yk))

= E(Fτ (Yτ , η̂ [Y0,...,Yτ ]
τ ) | (Y0, . . . ,Yk)) (2.16)

with the conditional payoff function

Fp(Yp, η̂
[Y0,...,Yp]
p ) =

∫
η̂

[Y0,...,Yp]
p (dx)fp(Xp,Yp).
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It is rather well known that

Xp := (Yp, η̂
[Y0,...,Yp]
p )

is a Markov chain with elementary transitions defined by

E[Fp(Yp, η̂
[Y0,...,Yp]
p ) | (Yp−1, η̂

[Y0,...,Yp−1]
p−1 ) = (y,µ)]

=
∫
λp(dyp)µMp(gp(.,yp))Fp(yp,Ψgp(.,yp)(µMp)).

A detailed proof of this assertion can be found in any textbook on
advanced stochastic filtering theory. For instance, the book of Rung-
galdier and Stettner [86] provides a detailed treatment on discrete time
non linear filtering, and related partially observed control models.

Roughly speaking, using some abuse of Bayesian notation, we have

η
[y0,...,yp−1]
p (dxp) = dpp(xp | (y0, . . . ,yp−1))

=
∫
dpp(xp | xp−1) × pn(xp−1 | (y0, . . . ,yp−1))

= η̂
[y0,...,yp−1]
p−1 Mp(dxp)

and

Ψgp(.,yp)(η̂
[y0,...,yp−1]
p−1 Mp)(dxp)

=
p(yp|xp)∫

pp(yp | x′
p)dpp(x′

p | (y0, . . . ,yp−1))
dpp(xp | (y0, . . . ,yp−1))

= dpp(xp | (y0, . . . ,yp−1,yp))

from which we prove that

µMp(gp(.,yp)) =
∫
pp(yp | xp)dpp(xp | (y0, . . . ,yp−1))

= pp(yp | (y0, . . . ,yp−1))

and

Ψgp(.,yp)(µMp) = η̂
[y0,...,yp]
p

as soon as µ = η̂
[y0,...,yp−1]
p−1 (⇒ µMp = η

[y0,...,yp−1]
p ).
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From the above discussion, we can rewrite (2.16) as the Snell enve-
lope of a fully observed augmented Markov chain sequence

E(fτ (Xτ ,Yτ )|(Y0, . . . ,Yk)) = E(Fτ (Xτ ) | (X0, . . . ,Xk)).

The Markov chain Xn takes values in an infinite dimensional state
space, and it can rarely be sampled without some additional level of
approximation. Using the N -particle approximation models, we can
replace the chain Xn by the N -particle approximation model defined
by

XNn := (Yp, η̂
([Y0,...,Yp],N)
p )

where

η̂
([Y0,...,Yp],N)
p := Ψgp(.,Yp)(η

([Y0,...,Yp−1,N)]
p−1 )

stands for the updated measure associated with the likelihood selection
functions gp(.,Yp). The N -particle approximation of the Snell envelope
is now given by

E(fτ (Xτ ,Yτ )|(Y0, . . . ,Yk)) �N↑∞ E(Fτ (XNτ ) | (XN0 , . . . ,XNk )).

In this interpretation, the N -approximated optimal stopping problem
amounts to computing the quantities

UNk := sup
τ∈T Nk

E(Fτ (XNτ ) | (XN0 , . . . ,XNk ))

where T Nk stands for the set of all stopping times τ taking values in
{k, . . . ,n}, whose values are measurable w.r.t. the sigma field generated
by the Markov chain sequence XNk , from p = 0 up to time k.

2.6 Markov Chain Restriction Models

2.6.1 Markov Confinement Models

One of the simplest example of Feynman-Kac conditional distributions
is given by choosing indicator functionsGn = 1An of measurable subsets
An ∈ En s.t. P(∀0 ≤ p < nXp ∈ Ap) > 0. In this situation, it is readily
checked that

Qn = Law((X0, . . . ,Xn) | ∀0 ≤ p < n Xp ∈ Ap)
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and

Zn = P(∀0 ≤ p < n Xp ∈ Ap).

This Markov chain restriction model fits into the particle absorption
model (1.6) presented in the introduction. For a detailed analysis of
these stochastic models, and their particle approximations, we refer
the reader to the articles [19, 38, 39], and the book [17].

2.6.2 Directed Polymers and Self-avoiding Walks

The conformation of polymers in a chemical solvent can be seen as
the realization of a Feynman-Kac distribution of a free Markov chain
weighted by some Boltzmann-Gibbs exponential weight function that
reflects the attraction or the repulsion forces between the monomers.
For instance, if we consider the historical process

Xn = (X0, . . . ,Xn)

and

Gn(Xn) = 1�∈{Xp,p<n}(Xn)

then we find that

Qn = Law(Xn | ∀0 ≤ p < n Xp ∈ Ap)

= Law((X0, . . . ,Xn) | ∀0 ≤ p < q < n Xp �= Xq)

with the set An = {Gn = 1}, and the normalizing constants

Zn = P(∀0 ≤ p < q < n Xp �= Xq).

2.7 Particle Absorption Models

We return to the particle absorption model (1.6) presented in the intro-
duction. For instance, we can assume that the potential function Gn
and Markov transitions Mn are defined by Gn(x) = e−Vn(x)h, and

Mn(x,dy) = (1 − λnh)δx(dy) + λnhKn(x,dy) (2.17)

for some non negative and bounded function Vn, some positive param-
eter λn ≤ 1/h, h > 0, and some Markov transition Kn.
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The confinement models described above can also be interpreted
as a particle absorption model related to hard obstacles. In branching
processes and population dynamics literature, the model Xc

n often rep-
resents the number of individuals of a given species [51, 57, 88]. Each
individual can die or reproduce. The state 0 ∈ En = N is interpreted
as a trap, or as a hard obstacle, in the sense that the species disap-
pears as soon as Xc

n hits 0. For a more thorough discussion on particle
motions in an absorbing medium with hard and soft obstacles, we refer
the reader to the pair of articles [39, 19].

2.7.1 Doob h-Processes

We consider a time homogeneous Feynman-Kac model (Gn,Mn) =
(G,M) on some measurable state space E, and we set

Q(x,dy) = G(x)M(x,dy).

We also assume that G is uniformly bounded above and below by some
positive constant, and the Markov transition M is reversible w.r.t.
some probability measure µ on E, with M(x, .) � µ and dM(x, .)/dµ ∈
L2(µ). We denote by λ the largest eigenvalue of the integral operator
Q on L2, and by h(x) a positive eigenvector

Q(h) = λh.

The Doob h-process corresponding to the ground state eigenfunction
h defined above is a Markov chain Xh

n with the time homogeneous
Markov transition

Mh(x,dy) :=
1
λ
× h−1(x)Q(x,dy)h(y) =

M(x,dy)h(y)
M(h)(x)

and initial distribution ηh0 (dx) ∝ h(x) η0(dx). By construction, we have
G = λh/M(h) and therefore

Γn(d(x0, . . . ,xn)) = λnη0(h)Phn(d(x0, . . . ,xn))
1

h(xn)

where Phn stands for the law of the historical process

Xh
n = (Xh

0 , . . . ,X
h
n).
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We conclude that

dQn =
1

E(h−1(Xh
n))

h−1(Xh
n)dPhn

with the normalizing constants

Zn = λnη0(h)E(h−1(Xh
n)).

2.7.2 Yaglom Limits and Quasi-invariant Measures

We return to the time homogeneous Feynman-Kac models introduced
in the last subsection. Using the particle absorption interpretation (1.6)
we have

Law((Xc
0, . . . ,X

c
n) | T c ≥ n) =

1
E(h−1(Xh

n))
h−1(Xh

n)dPhn

and

Zn = P(T c ≥ n) = λnη0(h)E(h−1(Xh
n)) −→n↑∞ 0. (2.18)

Letting ηhn := Law(Xh
n), we readily prove the following formulae

ηn = Ψ1/h(η
h
n) and ηhn = Ψh(ηn).

Whenever it exists, the Yaglom limit of the measure η0 is defined as
the limiting of measure

ηn −→n↑∞ η∞ = ΨG(η∞)M (2.19)

of the Feynman-Kac flow ηn, when n tends to infinity. We also say
that η0 is a quasi-invariant measure if we have η0 = ηn, for any time
step. When the Feynman-Kac flow ηn is asymptotically stable, in the
sense that it forgets its initial conditions, we also say that the quasi-
invariant measure η∞ is the Yaglom measure. Whenever it exists, we let
ηh∞ be the invariant measure of the h-process Xh

n . Under our assump-
tions, it is now a simple exercise to check that

η∞ = ΨM(h)(µ) and ηh∞ := Ψh(η∞) = ΨhM(h)(µ).

Quantitative convergence estimates of the limiting formulae (2.18) and
(2.19) can be derived using the stability properties of the Feynman-Kac
models developed in Section 3. For a more thorough discussion on these
particle absorption models, we refer the reader to [17, 20, 30, 31, 38, 39].
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Feynman-Kac Semigroup Analysis

3.1 Introduction

As we mentioned in subsection 1.4, the concentration analysis of par-
ticle models is intimately related to the regularity properties of the
limiting nonlinear semigroup. Here, we survey some selected topics on
the theory of Feynman-Kac semigroups developed in the series of arti-
cles [23, 31, 38]. For more recent treatments, we also refer the reader
to the books [17, 20].

We begin this section with a discussion on path space models. Sub-
section 3.2 is concerned with Feynman-Kac historical processes and
Backward Markov chain interpretation models. We show that the the
n-th marginal measures ηn of a Feynman-Kac model with a reference
historical Markov process coincides with the path space measures Qn

introduced in (1.4).
The second part of subsection 3.2 is dedicated to the proof of

the Backward Markov chain formulae (1.12). In subsection 3.3, we
analyze the regularity and the semigroup structure of the normalized
and unnormalized Feynman-Kac distribution flows ηn and γn.

Subsection 3.4 is concerned with the stability properties of the nor-
malized Feynman-Kac distribution flow. In subsection 3.4.1, we present

281
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regularity conditions on the potential functions Gn and on the Markov
transitions Mn, under which the Feynman-Kac semigroup forgets expo-
nentially fast its initial condition. Quantitative contraction theorems
are provided in subsection 3.4.2.

We illustrate these results with three applications related to time
discretization techniques, simulated annealing type schemes, and path
space models, respectively.

Subsections 3.5 and 3.6 are concerned with mean field stochastic
particle models and local sampling random field models.

3.2 Historical and Backward Models

The historical process associated with some reference Markov chain Xn

is defined by the sequence of random paths

Xn = (X0, . . . ,Xn) ∈ En := (E0 × . . . × En).

Notice that the Markov transitions of the chain Xn are given for any
xn−1 = (x0, . . . ,xn−1) and yn = (y0, . . . ,yn) = (yn−1,yn) by the follow-
ing formulae

Mn(xn−1,dyn) = δxn−1(dyn−1)Mn(yn−1,dxn). (3.1)

We consider a sequence of (0,1]-valued potential functions Gn on En

whose values only depend on the final state of the paths; that is, we
have that

Gn : xn = (x0, . . . ,xn) ∈ En →Gn(xn) = Gn(xn) ∈ (0,1] (3.2)

with some (0,1]-valued potential function Gn on En.
We let (γn,ηn) represent the Feynman-Kac model associated with

the pair (Gn,Mn) on the path spaces En. By construction, for any
function fn on En, we have

γn(fn) = E

fn(Xn)
∏

0≤p<n
Gp(Xp)


= E

fn(X0, . . . ,Xn)
∏

0≤p<n
Gp(Xp)
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from which we conclude that

γn = ZnQn and ηn = Qn (3.3)

where Qn is the Feynman-Kac measure on the path space associated
with the pair (Gn,Mn), and defined in (1.4).

We end with the proof of the backward formula (1.12). Using the
decomposition

Qn(d(x0, . . . ,xn)) =
Zn−1

Zn
Qn−1(d(x0, . . . ,xn−1))Qn(xn−1,dxn)

we prove the following formulae

ηn(dxn) =
Zn−1

Zn
ηn−1Qn(dxn) (3.4)

=
Zn−1

Zn
ηn−1(Gn−1Hn(.,xn))λn(dxn) (3.5)

and

Zn
Zn−1

= ηn−1Qn( ) = ηn−1(Gn−1).

This implies that

dηn−1Qn
dηn

(xn) ×
dηn−2Qn−1

dηn−1
(xn−1) × ·· · ×

dη0Q1

dη1
(x1)

=
Zn
Zn−1

× Zn−1

Zn−2
× ·· · × Z1

Z0
= Zn.

Using these observations, we readily prove the desired backward
decomposition formula.

3.3 Semigroup Models

This subsection is concerned with the semigroup structure and the weak
regularity properties of Feynman-Kac models.

Definition 3.1. We denote by

Φp,n(ηp) = ηn and γpQp,n = γn
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with 0 ≤ p ≤ n, the linear and the nonlinear semigroup associated with
the unnormalized and the normalized Feynman-Kac measures. For
p = n, we use the convention Φn,n = Id, the identity mapping.

Notice that Qp,n has the following functional representation

Qp,n(fn)(xp) := E

fn(Xn)
∏

p≤q<n
Gq(Xq) | Xp = xp

 .

Definition 3.2. We let Gp,n and Pp,n be the potential functions and
the Markov transitions defined by

Qp,n( )(x) = Gp,n(x) and Pp,n(f) =
Qp,n(f)
Qp,n( )

.

We also set

gp,n := sup
x,y

Gp,n(x)
Gp,n(y)

and β(Pp,n) = suposc(Pp,n(f)).

The r.h.s. supremum is taken as the set of functions Osc(E). To simplify
notation, for n = p + 1 we have also set

Gp,p+1 = Qp,p+1( ) = Gp

and sometimes we write gp instead of gp,p+1.

The particle concentration inequalities developed in Section 6 will
be expressed in terms of the following parameters.

Definition 3.3. For any k, l ≥ 0, we also set

τk,l(n) :=
∑

0≤p≤n
gkp,n β(Pp,n)l and κ(n) := sup

0≤p≤n
(gp,nβ(Pp,n)).

(3.6)

Using the fact that

ηn(fn) := ηpQp,n(fn)/ηpQp,n(1) (3.7)

we prove the following formula

Φp,n(ηp) = ΨGp,n(ηp)Pp,n

for any 0 ≤ p ≤ n.
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As a direct consequence of (1.22) and (1.23), we quote the following
weak regularity property of the Feynman-Kac semigroups.

Proposition 3.1. For [0,1]-valued potential function Gn, and any cou-
ple of measures ν,µ on the set E s.t. µ(Gp,n) ∧ ν(Gp,n) > 0, we have
the decomposition

Φp,n(µ) − Φp,n(ν) =
1

ν(Gp,n)
(µ − ν)SGp,n,µPp,n.

In addition, we have the following Lipschitz estimates

‖Φp,n(µ) − Φp,n(ν)‖tv ≤
‖Gp,n‖

µ(Gp,n) ∨ ν(Gp,n)
β(Pp,n) ‖µ − ν‖tv

and

sup
µ,ν
‖Φp,n(µ) − Φp,n(ν)‖tv = β(Pp,n).

3.4 Stability Properties

3.4.1 Regularity Conditions

Here, we present one of the simplest quantitative contraction estimates
known for the normalized Feynman-Kac semigroups Φp,n. We consider
the following regularity conditions.

Hm(G,M) There exists some integer m ≥ 1, such that for any n ≥ 0,
and any ((x,x′),A) ∈ (E2

n × En) and any n ≥ 0 we have

Mn,n+m(x,A) ≤ χm Mn,n+m(x′,A) and g = sup
n≥0

gn <∞

for some finite parameters χm,g <∞, and some integer m ≥ 1.
H0(G,M)

ρ := sup
n≥0

(gnβ(Mn+1)) < 1 and g = sup
n
gn <∞. (3.8)

Both conditions are related to the stability properties of the ref-
erence Markov chain model Xn with probability transition Mn. This
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implies that the chain Xn tends to merges exponentially fast the ran-
dom states starting from any two different locations.

One natural strategy to obtain some useful quantitative contraction
estimates for the Markov transitions Pp,n is to write this transition in
terms of the composition of Markov transitions.

Lemma 3.2. For any 0 ≤ p ≤ q ≤ n, we have

Pp,n = R(n)
p,qPq,n and Pp,n = R

(n)
p+1R

(n)
p+2 . . .R

(n)
n−1R

(n)
n

with the triangular array of Markov transitions R(n)
p,q and (R(n)

q )1≤q≤n
defined by

R(n)
p,q (f) :=

Qp,q(Gq,nf)
Qp,q(Gq,n)

=
Pp,q(Gq,nf)
Pp,q(Gq,n)

and

R(n)
p (f) =

Qp(Gp,nf)
Qp(Gp,n)

=
Mp(Gp,nf)
Mp(Gp,n)

.

In addition, for any 0 ≤ p ≤ q ≤ n we have

β(R(n)
p,q ) ≤ gq,nβ(Pp,q) and loggp,n ≤

∑
p≤q<n

(gq − 1)β(Pp,q). (3.9)

Proof:
Using the decomposition

Qp,n(f) = Qp,q(Qq,n(f)) = Qp,q(Qq,n(1) Pq,n(f))

we can easily check the first assertion. The left-hand side (l.h.s.)
inequality in (3.9) is a direct consequence of (1.26). Using (1.9), the
proof of the r.h.s. inequality in (3.9) is based on the fact that

Gp,n(x)
Gp,n(y)

=

∏
p≤q<nΦp,q(δx)(Gq)∏
p≤q<nΦp,q(δy)(Gq)

= exp

 ∑
p≤q<n

(logΦp,q(δx)(Gq) − logΦp,q(δy)(Gq))

.
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Using the fact that

logy − logx =
∫ 1

0

(y − x)
x + t(y − x)dt

for any positive numbers x,y, we prove that

Gp,n(x)
Gp,n(y)

= exp

 ∑
p≤q<n

∫ 1

0

(Φp,q(δx)(Gq) − Φp,q(δy)(Gq))
Φp,q(δy)(Gq) + t(Φp,q(δx)(Gq) − Φp,q(δy)(Gq))

dt


≤ exp

 ∑
p≤q<n

g̃q × (Φp,q(δx)(G̃q) − Φp,q(δy)(G̃q))


with

G̃q := Gq/osc(Gq) and g̃q := osc(Gq)/infGq ≤ gq − 1.

We end the proof of the desired estimates using (1.26), and Proposi-
tion 3.1. This completes the proof of the lemma.

3.4.2 Quantitative Contraction Theorems

This subsection is mainly concerned with the proof of two contraction
theorems, which can be derived under the couple of regularity condi-
tions presented in subsection 3.4.1.

Theorem 3.3. We assume that condition Hm(G,M) is satisfied for
some finite parameters χm,g <∞, and some integer m ≥ 1. In this
situation, we have the uniform estimates

sup
0≤p≤n

gp,n ≤ χmgm and sup
p≥0

β(Pp,p+km) ≤ (1 − g−(m−1)χ−2
m )k.

(3.10)
In addition, for any couple of measures ν,µ ∈ P(Ep), and for any f ∈
Osc(En) we have the decomposition

|[Φp,n(µ) − Φp,n(ν)](f)| ≤ ρm(1 − κm)(n−p)/m|(µ − ν)Dp,n,µ(f)|
(3.11)
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for some function Dp,n,µ(f) ∈ Osc(Ep) whose values only depends on
the parameters (p,n,µ), and some parameters ρm <∞ and κm ∈]0,1]
such that

ρm ≤ χmgm(1 − g−(m−1)χ−2
m )−1 and κm ≥ g−(m−1)χ−2

m . (3.12)

Proof:
For any nonnegative function f , we notice that

R
(n)
p,p+m(f)(x) =

Qp,p+m(Gp+m,nf)(x)
Qp,p+m(Gp+m,n)(x)

≥ g−(m−1)χ−2
m

Mp,p+m(Gp+m,nf)(x′)
Mp,p+m(Gp+m,n)(x′)

and for any p + m ≤ n
Gp,n(x)
Gp,n(x′)

=
Qp,p+m(Gp+m,n)(x)
Qp,p+m(Gp+m,n)(x′)

≤ gmMp,p+m(Gp+m,n)(x)
Mp,p+m(Gp+m,n)(x′)

≤ χmgm.

For p ≤ n ≤ p + m, this upper bound remains valid. We conclude that

Gp,n(x) ≤ χmgm Gp,n(x′) and β(R(n)
p,p+m) ≤ 1 − g−(m−1)χ−2

m .

