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ABSTRACT. The fundamental inequality for a finite algebraic extension of

a valued field relates the degree of the extension to the ramification indices

and residue degrees, and of primary importance is the question of when this

inequality becomes equality. An analogous question for simple transcendental

extensions is treated here as an application of a fundamental structure theorem

for such extensions.

Let Ko C K = Ko(x) be fields with x transcendental (abbreviated tr.) over Kq\

let vo be a valuation of Ko and v be an extension of vo to K; and let Vo C V,

ko C k, and Go C G be the respective valuation rings, residue fields, and value

groups. There are two possibilities for the residue field extension k/ko: either

(i) k/ko is algebraic (possibly of infinite degree) or (ii) k/ko is finitely generated

of deg of transcendence 1 (cf. [9, p. 203, §1.3]). We shall be interested here

in extensions for which (ii) holds, the residually tr. extensions (also called the

residually nonalgebraic extensions). Henceforth we assume throughout the paper

that (Äo,^o) C (K = Ko(x),v) is a (simple tr.) residually tr. extension.

For such extensions there exists t E K such that v(t) = 0 and t* is tr. over fco,

where * denotes image under the canonical homomorphism V —» V/mv = k; such

a t will be called a residually tr. element of K (or, more precisely, of the extension

(K0,v0) C (K,v)). For any s E K\K0, we define deg s = [K : K0(s)]. By a

residually tr. element of K of minimal deg we mean a residually tr. element t of K

such that degi < deg s for every residually tr. element s of K.

Now let t be a residually tr. element of K of minimal deg, and consider the

extensions (Ko,vo) C (Ko(t),vt) C (K, v), where vt = v\Ko(t). The assertion that

t is residually tr. is equivalent to the assertion that vt is the inf extension of vo

w.r.t. t, i.e. to the assertion that for all bo, ■ ■ ■, bn E Ko, vt(bo + b\t H-h bntn) =

inf{vo(bi)[i = 0, ...,n}. The residue field for such a vt is fco(i*) and the value

group remains Go; cf. [1, p. 161, Proposition 2]. As for the further (finite algebraic)

extension (Ko(t),vt) C (K, v), we have

0.1 THEOREM. Let (Ko,vo) C (Kq(x),v) be a residually tr. extension, let t be

a residually tr. element of Kq(x) of minimal deg, and let vt = v\Ko(t). Then v is

the unique extension of vt to Ko(x), up to dependence.

(Recall that two nontrivial valuations of K are called dependent if they have

a common valuation overring < K (where < indicates proper inclusion). In the

rank-1 case, dependence coincides with equivalence.)
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Theorem 0.1 is a corollary to

0.2 THEOREM.   Assume the hypothesis of 0.1.  Then

[Ko(x) : K0(t)] = [K0(xr-. K0{t)~[,

where ^ denotes completion.

Consider now the following three integers > 1, which depend only on the exten-

sion (K0,v0) C (K,v):

E (the extension degree) = min{[if : K0(t)]]t is a residually tr. element of K};

R (the residue degree) = [fc0 : fco], where fc0 is the algebraic closure of fco in fc;

i (the index) = [G : G0]-

It is immediate that, for any residually tr. element t of Kq(x) of minimal deg, E

and I are equal, respectively, to the deg and index of the finite algebraic extension

(K0(t),vt) C (K0(x),v); moreover, it follows from [11, p. 17, Theorem 3.3] that

R = the residue degree of this extension. Thus, we see that the degree, index, and

residue degree of the extension v/vt are independent of the choice of t, subject to

the stipulation that t should be chosen residually tr. of minimal degree. Another

number that may be associated to a finite algebraic extension of valued fields is the

defect, which is defined by: defect = (the local degree)/(index)(residue degree). In

terms of the extension v/vt, where t is residually tr. of minimal deg, this means

def(u/vt) = [K0(xr ■ Ko(ty]/IR = E/IR,

the latter equality by 0.2. Thus, we see that def(v/vt) is also independent of the

choice of t.

In the rank-1 case the defect of a finite algebraic extension is a classical concept

and is known to have the properties needed to prove

0.3 THEOREM. Let (Ko,vo) C (Ko(x),v) be a residually tr. extension, and

assume rki>o (= rku) = 1. Then (i) E = IR if vq is discrete or char fco = 0; and

(ii) E = IRp1 for some integer i > 0 if char fco = p > 0.

