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» R is a strictly henselian DVR of inequal
characteristic (0, p).

K := FrR; for example K /Q}' finite.
7 a uniformizing parameter.
k= RK /7TRK .

C/K smooth projective curve, g(C) > 1.
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Monodromy and automorphism groups. Autamorphism groups

of curvesin char.p > 0
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» R is a strictly henselian DVR of inequal
characteristic (0, p).

K := FrR; for example K /Q}' finite.
7 a uniformizing parameter.
k= RK /7TRK .

C/K smooth projective curve, g(C) > 1.

» C has potentially good reduction over K if there is
L/K (finite) such that C x« L has a smooth model
over R.. Then:

» There is a minimal extension L/K with this
property; it is Galois and called the monodromy
extension.

» Ga(L/K) is the monodromy group.
» Its p-Sylow subgroup is the wild monodromy
group .



» The base change C xx K29 induces an
homomorphism ¢ : Gal(K&9 /K ) — Aut,Cs, Where
Cs is the special fiber of the smooth model over
R. and L = (K29)kere,
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» The base change C xx K29 induces an
homomorphism ¢ : Gal(K&9 /K ) — Aut,Cs, Where
Cs is the special fiber of the smooth model over
R. and L = (K29)kere,

» Let ¢ be a prime number, then,

Ny := v£(|GaI(L/K)|) < Vg(‘AUtszD.

» If ¢ ¢{2,p}, thenn, < 2g.
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Cs is the special fiber of the smooth model over
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Let ¢ be a prime number, then,
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where a = [2%].
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The base change C xx K29 induces an M. MATIGNON
homomorphism ¢ : Gal(K&9 /K ) — Aut,Cs, Where

Cs is the special fiber of the smooth model over

R. and L = (K29)kere, Mooy and autrrphi

Let ¢ be a prime number, then,
Ny := v£(|GaI(L/K)|) < Vg(‘AUtszD.
» If ¢ ¢{2,p}, thenn, < 2g.

» If p > 2, then

np < inf@égp Vp(|GL2g(Z/€Z)|) =a+ [a/p] + ...,
where a = [2%].

This gives an exponential type bound in g for
|Aut, Cs|. This justifies our interest in looking at

polynomial bounds, Stichtenoth ([St 73]) and
Singh ([Si 73]).
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p-cyclic covers of the affi ne line

k is an algebraically closed of char. p > 0.

» f(X) € Xk[X] monic,degf = m > 1 prime to p.

» C; : WP — W =f(X). Let oo be the point of C¢
above X = oo and z a local parameter. Then,
9:=9(Cf) = B*(m—-1) >0,
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p-cyclic covers of the affi ne line

k is an algebraically closed of char. p > 0.

» f(X) € Xk[X] monic,degf = m > 1 prime to p.

» C; : WP — W =f(X). Let oo be the point of C¢
above X = oo and z a local parameter. Then,
9:=9(C) = 5 (m—-1)>0.

> Goo(f) := {0 € AutCs | o(o0) = o0}.
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k is an algebraically closed of char. p > 0.

f(X) € Xk[X] monic,degf = m > 1 prime to p.

» C; : WP — W =f(X). Let oo be the point of C¢
above X = oo and z a local parameter. Then,

9:=9(C) = 5 (m—-1)>0.

Goo(f) := {0 € AutcCs | o(00) = o0}

Goo1(f) == {0 € AutcCs | Voo(0o(z) — 2) > 2} , the

p-Sylow.

([St 73]) Let g(Cs) > 2, then G 1(f) is a p-Sylow

of Auty, Cs.

v

v

v

v
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k is an algebraically closed of char. p > 0.

» f(X) € Xk[X] monic,degf = m > 1 prime to p.

» C; : WP — W =f(X). Let oo be the point of C¢
above X = oo and z a local parameter. Then,
9:=9(C) = 5 (m—-1)>0.

> Goo(f) := {0 € AutCs | o(o0) = o0}.

> Gooi(f) :={o € AutyCs | Voo (0(z) — 2) > 2} , the
p-Sylow.

> ([St 73]) Let g(Cs) > 2, then G, 1(f) is a p-Sylow
of Auty, Cs.

» It is normal except for f(X) = X™ where m|1 + p.



Structure of G, 1(f)

> Let p(X) =X, p(W) =W +1, then
< p>= Goo,2 C Z(Goo,l)
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Structure of G, 1(f)

» Let p(X) =X, p(W) =W + 1, then
< p>= Goo,2 C Z(Goo,l)
»0—-<p>>G,1—V —0,
V={r|y(X) =X+y, y ek}
FX +y) =f(X) +f(y) + (F = 1d)(P(X,y)),
P(X,y) € XKk[X].
V ~ (Z/pZ)" as a subgroup of k.
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» Let p(X) =X, p(W) =W + 1, then
< p>= Goo,2 C Z(Goo,l)
»0—-<p>>G,1—V —0,
V={ry|y(X)=X+y, y ek}
f(X +y) =f(X)+f(y) + (F = 1d)(P(X,y)),
P(X,y) € XKk[X].
V ~ (Z/pZ)" as a subgroup of k.
> Let 7y (W) := W +ay + P(X,y), ay € Fp, then
[7y,72] = p¥?), where e : V x V — Fp is an
alternating form.
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Structure of G, 1(f)

» Let p(X) =X, p(W) =W + 1, then
< p>= Goo,2 C Z(Goo,l)

»0—-<p>>G,1—V —0,
V={ry|y(X)=X+y, y ek}
f(X +y) =f(X)+f(y) + (F = 1d)(P(X,y)),
P(X,y) € XKk[X].
V ~ (Z/pZ)" as a subgroup of k.