In the same way as above, we have

n = km⇒ Pp,p+km = R
(n)
p,p+mR

(n)
p+m,p+2m . . .R

(n)
p+(k−1)m,p+km

and

β(Pp,p+km) ≤
∏

1≤l≤k
β(R(n)

p+(l−1)m,p+lm) ≤ (1 − g−(m−1)χ−2
m )k.

This ends the proof of (3.10).
The proof of (3.11) is based on the decomposition

(µ − ν)SGp,n,µPp,n(f) = β(SGp,n,µPp,n) × (µ − ν)Dp,n,µ(f)

with

Dp,n,µ(f) := SGp,n,µPp,n(f)/β(SGp,n,µPp,n).

On the other hand, we have

SGp,n,µ(x,y) ≥ (1 − ‖Gp,n‖)⇒ β(SGp,n,µ) ≤ ‖Gp,n‖
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and

β(SGp,n,µ)/ν(Gp,n) ≤ gp,n ≤ χmgm.

Finally, we observe that

β(Pp,n) ≤ β(Pp,p+�(n−p)/m)

from which we conclude that
1

ν(Gp,n)
β(SGp,n,µPp,n) ≤ χmgmβ(Pp,p+�(n−p)/m).

The end of the proof is now a direct consequence of the contraction
estimate (3.10). This ends the proof of the theorem.

Theorem 3.4. We assume that condition H0(G,M) is satisfied for
some ρ < 1. In this situation, for any couple of measures ν,µ ∈ P(Ep),
and for any f ∈ Osc(En) we have the decomposition

|[Φp,n(µ) − Φp,n(ν)](f)| ≤ ρ(n−p)|(µ − ν)Dp,n,µ(f)|
for some function Dp,n,µ(f) ∈ Osc(Ep), whose values only depends on
the parameters (p,n,µ). In addition, for any 0 ≤ p ≤ n, we have the
estimates

β(Pp,n) ≤ ρn−p and gp,n ≤ exp((g − 1) (1 − ρn−p)/(1 − ρ)).

Proof. Using Proposition 3.1, and recalling that β(SGn−1,µ) ≤ ‖Gn−1‖,
we readily prove that

|[Φn(µ) − Φn(ν)](f)| ≤ gn−1β(Mn)|(µ − ν)Dn,µ(f)|

≤ ρ|(µ − ν)Dn,µ(f)|
with the function

Dn,µ(f) = SGn−1,µMn(f)/β(SGn−1,µMn) ∈ Osc(En−1).

Now, we can prove the theorem by induction on the parameter n ≥ p.
For n = p, the desired result follows from the above discussion. Suppose
we have

|[Φp,n−1(µ) − Φp,n−1(ν)](f)| ≤ ρ(n−p−1)|(µ − ν)Dp,n−1,µ(f)|
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for any f ∈ Osc(En−1), and some functions Dp,n−1,µ(f) ∈ Osc(Ep). In
this case, we have

|[Φn(Φp,n−1(µ)) − Φn(Φp,n−1(ν))](f)|

≤ gn−1β(Mn)|(Φp,n−1(µ) − Φp,n−1(ν))Dn,Φp,n−1(µ)(f)|

for any f ∈ Osc(En), with Dn,Φp,n−1(µ)(f) ∈ Osc(En−1).
Under our assumptions, we conclude that

|[Φn(Φp,n−1(µ)) − Φn(Φp,n−1(ν))](f)| ≤ ρ(n−p)|(µ − ν)Dp,n,µ(f)|

with the function

Dp,n,µ(f) := Dp,n−1,µ(Dn,Φp,n−1(µ)(f)) ∈ Osc(Ep).

The proof of the second assertion is a direct consequence of Proposi-
tion 3.1, and Lemma 3.2. This ends the proof of the theorem.

Corollary 3.5. Under any of the conditions Hm(G,M), with m ≥ 0,
the functions τk,l and κ defined in (3.6) are uniformly bounded; that
is, for any k, l ≥ 1 we have that

τk,l(m) := sup
n≥0

sup
0≤p≤n

τk,l(n) <∞ and κ(m) := sup
n≥0

κ(n) <∞.

In addition, for any m ≥ 1, we have

κ(m) ∈ [1,χmgm]

τk,l(m) ≤ m(χmgm)k /(1 − (1 − g−(m−1)χ−2
m )l)

and for m = 0, we have the estimates

κ(0) ≤ exp((g − 1)/(1 − ρ))

τk,l(0) ≤ exp(k(g − 1)/(1 − ρ))/(1 − ρl).

3.4.3 Some Illustrations

We illustrate the regularity conditions presented in subsection 3.4.1
with three different types of Feynman-Kac models, related to time
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discretization techniques, simulated annealing type schemes, and path
space models, respectively.

Of course, a complete analysis of the regularity properties of the 20
Feynman-Kac application models presented in section 2 would lead to
too long of a discussion.

In some instances, the regularity conditions stated in subsec-
tion 3.4.1 can be directly translated into regularity properties of the
reference Markov chain model and the adaptation potential function.

In other instances, the regularity properties of the Feynman-Kac
semigroup depend on some important tuning parameters, including
discretization time steps, and cooling schedules in simulated annealing
time models. In subsection 3.4.3.1, we illustrate the regularity property
H0(G,M) stated in (3.8) in the context of a time discretization model
with geometric style clocks introduced in (2.17). In subsection 3.4.3.2,
we present some tools to tune the cooling parameters of the annealing
model discussed in (2.2), so that the resulting semigroups are exponen-
tially stable.

For degenerate indicator style functions, we can use a one-step inte-
gration technique to transform the model into a Feynman-Kac model
on smaller state spaces with positive potential functions. In terms of
particle absorption models, this technique allows us to turn a hard
obstacle model into a soft obstacle particle model. Further details on
this integration technique can be found in [17, 19].

Last, but not least, in some important applications, including
Feynman-Kac models on path spaces, the limiting semigroups are
unstable, in the sense that they do not forget their initial conditions.
Nevertheless, in some situations it is still possible to control uniformly
in time the quantities gp,n discussed in subsection 3.3.

3.4.3.1 Time Discretization Models

We consider that the potential functionsGn and Markov transitionsMn

are given by (2.17), for some non negative function Vn, some positive
parameter λn and some Markov transition Kn s.t.

β(Kn) ≤ κn < 1 h ≤ hn = (1 − κn)/[vn−1 + α] and λn ∈]0,1/h]
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with vn−1 := osc(Vn−1), and for some α > 0. We also assume that v =
supn vn <∞.

In this situation, for any λn ∈ [ 1
hn
, 1
h ], we have

gn−1β(Mn) ≤ evn−1h(1 − λnh (1 − κn))

≤ e−h(λn(1−κn)−vn−1) ≤ e−αh

from which we conclude that H0(G,M) is met with

g = sup
n
gn ≤ ehv and ρ ≤ e−αh.

3.4.3.2 Interacting Simulated Annealing Model

We consider the Feynman-Kac annealing model discussed in (2.2). We
further assume that

Kkn
n (x,dy) ≥ εn νn(y)

for some kn ≥ 1, some εn > 0, and some measure νn.
In this situation, we have

Mkn
n,βn

(x,dy) ≥Kkn
n (x,dy) e−βnknv ≥ εn e−βnknv νn(dy)

with v := osc(V ). If we choose mn = knln, this implies that

β(Mn) = β(Mmn
n,βn

) ≤ β(Mkn
n,βn

)ln ≤ (1 − εn e−βnknv)ln .

Therefore, for any given ρ′ ∈]0,1[ we can chose ln such that

ln ≥
log(1/ρ′) + v(βn − βn−1)

log1/(1 − εn e−βnknv)

so that

gn−1β(Mn) ≤ ev(βn−βn−1) × (1 − εn e−βnknv)ln ≤ ρ′⇒ ρ ≤ ρ′.

For any function β : x ∈ [0,∞[→ β(x), with a decreasing derivative
β′(x) s.t. limx→∞β′(x) = 0 and β′(0) <∞, we also notice that

g = sup
n≥0

gn ≤ sup
n≥0

evβ
′
n ≤ evβ′(0).
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3.4.3.3 Historical Processes

We return to the historical Feynman-Kac models introduced in sub-
section 3.2. Using the equivalence principle (3.3), we have proved that
the n-time marginal models associated with a Feynman-Kac model on
path space coincide with the original Feynman-Kac measure (1.4).

We write Qp,n and Pp,n the Feynman-Kac semigroups defined as
Qp,n and Pp,n, by replacing (Gn,Mn) by (Gn,Mn). By construction,
we have

Qp,n( )(xp) = Qp,n( )(xp)

for any xp = (x0, . . . ,xp) ∈ Ep. Therefore, if we set

Gp,n(xp) := Qp,n( )(xp)

then we find that

gp,n := sup
xp,yp

Gp,n(xp)
Gp,n(yp)

= sup
xp,yp

Gp,n(xp)
Gp,n(yp)

= gp,n.

On the other hand, we cannot expect the Dobrushin’s ergodic coefficient
of the historical process semigroup to decrease, but we always have
β(Pp,n) ≤ 1.

In summary, when the reference Markov chain Xn satisfies the con-
dition Hm(G,M) stated in the beginning of subsection 3.4.1, for some
m ≥ 1, we always have the estimates

gp,n ≤ χmgm and β(Pp,n) ≤ 1 (3.13)

and

τk,l(n) ≤ (n + 1)(χmgm)k and κ(n) ≤ χmgm (3.14)

with the functions τk,l, and κ introduced in (3.6)
We end with some Markov chain Monte Carlo techniques often

used in practice to stabilize the genealogical tree based approxima-
tion model. To describe with some precision this stochastic method, we
consider the Feynman-Kac measures ηn ∈ P(En) associated with the
potential function Gn and the Markov transitions Mn of the historical
process defined respectively in (3.2) and in (3.1). We notice that the
measures ηn satisfy the updating-prediction equation

ηn = ΨGn(ηn)Mn.
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This equation on the set of measures on path spaces is unstable, in the
sense that its initial condition is always kept in mind by the historical
Markov transitions Mn. One idea to stabilize this system is to incorpo-
rate an additional Markov chain Monte Carlo move at every time step.
More formally, let us suppose that we have a dedicated Markov chain
Monte Carlo transition Kn from the set En into itself, and such that

ηn = ηnKn.

In this situation, we also have that

ηn = ΨGn(ηn)M
′
n with M′

n := MnKn. (3.15)

By construction, the mean field particle approximation of the equa-
tion (3.15) is a genealogical tree type evolution model with path space
particles on the state spaces En. The updating-selection transitions are
related to the potential function Gn on the state spaces En, and the
mutation-exploration mechanisms from En into En+1 are dictated by
the Markov transitions M′

n+1.
Notice that this mutation transition is decomposed into two differ-

ent stages. First, we extend the selected path-valued particles with an
elementary move according to the Markov transition Mn. Then, from
each of these extended paths, we perform a Markov chain Monte Carlo
sample according to the Markov transition Kn.

3.5 Mean Field Particle Models

With the exception of some very special cases, the measures ηn
cannot be represented in a closed form, even on infinite dimensional
state-spaces. Their numerical estimation using deterministic type grid
approximations requires extensive calculations, and they rarely cope
with high-dimensional problems. In the same vein, harmonic type
approximation schemes, or related linearization style techniques such
as the extended Kalman filter often provide poor estimation results
for highly nonlinear models. In contrast with these conventional tech-
niques, mean field particle models can be thought of as a stochas-
tic adaptive grid approximation scheme. These advanced Monte Carlo
methods take advantage of the nonlinearities of the model, to design
an interacting selection-recycling mechanism.
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Formally speaking, discrete generation mean field particle models
are based on the fact that the flow of probability measures ηn satisfies
a non linear evolution equation of the following form

ηn+1(dy) =
∫
ηn(dx)Kn+1,ηn(x,dy) (3.16)

for some collection of Markov transitions Kn+1,η, indexed by the time
parameter n ≥ 0 and the set of probability measures P(En).

The choice of the McKean transitions Kn+1,ηn is not unique. For
instance, we can choose

Kn+1,ηn(x,dy) = Φn+1(ηn)(dy)

and more generally

Kn+1,ηn(x,dy)

= ε(ηn)Gn(x) Mn+1(x,dy) + (1 − ε(ηn)Gn(x)) Φn+1(ηn)(dy)

for any ε(ηn) s.t. ε(ηn)Gn(x) ∈ [0,1]. Note that we can define sequen-
tially a Markov chain sequence (Xn)n≥0 such that

P(Xn+1 ∈ dx | Xn) = Kn+1,ηn(Xn,dx) with Law(Xn) = ηn.

From practical point of view, this Markov chain can be seen as a perfect
sampler of the flow of the distributions (3.16) of the random states
Xn. For a more thorough discussion on these nonlinear Markov chain
models, we refer the reader to section 2.5 in the book [17].

The mean field particle interpretation of this nonlinear measure
valued model is the ENn -valued Markov chain

ξn = (ξ1n, ξ
2
n, . . . , ξ

N
n ) ∈ ENn

with elementary transitions defined as

P(ξn+1 ∈ dx | ξn) =
N∏
i=1

Kn+1,ηNn (ξin,dx
i) (3.17)

with

ηNn :=
1
N

N∑
j=1

δ
ξjn
.
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In the above displayed formula, dx stands for an infinitesimal neigh-
borhood of the point x = (x1, . . . ,xN ) ∈ ENn+1. The initial system ξ0
consists of N independent and identically distributed random variables
with common law η0.

We let GNn := σ(ξ0, . . . , ξn) be the natural filtration associated with
the N -particle approximation model defined above.

The particle model associated with the parameter ε(ηn) = 1
coincides with the genetic type stochastic algorithm presented in sub-
section 1.4.

Furthermore, using the equivalence principles (3.3) presented in sub-
section 3.2, we can check that the genealogical tree model discussed
above coincides with the mean field N -particle interpretation of the
Feynman-Kac measures (γn,ηn) associated with the pair (Gn,Mn) on
the path spaces En. In this context, we recall that ηn = Qn, and the
N -particle approximation measures are given by

ηNn :=
1
N

N∑
i=1

δ(ξi0,n,ξi1,n,...,ξin,n) ∈ P(En) = P(E0 × . . . × En). (3.18)

3.6 Local Sampling Errors

The local sampling errors induced by the mean field particle model
(3.17) are expressed in terms of the empirical random field sequence
V N
n defined by

V N
n+1 =

√
N [ηNn+1 − Φn+1(ηNn )].

Notice that V N
n+1 is alternatively defined by the following stochastic

perturbation formulae

ηNn+1 = Φn+1(ηNn ) +
1√
N

V N
n+1. (3.19)

For n = 0, we also set

V N
0 =

√
N [ηN0 − η0]⇔ ηN0 = η0 +

1√
N

V N
0 .
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In this interpretation, the N -particle model can also be interpreted
as a stochastic perturbation of the limiting system

ηn+1 = Φn+1(ηn).

It is rather elementary to check that

E(V N
n+1(f)| GNn .) = 0

E(V N
n+1(f)2| GNn ) = ηNn [Kn+1,ηNn (f − Kn+1,ηNn (f))2].

Definition 3.4. We denote by σ2
n the uniform local variance parameter

given by

σ2
n := supµ(Kn,µ[fn − Kn,µ(fn)]2) ≤ 1. (3.20)

In the above displayed formula the supremum is taken over all functions
fn ∈ Osc(En), and all probability measures µ on En, with n ≥ 1. For
n = 0, we set

σ2
0 = sup

f0∈Osc(E0)
η0([f0 − η0(f0)]2) ≤ 1.

We close with a brief discussion on these uniform local variance
parameters in the context of continuous time discretization models.
When the discrete time model Kn,µ = K

(h)
n,µ comes from a discretization

of the continuous time model with time step ∆t = h(≤ 1), we often have
that

Kn,µ = Id + hLn,µ + O(h2) (3.21)

for some infinitesimal generator Ln,µ. In this situation, we also have
that

LKn,µ := Kn,µ − Id = hLn,µ + O(h2).

For any Markov transition K, we notice that

K([f − K(f)]2) = K(f2) − K(f)2

= LK(f2) − 2fLK(f) − (LK(f))2

= ΓLK (f,f) − (LK(f))2
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with the “carré du champ” function ΓLK (f,f) defined for any x ∈ E by

ΓLK (f,f)(x) = LK([f − LK(f)(x)]2)(x)

= LK(f2)(x) − 2f(x) LK(f)(x).

When K = Kn,µ and LKn,µ = hLn,µ + O(h2), we find that

µ[Kn,µ[fn − Kn,µ(fn)]2] = µΓLKn,µ (f,f)h − h2µ(LKn,µ(f)2)

= hµ(ΓLn,µ(f,f)) + O(h2).



4
Empirical Processes

4.1 Introduction

The aim of this section is to review some more or less well known
stochastic techniques for analyzing the concentration properties of
empirical processes associated with independent random sequences.
Our discussion begins by providing some basic definitions on empirical
processes associated with sequences of independent random variables
on general measurable state spaces. In subsection 4.2, we state and
comment on the main results of this section. Subsection 4.2.1 is con-
cerned with finite marginal models. In subsection 4.2.2, we extend
these results at the level of the empirical processes. In addition to the
fact that the concentration inequalities for empirical processes hold
for the supremum of empirical processes over infinite collection of func-
tions, these inequalities are more crude with greater constants than the
ones for marginal models. These two subsections also contain two new
perturbation theorems that apply to nonlinear functional of empirical
processes. The proofs of these theorems combine Orlicz’s norm tech-
niques, Kintchine’s type inequalities, maximal inequalities, as well as
Laplace-Cramèr-Chernov estimation methods. These four complemen-
tary methodologies are presented in subsections 4.3–4.6, respectively.

299
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Let (µi)i≥1 be a sequence of probability measures on a given
measurable state space (E,E). During the further development of this
subsection, we fix an integer N ≥ 1. To clarify the presentation, we
slightly abuse the notation and denote by

m(X) =
1
N

N∑
i=1

δXi and µ =
1
N

N∑
i=1

µi

the N -empirical measure associated with a collection of independent
random variables X = (Xi)i≥1, with respective distributions (µi)i≥1,
and the N -averaged measure associated with the sequence of mea-
sures (µi)i≥1, respectively. We also consider the empirical random field
sequences

V (X) =
√
N (m(X) − µ).

We also set

σ(f)2 := E(V (X)(f)2) =
1
N

N∑
i=1

µi([f − µi(f)]2). (4.1)

Remark 4.1. The rather abstract models presented above can be used
to analyze the local sampling random fields models associated with a
mean field particle model discussed in subsection 3.6.

To be more precise, given the information on the N -particle model
at time (n − 1), the sequences of random variables ξin are independent
random sequences with a distribution that depends on the current state
ξin−1. That is, at any given fixed time horizon n and given GNn−1, we
have

Xi = ξin ∈ E = En and µi(dx) := Kn,ηNn−1
(ξin−1,dx). (4.2)

In this case, we find that

m(X) = ηNn and V (X) = V N
n

and

σ(f)2 = E(V N
n+1(f)2 | GNn )

= ηNn [Kn+1,ηNn (f − Kn+1,ηNn (f))2].
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Let F be a given collection of measurable functions f :E → R such
that ‖f‖ ≤ 1. We associate with F the Zolotarev seminorm on P(E)
defined by

‖µ − ν‖F = sup{|µ(f) − ν(f)|;f ∈ F},

(see, for instance, [83]). No generality is lost and much convenience is
gained by supposing that the unit and the null functions are f = and
f = 0 ∈ F . Furthermore, to avoid some unnecessary technical measura-
bility questions, we shall also suppose that F is separable, in the sense
of Doob.

We measure the size of a given class F in terms of the covering
numbers N(ε,F ,L2(µ)) defined as the minimal number of L2(µ)-balls
of radius ε > 0 needed to cover F . We shall also use the following
uniform covering numbers and entropies.

We end with the last of the notations to be used in this section
dedicated to empirical processes concentration inequalities.

Definition 4.1. ByN (ε,F), ε > 0, and by I(F) we denote the uniform
covering numbers and entropy integral given by

N (ε,F) = sup{N (ε,F ,L2(η));η ∈ P(E)}

I(F) =
∫ 2

0

√
log(1 + N (ε,F))dε.

The concentration inequalities stated in this subsection are
expressed in terms of the inverse of the functions defined below.

Definition 4.2. We let (ε0, ε1) be the functions on R+ defined by

ε0(λ) =
1
2
(λ − log(1 + λ)) and ε1(λ) = (1 + λ) log(1 + λ) − λ.

Rather crude estimates can be derived using the following upper
bounds

ε−1
0 (x) ≤ 2(x +

√
x) and ε−1

1 (x) ≤ x

3
+
√

2x.