The discrete case of (i) is due to Mathieu [5, p. 88, Satz 4.1], and (i) was

conjectured in [10] and proved there for I = 1 (the second author was unaware of

Mathieu's thesis at the time). It should be noted that the proof given here of the

general theorem is more direct than the proofs of these special cases. Moreover, an

example is given in [9, p. 218, §7.2], in residue char 0, of a rank-2 discrete vo for

which E = 2 and IR = 1, so the rank-1 hypothesis is needed in 0.3.

To get a feeling for the equality E — IR, note, for example, that the I = R = 1

case of 0.3(i) yields: Assume vo is rank 1 and either discrete or of residue char 0.

Then v is the inf extension of vq w.r.t. some generator of K/Kq if (and only if)

Go = G and fco is algebraically closed in fc.

Some preliminary technical results are proved in §1; these are then applied in §2

to derive the above theorems. The final part of §2 is devoted to proving that in the

rank-1 case E/IR equals the defect of the extension v/vt for arbitrary residually

tr. elements t of K, and not just for those of minimal degree.

Finally, §3 contains an existence theorem: Given a nontrivially-valued field

(Ko,vo), a totally ordered group extension Go C G of finite index, and a finite

algebraic field extension fco C fc0, there exists a residually tr. extension v of vq to
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Kq(x) such that the value group of v is G, the algebraic closure of fco in the residue

field of v is k'0, and E = IR.

We would like to thank Jean Fresnel for encouraging the authors' collaboration

in this work and for the interest he has taken in it, and Yves Lequain and Seth

Warner for a number of helpful suggestions on the exposition.

1. Preliminaries. We fix throughout §1 a field L and a valuation w of L having

value group H.

1.1. Let A be a subset of L. We shall say elements so, ■ ■ ■, sn of L satisfy the

bounded jump condition over A if the following holds:

(BJ/A) There exists 7 > 0 in H such that for all ao, ■ ■ ■, an in A,

w(a0s0 H-\-ansn) < inf{w(a¿s¿)|¿ = 0,... ,n} + 7.

We shall say that an element t in L satisfies the inf condition over A if the

following holds:

(inf I A) For every integer m > 0 and all ao, • • •, am E A,

w(ao + ait -\-hamim) = inf {w(at)\i = 0, ...,m}.

1.2 PROPOSITION. Let Lo be a subfield of L; let so = 1,si,...,sn be elements

of L; and let t be an element of L which satisfies (inf /(LqSq + ■ ■ ■ + Losn))- If

sq, ■ ■ ■, sn satisfy (BJ/Lo), then they also satisfy (BJ/Lo(t)).

PROOF. Let 7 G H be given by (BJ/Lo); and let a = a0so + ■■■ + ansn,

a3 E L0(t). It suffices to prove

(1.2.1) w(a) < inf{w(a0sj)]j = 0,..., n} + 7.

We can write a,- = (ao3+aijt-\-\-amjtm)/d, where a¿j G ¿o and d E Lo[t]. Since

w(d) = inf of values of the coefficients of d (by (inf /(L0s0 + •••.+ Losn)), using

so = 1), by dividing the numerators and denominator of the a3 by a d-coefficient

of least value, we may assume w(d) = 0.

We have

da = (aooso + aoiSi + ■ ■ ■ + a0nsn) + (aio«o + aii^i +-r- o,insn)t

+-1- (o-moSo + ami si + • • • + amnsn)tm

= b0 + bit + --- + bmtm,

where ¿>¿ = (a¿o«o + • • • + ainsn). Then w(a) = w(da) = inf{w(6,)|î = 0,... ,m},

the second = by (inf /(L0So + ■ • ■ + L0sn)). By the choice of 7, for all i = 0,..., m,

w(bt) < inf{w(üijsj)\j = 0,..., n) + 7.

Therefore,

(1.2.2) w(a) < inf{w(aijS3)]j = 0,... ,n, i = 0,... ,m} + 7.

But w(üj) = w(düj) = inî{w(aij)\i = 0, ...,m} (by (inf/(L0so +•••• + L0sn)),

using s0 = 1); so w(ajSj) — irif{w(alJs])\i = 0,... ,m}. Therefore,

(1.2.3)
inf{w(ajSj)\j = 0,..., n} + 7 = inf {w(üíjSj)\í = 0,...,m, j = 0,..., n} + 7.