> Let 7y (W) := W +ay + P(X,y), ay € Fp, then
[7y,72] = p¥?), where e : V x V — Fp is an
alternating form.

> € is non degenerated iff < p >= Z (G 1).
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Lemma .
Iff(X) =2 1<i<cm X' € K[X] is monic, then : e
> AF)X,Y) =f(X +Y)—f(X)—f(Y) =
R(X,Y)+ (F —1d)(P:(X,Y)),
inn(i)
where R € ®L%J§ip"(i)<m, i.p)=1 K[Y]XP™ and
Pf 6 Xk[X,Y] Nakajima conditior
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Lemma .
If f(X) = Zlgigm ;X' € k[X] is monic, then : e DO
» AF)(X,Y) =f(X+Y)—f(X)-1f(Y) =
R(X,Y)+ (F —1d)(P:(X,Y)), S oio0o
ipn(i) ’,huu\—,mwwy’?\
where R € ®L%J§ip"(i)<m, i.p)=1 K[Y]XP™ and
Pf E Xk [X,Y] Naks ‘H‘ o

> P = (Id+F + ... + F"1)(A(f)) mod x!"s 1#1,
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Lemma .
Iff(X) =2 1<i<cm X' € K[X] is monic, then : e
» AF)(X,Y) =f(X+Y)—f(X)-1f(Y) = some
R(X,Y)+ (F —1d)(P:(X,Y)),
ipn() Characterization of G oo 1 (f)
where R S ®L%J§ip"(‘)<m, (i,p)=1 k[Y]X'p and o
Pf 6 Xk[X,Y] Nakajima cont
> P = (Id+F + ... + F"1)(A(f)) mod x!"s 1#1,

» Let us denote by Adi(Y ) the content of
R(X,Y) € k[Y][X]. st



Bounds for |G 1(f)| it

of curvesin char.p > 0

M. MATIGNON

Lemma .
Iff(X) =2 1<i<cm X' € K[X] is monic, then :

> AF)(X,Y) = (X +Y)—f(X)—f(Y) =

R(X7Y) + (F - Id)(Pf (X’Y))7 - Bounds for [Goo 1 (f)]
where R € @L%Jgip"(ikm, i.p)=1 K[Y]XP™ and
P; e XK[X,Y].

> Py = (Id+F + ... - F"1)(A(f)) mod x"» 1+,
» Let us denote by Ads(Y ) the content of

R(X,Y) € k[Y][X].
» Ad:(Y ) is an additive and separable polynomial.
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Lemma .
Iff(X) =2 1<i<cm X' € K[X] is monic, then :

> AF)(X,Y) = (X +Y)—f(X)—f(Y) =

R(X7Y) + (F - Id)(Pf (X’Y))7 - Bounds for [Goo 1 (f)]
where R € @L%Jgip"(ikm, i.p)=1 K[Y]XP™ and
P; e XK[X,Y].

> Py = (Id+F + ... - F"1)(A(f)) mod x"» 1+,
» Let us denote by Ads(Y ) the content of

R(X,Y) € k[Y][X].
» Ad:(Y ) is an additive and separable polynomial.
> Z(Ad(Y)) =~ V.



Let m — 1 = ¢ps with (¢,p) = 1.
> ([St 73]) [Goo 1| = pdegAds < p(m —1)?, ie.

|Goo,l‘
gZ

4p
= (p-1)%°
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Let m — 1 = ¢ps with (¢,p) = 1.

> ([St 73]) [Geo 1| = pdegAds < p(m — 1), i.e.
[ 4p

9> — (p-1)%
> ([St73])s=0ie.(m—1,p)=1,then |G, 1| =p.
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» If s >0,
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|Gooal 4p o
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> ([St73])s=0ie.(m—1,p)=1,then |G, 1| =p.
» If s >0,
> €>1,p:2,then%§§.




Let m — 1 = ¢ps with (¢,p) = 1.

> ([St 73]) [Goo 1| = pdegAds < p(m —1)?, ie.
|Goo,1‘ 4p
92 — (p-1)%"
> ([St73])s=0ie.(m—1,p)=1,then |G, 1| =p.
» If s >0,

> €>1,p:2,then%§§.
|Goo 1] p
> €>1,p>2,thenT1§m.

p-Groups and
Automorphism groups
of curvesin char.p > 0

M. MATIGNON

Structure of Goo 1 (f)
Bounds for |G oo ()]




p-Groups and
Automorphism groups
of curvesin char.p > 0

M. MATIGNON
Let m — 1 = ¢ps with (¢,p) = 1.

> ([St 73]) [Guo 1| = pdegAds < p(m —1)?, i.e.
IGoo l 4p

9> — (p-1*

> ([St73])s=0ie.(m—1,p)=1,then |G, 1| =p.

» If s >0,
>€>1p72then ‘g

» (>1,p>2, then [Ses.1l < Ll

> ([St73) (=1, m= 1+pS then (=l < pps_p. e

(with equality for f(X) = X1P°). e e o

8 Qaff
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo.1(f) is an extension of this type). Then
G'c N cCZ(G).
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo.1(f) is an extension of this type). Then
G'c N cCZ(G).

» If G’ =Z(G), G is called extraspecial.
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo.1(f) is an extension of this type). Then
G'c N cCZ(G).

» If G’ =Z(G), G is called extraspecial.

» Then, |G| = p?*! and there are 2 isomorphism
classes for a given s.
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo.1(f) is an extension of this type). Then
G'c N cCZ(G).