A proof of these elementary inequalities and refined estimates can be
found in the recent article [40].
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4.2 Statement of the Main Results

4.2.1 Finite Marginal Models

The main result of this subsection is a quantitative concentration
inequality for the finite marginal models

f → V (X)(f) =
√
N(m(X) − µ(f)).

In the following theorem, we provide Kintchine’s type mean error
bounds, and related Orlicz norm estimates. The detailed proofs of these
results are postponed to subsection 4.4. The last quantitative concen-
tration inequality is a direct consequence of (4.5), and it is proved in
Remark 4.6.

Theorem 4.1. For any integer m ≥ 1, and any measurable function f
we have the Lm-mean error estimates

E(|V (X)(f)|m)1/m ≤ b(m)(osc(f) ∧ [2 µ(|f |m′
)1/m

′
]) (4.3)

and

E(|V (X)(f)|m)
1
m ≤ 6b(m)2 max

(
√

2σ(f),
[

2σ(f)2

N
m′
2 −1

]1/m′)

with the smallest even integer m′ ≥m, and the collection of constants
b(m) defined in (1.27).

In particular, for any f ∈ Osc(E), we have

πψ(V (X)(f)) ≤
√

3/8 (4.4)

and for any N s.t. 2σ2(f)N ≥ 1 we have

E(|V (X)(f)|m)
1
m ≤ 6

√
2b(m)2σ(f). (4.5)

In addition, the probability of the event

|V (X)(f)| ≤ 6
√

2σ(f)(1 + ε−1
0 (x))

is greater than 1 − e−x, for any x ≥ 0.
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In subsection 4.3.2, dedicated to concentration properties of random
variables Y with finite Orlicz norms πψ(Y ) <∞, we shall prove that
the probability of the event

Y ≤ πψ(Y )
√
y + log2

is greater than 1 − e−y, for any y ≥ 0 (cf. lemma 4.6). This implies that
the probability of the events

|V (X)(f)| ≤ 1
2

√
3(x + log2)/2

is greater than 1 − e−x, for any x ≥ 0.
Our next objective is to derive concentration inequalities for the

nonlinear functional of the empirical random field V (X). To introduce
these objects precisely, we need another around of notation.

For any measure ν, and any sequence of measurable functions f =
(f1, . . . ,fd), we write

ν(f) := [ν(f1), . . . ,ν(fd)].

Definition 4.3. We associate with the second-order smooth function
F on Rd, for some d ≥ 1, the random functionals defined by

f = (fi)1≤i≤d ∈ Osc(E)d

→ F (m(X)(f)) = F (m(X)(f1), . . . ,m(X)(fd)) ∈ R. (4.6)

Given a probability measure ν, and a collection of functions (fi)1≤i≤d ∈
Osc(E)d, we set

Dν(F )(f) =∇F (ν(f))f�. (4.7)

Notice that

osc(Dν(F )(f)) ≤ ‖∇F (ν(f))‖1 :=
d∑
i=1

∣∣∣∣ ∂F∂ui (ν(f))
∣∣∣∣ .

We also introduce the following constants

‖∇2Ff‖1 :=
d∑

i,j=1

sup
∣∣∣∣ ∂2F

∂ui∂uj
(ν(f))

∣∣∣∣ . (4.8)
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In the r.h.s. display, the supremum is taken over all probability mea-
sures ν ∈ P(E).

The next theorem extends the exponential inequalities stated in
theorem 4.1 to this class of nonlinear functionals. It also provides more
precise concentration properties in terms of the variance functional σ
defined in (4.1). The proof of this theorem is postponed to subsec-
tion 4.7.

Theorem 4.2. Let F be a second-order smooth function on Rd, for
some d ≥ 1. For any collection of functions (fi)1≤i≤d ∈ Osc(E)d, and
any N ≥ 1, the probability of the events

[F (m(X)(f)) − F (µ(f))]

≤ 1
2N
‖∇2Ff‖1[3/2 + ε−1

0 (x)]

+‖∇F (µ(f))‖−1
1 σ2(Dµ(F )(f))ε−1

1

(
x‖∇F (µ(f))‖21
Nσ2(Dµ(F )(f))

)
is greater than 1 − e−x, for any x ≥ 0. In the above display, Dµ(F )(f)
stands for the first-order function defined in (4.7).

4.2.2 Empirical Processes

Our objective here is to extend the quantitative concentration theo-
rems, Theorem 4.1 and Theorem 4.2, at the level of the empirical pro-
cess associated with a class of function F . These processes are given by
the mapping

f ∈ F → V (X)(f) =
√
N(m(X) − µ(f)).

Our main result in this direction is the following theorem, whose proof
is postponed to subsection 4.5.

Theorem 4.3. For any class of functions F , with I(F) <∞, we have

πψ(‖V (X)‖F ) ≤ 122
∫ 2

0

√
log(8 + N (F , ε)2) dε.
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Remark 4.2. Using the fact that log(8 + x2) ≤ 4logx, for any x ≥ 2,
we obtain the rather crude estimate∫ 2

0

√
log(8 + N (F , ε)2) dε ≤ 2

∫ 2

0

√
logN (F , ε) dε.

We check the first observation, using the fact that θ(x) = 4logx −
log(8 + x2) is a non decreasing function on R+, and θ(2) =
log(4 × 4) − log(4 × 3) ≥ 0.

Various examples of classes of functions with finite covering and
entropy integrals are given in the book by Van der Vaart and
Wellner [93] (see, for instance, p. 86, p. 129, p. 135, and exercise 4
on p. 150, and p. 155). The estimation of the quantities introduced
above often depends on several deep results on combinatorics, which
are not discussed here.

To illustrate these mathematical objects, we mention that, for the
set of indicator functions

F = {1∏d
i=1(−∞,xi]

; (xi)1≤i≤d ∈ Rd} (4.9)

of cells in E = Rd, we have

N (ε,F) ≤ c(d + 1)(4e)d+1ε−2d

for some universal constant c <∞. This implies that√
logN (ε,F) ≤

√
log [c(d + 1)(4e)d+1] +

√
(2d)

√
log(1/ε).

An elementary calculation gives∫ 2

0

√
log(1/ε) ≤ 2

∫ ∞

0
x2e−x

2
dx =

√
π/4 ≤ 1

from which we conclude that∫ 2

0

√
logN (F , ε) dε ≤ 2

√
log [c(d + 1)(4e)d+1] +

√
(2d) ≤ c′

√
d

(4.10)

for some universal constant c <∞.
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For d = 1, we also have that N (ε,F) ≤ 2/ε2 (cf. p. 129 in [93]) and
therefore ∫ 2

0

√
logN (F , ε) dε ≤ 3

√
2.

Remark 4.3. In this section, we have assumed that the class of func-
tions F is such that supf∈F ‖f‖ ≤ 1. When supf∈F ‖f‖ ≤ cF , for some
finite constant cF , using Theorem 4.3, it is also readily checked that

πψ(‖V (X)‖F ) ≤ 122
∫ 2cF

0

√
log(8 + N (F , ε)2) dε. (4.11)

We mention that the uniform entropy condition I(F) <∞ is
required in Glivenko-Cantelli and Donsker theorems for empiri-
cal processes associated with non necessarily independent random
sequences [36].

Arguing as above, we prove that the probability of the events

‖V (X)‖F ≤ I1(F)
√
x + log2

is greater than 1 − e−x, for any x ≥ 0, with some constant

I1(F) ≤ 122
∫ 2

0

√
log(8 + N (F , ε)2) dε.

As for the marginal models 4.6, our next objective is to extend
Theorem 4.5 to the empirical processes associated with some classes of
functions. Here, we consider the empirical processes

f ∈ Fi →m(X)(f) ∈ R

associated with d classes of functions Fi, 1 ≤ i ≤ d, defined in subsec-
tion 4.1. We further assume that ‖fi‖ ∨ osc(fi) ≤ 1, for any fi ∈ Fi,
and we set

F :=
∏

1≤i≤d
Fi and πψ(‖V (X)‖F ) := sup

1≤i≤d
πψ(‖V (X)‖Fi).

Using Theorem 4.3, we mention that

πψ(‖V (X)‖F ) ≤ 122
∫ 2

0

√
log(8 + N (F , ε)2) dε
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with

N (F , ε) := sup
1≤i≤d

N (Fi, ε).

We set

‖∇Fµ‖∞ := sup
∣∣∣∣ ∂F∂ui (µ(f))

∣∣∣∣ and ‖∇2F‖∞ = sup
∣∣∣∣ ∂2F

∂ui∂uj
(ν(f))

∣∣∣∣.
The supremum in the l.h.s. is taken over all 1 ≤ i ≤ d and all f ∈ F ;
and the supremum in the r.h.s. is taken over all 1 ≤ i, j ≤ d, ν ∈ P(E),
and all f ∈ F .

We are now in a position to state the final main result of this sub-
section. The proof of the next theorem is postponed to the end of
subsection 4.7.

Theorem 4.4. Let F be a second-order smooth function on Rd, for
some d ≥ 1. For any classes of functions Fi, 1 ≤ i ≤ d, and for any x ≥ 0,
the probability of the following events

sup
f∈F
|F (m(X)(f)) − F (µ(f))|

≤ d√
N
πψ(‖V (X)‖F )‖∇Fµ‖∞(1 + 2

√
x)

+
1

2N
‖∇2F‖∞(d πψ(‖V (X)‖F ))2

(
1 + ε−1

0

(x
2

))
is greater than 1 − e−x.

4.3 A Reminder on Orlicz’ Norms

Here, we have collected some important properties of Orlicz’ norms.
Subsection 4.3.1 is concerned with rather elementary comparison prop-
erties. In subsection 4.3.2, we present a natural way to obtain Laplace
estimates, and related concentration inequalities, using simple Orlicz’
norm upper bounds.

4.3.1 Comparison Properties

This short subsection is mainly concerned with the proof of the follow-
ing three comparison properties.
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Lemma 4.5. For any nonnegative variables (Y1,Y2) we have

Y1 ≤ Y2 =⇒ πψ(Y1) ≤ πψ(Y2)

as well as

(∀m ≥ 0E(Y 2m
1 ) ≤ E(Y 2m

2 ))⇒ πψ(Y1) ≤ πψ(Y2). (4.12)

In addition, for any pair of independent random variables (X,Y ) on
some measurable state space, and any measurable function f , we have

(πψ(f(x,Y )) ≤ c for P-a.e. x) =⇒ πψ(f(X,Y )) ≤ c. (4.13)

Proof:
The first assertion is immediate, and the second assertion comes from
the fact that

E

(
exp

(
Y1

πψ(Y2)

)2

− 1

)
≤
∑
m≥1

1
m!

E(Y 2m
2 )

πψ(Y2)2m
= E

(
Y2

πψ(Y2)

)
≤ 1.

The last assertion comes from the fact that

E(E(ψ(f(X,Y )/c)|X)) ≤ 1⇒ πψ(f(X,Y )) ≤ c.

This ends the proof of the lemma.

4.3.2 Concentration Properties

The following lemma provides a simple way to transfer a control on
Orlicz’ norm into moment or Laplace estimates, which in turn can be
used to derive quantitative concentration inequalities .

Lemma 4.6. For any non negative random variable Y , and any integer
m ≥ 0, we have

E(Y 2m) ≤m! πψ(Y )2m and E(Y 2m+1) ≤ (m + 1)!πψ(Y )2m+1.

(4.14)
In addition, for any t ≥ 0 we have the Laplace estimates

E(etY ) ≤min(2e
1
4 (tπψ(Y ))2 ,(1 + tπψ(Y ))e(tπψ(Y ))2).
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In particular, for any x ≥ 0 the probability of the event

Y ≤ πψ(Y )
√
x + log2 (4.15)

is greater than 1 − e−x.

Remark 4.4. For a Gaussian and centered random variable Y , s.t.
E(Y 2) = 1, we recall that πψ(Y ) =

√
8/3. In this situation, letting y =√

8(x + log2)/3 in (4.15), we find that

P(|Y | ≥ y) ≤ 2e−
1
2

3
4y

2
.

Working directly with the Laplace Gaussian function E(etY ) = et
2/2,

we remove the factor 3/4. In this sense, we loose a factor 3/4 using the
Orlicz’s concentration property (4.15).

In this situation, the l.h.s. moment estimate in (4.14) takes the form

b(2m)2m =
(2m)!
m!

2−m ≤m! (8/3)m (4.16)

while, using Stirling’s approximation of the factorials, we obtain the
estimate

(2m)!
m!2

�
√

2/m 4m(≤ (8/3)m).

Remark 4.5. Given a sequence of independent Gaussian and centered
random variables Yi, s.t. E(Y 2

i ) = 1, for i ≥ 1, and any sequence of non
negative numbers ai, we have

πψ

(
n∑
i=1

aiYi

)
=
√

8/3

√√√√ n∑
i=1

a2
i :=

√
8/3‖a‖2

while
n∑
i=1

aiπψ(Yi) =
√

8/3
n∑
i=1

ai :=
√

8/3‖a‖1.

Notice that

‖a‖2 ≤ ‖a‖1 ≤
√
n ‖a‖2.
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When the coefficients ai are almost equal, we can lose a factor
√
n using

the triangle inequality, instead of estimating directly with the Orlicz
norm of the Gaussian mixture. In this sense, it is always preferable
to avoid the use of the triangle inequality, and to estimate directly
the Orlicz norms of linear combinations of “almost Gaussian” random
variables.

Now, we come to the proof of the lemma.

Proof of Lemma 4.6:
For any m ≥ 1, we have

x2m ≤m!
∑
n≥1

x2n

n!
= m! ψ(x)

⇓

E

([
Y

πψ(Y )

]2m
)
≤m!E

(
ψ

(
Y

πψ(Y )

))
≤m!.

For odd integers, we simply use the Cauchy-Schwarz inequality to check
that

E(Y 2m+1)2 ≤ E(Y 2m)E(Y 2(m+1)) ≤ (m + 1)!2 πψ(Y )2(2m+1).

This ends the proof of the first assertion.
We use Cauchy-Schwarz’s inequality to check that

E(Y 2m+1)2 ≤ E(Y 2m) E(Y 2(m+1)) ≤ (m + 1)!2 πψ(Y )2(2m+1)

for any non negative random variable Y , so that

E(Y 2m+1) ≤ (m + 1)! πψ(Y )(2m+1).

Recalling that (2m)! ≥m!2 and (m + 1) ≤ (2m + 1), we find that

E(etY ) =
∑
m≥0

t2m

(2m)!
E(Y 2m) +

∑
m≥0

t2m+1

(2m + 1)!
E(Y 2m+1)

≤
∑
m≥0

t2m

m!
πψ(Y )2m +

∑
m≥0

t2m+1

m!
πψ(Y )(2m+1)

= (1 + tπψ(Y ))exp(tπψ(Y ))2.
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On the other hand, using the estimate

tY =
(
tπψ(Y )√

2

)(√
2 Y

πψ(Y )

)
≤ (tπψ(Y ))2

4
+
(

Y

πψ(Y )

)2

we prove that

E(etY ) ≤ 2 exp
(

(tπψ(Y ))2

4

)
.

The end of the proof of the Laplace estimates is now completed. To
prove the last assertion, we use the fact that for any y ≥ 0

P(Y ≥ y) ≤ 2exp
(
− sup

t≥0
(ty − (tπψ(Y ))2/4)

)
= 2exp

[
−(y/πψ(Y ))2

]
.

This implies that

P(Y ≥ πψ(Y )
√
x + log2) ≤ 2exp[−(x + log2)] = e−x.

This ends the proof of the lemma.

4.3.3 Maximal Inequalities

Let us now assemble the Orlicz’s norm properties derived in subsec-
tion 4.3 to establish a series of more or less well known maximal inequal-
ities. More general results can be found in the books [81, 93], or in the
lecture notes [56].

We emphasize that in the literature on empirical processes, maxi-
mal inequalities are often presented in terms of a universal constant c
without further information on their magnitude. Now, we shall try to
estimate explicitly some of these universal constants.

To begin with, we consider a couple of maximal inequalities over
finite sets.

Lemma 4.7. For any finite collection of nonnegative random variables
(Yi)i∈I , and any collection of nonnegative numbers (ai)i∈I , we have

sup
i∈I

E(ψ(Yi/ai)) ≤ 1⇒ E

(
max
i∈I

Yi

)
≤ ψ−1(|I|) × max

i∈I
ai.
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Proof:
We check this claim using the following estimates

ψ

(
E(maxi∈I Yi)

maxi∈I ai

)
≤ ψ

(
E

(
max
i∈I

(Yi/ai)
))

≤ E

(
ψ
(

max
i∈I

(Yi/ai)
))

≤ E

(∑
i∈I

ψ((Yi/ai))

)
≤ |I|.

This ends the proof of the lemma.

Proceeding further, we prove the following lemma.

Lemma 4.8. For any finite collection of non negative random variables
(Yi)i∈I , we have

πψ

(
max
i∈I

Yi

)
≤
√

6log(8 + |I|) max
i∈I

πψ(Yi).

Proof:
Without lost of generality, we assume that maxi∈I πψ(Yi) ≤ 1, and I =
{1, . . . , |I|}. In this situation, it suffices to check that

ψ

(
max1≤i≤|I|Yi√
6log(8 + |I|)

)
≤ ψ

(
max

1≤i≤|I|

Yi√
6log(8 + i)

)
≤ 1.

First, we notice that for any i ≥ 1 and x ≥ 3/2 we have

1
log(8 + i)

+
1

logx
≤ 1

log9
+

1
log(3/2)

≤ 3

and therefore

3log(8 + i) log(x) ≥ log(x(8 + i)).

We check the first estimate using the fact that

log(3) ≤ 5log(3/2)⇒ log(3) + log(3/2)

≤ 6log(3/2) ≤ 3log(3/2) log(9).
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Using these observations, we have

P

 max
1≤i≤|I|

(
Yi√

6log(8 + i)

)2

> logx


= P

 max
1≤i≤|I|

(
Yi√

6log(x) log(8 + i)

)2

> 1


≤ P

(
max

1≤i≤|I|

Yi√
2log(x(8 + i))

> 1

)

≤
|I|∑
i=1

P(Yi >
√

2log(x(8 + i))) ≤
|I|∑
i=1

e−2log(x(8+i))E(eY
2
i ).

This implies that

P

 max
1≤i≤|I|

(
Yi√

6log(8 + i)

)2

> logx


≤ 2
x2

|I|∑
i=1

1
(8 + i)2

≤ 2
x2

∫ ∞

8

1
u2 du =

1
(2x)2

.

If we set

ZI := exp


(

max
1≤i≤|I|

Yi√
6log(8 + i)

)2


then we have

E(ZI) =
∫ ∞

0
P(ZI > x)dx

≤ 3
2

+
∫ ∞

3
2

1
(2x)2

dx =
3
2

(
1 +

1
4

)
=

15
8
≤ 2

and therefore

ψ

(
max

1≤i≤|I|

(
Yi√

6log(8 + i)

))
≤ 1.

This ends the proof of the lemma.
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The following technical lemma is pivotal in the analysis of maximal
inequalities for sequences of random variables indexed by infinite but
separable subsets equipped with a pseudo-metric, under some Lipschitz
regularity conditions w.r.t. the Orlicz’s norm.

Lemma 4.9. We assume that the index set (I,d) is a separable, and
totally bounded pseudo-metric space, with finite diameter

d(I) := sup
(i,i)∈I2

d(i, j) <∞.

We let (Yi)i∈I be a separable and R-valued stochastic process
indexed by I and such that

πψ(Yi − Yj) ≤ c d(i, j)

for some finite constant c <∞. We also assume that Yi0 = 0, for some
i0 ∈ I. Then, we have

πψ(sup
i∈I

Yi) ≤ 12c
∫ d(I)

0

√
6log(8 + N (I,d,ε)2) dε.

Proof:
Replacing Yi by Yi/d(I), and d by d/d(I), there is no loss of generality
to assume that d(I) ≤ 1. In the same way, replacing Yi by Yi/c, we can
also assume that c ≤ 1. For a given finite subset J ⊂ I, with i0 ∈ J ,
we let Jk = {ik1, . . . , iknk} ⊂ J , be the centers of nk = N (J,d,2−k) balls
of radius at most 2−k covering J . For k = 0, we set J0 = {i0}. We also
consider the mapping θk : i ∈ J → θk(i) ∈ Jk s.t.

sup
i∈J

d(θk(i), i) ≤ 2−k.

The set J being finite, there exists some integer k�J s.t. d(θk(i), i) = 0,
for any k ≥ k�J ; and therefore Yi = Yθk(i), for any i ∈ J , and any k ≥ k�J .
This implies that

Yi =
k�J∑
k=1

[Yθk(i) − Yθk−1(i)].
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We also notice that

d(θk(i),θk−1(i)) ≤ d(θk(i), i) + d(i,θk−1(i)) ≤ 2−k + 2−(k−1) = 3 × 2−k

and

sup
(i,j)∈(Jk×Jk−1) : d(i,j)≤3×2−k

πψ(Yi − Yj) ≤ 3 × 2−k.

Using Lemma 4.8 we prove that

πψ(sup
i∈J

Yi) ≤
k�J∑
k=1

πψ(sup
i∈J

[Yθk(i) − Yθk−1(i))]

≤ 3
k�J∑
k=1

√
6log(8 + N (J,d,2−k)2) 2−k.

On the other hand, we have

2(2−k − 2−(k+1)) = 2−k

and√
6log(8 + N (J,d,2−k)2)2−k ≤ 2

∫ 2−k

2−(k+1)

√
6log(8 + N (J,d,ε)2)dε

from which we conclude that

πψ(sup
i∈J

Yi) ≤ 6
∫ 1/2

0

√
6log(8 + N (J,d,ε)2)dε.

Using the fact that the ε-balls with center in I and intersecting J are
necessarily contained in an (2ε)-ball with center in J , we also have

N (J,d,2ε) ≤ N (I,d,ε).

This implies that

πψ(sup
i∈J

Yi) ≤ 12
∫ 1

0

√
6log(8 + N (I,d,ε)2)dε.

The end of the proof is now a direct consequence of the monotone con-
vergence theorem with increasing series of finite subsets exhausting I.
This ends the proof of the lemma.
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4.4 Marginal Inequalities

This subsection is mainly concerned with the proof of the Theorem 4.1.
This result is a more or less direct consequence of the following technical
lemma, which is of separate interest.

Lemma 4.10. Let Mn :=
∑

0≤p≤n∆p be a real valued martingale with
symmetric and independent increments (∆n)n≥0. For any integer m ≥
1, and any n ≥ 0, we have

E(|Mn|m)
1
m ≤ b(m)E([M ]m

′/2
n )

1
m′ (4.17)

with the smallest even integer m′ ≥m, the bracket process

[M ]n :=
∑

0≤p≤n
∆2
p

and the collection of constants b(m) defined in (1.27). In addition, for
any m ≥ 2, we have

E(|Mn|m)
1
m ≤ b(m)

√
(n + 1)

 1
n + 1

∑
0≤p≤n

E(|∆p|m
′
)

 1
m′

. (4.18)

Proof of Theorem 4.1: We consider a collection of independent copies
X ′ = (X ′i)i≥1 of the random variables X = (Xi)i≥1. We consider the
martingale sequence M = (Mi)1≤i≤N with symmetric and independent
increments defined for any 1 ≤ j ≤ N by the following formula

Mj :=
1√
N

j∑
i=1

[f(Xi) − f(X ′i)].

By construction, we have

V (X)(f) =
1√
N

N∑
i=1

(f(Xi) − µi(f)) = E(MN |X).

Combining this conditioning property with the estimates provided in
Lemma 4.10, the proof of the first assertion is now easily completed.
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The Orlicz norm estimate (4.4) comes from the fact that for any
f ∈ Osc(E), we have

E(|V (X)(f)|2m) ≤ b(2m)2m = E(U2m)

for a Gaussian and centered random variable U , s.t. E(U2) = 1. Using
the comparison lemma, lemma 4.12, we find that

πψ(V (X)(f)) ≤ πψ(U) =
√

8/3.

Applying Kintchine’s inequalities (4.17), we prove that

E(|V (X)(f)|m)
1
m ≤ b(m)E

[ 1
N

N∑
i=1

[f(Xj) − f(X ′j)]2
]m′/21/m′

.

By construction, we notice that for any f ∈ osc(E), and any p ≥ 2,
we have

1
N

N∑
j=1

E([f(Xj) − f(X ′j)]p) ≤ 2σ(f)2.

By the Rosenthal type inequality stated in Theorem 2.5 in [65],
for any sequence of nonnegative, independent and bounded random
variables (Yi)i≥1, we have the rough estimate

E

[
N∑
i=1

Y p
i

]1/p

≤ 2pmax

 N∑
i=1

E(Yi),

[
N∑
i=1

E(Y p
i )

]1/p


for any p ≥ 1. If we take p = m′/2, and

Yi =
1
N

[f(Xi) − f(X ′i)]2

we prove that

E

[ 1
N

N∑
i=1

[f(Xi) − f(X ′i)]2
]m′/22/m′

≤ 4mmax
(

2σ(f)2,
1

N1− 2
m′

[
2σ(f)2

]2/m′
)
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for any f ∈ osc(E). Using Stirling’s approximation of factorials
√

2πnnne−n ≤ n! ≤ e
√

2πnnne−n

for any p ≥ 1 we have

(2p)p/b(2p)2p = 22pppp!/(2p)! ≤ ep+1 ≤ 32p

and

(2p + 1)p+1/2/b(2p + 1)2p+1 = (2p + 1)p+12pp!/(2p + 1)!

≤ ep+2 ≤ 32p+1.

This implies that

mm/2/b(m)m ≤ 3m⇒
√
m b(m) ≤ 3b(m)2

for any m ≥ 1. This ends the proof of the theorem.

Now, we come to the proof of the lemma.

Proof of Lemma 4.10:
We prove the lemma by induction on the parameter n. The result is
clearly satisfied for n = 0. Suppose the estimate (4.17) is true at rank
(n − 1). To prove the result at rank n, we use the binomial decompo-
sition

(Mn−1 + ∆n)2m =
2m∑
p=0

(
2m
p

)
M2m−p
n−1 (∆n)p.

Using the symmetry condition, all the odd moments of ∆n are null.
Consequently, we find that

E((Mn−1 + ∆n)2m) =
m∑
p=0

(
2m
p

)
E(M2(m−p)

n−1 )E(∆2p
n ).

Using the induction hypothesis, we prove that the above expression is
upper bounded by the quantity

m∑
p=0

(
2m
2p

)
2−(m−p)(2(m − p))(m−p)E([M ]m−p

n−1 )E(∆2p
n ).

To take the final step, we use the fact that(
2m
2p

)
2−(m−p)(2(m − p))(m−p) =

2−m(2m)m
2−p(2p)p

(
m

p

)
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and (2p)p ≥ 2p, to conclude that

E((Mn−1 + ∆n)2m) ≤ 2−m(2m)m
m∑
p=0

(
m

p

)
E([M ]m−p

n−1 )E(∆2p
n )

= 2−m(2m)mE([M ]mn ).

For odd integers we use the Cauchy-Schwarz inequality twice to deduce
that

E(|Mn|2m+1)2 ≤ E(M2m
n )E(M2(m+1)

n )

≤ 2−(2m+1)(2m)m(2(m + 1))(m+1)E([M ]m+1
n )

2m+1
m+1 .

We conclude that

E(|Mn|2m+1) ≤ 2−(m+1/2) (2m + 1)(m+1)√
m + 1/2

E([M ]m+1
n )1− 1

2(m+1) .

The proof of (4.17) is now completed. Now, we come to the proof of
(4.18). For any m′ ≥ 2 we have 1

n + 1

∑
0≤p≤n

∆2
p

m′/2

≤ 1
n + 1

∑
0≤p≤n

E(|∆p|m
′
)

and therefore

E([M ]m
′/2

n )
1
m′ ≤ (n + 1)1/2

 1
n + 1

∑
0≤p≤n

E(|∆p|m
′
)

 1
m′

.

This ends the proof of the lemma.

4.5 Maximal Inequalities

To prove Theorem 4.3, we begin with the basic symmetrization tech-
nique. We consider a collection of independent copies X ′ = (X ′i)i≥1

of the random variables X = (Xi)i≥1. Let ε = (εi)i≥1 constitute a
sequence that is independent and identically distributed with

P (ε1 = +1) = P (ε1 = −1) = 1/2.

We also consider the empirical random field sequences

Vε(X) :=
√
Nmε(X).
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We also assume that (ε,X,X ′) are independent. We associate
with the pairs (ε,X) and (ε,X ′) the random measures mε(X) =
1
N

∑N
i=1 εi δXi and mε(X ′) = 1

N

∑N
i=1 εi δX′i .

We notice that

‖m(X) − µ‖pF = sup
f∈F
|m(X)(f) − E(m(X ′)(f))|p

≤ E(‖m(X) − m(X ′)‖pF |X)

and, in view of the symmetry of the random variables (f(Xi) −
f(X ′i))i≥1 we have

E(‖m(X) − m(X ′)‖pF ) = E(‖mε(X) − mε(X ′)‖pF )

from which we conclude that

E(‖V (X)‖pF ) ≤ 2pE(‖Vε(X)‖pF ). (4.19)

By using the Chernov-Hoeffding inequality for any x1, . . . ,xN ∈ E, the
empirical process

f −→ Vε(x)(f) :=
√
Nmε(x)(f)

is sub-Gaussian for the norm ‖f‖L2(m(x)) = m(x)(f2)1/2. Namely, for
any couple of functions f,g and any δ > 0 we have

E([Vε(x)(f) − Vε(x)(g)]2) = ‖f − g‖2L2(m(x))

and by Hoeffding’s inequality

P (|Vε(x)(f) − Vε(x)(g)| ≥ δ) ≤ 2e−
1
2 δ

2/‖f−g‖2
L2(m(x)) .

If we set Z = ( Vε(x)(f)√
6‖f‖L2(m(x))

)2, then we find that

E(eZ) − 1 =
∫ ∞

0
etP(Z ≥ t)dt

=
∫ ∞

0
etP(|Vε(x)(f)| ≥

√
6t‖f‖L2(m(x)))dt

≤ 2
∫ ∞

0
ete−3tdt = 1

from which we conclude that

πψ(Vε(x)(f) − Vε(x)(g)) ≤
√

6‖f − g‖L2(m(x)).



4.6 Cramér-Chernov Inequalities 321

Combining the maximal inequalities stated in Lemma 4.9 and the
conditioning property (4.13) we find that

πψ(‖Vε(X)‖F ) ≤ J(F)

with

J(F) ≤ 262
∫ 2

0

√
log(8 + N (F , ε)2) dε ≤ cI(F) <∞

for some finite universal constant c <∞. Combining (4.19) with (4.12),
this implies that

πψ(‖V (X)‖F ) ≤ 2 J(F).

This ends the proof of the theorem.

4.6 Cramér-Chernov Inequalities

4.6.1 Some Preliminary Convex Analysis

Here, we present some basic Cramér-Chernov tools to derive quantita-
tive concentration inequalities. We begin by recalling some preliminary
convex analysis on Legendre-Fenchel transforms. We associate with any
convex function

L : t ∈ Dom(L) → L(t) ∈ R+

defined in some domain Dom(L) ⊂ R+, with L(0) = 0, the Legendre-
Fenchel transform L� defined by the variational formula

∀λ ≥ 0 L�(λ) := sup
t∈Dom(L)

(λt − L(t)).

Note that L� is a convex increasing function with L�(0) = 0 and its
inverse (L�)−1 is a concave increasing function.

We let LA be the log-Laplace transform of a random variable A
defined on some domain Dom(LA) ⊂ R+ by the formula

LA(t) := logE(etA).

Hölder’s inequality implies that LA is convex. Using the Cramér-
Chernov-Chebychev inequality, we find that

logP(A ≥ λ) ≤ −L�A(λ) and P(A ≥ (L�A)−1(x)) ≤ e−x

for any λ ≥ 0 and any x ≥ 0.
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The next lemma provides some key properties of Legendre-Fenchel
transforms, which will be used in several places to further the develop-
ment of this monograph.

Lemma 4.11.

• For any convex functions (L1,L2), such that

∀ t ∈ Dom(L2) L1(t) ≤ L2(t) and Dom(L2) ⊂ Dom(L1)

we have

L�2 ≤ L�1 and (L�1)
−1 ≤ (L�2)

−1

• if we have

∀ t ∈ v−1Dom(L2) = Dom(L1) L1(t) = u L2(vt)

for some positive numbers (u,v) ∈ R2
+, then we have

L�1(λ) = u L�2

(
λ

uv

)
and (L�1)

−1(x) = uv (L�2)
−1
(x
u

)
for any λ ≥ 0, and any ∀x ≥ 0.

• Let A be a random variable with a finite log-Laplace trans-
form. For any a ∈ R, we have

LA(t) = −at + LA+a(t)

as well as

L�A(λ) = L�A+a(λ + a) and (L�A)−1(x) = −a + (L�A+a)
−1(x).

We illustrate this technical lemma with the detailed analysis of three
convex increasing functions, which will be of use in the further devel-
opment of this monograph

• L(t) = t2/(1 − t), t ∈ [0,1]
• L0(t) := −t − 1

2 log(1 − 2t), t ∈ [0,1/2].
• L1(t) := et − 1 − t.
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In the first situation, we readily check that

L′(t) =
1

(1 − t)2 − 1 and L′′(t) =
2

(1 − t)3 .

An elementary manipulation yields that

L�(λ) = (
√
λ + 1 − 1)2

and

(L�)−1(x) = (1 +
√
x)2 − 1 = x + 2

√
x.

In the second situation, we have

L′
0(t) =

1
1 − 2t

− 1 and L′′
0(t) =

2
(1 − 2t)2

from which we find that

L�0(λ) =
1
2
(λ − log(1 + λ)).

We also notice that

L0(t) = t2
∑
p≥0

2
2 + p

(2t)p ≤ L0(t) :=
t2

1 − 2t
=

1
4
L(2t)

for every t ∈ [0,1/2[ Using Lemma 4.11, we prove that

L
�
0(λ) =

1
4
L�(2λ) ≤ L�0(λ)

(L�0)
−1(x) ≤ (L�0)

−1(x) =
1
2
(L�)−1(4x) = 2(x +

√
x). (4.20)

In the third situation, we have

L′
1(t) = et − 1 and L′′

1(t) = et

from which we conclude that

L�1(λ) = (1 + λ) log(1 + λ) − λ.

On the other hand, using the fact that 2 × 3p ≤ (p + 2)!, for any p ≥ 0,
we prove that we have

L1(t) =
t2

2

∑
p≥0

2 × 3p

(p + 2)!

(
t

3

)p
≤ L1(t) :=

t2

2(1 − t/3)
=

9
2
L

(
t

3

)
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for every t ∈ [0,1/3]. This implies that

L
�
1(λ) =

9
2
L�(

2λ
3

) ≤ L�1(λ)

and therefore

(L�1)
−1(x) ≤ (L�1)

−1(x) =
3
2
(L�)−1

(
2x
9

)
=
(x

3
+
√

2x
)
. (4.21)

Another crucial ingredient in the concentration analysis of the sum
of two random variables is the deep technical lemma of Bretagnolle
and Rio [84]. In the further development of this section, we use this
argument to obtain a large family of concentration inequalities that
are asymptotically “almost sharp” in a wide variety of situations.

Lemma 4.12 (Bretagnolle & Rio [84]). For any pair of random
variables A and B with a finite log-Laplace transform in the neighbor-
hood of 0, we have

∀x ≥ 0 (L�A+B)−1(x) ≤ (L�A)−1(x) + (L�B)−1(x). (4.22)

We also quote the following reverse type formulae that allows us
to turn most of the concentration inequalities developed in this mono-
graph into Bernstein-style exponential inequalities.

Lemma 4.13. For any (u,v) ∈ R+, we have

u(L�0)
−1(x) + v (L�1)

−1(x) ≤ (L�a(u,v),b(u,v))
−1(x)

with the functions

a(u,v) :=
(
2u +

v

3

)
and b(u,v) := (

√
2 u + v)2

and the Laplace function

La,b(t) =
b

2a2 L(at) with L�a,b(λ) ≥ λ2

2(b + λa)
.
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Proof. Using the estimates (4.20) and (4.21) we prove that

u(L�0)
−1(x) + v(L�1)

−1(x) ≤ 2u(x +
√
x) + v

(x
3

+
√

2x
)

= a(u,v)x +
√

2x b(u,v)

with

a(u,v) :=
(
2u +

v

3

)
and b(u,v) := (

√
2 u + v)2.

Now, using Lemma 4.11, we observe that

ax +
√

2xb = (L�a,b)
−1(x) with La,b(t) =

b

2a2L(at). (4.23)

Finally, we have

L�(λ) = (
√
λ + 1 − 1)2 ≥ (λ/2)2

(1 + λ/2)
The r.h.s. inequality can be checked easily using the fact that

(
√

1 + 2λ − 1)2 = 2
(

(1 + λ)2 − (1 + 2λ)
(1 + λ) +

√
1 + 2λ

)
≥ λ2

(1 + λ)
(⇐
√

1 + 2λ ≤ (1 + λ)).

This implies that

L�a,b(λ) =
b

2a2 L
�

(
2a
b
λ

)
≥ λ2

2(b + λa)
.

This ends the proof of the lemma.

4.6.2 Concentration inequalities

Now, we investigate some elementary concentration inequalities for
bounded and chi-square type random variables. We also apply these
results to empirical processes associated with independent random
variables.

Proposition 4.14. Let A be a centered random variable such that
A ≤ 1. If we set σA = E(A2)1/2, then for any t ≥ 0, we have

LA(t) ≤ σ2
A L1(t). (4.24)
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In addition, the probability of the following events

A ≤ σ2
A (L�1)

−1
(
x

σ2
A

)
≤ x

3
+ σA

√
2x

is greater than 1 − e−x, for any x ≥ 0.

Proof:
To prove (4.24) we use the fact that the decomposition

E(etA − 1 − A) = E(L1(tA)1X<0) + E(L1(tA)1X∈[0,1]).

Since we have

∀x ≤ 0 L1(tx) ≤ (tx)2/2

and

∀x ∈ [0,1] L1(tx) = x2
∑
n≥2

xn−2tn/n! ≤ x2L1(t)

we conclude that

E(etA) ≤ 1 +
t2

2
E(A21A<0) + L1(t)E(A21A∈[0,1])

≤ 1 + L1(t)σ2
A ≤ eL1(t)σ2

A .

Using Lemma 4.11, we readily prove that

(L�A)−1(x) ≤ σ2
A (L�1)

−1
(
x

σ2
A

)
≤ x

3
+ σA

√
2x.

This ends the proof of the proposition.

Proposition 4.15. For any measurable function f , with 0 < osc
(f) ≤ a, any N ≥ 1, and any t ≥ 0, we have

L√
NV (X)(f)(t) ≤ N σ2(f/a) L1(at). (4.25)

In addition, the probability of the following events

V (X)(f) ≤ a−1σ2(f)
√
N (L�1)

−1
(

xa2

Nσ2(f)

)
≤ xa

3
√
N

+
√

2xσ(f)2 (4.26)

is greater than 1 − e−x, for any x ≥ 0.
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Proof:
Replacing f by f/a, there is no loss of generality to assume that
a = 1. Using the same arguments as those used in the proof of Propo-
sition 4.14, we find that

logE(et(f(Xi)−µi(f))) ≤ µi([f − µi(f)]2) L1(t)

from which we conclude that

LN (t) := logE(et
√
N V (X)(f))

=
N∑
i=1

logE(et(f(Xi)−µi(f))) ≤ LN (t) := Nσ2(f)L1(t)

By Lemma 4.11, we have

(L�N )−1(x) ≤ (L�N )−1(x) = Nσ2(f) (L�1)
−1
(

x

Nσ2(f)

)
.

This ends the proof of the proposition.

Proposition 4.16. For any random variable B such that

E(|B|m)1/m ≤ b(2m)2 c with c <∞

for any m ≥ 1, with the finite constants b(m) defined in (1.27), we have

LB(t) ≤ ct + L0(ct) (4.27)

for any 0 ≤ ct < 1/2. In addition, the probability of the following events

B ≤ c[1 + (L�0)
−1(x)] ≤ c[1 + 2(x +

√
x)]

is greater than 1 − e−x, for any x ≥ 0.

Proof:
Replacing B by B/c, there is no loss of generality to assume that c = 1.
We recall that b(2m)2m = E(U2m) for every centered Gaussian random
variable with E(U2) = 1 and

∀ t ∈ [0,1/2)
∑
m≥0

tm

m!
b(2m)2m =

1√
1 − 2t

= E(exp{tU2}).
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This implies that

E(exp{tB}) ≤
∑
m≥0

tm

m!
b(2m)2m =

1√
1 − 2t

for any 0 ≤ t < 1/2. In other words, we have

LB−1(t) := logE(exp{t(B − 1)} ≤ L0(t)

and

LB(t) = t + LB−1(t) ≤ t + L0(t)

from which we conclude that

L�B(λ) = L�B−1(λ − 1)⇒ (L�B)−1(x)

= 1 + (L�B−1)
−1(x) ≤ 1 + (L�0)

−1(x).