» If G’ =Z(G), G is called extraspecial.

» Then, |G| = p?*! and there are 2 isomorphism
classes for a given s.

» If p > 2, we denote by E (p3) (resp. M(p?)) the
non abelian group of order p* and exponent p
(resp. p?). Then, G ~ E(p3) x E(p3) x ... x E(p3) or
M(p3) x E(p3) * ... x E(p®), according as the
exponent is p or p2.
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo.1(f) is an extension of this type). Then
G'cNcCZz(G).

» If G’ =Z(G), G is called extraspecial.

» Then, |G| = p?*! and there are 2 isomorphism
classes for a given s.

» If p > 2, we denote by E (p3) (resp. M(p?)) the
non abelian group of order p* and exponent p
(resp. p?). Then, G ~ E(p3) x E(p3) x ... x E(p3) or
M(p3) x E(p3) * ... x E(p®), according as the
exponent is p or p2.

» Ifp=2,then G ~ Dg * Dg * ... * Dg or
Qs * Dg * ... x Dg (in both cases, the exponent is
22).
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo.1(f) is an extension of this type). Then
G'c N cCZ(G).

» If G’ =Z(G), G is called extraspecial.

» Then, |G| = p?*! and there are 2 isomorphism
classes for a given s.

» If p > 2, we denote by E (p3) (resp. M(p?)) the
non abelian group of order p* and exponent p
(resp. p?). Then, G ~ E(p3) x E(p3) x ... x E(p3) or
M(p3) x E(p3) * ... x E(p®), according as the
exponent is p or p2.

» Ifp=2,then G ~ Dg * Dg * ... * Dg or
Qs * Dg * ... x Dg (in both cases, the exponent is
22).

» If G’ € Z(G), G is a subgroup of an extraspecial
group E with Z(E) =N C G.
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» Theorem
([Le-Ma 1]). Let f(X) = XZ(F)(X) € Xk[X],
Y(F) =Y o<ics &F' € k{F} an additive polynomial
with degf = 1 + pS. Then,
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» Theorem
([Le-Ma 1]). Let f(X) = XX (F)(X) € Xk[X],
Y(F) =Y o<ics &F' € k{F} an additive polynomial
with degf = 1 + pS. Then,
> Ad(Y) = F3(Coci<s(@F' +Fa)(Y)), a
palyndromic polynomial.
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» Theorem
([Le-Ma 1]). Let f(X) = XX (F)(X) € Xk[X],
Y(F) =Y o<i<saiF' € k{F} an additive polynomial
with degf = 1 + pS. Then,
> Ad(Y) = F3(Coci<s(@F' +Fa)(Y)), a
palyndromic polynomial.
» G 1(f) is an extraspecial group with cardinal
p2s*1 and exponent p for p > 2, and of type
Qg * Dg * ... x Dg for p = 2.
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» Theorem

([Le-Ma 1]). Let f(X) = XX (F)(X) € Xk[X],
Y(F) =Y o<i<saiF' € k{F} an additive polynomial
with degf = 1 + pS. Then,
> Adi(Y) = F*(Xoqi<s(@F' +F'a)(Y)), a
palyndromic polynomial.
» G 1(f) is an extraspecial group with cardinal
p2s*1 and exponent p for p > 2, and of type
Qg * Dg * ... x Dg for p = 2.

» Theorem

([Le-Ma 1]). If G is an extension of type
0—7Z/pZ — G — (Z/pZ)" — 0, there is f € Xk[X]
with G ~ G 1(f).
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Big actions (1)

» Theorem

([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1. If
> pl (4 for p = 2), then
f(X) = cX + XX (F)(X) € k[X].

|G<x> 1‘
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Big actions (1)

» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1. If
[Gooal ppl (4 for p = 2), then
f(X) =cX + XX (F)(X) € k[X].

» Defi nition
Let (C, G) with G C AutxC. We say that (C,G) is a big
action if G is a p-group and
(N) gc >Oand% > 2.
It follows from ([Na 87]) that there is co € C, with
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Big actions (1)

» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1. If
[Gooal ppl (4 for p = 2), then
f(X) =cX + XX (F)(X) € k[X].

» Defi nition
Let (C, G) with G C AutxC. We say that (C,G) is a big
action if G is a p-group and
(N) gc >Oand% > 2.
It follows from ([Na 87]) that there is co € C, with

» C—>C/G~PL—cisétaleand G = G, 1.
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» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1. If
Gooal -, 527 (5 for p = 2), then Jr——
f(X) =cX + XZ(F)(X) € k[X].

» Defi nition il,
Let (C,G) with G C Aut,C. We say that (C,G) is abig e )
action if G is a p-group and s
(N) gc > 0 and % > %, o

It follows from ([Na 87]) that there is oo € C, with

» C—>C/G~P}—ooisétale and G = G 1.
> Goo,2 75 Goo,l and C/Goo,Z o P& PRIy GRS
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» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1. If
[Gooal ppl (4 for p = 2), then
f(X) =cX + XX (F)(X) € k[X].

» Defi nition
Let (C, G) with G C AutxC. We say that (C,G) is a big
action if G is a p-group and
(N) gc >Oand% > 2.
It follows from ([Na 87]) that there is co € C, with
» C—>C/G~PL—cisétaleand G = G, 1.
> Goo,2 75 Goo,l and C/Goo,Z Y P&
» Then, G 1/G. 2 acts as a group of translations
of the affine line C /G, » — {o0}.