This ends the proof of the proposition.

Remark 4.6. We end with some comments on the estimate (4.5).
Using the fact that b(m) ≤ b(2m) (see, for instance, (1.28)) we readily
deduce from (4.5) that

E(|V (X)(f)|m)
1
m ≤ 6

√
2 b(2m)2σ(f)

for any m ≥ 1, and for any N s.t. 2σ2(f)N ≥ 1. Thus, if we set

B = |V (X)(f)| and c = 6
√

2 σ(f)

in Proposition 4.16, we prove that for any N s.t. 2σ2(f)N ≥ 1, and for
any 0 ≤ t < 1/(12

√
2σ(f))

L|V (X)(f)|(t) ≤ 6
√

2σ(f)t + L0(6
√

2 σ(f)t).

In addition, the probability of the following events

|V (X)(f)| ≤ 6
√

2σ(f)[1 + (L�0)
−1(x)]

≤ 6
√

2σ(f)[1 + 2(x +
√
x)]

is greater than 1 − e−x, for any x ≥ 0.
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When N is chosen so that 2σ2(f)N ≥ 1, using (4.26) we improve
the above inequality. Indeed, using this concentration inequality implies
that for any f ∈ Osc(E), the probability of the following events

V (X)(f) ≤
√

2σ(f)
(x

3
+
√
x
)

(4.28)

is greater than 1 − e−x, for any x ≥ 0.

4.7 Perturbation Analysis

This subsection is mainly concerned with the Proof of Theorem 4.2, and
Theorem 4.4. We recall that for any second-order smooth function F

on Rd, for some d ≥ 1, F (m(X)(f)) stands for the random functionals
defined by

f = (fi)1≤i≤d ∈ Osc(E)d

→ F (m(X)(f)) = F (m(X)(f1), . . . ,m(X)(fd)) ∈ R.

Both results rely on the following second order decomposition, which
is of independent interest.

Proposition 4.17. For any N ≥ 1, we have the decomposition

√
N [F (m(X)(f)) − F (µ(f))] = V (X)[Dµ(F )(f)] +

1√
N
R(X)(f)

with a first-order functional Dµ(F )(f) defined in (4.7), and a second-
order term R(X)(f) such that

E(|R(X)(f)|m)1/m ≤ 1
2
b(2m)2‖∇2Ff‖1

for any m ≥ 1, with the parameter defined in (4.8).

Proof:
Using a Taylor first-order expansion, we have

√
N [F (m(X)(f)) − F (µ(f))] =∇F (µ(f))V (X)(f)� +

1√
N
R(X)(f)
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with the second-order remainder term

R(X)(f)

:=
∫ 1

0
(1 − t)V (X)(f)∇2F (tm(X)(f) + (1 − t)µ(f)) V (X)(f)�dt.

We notice that

∇F (µ(f)) V (X)(f)� = V (X)[∇F (µ(f)) f�]

and

osc(∇F (µ(f))f�) ≤
d∑
i=1

∣∣∣∣ ∂F∂ui (µ(f))
∣∣∣∣ .

It is also easily checked that

E(|R(X)(f)|m)1/m

≤ 1
2

d∑
i,j=1

sup
ν∈P(E)

∣∣∣∣ ∂2F

∂ui∂uj
(ν(f))

∣∣∣∣E(|V (X)(fi)V (X)(fj)|m)1/m

and for any 1 ≤ i, j ≤ d, we have

E(|V (X)(fi)V (X)(fj)|m)1/m

≤ E(V (X)(fj)2m)1/(2m)E(V (X)(fj)2m)1/(2m) ≤ b(2m)2.

This ends the proof of the proposition.

We are now in a position to prove Theorem 4.2.

Proof of Theorem 4.2:
We set

N [F (m(X)(f)) − F (µ(f))] = A + B

with

A =
√
N V (X)[Dµ(F )(f)] and B = R(X)(f).

Combining Proposition 4.15 with Proposition 4.16, if we set

g = Dµ(F )(f), a = ‖∇F (µ(f))‖1 and c =
1
2
‖∇2Ff‖1
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then we have

LA(t) ≤ Nσ2(g/a)L1(at)

LB(t) = ct + LB−c(t) with LB−c(t) ≤ L0(ct).

On the other hand, we have

(L�A)−1(x) ≤ N a σ2(g/a)(L�1)
−1
(

x

Nσ2(g/a)

)
and using the fact that

LB(t) = ct + LB−c(t)

we prove that

L�B(λ) = L�B−c(λ − c)⇒ (L�B)−1(x) = c + (L�B−c)
−1(x)

≤ c(1 + (L�0)
−1(x)).

Using Bretagnolle-Rio’s lemma, we find that

(L�A+B)−1(x) ≤ (L�A)−1(x) + (L�B)−1(x)

≤ Na−1σ2(g)(L�1)
−1
(

xa2

Nσ2(g)

)
+ c(1 + (L�0)

−1(x)).

This ends the proof of the theorem.

Now, we come to the proof of Theorem 4.4.

Proof of Theorem 4.4:
We consider the empirical processes

f ∈ Fi →m(X)(f) ∈ R

associated with d classes of functions Fi, 1 ≤ i ≤ d, defined in subsec-
tion 4.1. We further assume that ‖fi‖ ∨ osc(fi) ≤ 1, for any fi ∈ Fi,
and we set

πψ(‖V (X)‖F ) := sup
1≤i≤d

πψ(‖V (X)‖Fi).

Using Theorem 4.3, we have that

πψ(‖V (X)‖F ) ≤ 122
∫ 2

0

√
log(8 + N (F , ε)2)dε
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with

N (F , ε) := sup
1≤i≤d

N (Fi, ε).

Using Proposition 4.17, for any collection of functions

f = (fi)1≤i≤d ∈ F :=
d∏
i=1

Fi

we have
√
N sup

f∈F
|F (m(X)(f)) − F (µ(f))|

≤ ‖∇Fµ‖∞
d∑
i=1

‖V (X)‖Fi +
d

2
√
N
‖∇2F‖∞

d∑
i=1

‖V (X)‖2Fi .

If we set

A := ‖∇Fµ‖∞
d∑
i=1

‖V (X)‖Fi

then we find that

πψ(A) ≤ ‖∇Fµ‖∞
d∑
i=1

πψ(‖V (X)‖Fi).

By Lemma 4.6, this implies that

E(etA) ≤ (1 + tπψ(A)) e(tπψ(A))2 ≤ eat+ 1
2 t

2b

with b = 2a2 and

a = πψ(A) ≤ ‖∇Fµ‖∞
d∑
i=1

πψ(‖V (X)‖Fi).

Notice that

LA−a(t) ≤ L(t) =
1
2
t2b.

Recalling that

L�(λ) =
λ2

2b
and (L�)−1(x) =

√
2bx
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we conclude that

(L�A)−1(x) = a + (L�A−a)
−1(x)

≤ a +
√

2bx = πψ(A)(1 + 2
√
x).

Now, we come to the analysis of the second-order term defined by

B =
d

2
√
N
‖∇2F‖∞

d∑
i=1

‖V (X)‖2Fi .

Using the inequality (
d∑
i=1

ai

)m
≤ dm−1

d∑
i=1

ami

which is valid for any d ≥ 1, any m ≥ 1, and any sequence of real num-
bers (ai)1≤i≤d ∈ Rd

+, we prove that

E(Bm) ≤ βmdm−1
d∑
i=1

E(‖V (X)‖2mFi )

with

β :=
d

2
√
N
‖∇2F‖∞.

Combining Lemma 4.6 with Theorem 4.3, we conclude that

E(Bm) ≤m! (β d πψ(‖V (X)‖F )2)m.

If we set

b := β d πψ(‖V (X)‖F )2

then we have that

E(etB) ≤
∑
m≥0

(bt)m =
1

1 − bt = ebt × e2L0(bt/2)

for any 0 ≤ t < 1/b, with the convex increasing function L0 introduced
on page 322, so that

2L0(bt/2) = −bt − log(1 − bt).
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Using lemma 4.11, we prove that

LB−b(t) ≤ 2L0(bt/2)

and

(L�B)−1(x) = b + (L�B−b)
−1(x)

≤ b
(
1 + (L�0)

−1
(x

2

))
=

1
2
√
N
‖∇2F‖∞(d πψ(‖V (X)‖F ))2

(
1 + (L�0)

−1
(x

2

))
.

Finally, using Bretagnolle-Rio’s lemma, we prove that

(L�A+B)−1(x)

≤ dπψ(‖V (X)‖F )
[
‖∇Fµ‖∞(1 + 2

√
x)

+
1

2
√
N
‖∇2F‖∞(dπψ(‖V (X)‖F ))

(
1 + (L�0)

−1
(x

2

))]
.

This ends the Proof of the Theorem 4.4.



5
Interacting Empirical Processes

5.1 Introduction

Section 5 is concerned with the concentration analysis of sequences of
empirical processes associated with conditionally independent random
variables.

In preparation for the work in Section 6 on the collection of
Feynman-Kac particle models introduced in subsection 1.4, we consider
a general class of interaction particle processes with nonnecessarily
mean field type dependency.

First, we analyze the concentration properties of integrals of local
sampling error sequences, with general random but predictable test
functions. These results will be used to analyze the concentration prop-
erties of the first-order fluctuation terms of the particle models.

We also present a stochastic perturbation technique to analyze the
second-order type decompositions. We consider finite marginal models
and empirical processes. We close the section with an analysis of the
covering numbers and the entropy parameters of linear transformation
of classes of functions.

This subsection ends with a precise description of the main mathe-
matical objects we shall analyze further in the section.

335



336 Interacting Empirical Processes

We let X(N)
n = (X(N,i)

n )1≤i≤N be a Markov chain on some product
state spaces ENn , for some N ≥ 1. We also let GNn be the increasing
σ-field generated by the random sequence (X(N)

p )0≤p≤n. We further
assume that (X(N,i)

n )1≤i≤N are conditionally independent, given GNn−1.
As is traditional, when there is no possible confusion, we simplify

notation and suppress the index (.)(N) so that we write (Xn,X
i
n,Gn)

instead of (X(N)
n ,X

(N,i)
n ,GNn ).

In this simplified notation, we also denote by µin the conditional
distribution of the random state Xi

n given the Gn−1; that is, we have
that

µin = Law(Xi
n | Gn−1).

Notice that the conditional distributions

µn :=
1
N

N∑
i=1

µin

represent the local conditional mean of the occupation measures

m(Xn) :=
1
N

N∑
i=1

δXi
n
.

At this level of generality, we cannot obtain any kind of concentra-
tion properties for the deviations of the occupation measures m(Xn)
around some deterministic limiting value.

In Section 6, dedicated to particle approximations of Feynman-Kac
measures ηn, we shall deal with mean field type random measures µin,
in the sense that the randomness only depends on the location of the
random state Xi

n−1 and on the current occupation measure m(Xn−1).
In this situation, the fluctuation of m(Xn) around the limiting deter-
ministic measures ηn will be expressed in terms of second-order Taylor’s
type expansions w.r.t. the local sampling errors

V (Xp) =
√
N(m(Xp) − µp)

from the origin p = 0, up to the current time p = n.
The first-order terms will be expressed in terms of integral formulae

of predictable functions fp w.r.t. the local sampling error measures
V (Xp). These stochastic first-order expansions are defined below.
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Definition 5.1. For any sequence of Gn−1-measurable random func-
tion fn ∈ Osc(En), and any numbers an ∈ R+, we set

Vn(X)(f) =
n∑
p=0

ap V (Xp)(fp). (5.1)

For any Gn−1-measurable random function fn ∈ Osc(En), we have

E(V (Xn)(fn)|Gn−1) = 0

E(V (Xn)(fn)2|Gn−1) = σNn (fn)2 :=
1
N

N∑
i=1

µin([fn − µin(fn)]2).

We also assume that we have an almost sure estimate

sup
N≥1

σNn (fn)2 ≤ σ2
n for some positive constant σ2

n ≤ 1. (5.2)

5.2 Finite Marginal Models

We will now derive a quantitative contraction inequality for the general
random fields models of the following form

Wn(X)(f) = Vn(X)(f) +
1√
N

Rn(X)(f) (5.3)

with Vn(X)(f) defined in (5.1), and a second-order term such that

E(|Rn(X)(f)|m)1/m ≤ b(2m)2cn

for any m ≥ 1, for some finite constant cn <∞ whose values only
depend on the parameter n.

For a null remainder term Rn(X)(f) = 0, these concentration prop-
erties are easily derived using Proposition 4.15.

Proposition 5.1. We let Vn(X)(f) be the random field sequence
defined in (5.1). For any t ≥ 0, we have that

L√
NVn(X)(f)(t) ≤ N σ2

n L1(ta�n)
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with the parameters

σ2
n :=

∑
0≤p≤n

σ2
p and a�n := max

0≤p≤n
ap.

In addition, the probability of the following events

Vn(X)(f) ≤
√
Na�nσ

2
n(L

�
1)

−1
(

x

Nσ2
n

)
≤ a�n

(
x

3
√
N

+
√

2σ2
nx

)
is greater than 1 − e−x, for any x ≥ 0.

Proof:
By Proposition 4.15, we have

E(et
√
NVn(X)(f)|Gn−1) = et

√
NVn−1(X)(f) E(e(tan)

√
NV (Xn)(fn)|Gn−1)

with

logE(e(tan)
√
NV (Xn)(fn)|Gn−1) ≤ Nσ2

n L1(ta�n).

This clearly implies that

L√
NVn(X)(f)(t) ≤ L1(t) := N σ2

nL1(ta�n).

Using Lemma 4.11, we conclude that

(L�√
NVn(X)(f))

−1(x) ≤ (L�1)
−1(x)

= Na�nσ
2
n (L�1)

−1
(

x

Nσ2
n

)
.

The last assertion is a direct consequence of (4.21). This ends the
proof of the proposition.

Theorem 5.2. We let Wn(X)(f) be the random field sequence defined
in (5.3).

In this situation, the probability of the events
√
N Wn(X)(f) ≤ cn (1 + (L�0)

−1(x)) + Na�n σ
2
n (L�1)

−1
(

x

Nσ2
n

)
is greater than 1 − e−x, for any x ≥ 0. In the above display, σn stands
for the variance parameter definition in Proposition 5.1.
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Proof:
We set

√
N Wn(X)(f) = An + Bn, with

An =
√
NVn(X)(f) and Bn = Rn(X)(f).

By Proposition 4.16 and Proposition 5.1, we have

LAn(t) ≤ LAn(t) := N σ2
n(f) L1(ta�n)

and

LBn−cn(t) ≤ LBn−cn(t) := L0(cnt).

We recall that

LBn(t) = cnt + LBn−cn(t)⇒ L�Bn(λ) = L�Bn−cn(λ − cn).

Using Lemma 4.11, we also have that

(L�Bn)
−1(x) = cn + (L�Bn−cn)

−1(x)

≤ cn + (L�Bn−cn)
−1(x) = cn(1 + (L�0)

−1(x)).

In the same vein, arguing as in the end of the proof of Proposition 5.1,
we have

(L�√
NVn(X)(f))

−1(x) ≤ Na�nσ
2
n(L

�
1)

−1
(

x

Nσ2
n

)
.

The end of the proof is now a direct consequence of the Bretagnolle-
Rio’s lemma. This ends the proof of the theorem.

5.3 Empirical Processes

We let Vn(X) be the random field sequence defined in (5.1), and we
consider a sequence of classes of Gn−1-measurable random functions
Fn, such that ‖fn‖ ∨ osc(fn) ≤ 1, for any fn ∈ Fn.

Definition 5.2. For any f = (fn)n≥0 ∈ F := (Fn)n≥0, and any
sequence of numbers a = (an)n≥0 ∈ RN

+, we set

Vn(X)(f) =
n∑
p=0

ap V (Xp)(fp) and ‖Vn(X)‖F = sup
f∈F
|Vn(X)(f)|.
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We further assume that for any n ≥ 0, and any ε > 0, we have an
almost sure estimate

N (Fn, ε) ≤ Nn(ε) (5.4)

for some non increasing function Nn(ε) such that

bn := 122
∫ 2

0

√
log(8 + Nn(ε)2) dε <∞.

In this situation, we have

πψ(‖Vn(X)‖F ) ≤
n∑
p=0

ap πψ(‖V (Xp)‖Fp).

Using Theorem 4.3, given Gn−1 we have the almost sure upper bound

πψ(‖V (Xp)‖Fp) ≤ 122
∫ 2

0

√
log(8 + N (Fp, ε)2)dε ≤ .bp

Combining Lemma 4.5 and Lemma 4.6, we readily prove the following
theorem.

Theorem 5.3. For any classes of Gn−1-measurable random functions
Fn satisfying the entropy condition (5.4), we have

πψ(‖Vn(X)‖F ) ≤ cn :=
n∑
p=0

apbp.

In particular, the probability of the events

‖Vn(X)‖F ≤ cn
√
x + log2

is greater than 1 − e−x, for any x ≥ 0.

Next, we consider classes of nonrandom functions F = (Fn)n≥0. We
further assume that ‖fn‖ ∨ osc(fn) ≤ 1, for any fn ∈ Fn, and

I1(F) := 122
∫ 2

0

√
log(8 + N (F , ε)2) dε <∞

with

N (F , ε) = sup
n≥0
N (Fn, ε) <∞.
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Theorem 5.4. We let Wn(X)(f), f ∈ F , be the random field sequence
defined by

Wn(X)(f) = Vn(X)(f) +
1√
N

Rn(X)(f)

with a second-order term such that

E(sup
f∈F
|Rn(X)(f)|m) ≤m! cmn

for any m ≥ 1, for some finite constant cn <∞ whose values only
depend on the parameter n. In this situation, the probability of the
events

‖Wn(X)‖F ≤

 n∑
p=0

ap

I1(F)(1 + 2
√
x) +

cn√
N

(
1 + (L�0)

−1
(x

2

))
is greater than 1 − e−x, for any x ≥ 0.

Proof:
We set

√
N‖Wn(X)‖F ≤ An + Bn, with

An =
√
N‖Vn(X)‖F and Bn = sup

f∈F
|Rn(X)(f)|.

Using the fact that

sup
f∈F
|Vn(X)(f)| ≤

n∑
p=0

ap‖V (Xp)‖Fp

by Lemma 4.5, we have

πψ(‖Vn(X)‖F ) ≤
n∑
p=0

apπψ(‖V (Xp)‖Fp).

Using Theorem 4.3, we also have that

πψ(‖V (Xp)‖Fp) ≤ I1(F) := 122
∫ 2

0

√
log(8 + N (F , ε)2)dε
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with

N (F , ε) = sup
n≥0
N (Fn, ε).

This implies that

πψ(An) ≤ an
√
N I1(F) with an :=

n∑
p=0

ap.

By Lemma 4.6, we have

E(etAn) ≤ (1 + tπψ(An)) e(tπψ(An))2 ≤ eαnt+ 1
2 t

2βn

with

βn = 2α2
n and αn = πψ(An).

Notice that

LAn−αn(t) ≤ Ln(t) :=
1
2
t2βn.

Recalling that

L�n(λ) =
λ2

2βn
and (L�n)

−1(x) =
√

2βnx

we conclude that

(L�An)
−1(x) = αn + (L�An−αn)

−1(x)

≤ αn +
√

2βnx = πψ(An)(1 + 2
√
x).

On the other hand, under our assumption, we also have that

E(etBn) ≤
∑
m≥0

(cnt)m =
1

1 − cnt
= ecnt × e2L0(cnt/2)

for any 0 ≤ t < 1/cn with the convex increasing function L0 introduced
on page 322, so that

2L0(cnt/2) = −cnt − log(1 − cnt).

Using Lemma 4.11, we conclude that

LBn−cn(t) ≤ 2L0(cnt/2)
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and

(L�Bn)
−1(x) = cn + (L�Bn−cn)

−1(x)

≤ cn

(
1 + (L�0)

−1
(x

2

))
.

The end of the proof is now a direct consequence of the Bretagnolle-Rio
lemma.

5.4 Covering Numbers and Entropy Methods

Here, we derive some properties of covering numbers for some classes
of functions. These two results are key to derive uniform concentra-
tion inequalities w.r.t. the time parameters for Feynman-Kac particle
models. This subject is investigated in Section 6.

We let (En,En)n=0,1 be a pair of measurable state spaces, and F
be a separable collection of measurable functions f : E1→ R such that
‖f‖ ≤ 1 and osc(f) ≤ 1.