Nakajima condition
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» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1. If
[Gooal ppl (4 for p = 2), then
f(X) =cX + XX (F)(X) € k[X].

» Defi nition
Let (C, G) with G C AutxC. We say that (C,G) is a big
action if G is a p-group and
(N) gc >Oand% > 2.
It follows from ([Na 87]) that there is co € C, with
» C—>C/G~PL—cisétaleand G = G, 1.
> Goo,2 75 Goo,l and C/Goo,Z Y Pﬁ
» Then, G 1/G. 2 acts as a group of translations
of the affine line C /G, » — {o0}.
» Transfert of condition (N) to quotients. Let
(C,G) a big action, if H < G and if g(C/H) > 0,
then (C/H,G/H) is a big action.

Nakajima condition



Condition (N) and G,

In this section (C,G) is a big action. Let G; be the
lower ramification groups.
» Let H <« G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.
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Condition (N) and G,

In this section (C,G) is a big action. Let G; be the
lower ramification groups.

» Let H <« G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.
> (G/H)2 = G2/H ~ Z/pZ.
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Condition (N) and G,

In this section (C,G) is a big action. Let G; be the
lower ramification groups.
» Let H <« G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.
> (G/H)2 = G2/H o Z/pZ.
» Thereis S(F) € k{F},
f1 = cX + XX(F)(X) € k[X] with C/H ~ C;,.
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Condition (N) and G,

In this section (C,G) is a big action. Let G; be the
lower ramification groups.
» Let H <« G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.
> (G/H)2 = G2/H ~Z/pZ.
» Thereis S(F) € k{F},
f1 = cX + XX(F)(X) € k[X] with C/H ~ C;,.
» If G, ~ (Z/pZ)!, then k(C) = k(X, W4y, ..., W;) and
P(W1, ..., We) = (f(X), 2(X), ..., ft (X)) € (k[X])!
f1(X), ... f(X) are Fp-free  mod p(k[X]).
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In this section (C,G) is a big action. Let G; be the
lower ramification groups.
» Let H <« G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.
> (G/H)2 = G2/H ~Z/pZ.
» Thereis S(F) € k{F},
fi = cX + XZ(F)(X) € k[X] with C/H =~ Cq,.
» If G, ~ (Z/pZ)!, then k(C) = k(X, W4y, ..., W;) and
P(W1, ..., We) = (f(X), 2(X), ..., ft (X)) € (k[X])!
f1(X), ... f(X) are Fp-free  mod p(k[X]).
» The group extension
0—-G,— Gy —V =(Z/pZ)" — 0induces a
representation p : V. — Gl(FFp)



» Imp is a unipotent subgroup of Gly(IF,) which is
the identity iff G, € Z(G). In this case
fi(X) = ciX + XX (F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.
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» Imp is a unipotent subgroup of Gly(IF,) which is
the identity iff G, € Z(G). In this case
fi(X) = ciX + XX (F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.

» For p > 2, we give an example such that Imp # Id
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» Imp is a unipotent subgroup of Gly(IF,) which is
the identity iff G, € Z(G). In this case
fi(X) = ciX + XX (F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.
» For p > 2, we give an example such that Imp # Id
» Letf; := X(aF)(X) = aX¥P with aP + a = 0;
then Ad;, = Y —Y and
Let f, := X1+2P _ X2+P then
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» Imp is a unipotent subgroup of Gly(IF,) which is
the identity iff G, € Z(G). In this case
fi(X) = ciX + XX (F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.
» For p > 2, we give an example such that Imp # Id
» Letf; := X(aF)(X) = aX¥P with aP + a = 0;
then Ad;, = Y —Y and
Let f, := X1+2P _ X2+P then
» Ify € Z(Adfl) Fp2 one has
f(X +y) = 2L (X) + f(X) + p(Py).
wherey — 20°—y) = ) is a non zero linear form over
Fp2 with values in Fp.
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» Imp is a unipotent subgroup of Gly(IF,) which is
the identity iff G, € Z(G). In this case
fi(X) = ciX + XX (F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.
» For p > 2, we give an example such that Imp # Id
» Letf; := X(aF)(X) = aX¥P with aP + a = 0;
then Ad;, = Y —Y and
Let f, := X1+2P _ X2+P then
» Ify € Z(Adfl) Fp2 one has

B(X +y) = y”—”fl( X) +f2(X) + p(P2).

wherey — 20°—y) = —Y) is a non zero linear form over
Fp2 with values in Fp.

> |G| =p?p2and g = 251 (p + p * 2p).
IG| _ 2p _p?

p—11+2p°

Gl _ _4p p

g2 = (p—1)% (1+2p)?"
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» Theorem
([Le-Ma 4]) Assume G, is non abelian, then G, = G’.
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» Theorem

([Le-Ma 4]) Assume G, is non abelian, then G, = G’.

» Sketch proof : If G’ # G, there is H <« G with
G'CHCGyand [G,: H]=p.
(C/H,G/H) is a big action;
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» Theorem

([Le-Ma 4]) Assume G, is non abelian, then G, = G’.

» Sketch proof : If G’ # G, there is H <« G with
G'CHCGyand [G,: H]=p.
(C/H,G/H) is a big action;

» C/H: WP —W =f:=XI(F)(X),
deg(f) =1 + p°®.
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» Sketch proof : If G’ # G, there is H <« G with
G'CHCGyand [G,: H]=p.
(C/H,G/H) is a big action;

» C/H: WP —-W =f:=XX(F)(X), oo
deg(f) = 1+ p°. B

» (AUtC/H).. 1 := E is extraspecial of order p2s+1.



» Theorem

([Le-Ma 4]) Assume G, is non abelian, then G, = G’.

» Sketch proof : If G’ # G, there is H <« G with
G'CHCGyand [G,: H]=p.
(C/H,G/H) is a big action;

» C/H: WP —W =f:=XI(F)(X),
deg(f) =1 + p°®.

> (AUtC/H).. 1 := E is extraspecial of order p?s+1.

» G/H is abelian and normal in E.
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» Theorem

([Le-Ma 4]) Assume G, is non abelian, then G, = G’.

» Sketch proof : If G’ # G, there is H <« G with
G'CHCGyand [G,: H]=p.
(C/H,G/H) is a big action;

» C/H: WP —W =f:=XI(F)(X),
deg(f) =1 + p°®.

> (AUtC/H).. 1 := E is extraspecial of order p?s+1.

» G/H is abelian and normal in E.
» ([Hu 67] Satz 13.7 p 353) |G/H| < pS*t! and so

+

IG/H|/9(C/H) < 23 = 25, & contradiction.
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» Theorem

([Le-Ma 4]) Assume G, is non abelian, then G, = G’.

» Sketch proof : If G’ # G, there is H <« G with
G'CHCGyand [G,: H]=p.
(C/H,G/H) is a big action;

» C/H: WP —W =f:=XI(F)(X),
deg(f) =1 + p°®.

> (AUtC/H).. 1 := E is extraspecial of order p?s+1.

» G/H is abelian and normal in E.
» ([Hu 67] Satz 13.7 p 353) |G/H| < pS*t! and so

+

IG/H|/9(C/H) < 23 = 25, & contradiction.

» We deduce the following corollary from ([Su 86]
4.21 p.75).

Corollary
If |G,| = p3, then G, is abelian.

p-Groups and
Automorphism groups
of curvesin char.p > 0

M. MATIGNON

More about G,



Riemann surfaces

» In characteristic 0, an analogue of big actions is
given by the actions of a finite group G on a
compact Riemann surface C with gc > 2 such
that |G| = 84(gc — 1) (we say that C is an
Hurwitz curve) ([Co 90]).
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Riemann surfaces

» In characteristic 0, an analogue of big actions is
given by the actions of a finite group G on a
compact Riemann surface C with gc > 2 such
that |G| = 84(gc — 1) (we say that C is an
Hurwitz curve) ([Co 90]).

» Let us mention Klein’s quartic (G ~ PSL,(F7)) ([El
99)).
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Riemann surfaces

» In characteristic 0, an analogue of big actions is
given by the actions of a finite group G on a
compact Riemann surface C with gc > 2 such
that |G| = 84(gc — 1) (we say that C is an
Hurwitz curve) ([Co 90]).

» Let us mention Klein’s quartic (G ~ PSL,(F7)) ([El
99)).

» The Fricke-Macbeath curve with genus 7
(G ~ PSL,(Fg)) ([Mc] 65).
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» In characteristic 0, an analogue of big actions is
given by the actions of a finite group G on a
compact Riemann surface C with gc > 2 such
that |G| = 84(gc — 1) (we say that C is an
Hurwitz curve) ([Co 90]).

» Let us mention Klein’s quartic (G ~ PSL,(F7)) ([El
99)).

» The Fricke-Macbeath curve with genus 7
(G ~ PSL,(Fg)) ([Mc] 65).

» Let C be an Hurwitz curve with genus gc. Let
n > 1 and C, the maximal unramified Galois
cover whose group is abelian with exponent n.
The Galois group of C,/C is (Z/nZ)?%. It follows
from the unicity of C,, that the k-automorphisms of
C have n?9 prolongations to Cy,. It follows that C,,
is an Hurwitz curve ([Mc] 61).



Ray class fi elds

» If (C,G) is a big action then C — C/G is an étale
cover of the affine line whose group is a p-group;
it follows that the Hasse-Witt invariant of C is
zero; therefore, in order to adapt the previous
proof to char. p > 0, one needs to accept
ramification. This is done with the so called ray
class fields of function fields over finite fields.
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» If (C,G) is a big action then C — C/G is an étale
cover of the affine line whose group is a p-group;
it follows that the Hasse-Witt invariant of C is
zero; therefore, in order to adapt the previous
proof to char. p > 0, one needs to accept
ramification. This is done with the so called ray
class fields of function fields over finite fields.

> LetK :=Fqy(X) where q = p®, S the set of finite
rational places (X —v), v € Fgand m € N. Let
K a9 be an algebraic closure. Let KI' ¢ K29, the
biggest abelian extension L of K with conductor
< moo and such that the places in S are
completely decomposed.



> ([La 99], [Au 00]) The constant field of K" is [y
and Gg(m) := Ga(K{"/K) ~ (1 4+ TFq[[T]])/ <
1+ TMFy[[T]],1 —VvT,v € Fq >, is a p-group.
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> ([La 99], [Au 00]) The constant field of K" is Fg

and Gg(m) := Ga(K{"/K) ~ (1 4+ TFq[[T]])/ <

1+ TMFy[[T]],1 —VvT,v € Fq >, is a p-group.
> ([Le-Ma 4]) Let C,, /IFq be the smooth projective

curve with function field KI'. The translations

X — X +v, v € Fq stabilize S and oo ; they can

be extended to Fq-automorphisms of KZ'. In this

way, we get an action of a p-group G(m) on Cp,

with 0 — Gg(m) — G(m) — Fq — 0
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> ([La 99], [Au 00]) The constant field of K" is Fg
and Gg(m) := Ga(K{"/K) ~ (1 4+ TFq[[T]])/ <
1+ TMFy[[T]],1 —VvT,v € Fq >, is a p-group.
> ([Le-Ma 4]) Let C,, /IFq be the smooth projective
curve with function field KI'. The translations
X — X +v, v € Fq stabilize S and oo ; they can
be extended to Fq-automorphisms of KZ'. In this
way, we get an action of a p-group G(m) on Cp,
with 0 — Gg(m) — G(m) — Fq — 0