We consider a Markov transition M(x0,dx1) from E0 into E1, a
probability measure µ on E0, and a function G from E0 into [0,1] . We
associate with these objects the class of functions

G ·M(F) = {G M(f) : f ∈ F}

and

G · (M − µM)(F) = {G[M(f) − µM(f)] : f ∈ F}.

Lemma 5.5. For any ε > 0, we have

N [G ·M(F), ε] ≤ N (F , ε).

Proof:
For any probability measure η on E0, we let {f1, . . . ,fnε} be the centers
of nε = N (F ,L2(η), ε)

There exist L2(η)-balls of radius at most ε covering F . For any
f ∈ F , there exists some 1 ≤ i ≤ nε such that

η([G(f − fi)]2)1/2 ≤ η([(f − fi)]2)1/2 ≤ ε.
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This implies that

N (G · F ,L2(η), ε) ≤ N (F ,L2(η), ε).

In much the same way, we let {f1, . . . ,fnε} be the nε = N (F ,L2(ηM), ε)
centers of L2(ηM)-balls of radius at most ε covering F . In this situation,
for any f ∈ F , there exists some 1 ≤ i ≤ nε such that

η([(M(f) −M(fi))]2)1/2 ≤ ηM([(f − fi)]2)1/2 ≤ ε.

This implies that

N (M(F),L2(η), ε) ≤ N (F ,L2(ηM), ε).

This ends the proof of the lemma.

One of the simplest ways to control the covering numbers of the
second class of functions is to assume that M satisfies the following
condition M(x,dy) ≥ δν(dy), for any x ∈ E0, and for some measure ν,
and some δ ∈ [0,1]. Indeed, in this situation we observe that

Mδ(x,dy) =
M(x,dy) − δν(dy)

1 − δ
is a Markov transition and

(1 − δ)[Mδ(f)(x) −Mδ(f)(y)] = [M(f)(x) −M(f)(y)].

This implies that

(1 − δ)[Mδ(f)(x) − µMδ(f)] = [M(f)(x) − µM(f)]

and

η[(M(f)(x) − µM(f))2] ≤ 2(1 − δ) ηMδ,µ(|f |2)

with the Markov transition

Mδ,µ(x,dy) =
1
2
[Mδ(x,dy) + µMδ(x,dy)].

We let {f1, . . . ,fnε} be the nε = N (F ,L2(ηMδ,µ), ε/2) centers of
L2(ηMδ,µ)-balls of radius at most ε covering F . If we set

f = M(f) − µM(f) and f i = M(fi) − µM(fi)
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then we find that

f − f i = M(f − fi) − µM(f − fi)

from which we prove that

η[(f − f i)2]1/2 ≤ 2(1 − δ)[ηMδ,µ(|f − fi|2)]1/2.

We conclude that

N ((M − µM)(F),L2(η),2ε(1 − δ)) ≤ N (F ,L2(ηMδ,µ), ε)

and therefore

N ((M − µM)(F),2ε(1 − δ)) ≤ N (F , ε)

or, equivalently,

N
(

1
1 − δ (M − µM)(F), ε

)
≤ N (F , ε/2).

In more general situations, we quote the following result.

Lemma 5.6. For any ε > 0, we have

N [G · (M − µM)(F), 2εβ(M)] ≤ N (F , ε).

Proof:
We consider a Hahn-Jordan orthogonal decomposition

(M(x,dy) − µM(dy)) = M+
µ (x,dy) −M−

µ (x,dy)

with

M+
µ (x,dy) = (M(x, .) − µM)+ and M−

µ (x,dy) = (M(x, .) − µM)−

with

‖M(x, .) − µM‖tv = M+
µ (x,E1) = M−

µ (x,E1) ≤ β(M).

By construction, we have

M(f)(x) − µM(f) = M+
µ (x,E1) (M+

µ (f)(x) −M−
µ (f)(x))
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with

M
+
µ (x,dy) :=

M+
µ (x,dy)

M+
µ (x,E1)

and M
−
µ (x,dy) :=

M−
µ (x,dy)

M−
µ (x,E1)

.

This implies that

|M(f)(x) − µM(f)| ≤ 2β(M) Mµ(|f |)(x)

with

Mµ(x,dy) =
1
2
(M+

µ (x,dy) + M
−
µ (x,dy)).

One concludes that

η[(M(f)(x) − µM(f))2]1/2 ≤ 2β(M)[ηMµ(|f |2)]1/2.

We let {f1, . . . ,fnε} be the nε = N (F ,L2(ηMµ), ε/2) centers of
L2(ηMµ)-balls of radius at most ε covering F .

If we set

f = M(f) − µM(f) and f i = M(fi) − µM(fi)

then we find that

f − f i = M(f − fi) − µM(f − fi)

from which we prove that

η[(f − f i)2]1/2 ≤ 2β(M)[ηMµ(|f − fi|2)]1/2.

In this situation, for any f ∈ (M − µM)(F), there exists some 1 ≤ i ≤
nε such that

η[(f − f i)2]1/2 ≤ β(M) ε.

We conclude that

N ((M − µM)(F),L2(η), εβ(M)) ≤ N (F ,L2(ηMµ), ε/2)

and therefore

N (G · (M − µM)(F), εβ(M)) ≤ N ((M − µM)(F), εβ(M))

≤ N (F , ε/2).

This ends the proof of the lemma.



6
Feynman-Kac Particle Processes

6.1 Introduction

In this section, we investigate the concentration properties of the col-
lection of Feynman-Kac particle measures introduced in subsection 1.4,
in terms of the contraction parameters τk,l(n) and τk,l(m) introduced
in Definition 3.3, and in Corollary 3.5.

First, we present some basic first-order decompositions of the
Boltzmann-Gibbs transformation associated with some regular poten-
tial function.

Then, we combine the semigroup techniques developed in section 3,
with a stochastic perturbation analysis to derive first-order integral
expansions in terms of local random fields and Feynman-Kac transport
operators.

In subsection 6.4, we combine these key formulae with the con-
centration analysis of interacting empirical processes developed in
Section 5. We derive quantitative concentration estimates for finite
marginal models, as well as for empirical processes w.r.t. some classes
of functions. Subsections 6.5 and 6.6 are devoted to particle free energy
models, and backward particle Markov models, respectively.
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6.2 First-Order Expansions

For any positive potential function G, any measures µ and ν, and any
function f on E, we have

[ΨG(µ) − ΨG(ν)](f)

=
1

µ(Gν)
(µ − ν)(dνΨG(f))

=
(

1 − 1
µ(Gν)

(µ − ν)(Gν)
)

(µ − ν)(dνΨG(f)) (6.1)

with the functions

dνΨG(f) := Gν (f − ΨG(ν)(f)) and Gν := G/ν(G). (6.2)

Notice that

|[ΨG(µ) − ΨG(ν)](f)| ≤ g|(µ − ν)(dνΨG(f))|
and

‖dνΨG(f)‖ ≤ g osc(f) with g := sup
x,y

(G(x)/G(y)).

It is also important to observe that

|[ΨG(µ) − ΨG(ν)](f)| ≤ 1
µ(G′)

|(µ − ν)(d′
νΨG(f))|

≤ g|(µ − ν)(d′
νΨG(f))|

with the integral operator d′
νΨG from Osc(E) into itself defined by

d′
νΨG(f) := G′(f − ΨG(ν)(f)) and G′ := G/‖G‖.

Using Lemma 5.6, we readily prove the following lemma.

Lemma 6.1. We let F be a separable collection of measurable func-
tions f :E′→ R on some possibly different state space E′, and such that
‖f‖ ≤ 1 and osc(f) ≤ 1. For any Markov transition M from E into E′,
we set

d′
νΨGM(F) := {d′

νΨG(M(f)) : f ∈ F}.

In this situation, we have the uniform estimate

sup
ν∈P(E)

N [d′
νΨGM(F),2εβ(M)] ≤ N (F , ε). (6.3)
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6.3 A Stochastic Perturbation Analysis

Mean field particle models can be thought of as a stochastic pertur-
bation technique for solving nonlinear measure valued equations of the
form

ηn = Φn(ηn−1).

The random perturbation term is encapsulated into the sequence of
local random sampling errors (V N

n )n≥0 given by the local perturbation
equations

ηNn = Φn(ηNn−1) +
1√
N

V N
n .

One natural way to control the fluctuations and the concentration prop-
erties of the particle measures (ηNn ,γ

N
n ) around their limiting values

(ηn,γn) is to express the random fields (W γ,N
n ,W η,N

n ) defined by

γNn = γn +
1√
N

W γ,N
n ηNn = ηn +

1√
N

W η,N
n

in terms of the empirical random fields (V N
n )n≥0.

As shown in (4.2), it is important to recall that the local sampling
random fields models V N

n belong to the class of empirical processes we
analyzed in subsection 4.1. The stochastic analysis developed in Sec-
tion 4 applies directly to these models. For instance, using Theorem 4.1
we have the quantitative almost sure estimate of the amplitude of the
stochastic perturbations

E(|V N
n (f)|m|GNn−1)

1/m ≤ b(m) (6.4)

for any m ≥ 1 and any test function f ∈ Osc(En).
The first-order expansions presented in the further development of

this section will be expressed in terms of the random functions dNp,n(f)
and GNp,n, and the first-order functions dp,n(f) defined below.

Definition 6.1. For any 0 ≤ p ≤ n, and any function f on En, we
denote by dp,n(f) the function on Ep defined by

dp,n(f) = dηpΨGp,n(Pp,n(f)).
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For any N ≥ 1, and any 0 ≤ p ≤ n, we also denote by GNp,n, d
N
p,n(f), and

d′N
p,n(f) the GNp−1-measurable random functions on Ep given by

GNp,n :=
Gp,n

Φp(ηNp−1)(Gp,n)
dNp,n(f) := dΦp(ηNp−1)ΨGp,n(Pp,n(f))

and

d′N
p,n(f) := d′

Φp(ηNp−1)ΨGp,n(Pp,n(f)).

Notice that

‖GNp,n‖ ≤ gp,n and ‖dp,n(f)‖ ∨ ‖dNp,n(f)‖ ≤ gp,n β(Pp,n)

as well as

‖d′N
p,n(f)‖ ≤ β(Pp,n) and osc(d′N

p,n(f)) ≤ 2β(Pp,n).

As promised, the next theorem presents some key first-order decom-
positions, which are the progenitors for our other results. Further
details on these expansions and their use in the bias and the fluctuation
analysis of Feynman-Kac particle models can be found in [15, 17, 38]
and [20].

Theorem 6.2. For any 0 ≤ p ≤ n, and any function f on En, we have
the decomposition

W η,N
n (f) =

n∑
p=0

1
ηNp (GNp,n)

V N
p (dNp,n(f)) (6.5)

and the Lm-mean error estimates

E(|W η,N
n (f)|m)1/m ≤ 2 b(m)τ1,1(n) (6.6)

with the parameter τ1,1(n) defined in (3.6).
In addition, we have

W η,N
n (f) =

n∑
p=0

V N
p [dp,n(f)] +

1√
N
RNn (f) (6.7)
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with a second-order remainder term

RNn (f) := −
n−1∑
p=0

1
ηNp (Gp)

W η,N
p (Gp) W η,N

p [dp,n(f)]

such that

sup
f∈Osc(En)

E[|RNn (f)|m]1/m ≤ 4b(2m)2τ2,1(n) (6.8)

with the parameter τ2,1(n) defined in (3.6).

Proof. The proof of (6.5) is based on the telescoping sum decomposition

ηNn − ηn =
n∑
p=0

[Φp,n(ηNp ) − Φp,n(Φp(ηNp−1))]

Recalling that

Φp,n(µ) = ΨGp,n(µ)Pp,n

we prove that

Φp,n(ηNp ) − Φp,n(Φp(ηNp−1)) = [ΨGp,n(η
N
p ) − ΨGp,n(Φp(ηNp−1))]Pp,n.

Using (6.1), we have
√
N [ΨGp,n(η

N
p ) − ΨGp,n(Φp(ηNp−1))](f)

= V N
p [dΦp(ηNp−1)ΨGp,n(f)]

− 1√
N

1
ηNp (GNp,n)

V N
p (GNp,n)V

N
p [dΦp(ηNp−1)ΨGp,n(f)].

The proof of (6.7) is based on the telescoping sum decomposition

ηNn − ηn =
n∑
p=0

[ηNp Qp,n − ηNp−1Qp−1,n]

with the convention ηN−1Q−1,n = η0Q0,n = ηn, for p = 0. Using the fact
that

ηNp−1Qp−1,n(f) = ηNp−1(Gp−1) × Φp(ηNp−1)Qp,n(f)
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we prove that

[ηNn − ηn](f) =
n∑
p=0

[ηNp − Φp(ηNp−1)]Qp,n(f) + RNn (f)

with the second-order remainder term

RNn (f) :=
n∑
p=1

(1 − ηNp−1(Gp−1)) × Φp(ηNp−1)Qp,n(f).

Replacing f by the centered function (f − ηn(f)), and using the fact
that

1 = ηp−1(Gp−1) and ηp[dp,n(f − ηn(f))] = 0

we conclude that

[ηNn − ηn](f) =
n∑
p=0

[ηNp − Φp(ηNp−1)](dp,n(f)) + R
N
n (f)

with the second-order remainder term

R
N
n (f) :=

n∑
p=1

[ηp−1 − ηNp−1](Gp−1)

× [ΨGp−1(η
N
p−1) − ΨGp−1(ηp−1)](Mp(dp,n(f)))

= − 1
N

n∑
p=1

W η,N
p−1 (Gp−1)

× 1
ηNp−1(Gp−1)

W η,N
p−1 (dηp−1ΨGp−1(Mp(dp,n(f)))).

Finally, we observe that

dηp−1ΨGp−1(Mp(dp,n(f))) =
Gp−1

ηp−1(Gp−1)
(Mp(dp,n(f)) − ηp(dp,n(f)))

=
Gp−1

ηp−1(Gp−1)
Mp(dp,n(f))

= Qp−1,p(dp,n(f)) = Qp−1,n(f − ηn(f))

= dp−1,n(f).

This ends the proof of (6.7).
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Combining (6.5) with the almost sure estimates

E(|V N
p (dNp,n(fn))|m|GNp−1)

1/m ≤ 2b(m)‖GNp,n‖ β(Pp,n)

for any m ≥ 1, we easily prove (6.6). Using the fact that
1

infxGNp,n(x)
E[|V N

p (GNp,n)|m|GNp−1]
1/m ≤ 2b(m) gp,n

and

E[|V N
p [dNp,n(f)]|m|GNp−1]

1/m ≤ 2b(m)gp,nβ(Pp,n)

we prove (6.8). This ends the proof of the theorem.

6.4 Concentration Inequalities

6.4.1 Finite Marginal Models

In subsection 3.6, dedicated to the variance analysis of the local sam-
pling models, we have seen that the empirical random fields V N

n satisfy
the regularity conditions of the general interacting empirical process
models V (Xn) presented in subsection 5.1.

To be more precise, we have the formulae
n∑
p=0

V N
p [dp,n(f)] =

n∑
p=0

ap V
N
p [δp,n(f)]

with the functions

δp,n(f) = dp,n(f)/ap ∈ Osc(Ep) ∩ B1(Ep)

for any finite constants

ap ≥ 2 sup
0≤p≤n

(gp,nβ(Pp,n)).

Therefore, if we fix the final time horizon n, with some slight abuse
of notation we have the formulae

n∑
p=0

V N
p [dp,n(f)] =

n∑
p=0

αp V (Xp)[fp]

with

Xp = ξp = (ξip)1≤i≤N αp = sup
0≤q≤n

aq = a�n and fp = δp,n(f)/a�n.
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We also notice that

E(V N
p [δp,n(f)]2|GNp−1) ≤

1
(a�n)2

σ2
posc(dp,n(f))2

≤ 4
(a�n)2

σ2
p‖dp,n(f)‖2

and therefore

E(V N
p [δp,n(f)]2|GNp−1) ≤

4
(a�n)2

σ2
pg

2
p,nβ(Pp,n)2

with the uniform local variance parameters σ2
p defined in (3.20).

This shows that the regularity condition stated in (5.2) is met by
replacing the parameters σp in the variance formula (5.2) by the con-
stants 2σpgp,nβ(Pp,n)/a�n, with the uniform local variance parameters
σp defined in (3.20).

Using Theorem 5.2, we easily prove the following exponential con-
centration property.

Theorem 6.3.([40]) For any n ≥ 0, any f ∈ Osc(En), and anyN ≥ 1,
the probability of the event

[ηNn − ηn](f) ≤ 4τ2,1(n)
N

(1 + (L�0)
−1(x)) + 2bnσ2

n(L
�
1)

−1
(

x

Nσ2
n

)
is greater than 1 − e−x, for any x ≥ 0, with

σ2
n :=

1
b2n

∑
0≤p≤n

g2
p,nβ(Pp,n)2σ2

p

for any choice of bn ≥ κ(n). In the above display, τ2,1(n) and κ(n) stands
for the parameters defined in (3.6), and σn is the uniform local variance
parameter defined in (3.20).

We illustrate the impact of this theorem with two applications. The
first one is concerned with regular and stable Feynman-Kac models sat-
isfying the regularity conditions presented in subsection 3.4. The second
is concerned with the concentration properties of the genealogical tree
based models developed in subsection 1.17.
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In the first situation, combining corollary 3.5, with the estimates
(4.20) and (4.21) we prove the following uniform concentration inequal-
ities w.r.t. the time horizon.

Corollary 6.4. We assume that one of the regularity conditions
Hm(G,M) stated in subsection 3.4.1 is met for some m ≥ 0, and we
set

pm(x) = 4τ2,1(m)(1 + 2(x +
√
x)) +

2
3
κ(m)x

and

qm(x) =
√

8σ2τ2,2(m) x with σ2 = sup
n≥0

σ2
n.

In the above displayed formula, τ2,2(m) and κ(m) stands for the param-
eters defined in Corollary 3.5, and σn is the uniform local variance
parameter defined in (3.20).

In this situation, for any n ≥ 0, any f ∈ Osc(En), any N ≥ 1, and
for any x ≥ 0, the probability of the event

[ηNn − ηn](f) ≤ 1
N
pm(x) +

1√
N
qm(x)

is greater than 1 − e−x.

In the same vein, using the estimates (4.20) and (4.21), concentra-
tion inequalities for genealogical tree models can be derived easily using
the estimates (3.14).

Corollary 6.5. We let ηNn be the occupation measure of the genealog-
ical tree model presented in (3.18). We also set σ2 = supn≥0σ

2
n, the

supremum of which is the uniform local variance parameters σ2
n defined

in (3.20), and

pn,m(x) = 4(χmgm)2(1 + 2(x +
√
x)) +

2
3
χmg

m

(n + 1)
x

and

qm(x) = (χmgm)
√

8σ2x.
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In this situation, for any n ≥ 0, any fn ∈ Osc(En), and any N ≥ 1, the
probability of the event

[ηNn − Qn](fn) ≤ n + 1
N

pn,m(x) +

√
n + 1
N

qm(x)

is greater than 1 − e−x, for any x ≥ 0.

6.4.2 Empirical Processes

The main aim of this subsection is to derive concentration inequalities
for particle empirical processes. Several consequences of this general
theorem are also discussed, including uniform estimates w.r.t. the time
parameter, and concentration properties of genealogical particle pro-
cesses.

Theorem 6.6. We let Fn be a separable collection of measurable func-
tions fn on En, such that ‖fn‖ ≤ 1, osc(fn) ≤ 1, with finite entropy
I(Fn) <∞.

πψ(‖W η,N
n ‖Fn) ≤ cFnτ1,1(n)

with the parameter τ1,1(n) defined in (3.6) and

cFn ≤ 242
∫ 1

0

√
log(8 + N (Fn, ε)2)dε. (6.9)

In particular, for any n ≥ 0, and any N ≥ 1, the probability of the
following event

sup
f∈Fn

|ηNn (f) − ηn(f)| ≤ cFn√
N

τ1,1(n)
√
x + log2

is greater than 1 − e−x, for any x ≥ 0.

Proof:
Using (6.5), for any function fn ∈ Osc(En) we have the estimate

|W η,N
n (fn)| ≤ 2

n∑
p=0

gp,nβ(Pp,n)|V N
p (δNp,n(fn))|
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with the GNp−1-measurable random functions δNp,n(fn) on Ep defined by

δNp,n(fn) =
1

2β(Pp,n)
d′N
p,n(fn).