» ([Au 00]) If Ny := |Gs(m)|, then

gcn =1+ Nm(—=1+m/2) —(1/2) 3 ojcm-1 N <
Nm(—1+m/2)



, lom) <

Nm(

dcm

= Mm(=1+m/2)

q
—14+m/2"

This is a “big

g ” [¢] 2_p
action” as soon as “TEmz > po1 (we have
Gz = Gs(m))
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B0 > ey = = 27 This is a *big
action” as soon as — “Trmz > 2'01 (we have J—————
Gz = Gs(m))

» Let Ng := |Cm(Fq)|. Then, Ng = 1 + |G(m)|, and
the quotient % ~ c;j:_l Crrnceat ot e A (1)

Ray class fields
Maximal curve:




|G(m)] Nmq _ q
> Sae, = mm(—ltm/2) = —Tim/z

action” as soon as —tos > =& (we have
Gz = Gs(m))
> Let Ng := |Cm(Fq)|. Then, Ng = 1+ |G(m)|, and

iant [G(M)[ _ Ng
the quotient dor o

» ([La99)) If g = p&,m; := pl®/21+1 { p + 1is the
smallest conductor m such that the exponent of
Gl is > p.

This is a “big

p-Groups and
Automorphism groups
of curvesin char.p > 0

M. MATIGNON

Ray class fields



IG(m)] - Nm( —_ _4q
9cm  — Nm(=1+m/2) —1+m/2"

action” as soon as —g17; > =& (we have
Gz = Gs(m))
Let Ng := |Cm(Fq)|. Then, Ng =1 + |G(m)|, and

iant [G(M)[ _ Ng
the quotient dor o

(ILa 99]) If g = p&,m, := p[®/21*1 L p + 1is the
smallest conductor m such that the exponent of
GJis > p.

If e > 2, (Cm,, G(my)) is a big action and G; is

abelian with exponent p2.

This is a “big
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Maximal curves (1)

Let us assume that (C, G) is a big action.

> Let io withG, =Gz =.... =G

D
lo >~

Gjy+1- Then

9(c/Giy 1) = $(1G2/Gig11| — 1)(io — 1).
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Maximal curves (1)

Let us assume that (C, G) is a big action.

> Letip with G2 = G3 = .... = Gj; 2 Gjp41. Then
9(C/Giyi) = 1(1G2/Giy 1] — 1)(io — 1)
» Theorem

([Le-Ma 1]) If 'G‘ > 21y there is X(F) € k{F} and

f =cX +XZ( )(X) € k[X] with C ~ C;.
Moreover there are two possibilities for G :
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Let us assume that (C, G) is a big action.

> Letip with G2 = G3 = .... = Gj; 2 Gjp41. Then
9(C/Giyi) = 1(1G2/Giy 1] — 1)(io — 1)
» Theorem

([Le-Ma 1)) If 'G‘ > oo 1) there is X(F) € k{F } and
f =cX +XZ( )(X) € k[X] with C ~ C;.
Moreover there are two possibilities for G :

> % = (pf”l)z and G = G () or
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Maximal curves (1)

Let us assume that (C, G) is a big action.

> Letip with G2 = G3 = .... = Gj; 2 Gjp41. Then
9(C/Giyi) = 1(1G2/Giy 1] — 1)(io — 1)
» Theorem

([Le-Ma 1]) If 'G‘ > 21y there is X(F) € k{F} and

f =cX +XZ( )(X) € k[X] with C ~ C;.
Moreover there are two possibilities for G :

> % = (p“p ; and G = G, 1(f) or

IGI = 0 1 —== and G C G 1(f) has index p.
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Maximal curves (1)

Let us assume that (C, G) is a big action.

> Letip with G2 = G3 = .... = Gj; 2 Gjp41. Then
9(C/Giyi) = 1(1G2/Giy 1] — 1)(io — 1)
» Theorem

([Le-Ma 1]) If 'G‘ > 21y there is X(F) € k{F} and

f =cX +XZ( )(X) € k[X] with C ~ C;.
Moreover there are two possibilities for G :

> % = (p“p ; and G = G, 1(f) or

IGI = 0 1 —== and G C G 1(f) has index p.

» One can push the * classification " of big actions

B > 4
up to the condition o > (pz 2
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Maximal curves (1)

Let us assume that (C, G) is a big action.

> Letip with G2 = G3 = .... = Gj; 2 Gjp41. Then
9(C/Giyi) = 1(1G2/Giy 1] — 1)(io — 1)
» Theorem

([Le-Ma 1]) If 'G‘ > 21y there is X(F) € k{F} and

f =cX +XZ( )(X) € k[X] with C ~ C;.
Moreover there are two possibilities for G :

> % = (p“p ; and G = G, 1(f) or

IGI = 0 1 —== and G C G 1(f) has index p.

» One can push the * classification " of big actions

B > 4
up to the condition o > (pz 2

» Theorem
([Le-Ma 4]) For all M > 0, the set ‘G' > M, for (C,G) a

big action with G, abelian with exponent p, is finite.
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Monodromy polynomial ([Le-Ma 3])

» LetC — IP’& birationally given by the equation :

Z§ = f(Xo) = IT1<i<m(Xo — Xi)™ € R[Xq],
(ni,p) =1and (degf,p) =1,
V(Xi — %) =Vv(xj) =0fori #j.
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Monodromy polynomial ([Le-Ma 3])

» LetC — IP’& birationally given by the equation :
Z(;) =f(Xo) = ngigm(xo

(ni,p) =1and (degf,p) =1,

V(% — %) = V()

=0fori #j.

FY)/E(Y) = Sa(Y )/So( ) (So(Y), S

then deg(S1(Y)) =

— 1 and deg(So

= Xi)ni € R[Xo],

1(Y
(Y)

))
)=
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Monodromy polynomial ([Le-Ma 3])

» LetC — IP’& birationally given by the equation :

Z§ = f(Xo) = IT1<i<m(Xo — Xi)™ € R[Xq],
(ni,p) =1and (degf,p) =1,
V(Xi — %) =Vv(xj) =0fori #j.

FY)/E(Y) = Sa(Y )/So( ) (So(Y), S (Y)))) ,

then deg(S1(Y)) = m — 1 and deg(Sp(Y
» f(X+Y)= f(Y)((1+a1(Y)X + ... +ar(Y)X

> r+i<i<n A(Y)XT), ol r +1 = [n/p],
ai(Y),Ai(Y) € K(Y).

)p
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Monodromy polynomial ([Le-Ma 3])

» LetC — IP’& birationally given by the equation :
Z§ = f(Xo) = IT1<i<m(Xo — Xi)™ € R[Xq],
(ni,p) =1and (degf,p) =1,
V(Xi — %) =Vv(xj) =0fori #j.
FCY)/E(Y) = Sa(Y )/So( ) (So(Y), Sa(Y)) = 1
then deg(S1(Y)) = m — 1 and deg(Sp(Y)) =m.

> f(X+Y)= f(Y)((1+a1(Y)X Fota(Y)X)P -

> r+i<i<n A(Y)XT), ol r +1 = [n/p],
ai(Y), Ai(Y) € K(Y).
» There is a unique « such thatr < p® < n < p**+!
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Monodromy polynomial ([Le-Ma 3]) i
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» LetC — IP’& birationally given by the equation :
Zg = f(Xo) = IT1<i<m(Xo — Xi)™ € R[Xq],
(ni,p) =1and (degf,p) =1,
V(Xi — %) =Vv(xj) =0fori #j.
> F/(Y)/E(Y) = Su(Y )/So( ) (So(Y), S1(Y)) = 1;
then deg(S1(Y)) = m — 1 and deg(Sp(Y)) =m.
» f(X+Y)= f(Y)(_(1+a1(Y)X + .. F+a(Y)X")P —
Yorpa<icn Ai(Y)X'), ol +1 = [n/p],
a(Y),Ai(Y) € K(Y).
» There is a unique « such thatr < p® < n < p**+!
» Thereis T(Y) € R[Y] with

1 P [e%
= S1(Y)P +pT(Y
AD‘l (Y) = _(pap—l) : i s)o(nr?" ( )'
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Monodromy polynomial ([Le-Ma 3])

>

LetC — IP’& birationally given by the equation :
Z§ = f(Xo) = IT1<i<m(Xo — Xi)™ € R[Xq],

(ni,p) =1and (degf,p) =1,

V(Xi — %) =Vv(xj) =0fori #j.

FCY)/E(Y) = Sa(Y )/So( ) (So(Y), Sa(Y)) = 1
then deg(S1(Y)) = m — 1 and deg(Sp(Y)) =m.

f(X +Y)= f(Y)((1+a1(Y)X Fota(Y)X)P -

> r+i<i<n A(Y)XT), ol r +1 = [n/p],
ai(Y),Ai(Y) € K(Y).

» There is a unique « such thatr < p® < n < p**+!
» Thereis T(Y) € R[Y] with

1 P [e%
= S1(Y)P +pT(Y
AD‘l (Y) = _(pap—l) : i s)o(nr?" ( )'

L(Y) :=S1(Y)P* +pT(Y). This is a polynomial of

degree p®(m — 1) which is called the monodromy
polynomial of f(Y).
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Special fi ber of the easy model p-Groups and
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We mean the R-model Cr defined by
Z§ =f(Xo) = IT1<i<m(Xo — i)™ € R[Xq] (cf. fig 1). Moraony and

N NN =
‘ ;‘ )

Marked stable model
Pote y good reductio

FIG.: Cr ®r k — P} with singularities and branch locus



Potentially good reduction with m = 1 + p® e
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Theorem
([Le-Ma 3])
> p>2g=p"n>1K=Qypa+)and
C — P is birationally defined by the equation o
ZP = f(Xo) = 1 4 pP/@+X I 4 x It s 1620

Maximal curve:

Marked stable model
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Potentially good reduction with m = 1 + p®

Theorem
([Le-Ma 3])

> p>2g=p"n>1K=Qypa+)and
cC — Pk is birationally defined by the equation
ZP = f(Xo) = 1 4 pP/@+X I 4 x It

» Then, C has potentially good reduction and £(Y)
is irreducible over K.
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Potentially good reduction with m = 1 + p®

Theorem
([Le-Ma 3])

»p>2,qg=p",n>1K = Qgr(pp/(qﬂ)) and
cC — Pk is birationally defined by the equation

» Then, C has potentially good reduction and £(Y)
is irreducible over K.