By construction, we have

‖δNp,n(fn)‖ ≤ 1/2 and δNp,n(fn) ∈ Osc(Ep).

Using the uniform estimate (6.3), if we set

GNp,n := δNp,n(Fn) = {δNp,n(f) : f ∈ Fn}

then we also prove the almost sure upper bound

sup
N≥1
N [GNp,n, ε] ≤ N (Fn, ε/2).

The end of the proof is now a direct consequence of Theorem 5.3. This
ends the proof of the theorem.

Corollary 6.7. We consider time homogeneous Feynman-Kac models
on some common measurable state space En = E. We also let F be a
separable collection of measurable functions f on E, such that ‖f‖ ≤ 1,
osc(f) ≤ 1, with finite entropy I(F) <∞.

We also assume that one of the regularity conditions Hm(G,M)
stated in subsection 3.4.1 is met for some m ≥ 0. In this situation, for
any n ≥ 0, and any N ≥ 1, the probability of the following event

sup
f∈Fn

|ηNn (f) − ηn(f)| ≤ cF√
N
τ1,1(m)

√
x + log2

is greater than 1 − e−x, for any x ≥ 0.

In the same vein, using the estimates (3.14), we easily prove the
following corollary.

Corollary 6.8. We also assume that one of the regularity conditions
Hm(G,M) stated in subsection 3.4.1 is met for some m ≥ 0.

We let Fn be a separable collection of measurable functions fn on
the path space En, such that ‖fn‖ ≤ 1, osc(fn) ≤ 1, with finite entropy
I(Fn) <∞.
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We also let ηNn be the occupation measure of the genealogical tree
model presented in (3.18). In this situation, for any n ≥ 0, and any
N ≥ 1, the probability of the following event

sup
fn∈Fn

|ηNn (fn) − Qn(fn)| ≤ cFn√
N

(n + 1)χmgm
√
x + log2

is greater than 1 − e−x, for any x ≥ 0 with the constant cFn defined
in (6.9).

The following corollaries are a direct consequence of (4.10).

Corollary 6.9. We assume that the conditions stated in Corollary 6.7
are satisfied. When F stands for the indicator functions (4.9) of cells
in E = Rd, for some d ≥ 1, the probability of the following event

sup
f∈F
|ηNn (f) − ηn(f)| ≤ cτ1,1(m)

√
d

N
(x + 1)

is greater than 1 − e−x, for any x ≥ 0, for some universal constant
c <∞ that does not depend on the dimension.

Corollary 6.10. We assume that the conditions stated in corollary 6.8
are satisfied. When Fn stands for the product functions of cell indica-
tors (4.9) in the path space En = (Rd0 × ·· · ,×Rdn), for some dp ≥ 1,
p ≥ 0, the probability of the following event

sup
fn∈Fn

|ηNn (fn) − Qn(fn)| ≤ c(n + 1)χmgm

√∑
0≤p≤n dp

N
(x + 1)

is greater than 1 − e−x, for any x ≥ 0, for some universal constant
c <∞ that does not depend on the dimension.

6.5 Particle Free Energy Models

6.5.1 Introduction

The main aim of this subsection is to analyze the concentration prop-
erties of the particle free energy models introduced in subsection 1.4.2.
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More formally, the unnormalized particle random field models discussed
in this section are defined below.

Definition 6.2. We denote by γNn the normalized models defined by
the following formulae

γNn (f) = γNn (f)/γn( ) = ηNn (f)
∏

0≤p<n
ηNp (Gp)

with the normalized potential functions

Gn := Gn/ηn(Gn).

We also letW γ,N
n andW γ,N

n be the random field particle models defined
by

W γ,N
n =

√
N [γNn − γn] and W

γ,N
n := W γ,N

n (f)/γn( ).

These unnormalized particle models γNn have a particularly simple
form. They are defined in terms of the product of empirical mean val-
ues ηNp (Gp) of the potential functions Gp w.r.t. the flow of normalized
particle measures ηNp after the p-th mutation stages, with p < n.

Thus, the concentration properties of γNn should be related in some
way to those of the interacting processes ηNn developed in subsection 6.4.

To begin with, we mention that

γNn ( ) := γNn ( )/γn( ) =
∏

0≤p<n
ηNp (Gp) = 1 +

1√
N
W

γ,N
n ( ).

For more general functions we also observe that for any function f on
En, s.t. ηn(f) = 1, we have the decompositions

W
γ,N
n (f)

=
√
N

[(
1 +

1√
N
W

γ,N
n ( )

)(
ηn(f) +

1√
N
W η,N
n (f)

)
− ηn(f)

]
=
√
N

[(
1 +

1√
N

W
γ,N
n ( )

)(
1 +

1√
N

W η,N
n (f)

)
− 1

]
.
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We readily deduce the following second order decompositions of the
fluctuation errors

W
γ,N
n (f) = [W γ,N

n ( ) + W η,N
n (f)] +

1√
N

(W γ,N
n ( )W η,N

n (f)).

This decomposition allows us to reduce the concentration properties
of W γ,N

n (f) to those of W η,N
n (f) and W γ,N

n ( ).
Next, we provide some key decompositions of W γ,N

n in terms of
the local sampling errors V N

n , as well as a pivotal exponential formula
connecting the fluctuations of the particle free energies in terms of the
fluctuations of the potential empirical mean values.

Then, we derive first-order expansions, and logarithmic concentra-
tion inequalities for particle free energy ratios γNn ( ) = γNn ( )/γn( ).

6.5.2 Some Key Decomposition Formulae

This subsection is mainly concerned with the proof of the following
decomposition theorem.

Theorem 6.11. For any 0 ≤ p ≤ n, and any function f on En, we have
the decompositions

W γ,N
n (f) =

n∑
p=0

γNp ( ) V N
p (Qp,n(f)) (6.10)

W
γ,N
n (f) =

n∑
p=0

γNp ( ) V N
p (Qp,n(f)) (6.11)

with the normalized Feynman-Kac semigroup

Qp,n(f) = Qp,n(f)/ηpQp,n( ).

In addition, we have the exponential formulae

W
γ,N
n ( ) =

√
N

exp

 1√
N

∫ 1

0

∑
0≤p<n

W η,N
p (Gp)

1 + t√
N
W η,N
p (Gp)

dt

 − 1

.
(6.12)
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Proof:
We use the telescoping sum decomposition

γNn − γn =
n∑
p=0

(γNp Qp,n − γNp−1Qp−1,n)

with the conventions Qn,n = Id, for p = n; and γN−1Q−1,n = γ0Q0,n, for
p = 0. Using the fact that

γNp ( ) = γNp−1(Gp−1) and γNp−1Qp−1,n(f) = γNp−1(Gp−1Mp(Qp,n(f)))

we prove that

γNp−1Qp−1,n = γNp ( ) Φp(ηNp−1)Qp,n.

The end of the proof of the first decomposition is now easily completed.
We prove (6.11) using the following formulae

Qp,n(f)(x) =
γp( )
γn( )

Qp,n(f)(x)

= Qp,n(f)(x)
∏

p≤q<n
ηq(Gq)−1 =

Qp,n(f)(x)
ηpQp,n( )

.

The proof of (6.12) is based on the fact that

logy − logx =
∫ 1

0

(y − x)
x + t(y − x)dt

for any positive numbers x,y. Indeed, we have the formula

log(γNn ( )/γn( )) = log

(
1 +

1√
N

W γ,N
n ( )
γn( )

)

=
∑

0≤p<n
(logηNp (Gp) − logηp(Gp))

=
1√
N

∑
0≤p<n

∫ 1

0

W η,N
p (Gp)

ηp(Gp) + t√
N
W η,N
p (Gp)

dt.

This ends the proof of the theorem.
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6.5.3 Concentration Inequalities

Combining the exponential formulae (6.12) with the expansions
(6.11), we derive first-order decompositions for the random sequence√
N logγNn ( ). These expansions will be expressed in terms of the ran-

dom predictable functions defined below.

Definition 6.3. We let hNq,n be the random GNq−1-measurable functions
given by

hNq,n :=
∑
q≤p<n

dNq,p(Gp)

with the functions dNq,p(Gp) given in Definition 6.1.

Lemma 6.12. For any n ≥ 0 and any N ≥ 1, we have
√
N logγNn ( ) =

∑
0≤q<n

V N
q (hNq,n) +

1√
N

RNn (6.13)

with a second-order remainder term RNn such that

E(|RNn |m)1/m ≤ b(2m)2r(n)

for any m ≥ 1, with some constant

r(n) ≤ 8
∑

0≤p<n
gp(2gpτ1,1(p)2 + τ3,1(p)).

Proof:
Using the exponential formulae (6.12), we have

√
N logγNn ( ) =

√
N log

(
1 +

1√
N
W

γ,N
n ( )

)

=
∑

0≤p<n

∫ 1

0

W η,N
p (Gp)

1 + t√
N
W η,N
p (Gp)

dt.

This implies that
√
N logγNn ( ) =

∑
0≤p<n

W η,N
p (Gp) +

1√
N
RN,1n
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with the (negative) second order remainder term

RN,1n = −
∑

0≤p<n

∫ 1

0
t

W η,N
p (Gp)2

1 + t√
N
W η,N
p (Gp)

dt.

On the other hand, using (6.11) we have∑
0≤p<n

W η,N
p (Gp) =

∑
0≤q<n

V N
q (hNq,n) +

1√
N
RN,2n

with the second-order remainder term

RN,2n := −
∑

0≤q≤p<n

1
ηNq (GNq,p)

V N
q (GNq,p)V

N
q [dNq,p(Gp)].

This gives the decomposition (6.13), with the second remainder order
term

RNn := RN,1n + RN,2n .

Using the fact that

1 +
t√
N
W η,N
p (Gp) = tηNp (Gp) + (1 − t) ≥ tg−

p

for any t ∈]0,1], with g−
p := infxGp(x), we find that

|RN,1n | ≤
∑

0≤p<n

1
g−
p
W η,N
p (Gp)2.

Using (6.6), we prove that

E(|RN,1n |r)1/r ≤ 4b(2r)2
∑

0≤p<n

1
g−
p

osc(Gp)2τ1,1(p)2

from which we conclude that

E(|RN,1n |r)1/r ≤ (4b(2r))2
∑

0≤p<n
g2
pτ1,1(p)

2.

In much the same way, we have

E(|RN,2n |r)1/r

≤
∑

0≤q≤p<n
gq,pE(|V N

q (GNq,p)|2r)1/2rE(|V N
q [dNq,p(Gp)]|2r)1/2r
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and using (6.4), we prove that

E(|RN,2n |r)1/r ≤ 8b(2r)2
∑

0≤q≤p<n
gpg

3
q,pβ(Pq,p).

This ends the proof of the lemma.

We are now in position to state and to prove the following concen-
tration theorem.

Theorem 6.13. For any N ≥ 1, ε ∈ {+1,−1}, n ≥ 0, and for any

ς�n ≥ sup
0≤q≤n

ςq,n with ςq,n :=
4
n

∑
q≤p<n

gq,pgp β(Pq,p)

the probability of the following events

ε

n
logγNn ( ) ≤ 1

N
r(n)(1 + (L�0)

−1(x)) + ς�n σ
2
n(L

�
1)

−1
(

x

Nσ2
n

)
is greater than 1 − e−x, for any x ≥ 0, with the parameters

σ2
n :=

∑
0≤q<n

σ2
q (ςq,n/ς

�
n)

2 and r(n) = r(n)/n.

Before delving into the proof of the theorem, we present simple argu-
ments to derive exponential concentration inequalities for the quanti-
ties |γNn ( ) − 1|. Suppose that for any ε ∈ {+1,−1}, the probability of
events

ε

n
logγNn ( ) ≤ ρNn (x)

is greater than 1 − e−x, for any x ≥ 0, for some function ρNn such that

ρNn (x)→N→∞ 0.

In this case, the probability of event

−(1 − e−nρNn (x)) ≤ γNn ( ) − 1 ≤ enρNn (x) − 1
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is greater than 1 − 2e−x, for any x ≥ 0. Choosing N large enough so
that ρNn (x) ≤ 1/n we have

−2nρNn (x) ≤ −(1 − e−nρNn (x)) and enρ
N
n (x) − 1 ≤ 2nρNn (x)

from which we conclude that the probability of event

P(|γNn ( ) − 1| ≤ 2n ρNn (x)) ≥ 1 − 2e−x.

Now, we come to the proof of the theorem.

Proof of Theorem 6.13:
We use the same line of arguments as those used in subsection 6.4.1.
First, we observe that

‖hNq,n‖ ≤
∑
q≤p<n

‖dNq,p(Gp)‖

≤
∑
q≤p<n

gq,posc(Pq,p(Gp)) ≤ 2
∑
q≤p<n

gq,pgp β(Pq,p) = cq,n/2

and osc(hNq,n) ≤ cq,n. Now, we use the following decompositions∑
0≤q<n

V N
q (hNq,n) = a�n

∑
0≤q<n

V N
q (δNq,n)

with the GNq−1-measurable functions

δNq,n = hNq,n/a
�
n ∈ Osc(Eq) ∩ B1(Eq)

and for any constant a�n ≥ sup0≤q≤n cq,n.
On the other hand, we have the almost sure variance estimate

E(V N
q [δNq,n]

2|GNq−1) ≤ σ2
qosc(hNq,n)

2/a�2n ≤ σ2
qc

2
q,n/a

�2
n

from which we conclude that

E(V N
q [δNq,n]

2) ≤ σ2
qc

2
q,n/a

�2
n .

This shows that the regularity condition stated in (5.2) is met by replac-
ing the parameters σq in the variance formula (5.2) by the constants
σqcq,n/a

�
n, with the uniform local variance parameters σp defined in

(3.20).
The end of the proof is now a direct consequence of Theorem 5.2.

This ends the proof of the theorem.
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Corollary 6.14. We assume that one of the regularity conditions
Hm(G,M) stated in subsection 3.4.1 is met for some m ≥ 0, and we
set

pm(x) := c1(m)(1 + 2(x +
√
x)) + c2(m)x and qm(x) = c3(m)

√
x

with the parameters

c1(m) = (4gτ1,1(m))2 + 8gτ3,1(m)

c2(m) = 4(βmgm+1)/3 and c3(m) = 4g
√

2τ2,2(m)σ2.

In the above displayed formula, τ2,2(m) and κ(m) stands for the param-
eters defined in Corollary 3.5, and σn is the uniform local variance
parameter defined in (3.20).

In this situation, for any N ≥ 1, and any ε ∈ {+1,−1}, the proba-
bility of each of the following events

ε

n
logγNn ( ) ≤ 1

N
pm(x) +

1√
N
qm(x)

is greater than 1 − e−x, for any x ≥ 0.

Proof:

Under condition Hm(G,M), we have

r(n)/n ≤ (4gτ1,1(m))2 + 8gτ3,1(m)

and for any p < n

ς2p,n =
(

4g
n

)2

(n − p)2
 1
n − p

∑
p≤q<n

gp,q β(Pp,q)

2

≤ (4g)2

n

(n − p)
n

∑
p≤q<n

g2
p,q β(Pp,q)2.

This implies that∑
0≤p<n

ς2p,n ≤
(4g)2

n

∑
0≤q<n

τ2,2(q) ≤ (4g)2τ2,2(m).
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In much the same way, we prove that ς�n ≤ 4βmgm+1. The end of the
proof is now a consequence of the estimates (4.20) and (4.21). This
ends the proof of the corollary.

6.6 Backward Particle Markov Models

This subsection is concerned with the concentration properties of the
backward Markov particle measures defined in (1.18). Without further
mention, we assume that the Markov transitionsMn satisfy the regular-
ity condition (1.10), and we consider the random fields defined below.

Definition 6.4. We let WΓ,N
n and WQ,N

n be random field models
defined by

WΓ,N
n =

√
N(ΓNn − Γn) and WQ,N

n =
√
N(QN

n − Qn).

The analysis of the fluctuation of random fields of backward
particle models is a little more involved than that of the genealogical
tree particle models. The main difficulty is to deal with the nonlinear
dependency of these backward particle Markov chain models with the
flow of particle measures ηNn .

In subsection 6.6.1, we provide some preliminary key backward
conditioning principles. We also introduce some predictable integral
operators involved in the first-order expansions of the fluctuation of
random fields discussed in subsection 6.6.3. In subsection 6.6.2, we
illustrate these models in the context of additive functional models.
In subsection 6.6.4, we assemble the semigroup techniques developed
earlier to derive a series of quantitative concentration inequalities.

6.6.1 Some Preliminary Conditioning Principles

By definition of the unnormalized Feynman-Kac measures Γn, we have

Γn(d(x0, . . . ,xn)) = Γp(d(x0, . . . ,xp))Γn|p(xp,d(xp+1, . . . ,xn))

with

Γn|p(xp,d(xp+1, . . . ,xn)) =
∏

p<q≤n
Qq(xq−1,dxq).
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This implies that

Qn(d(x0, . . . ,xn)) = Qn,p(d(x0, . . . ,xp)) × Qn|p(xp,d(xp+1, . . . ,xn))

with the Qn-distribution of the random states (X0, . . . ,Xp)

Qn,p(d(x0, . . . ,xp)) :=
1

ηp(Gp,n)
Qp(d(x0, . . . ,xp))Gp,n(xp)

and the Qn-conditional distribution of (Xp+1, . . . ,Xn) given the
random state Xp = xp defined by

Qn|p(xp,d(xp+1, . . . ,xn)) =
1

Γn|p( )(xp)
Γn|p(xp,d(xp+1, . . . ,xn)).

Now, we discuss some backward conditioning principles. Using the
backward Markov chain formulation (1.11), we have

Qn(d(x0, . . . ,xn)) = ηn(dxn)Qn|n(xn,d(x0, . . . ,xn−1))

with the Qn-conditional distribution of (X0, . . . ,Xn−1) given the termi-
nal random state Xn = xn defined by the backward Markov transition

Qn|n(xn,d(x0, . . . ,xn−1)) :=
n∏
q=1

Mq,ηq−1(xq,dxq−1).

By construction, the QN
n -conditional distribution of (X0, . . . ,Xn−1)

given the terminal random state Xn = xn is also defined by the particle
backward Markov transition given by

QN
n|n(xn,d(x0, . . . ,xn−1)) :=

n∏
q=1

Mq,ηNq−1
(xq,dxq−1).

We check this claim, using the fact that

QN
n (d(x0, . . . ,xn)) = ηNn (dxn) QN

n|n(xn,d(x0, . . . ,xn−1)).

Definition 6.5. For any 0 ≤ p ≤ n and N ≥ 1, we denote by DN
p,n and

LNp,n the GNp−1-measurable integral operators defined by

DN
p,n(xp,d(y0, . . . ,yn))

:= QN
p|p(xp,d(y0, . . . ,yp−1))δxp(dyp)Γn|p(xp,d(yp+1, . . . ,yn)) (6.14)
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and

LNp,n(xp,d(y0, . . . ,yn))

:= QN
p|p(xp,d(y0, . . . ,yp−1))δxp(dyp)Qn|p(xp,d(yp+1, . . . ,yn)). (6.15)

For p ∈ {0,n}, we use the convention

DN
n,n(xn,d(y0, . . . ,yn)) = LNn,n(xn,d(y0, . . . ,yn))

= QN
n|n(xn,d(y0, . . . ,yn−1)) δxn(dyn)

and

DN
0,n(x0,d(y0, . . . ,yn)) = δx0(dy0)Γn|0(x0,d(y1, . . . ,yn))

LN0,n(x0,d(y0, . . . ,yn)) = δx0(dy0)Qn|0(x0,d(y1, . . . ,yn)).

The main reason for introducing these integral operators comes
from the following integral transport properties.

Lemma 6.15. For any 0 ≤ p ≤ n, and any N ≥ 1, and any function
fn on the path space En, we have the almost sure formulae

ηNp D
N
p,n = ηNp (Gp) × Φp+1(ηNp )DN

p+1,n (6.16)

and

ηNp D
N
p,n(fn)

ηNp D
N
p,n( )

= ΨGp,n(η
N
p )LNp,n(fn) (6.17)

= ΨGp+1,n(Φp+1(ηNp ))LNp+1,n(fn). (6.18)

Proof. We check (6.16) using the fact that

Γn|p(xp,d(yp+1, . . . ,yn))

= Qp+1(xp,dyp+1)Γn|p+1(xp+1,d(yp+2, . . . ,yn)) (6.19)

and

ηNp (dxp)Qp+1(xp,dyp+1) = ηNp Qp+1(dyp+1) ×Mp+1,ηNp (yp+1,dxp).

(6.20)
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More precisely, we have

ηNp (dxp)DN
p,n(xp,d(y0, . . . ,yn))

:= ηNp (dxp)Qp+1(xp,dyp+1)QN
p|p(xp,d(y0, . . . ,yp−1))

×δxp(dyp)Γn|p+1(yp+1,d(yp+2, . . . ,yn)).

Using (6.20), this implies that

ηNp (dxp)DN
p,n(xp,d(y0, . . . ,yn))

:= ηNp Qp+1(dyp+1)Mp+1,ηNp (yp+1,dxp)QN
p|p(xp,d(y0, . . . ,yp−1))

×δxp(dyp)Γn|p+1(yp+1,d(yp+2, . . . ,yn))

from which we conclude that

ηNp D
N
p,n(fn)

:=
∫
ηNp Qp+1(dyp+1)QN

p+1|p+1(yp+1,d(y0, . . . ,yp))

×Γn|p+1(yp+1,d(yp+2, . . . ,yn))fn(y0, . . . ,yn)

= (ηNp Qp+1)DN
p+1,n(fn).

This ends the proof of the first assertion. Now, using (6.16) we have

ηNp D
N
p,n(fn)

ηNp D
N
p,n( )

=
Φp+1(ηNp )DN

p+1,n(fn)

Φp+1(ηNp )DN
p+1,n( )

.

Recalling that

DN
p,n( ) = Qp,n( ) = Gp,n

we readily prove (6.17) and (6.18). This ends the proof of the
lemma.

6.6.2 Additive Functional Models

Here, we provide a brief discussion on the action of the operators DN
p,n

and LNp,n on additive linear functionals

fn(x0, . . . ,xn) =
n∑
p=0

fp(xp) (6.21)
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associated with some collection of functions fn ∈ Osc(En).

DN
p,n(fn) = Qp,n(1)

 ∑
0≤q<p

[Mp,ηNp−1
. . .Mq+1,ηNq ](fq) +

∑
p≤q≤n

R(n)
p,q (fq)


with a triangular array of Markov transitions R

(n)
p,q introduced in

Definition 3.2. By definition of LNp,n, we also have that

LNp,n(fn) =
∑

0≤q<p
[Mp,ηNp−1

. . .Mq+1,ηNq ](fq) +
∑
p≤q≤n

R(n)
p,q (fq).

Using the estimates (3.9), we prove the following upper bounds

osc(LNp,n(fn)) ≤
∑

0≤q<p
β(Mp,ηNp−1

. . .Mq+1,ηNq )

+
∑
p≤q≤n

gq,n × β(Pp,q).

There are many ways to control the Dobrushin operator norm of
the product of the random matrices defined in (1.19). For instance, we
can use the multiplicative formulae

β(Mp,ηNp−1
. . .Mq+1,ηNq ) ≤

∏
p<k≤q

β(Mk+1,ηNk
).

One of the simplest ways to proceed, is to assume that

Hn(x,y) ≤ τ Hn(x,y′) (6.22)

for any x,y,y′, and for some finite constant τ <∞. In this situation,
we find that

Mk+1,ηNk
(y,dx) ≤ τ2 Mk+1,ηNk

(y′,dx)

from which we conclude that

β(Mk+1,ηNk
) ≤ 1 − τ−2.

We further assume that the condition Hm(G,M) stated in subsec-
tion 3.4.1 is met for some m ≥ 1. In this situation, we have

osc(LNp,n(fn))

≤
∑

0≤q<p
(1 − τ−2)(p−q) + χmg

m
∑
p≤q≤n

(1 − g−(m−1)χ−2
m )�(q−p)/m
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from which we prove the following uniform estimates

sup
0≤p≤n

osc(LNp,n(fn)) ≤ τ2 + m g2m−1χ3
m. (6.23)

6.6.3 A Stochastic Perturbation Analysis

As in subsection 6.3, we develop a stochastic perturbation analysis
that allows us to express WΓ,N

n and WQ,N
n in terms of the local

sampling random fields (V N
p )0≤p≤n.

These first-order expansions presented will be expressed in terms of
the first-order functions dνΨG(f) introduced in (6.2), and the random
GNp−1-measurable functions GNp,n introduced in Definition 6.1.

Definition 6.6. For any N ≥ 1, any 0 ≤ p ≤ n, and any function fn on
the path space En, we let dN

p,n(fn) be the GNp−1-measurable functions

dN
p,n(fn) = dΦp(ηNp−1)ΨGp,n(L

N
p,n(fn)).

We are now in a position to state and to prove the following
decomposition theorem.

Theorem 6.16. For any 0 ≤ p ≤ n, and any function fn on the path
space En+1, we have

E(ΓNn (fn)|GNp ) = γNp (DN
p,n(fn)). (6.24)

In addition, we have

WΓ,N
n (fn) =

n∑
p=0

γNp (1)V N
p (DN

p,n(fn)) (6.25)

WQ,N
n (fn) =

n∑
p=0

1
ηNp (GNp,n)

V N
p (dN

p,n(fn)) (6.26)

=
n∑
p=0

V N
p (dN

p,n(fn))

−
n∑
p=0

1
ηNp (GNp,n)

1√
N
V N
p (GNp,n) × V N

p (dN
p,n(fn)). (6.27)
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Proof:
To prove the first assertion, we use a backward induction on the
parameter p. For p = n, the result is immediate since we have

ΓNn (fn) = γNn ( ) ηNn (DN
n,n(fn)).

We suppose that the formula is valid at a given rank p ≤ n. In this
situation, using the fact that DN

p,n(fn) is a GNp−1-measurable function,
we prove that

E(ΓNn (fn)|GNp−1) = E(γNp (DN
p,n(fn))|GNp−1) = (γNp−1Qp)D

N
p,n(fn) (6.28)

Applying (6.16), we also have that

γNp−1QpD
N
p,n = γNp−1D

N
p−1,n

from which we conclude that the desired formula is satisfied at rank
(p − 1). This ends the proof of the first assertion.

Now, combining Lemmas 6.15 and (6.24), the proof of the second
assertion is simply based on the following decomposition

(ΓNn − Γn)(fn)

=
n∑
p=0

[E(ΓNn (fn)|GNp ) − E(ΓNn (fn)|GNp−1)]

=
n∑
p=0

γNp (1)

(
ηNp (DN

p,n(fn)) − 1
ηNp−1(Gp−1)

ηNp−1(D
N
p−1,n(fn))

)
.

To prove the final decomposition, we use the fact that

[QN
n − Qn](fn) =

∑
0≤p≤n

(
ηNp D

N
p,n(fn)

ηNp D
N
p,n(1)

−
ηNp−1D

N
p−1,n(fn)

ηNp−1D
N
p−1,n(1)

)

with the conventions ηN−1D
N
−1,n = η0Γn|0, for p = 0.

Finally, we use (6.17) and (6.18) to check that

[QN
n − Qn] =

∑
0≤p≤n

(ΨGp,n(η
N
p ) − ΨGp,n(Φp(ηNp−1)))L

N
p,n.
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We end the proof using the first-order expansions of the Boltzmann-
Gibbs transformation developed in subsection 6.1:
√
N(ΨGp,n(η

N
p ) − ΨGp,n(Φp(ηNp−1)))L

N
p,n(fn)

=
1

ηNp (GNp,n)
V N
p (dN

p,n(fn))

= V N
p (dN

p,n(fn)) − 1
ηNp (GNp,n)

1√
N
V N
p (GNp,n) × V N

p (dN
p,n(fn)).

This ends the proof of the theorem.

6.6.4 Concentration Inequalities

6.6.4.1 Finite Marginal Models

Given a bounded function fn on the path space En, we further assume
that we have some almost sure estimate

sup
N≥1

osc(LNp,n(fn)) ≤ lp,n(fn) (6.29)

for some finite constant lp,n(fn) (≤ ‖fn‖). For instance, for additive
functionals of the form (6.21), we have proved in subsection 6.6.2 the
following uniform estimates

osc(LNp,n(fn)) ≤ τ2 + m g2m−1χ3
m

which are valid for any N ≥ 1 and any 0 ≤ p ≤ n, as soon as the
mixing condition Hm(G,M) stated in subsection 3.4.1 is met for some
m ≥ 1, and the regularity (6.22) is satisfied for some finite τ .

For any additive functional fn of the form (6.21), we denote by
fn = fn/(n + 1) the normalized additive functional.

Lemma 6.17. For any N ≥ 1, n ≥ 0, and any bounded function fn
on the path space En, we have the first-order decomposition

WQ,N
n (fn) =

n∑
p=0

V N
p (dN

p,n(fn)) +
1√
N
RNn (fn) (6.30)

with a second-order remainder term RNn (fn) such that

E(|RNn (fn)|m)1/m ≤ b(2m)2 rn(fn)
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for any m ≥ 1, with some finite constant

rn(fn) ≤ 4
∑

0≤p≤n
g2
p,nlp,n(fn). (6.31)

Proof. First, we notice that

‖dN
p,n(fn)‖ ≤ ‖Gp,n‖

Φp(ηNp−1)(Gp,n)
osc(LNp,n(fn)) ≤ gp,nosc(LNp,n(fn)).

Using (6.27), we find the decomposition (6.30) with the second-order
remainder term

RNn (fn) = −
n∑
p=0

RNp,n(fn)

with

RNp,n(fn) :=
1

ηNp (GNp,n)
V N
p (GNp,n) V

N
p (dN

p,n(fn)).

On the other hand, we have

E(|RNp,n(fn)|m|GNp−1)
1/m

≤ gp,nE(|V N
p (Gp,n/‖Gp,n‖)|2m|GNp−1)

1/(2m)

×E(|V N
p (dNp,n(fn))|2m|GNp−1)

1/(2m).

Using (6.4), we prove that

E(|RNp,n(fn)|m|GNp−1)
1/m ≤ 4b(2m)2 g2

p,n lp,n(fn).

The end of the proof is now clear. This ends the proof of the
lemma.

Theorem 6.18. For any N ≥ 1, n ≥ 0, and any bounded function fn
on the path space En, the probability of the events

[QN
n − Qn](fn) ≤ rn(fn)

N
(1 + (L�0)

−1(x)) + 2bn σ2
n(L

�
1)

−1
(

x

Nσ2
n

)
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is greater than 1 − e−x, for any x ≥ 0, with

σ2
n :=

1
b2n

∑
0≤p≤n

g2
p,nlp,n(fn)2σ2

p

and for any choice of bn ≥ sup0≤p≤n gp,nlp,n(fn). In the above displayed
formulae, σn are the uniform local variance parameters defined in
(3.20), lp,n(fn) and rn(fn) are the parameters defined in (6.29) and
(6.31), respectively.

Before proceeding into the proof of the theorem, we present some
direct consequences of these concentration inequalities for normalized
additive functionals (we use the estimates (4.20) and (4.21)).

Corollary 6.19. We assume that the mixing condition Hm(G,M)
stated in subsection 3.4.1 is met for some m ≥ 1, and the regularity
(6.22) is satisfied for some finite τ . We also suppose that the param-
eters σn defined in (3.20) are uniformly bounded σ = supn≥0σn <∞
and we set

c1(m) := 2gmχm (τ2 + m g2m−1χ3
m) and c2(m) := 2(gmχm)c1(m).

In this notation, for any N ≥ 1, n ≥ 0, and any normalized additive
functional fn on the path space En, the probability of the events

[QN
n − Qn](fn)

≤ c2(m)
N

(1 + (L�0)
−1(x)) + c1(m)σ2 (L�1)

−1
(

x

N(n + 1)σ2

)
is greater than 1 − e−x, for any x ≥ 0.

Corollary 6.20. We assume that the assumptions of corollary 6.19
are satisfied, and we set

pm,n(x) = c2(m)(1 + 2(x +
√
x)) +

c1(m)
3(n + 1)

x
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and

qm,n(x) = c1(m)

√
2xσ2

(n + 1)

with the constants c1(m) and c2(m) defined in Corollary 6.19.
In this situation, the probability of the events

[QN
n − Qn](fn) ≤

1
N

pm,n(x) +
1√
N
qm,n(x)

is greater than 1 − e−x, for any x ≥ 0.

Proof of Theorem 6.18:
We use the same line of arguments as those used in subsection 6.4.1.
Firstly, we notice that

‖dN
p,n(fn)‖ ≤ gp,n lp,n(fn).

This yields the decompositions
n∑
p=0

V N
p (dN

p,n(fn)) =
n∑
p=0

apV
N
p (δNp,n(fn))

with the functions

δNp,n(fn) = dN
p,n(fn)/ap ∈ Osc(Ep) ∩ B1(Ep)

and for any finite constants

ap ≥ 2 sup
0≤p≤n

gp,n lp,n(fn).

On the other hand, we also have that

E(V N
p (δNp,n(fn))2|GNp−1) ≤

4
(a�n)2

σ2
p g

2
p,n lp,n(fn)2

with a� := sup0≤p≤nap, and the uniform local variance parameters σ2
p

defined in (3.20).
This shows that the regularity condition stated in (5.2) is met

by replacing the parameters σp in the variance formula (5.2) by
the constants 2σpgp,nlp,n(fn)/a�n, with the uniform local variance
parameters σp defined in (3.20).

Using theorem 5.2, we easily prove the desired concentration
property. This ends the proof of the theorem.
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6.6.4.2 Empirical Processes

Using the same line of arguments as those used in subsection 6.4.2, we
prove the following concentration inequality.

Theorem 6.21. We let Fn be a separable collection of measurable
functions fn on En, such that ‖fn‖ ≤ 1, osc(fn) ≤ 1, with finite entropy
I(Fn) <∞.

πψ(‖WQ,N
n ‖Fn) ≤ cFn

n∑
p=0

gp,n‖lp,n‖Fn

with the functional fn ∈ Fn → lp,n(fn) defined in (6.29) and

cFn ≤ 242
∫ 1

0

√
log(8 + N (Fn, ε)2)dε.

In particular, for any n ≥ 0, and any N ≥ 1, the probability of the
following event

sup
fn∈Fn

|QN
n (fn) − Qn(fn)| ≤ cFn√

N

n∑
p=0

gp,n ‖lp,n‖Fn
√
x + log2

is greater than 1 − e−x, for any x ≥ 0.

Proof:
Using (6.26), for any function fn ∈ Osc(En) we have the estimate

|WQ,N
n (fn)| ≤ 2

n∑
p=0

gp,n lp,n(fn)|V N
p (δNp,n(fn))|

with the GNp−1-measurable random functions δNp,n(fn) on Ep defined by

δNp,n(fn) =
1

2lp,n(fn)
Gp,n
‖Gp,n‖

[LNp,n(fn) − ΨGp,n(Φp(ηNp−1))L
N
p,n(fn)].

By construction, we have

‖δNp,n(fn)‖ ≤ 1/2 and δNp,n(fn) ∈ Osc(Ep).

Using the uniform estimate (6.3), if we set

GNp,n := δNp,n(Fn) = {δNp,n(fn) : fn ∈ Fn}
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then we also prove the almost sure upper bound

sup
N≥1
N [GNp,n, ε] ≤ N (Fn, ε/2).

The end of the proof is now a direct consequence of Theorem 5.3, and
Theorem 4.6. This ends the proof of the theorem.

Definition 6.7. We let F = (Fn)n≥0, be a sequence of separable
collections Fn of measurable functions fn on En, such that ‖fn‖ ≤ 1,
osc(fn) ≤ 1, and finite entropy I(Fn) <∞.

For any n ≥ 0, we set

Jn(F) := 242 sup
0≤q≤n

∫ 1

0

√
log(8 + N (Fq, ε)2) dε.

We also denote by Σn(F) the collection of additive functionnals
defined by

Σn(F) =

fn ∈ B(En) such that ∀xn = (x0, . . . ,xn) ∈ En

fn(xn) =
n∑
p=0

fp(xp) with fp ∈ Fp, for 0 ≤ p ≤ n


and

Σn(F) = {fn/(n + 1) : fn ∈ Σn(F)}.

Theorem 6.22. For any N ≥ 1, and any n ≥ 0, we have

πψ(‖WQ,N
n ‖Σn(F)) ≤ anJn(F)

n∑
p=0

gp,n

with some constant

an ≤
∑

0≤q<p
βp,q +

∑
p≤q≤n

β(R(n)
p,q )

and for any a collection of [0,1]-valued parameters βp,q such that

∀0 ≤ q ≤ p sup
N≥1

β(Mp,ηNp−1
. . .Mq+1,ηNq ) ≤ βp,q.
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Proof. By definition of the operator dN
p,n given in definition 6.6, for

additive functionals fn of the form (6.21), we find that

d′N
p,n(fn) := Φp(ηNp−1)(Gp,n) × dN

p,n(fn)

= Gp,n[Id − ΨGp,n(Φp(ηNp−1))]L
N
p,n(fn)

=
∑

0≤q<p
d(N,1)

p,q,n(fq) +
∑
p≤q≤n

d(N,2)
p,q,n(fq)

with

d(N,1)
p,q,n(fq) = Gp,n[Id − ΨGp,n(Φp(ηNp−1))](M

(N)
p,q (fq))

d(N,2)
p,q,n(fq) = Gp,n[Id − ΨGp,n(Φp(ηNp−1))](R

(n)
p,q (fq))

and

M(N)
p,q := Mp,ηNp−1

. . .Mq+1,ηNq .

This implies that

|V N
p (d′N

p,n(fn))| ≤ 2‖Gp,n‖

 ∑
0≤q<p

βp,qV
N
p (δ(N,1)

p,q,n (fq))

+
∑
p≤q≤n

β(R(n)
p,q )V

N
p (δ(N,2)

p,q,n (fq))

 (6.32)

with

δ
(N,1)
p,q,n (fq) =

1

2β(M(N)
p,q )

Gp,n
‖Gp,n‖

Gp,n[Id − ΨGp,n(Φp(ηNp−1))]M
(N)
p,q (fq)

and

δ
(N,2)
p,q,n (fq) =

1

2β(R(n)
p,q )

Gp,n
‖Gp,n‖

Gp,n[Id − ΨGp,n(Φp(ηNp−1))]R
(n)
p,q (fq).

By construction, we have that

‖δ(N,i)p,q,n(fq)‖ ≤ 1/2 and osc(δ(N,i)p,q,n(fq)) ≤ 1

for any i ∈ {1,2}. We set

G(N,i)
p,q,n := δ

(N,i)
p,q,n(Fq) = {δ(N,i)p,q,n(fq) : fq ∈ Fq}.
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Using the uniform estimate (6.3), we also prove the almost sure upper
bound

sup
N≥1
N [G(N,i)

p,q,n , ε] ≤ N (Fq, ε/2).

Using Theorem 5.3, we prove that

πψ( sup
fn∈Σn(F)

|V N
p (d′N

p,n(fn))|) ≤ an‖Gp,n‖Jn(F).

The end of the proof of the theorem is now a direct consequence of
the decomposition (6.26). This ends the proof of the theorem.

Corollary 6.23. We further assume that the condition Hm(G,M)
stated in subsection 3.4.1 is met for some m ≥ 1, the condition (6.22)
is satisfied for some τ , and we have J(F) := supn≥0Jn(F) <∞. In
this situation, we have the uniform estimates

sup
n≥0

πψ(‖WQ,N
n ‖Σn(F)) ≤ cF (m)

with some constant

cF (m) ≤ χmgm(τ2 + m g2m−1χ3
m)J(F).

In particular, for any time horizon n ≥ 0, and any N ≥ 1, the
probability of the following event

‖QN
n − Qn‖Σn(F) ≤

1√
N
cF (m)

√
x + log2

is greater than 1 − e−x, for any x ≥ 0.

Proof. When the conditions Hm(G,M) and (6.22) are satisfied, we
proved in subsection 6.6.2 that∑

0≤q<p
βp,q +

∑
p≤q≤n

β(R(n)
p,q ) ≤ τ2 + mg2m−1χ3

m.

We end the proof of the theorem, recalling that gp,n ≤ χmgm. This
ends the proof of the theorem.

We end this section with a direct consequence of (4.10).



382 Feynman-Kac Particle Processes

Corollary 6.24. We further assume that the condition Hm(G,M)
stated in subsection 3.4.1 is met for some m ≥ 1, the condition (6.22)
is satisfied for some τ . We let Fn be the set of product functions of
cell indicators in the path space En = Rd, for some d ≥ 1, p ≥ 0.

In this situation, for any time horizon n ≥ 0, and any N ≥ 1, the
probability of the following event

‖QN
n − Qn‖Σn(F) ≤ c(m)

√
d

N
(x + 1)

is greater than 1 − e−x, for any x ≥ 0, with some constant

c(m) ≤ c χmgm (τ2 + m g2m−1χ3
m).

In the above display, c stands for some finite universal constant.
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