» The monodromy L/K is the extension of the
decomposition field of £(Y') obtained by adjoining
the p-roots f(y)/P, for y describing the zeroes of
L(Y).
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Potentially good reduction with m = 1 +pS oo

of curvesin char.p > 0
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Theorem
([Le-Ma 3])
> p>29=p"n>1K=Q¥(pr/@+D)and
cC — Pk is birationally defined by the equation
» Then, C has potentially good reduction and £(Y)
is irreducible over K.

» The monodromy L/K is the extension of the
decomposition field of £(Y') obtained by adjoining
the p-roots f(y)/P, for y describing the zeroes of
L(Y).

» The monodromy group is the extraspecial group
with exponent p2 and order pg? (which is maximal
for this conductor).

Potentially good reduction



Curves of genus 2 ([Le-Ma 3])

» Case p =2and m =5 (i.e. curves with genus 2
over a 2-adic field c (™).

N
4 (// /
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» Casep =2andm =5 (i.e. curves with genus 2
over a 2-adic field c (™).

» There are 3 types of degeneration for the marked
stable model.

N
4 (// /

AN
AN




Curves of genus 2 ([Le-Ma 3]) s
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» Case p =2and m =5 (i.e. curves with genus 2
over a 2-adic field c (™).
» There are 3 types of degeneration for the marked

stable model.
>
genus 1
curves
N\
enus 1
dirves™ /
\]P)l \]P)]'Genusz
. k - K
original component original component
Type 1 Type 2

Ga(K'/K)w — Qg x Qg Gal(K'/K)y — (Qg x Qg) x Z/2Z  C
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»C — Pk is birationally defined by the equation
Z = f(Xo) with
f(Xo) = 1+ bpXZ + baX$ + baXd + X& € R[Xo).

Monodromy and automorphism
groups

Covers of the affine line
Structure of G oo 4 (f)
Bounds for |G oo 3 ()

Characterization of G oo 1 (f)

Marked stable model

Poten

Genus 2



» C — P} is birationally defined by the equation
Zp = f(Xo) with
f(Xo) = 1 +bpX3Z + bsX3 + baX3 + X3 € R[Xo].

» Now, we see that the monodromy can be maximal
for the 3 types of degeneration.
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» C — P} is birationally defined by the equation
Zp = f(Xo) with
f(Xo) = 1 +bpX3Z + bsX3 + baX3 + X3 € R[Xo].

» Now, we see that the monodromy can be maximal
for the 3 types of degeneration.

> a) f(Xo) = 1+23/5X2 + X3 + 22/5X3 + X§ and
K = Qgr(zl/ls) :
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»C — Pk is birationally defined by the equation
Zp = f(Xo) with
f(Xo) = 1 +bpX3Z + bsX3 + baX3 + X3 € R[Xo].

» Now, we see that the monodromy can be maximal
for the 3 types of degeneration.

> a) f(Xo) = 1+ 2%/5X2 + X3 + 22/5X§ + X¢ and
K = Qgr(zl/ls) :
» C has a marked stable model of type 1.
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CcC — Pk is birationally defined by the equation
Zp = f(Xo) with

f(Xo) = 1 +bpX3Z + bsX3 + baX3 + X3 € R[Xo].
Now, we see that the monodromy can be maximal
for the 3 types of degeneration.

a) f(Xo) = 1+ 2%/5X2 + X3 + 22/°5X§ + X§ and

K = Qgr(zl/ls) :

C has a marked stable model of type 1.

The maximal wild monodromy group is ~ Qg x Qg.
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> b) Let K = QY (a) with a° = 2 and
f(Xo) =1+ a3Xg +a°x3 + X53.
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> b) Let K = QY (a) with a° = 2 and
f(Xo) =1+ a3Xg +a°x3 + X53.
» C has a marked stable model of type 2.

Monodromy and automorphism

Covers of the affine line
Structure of G oo 4 (f)
Bounds for |G oo 3 ()

Characterization of G oo 1 (f)

Ries surf

Ra s field:
Maximal curv
Marked stable model
Poten

Genus 2
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> b) Let K = QY (a) with a° = 2 and
f(Xo) = 1 +a®X§ +a°Xg + Xg- B
» C has a marked stable model of type 2.

» The maximal wild monodromy group is Srucwe o
~ (Qg x Qg) X Z/2Z, where Z/27 exchanges the ~ c.oc..ue
2 factors.




> b) Let K = QY (a) with a° = 2 and
f(Xo) = 1+ a3XZ +a®X3 + X§.
» C has a marked stable model of type 2.

» The maximal wild monodromy group is
~ (Qg x Qg) x Z/2Z, where Z/27 exchanges the
2 factors.

» ) K =QY and . f(Xo) =1+ X5+ XS .
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b) Let K = QY'(a) with a® = 2 and
f(Xo) = 1+ a3XZ +a®X3 + X§.
C has a marked stable model of type 2.

The maximal wild monodromy group is
~ (Qg x Qg) x Z/2Z, where Z/27 exchanges the
2 factors.

c)K =Q¥ and. f(Xo) =1+ X5+ X3 .
C has potentially good reduction (i.e. is of type 3)
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b) Let K = QY'(a) with a® = 2 and
f(Xo) = 1+ a3XZ +a®X3 + X§.
C has a marked stable model of type 2.

The maximal wild monodromy group is
~ (Qg x Qg) x Z/2Z, where Z/27 exchanges the
2 factors.

c)K =Q¥ and. f(Xo) =1+ X5+ X3 .
C has potentially good reduction (i.e. is of type 3)
The maximal wild monodromy group is ~ Qg * Dg.
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