Putting together (1.2.3) and (1.2.2), we have (1.2.1).
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1.3 The valuation topology. Recall [1, p. 117, §5.1] that the lu-topology of the

valued field (L,w) is defined by taking {VF-,17 G Ü}, where W^ = {a E L]w(a) > 7},

to be a fundamental system of neighborhoods of 0. (This differs from the w-topology

defined in [14], but only in the case of the trivial valuation.) Let Lq be a subfield

of L, let wq = w\Lq, and let H0 be the value group of Lo- We shall say that L0

is cofinal in L if for every 7 G H, there exists 70 G üo such that 70 > 7- This

condition insures that the tuo-topology of Lq coincides with the subspace topology

of Lo inherited from the w-topology of L; it is satisfied, for example, if H/H0 is a

torsion group. (In the applications of §2, the group G /Go will, in fact, be finite.)

1.4 Completions. Assume (L,w) is complete, and suppose Lo is a cofinal subfield

of L. Then the topological closure of L0 in L is a completion of (L0,w\Lo) and

will be denoted Lq- Recall (cf. [1, p. 121 or 14, §§4 and 5]) that (i) the residue

field and value group remain unaltered in passing to the completion, and (ii) if

Lo C ii C L and L1/L0 is finite algebraic, then L^= Lq(Li). It follows from (ii)

that if so,... ,sn is a vector space basis of Li/Lq, then L^ = Lqso + • • • + LqSh;

hence [LÎ : Lq~] < [Li : L0]-

1.5 PROPOSITION. Assume (L,w) is complete, let L0 be a cofinal subfield of

L, and let Sq, ■ ■ ■ ,sn be nonzero elements of L.  Then the following are equivalent:

(i) s0,..., sn satisfy (BJ/L0).

(ii) so, •.., s„ are linearly independent over Lq.

(iii) s0, • • •, sn satisfy (BJ/Lq).

PROOF. (i)=>(ii). Let 7 > 0 in H be given by (i), and suppose there exist

a~E Lq, not all zero, such that aôso + • ■ ■ + a.nSn = 0. For each a~, we choose a

corresponding a¿ G Lo as follows: if a~= 0, we let a, = 0; and if a~^ 0, since Lo is

dense in Lq, we can choose a¿ G ¿o such that w(üí — a~) > w(a~) + 7. Note that

this forces the equality w(ai) = w(a~). Then

w(a0s0 H-h ansn) = w((a0 - aÔ)s0 -\-h (an - a~)sn)

> mf{w((ai - a~)si)\i = 0,... ,n)

> inf{w(a~Si) + f\l = 0,... ,n}

= inf{w(aiSi)\ i = 0,..., n} + 7,

which contradicts (BJ/Lq).

(iî)=»(iii). This argument is classical; cf. [14, pp. 46-47 or 1, p. 120, Proposition

4]-
(iii)=*-(i). Trivial.

1.6 COROLLARY. Assume (L,w) is complete, let Lq be a cofinal subfield of L,

let so = 1, s\,..., sn be elements of L, and let t be an element of L which satisfies

(inf /(LqSq H-\-Losn))- If so,..., sn are linearly independent over Lq, then they

are also linearly independent over Lo(t)~~.

Proof. Apply 1.2 and 1.5.
1.7 Dependent valuations (cf. [1, p. 134, §7.2 or 14, §11]). Recall that two non-

trivial valuations wi ,W2 of a field L are said to be equivalent if they have the same

valuation ring and dependent if their valuation rings have a common valuation

overring < L. As for the trivial valuation, we shall assume that the only valuation

equivalent to it or dependent on it is itself. Equivalence and dependence are both
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equivalence relations on the set of valuations of L, and dependence = equivalence on

the subset of rank-1 valuations. Moreover, the valuations wi and W2 are dependent

iff they define the same topology on L.

1.8 Local deg (cf. [14, p. 49, §8, 1, p. 140, Proposition 2]). Let (Lq,wq) C (L,w)
be a finite algebraic extension. The integer [(L,w)~ : (Lo,wo)~] is called the lo-

cal degree of (L,w)/(Lq,wq). If wi,...,wn is a complete set of representatives

for the dependency classes of the set of extensions of wq to L, and if E^ =

[(L,Wi)~ : (L0,wo)~], then [L : L0] > EÎA-\-E~ (more precisely, [L : L0] = E^qi

H-h E„qn, where o¿ = [L : L0]inseP/[(L, m)*'- (Lq, woHinsep)- In particular, if

[L : Lq] = E^for some i, then n = 1 and all the extensions of wq to L are dependent.

1.9 The defect of a finite algebraic extension. Let (Lo,u>o) C (L,w) be a finite

algebraic extension of valued fields having value groups Ho C H and residue fields

¿o C /. We shall call the rational number [(L,w)~ : (Lo,wq)"]/[H : Hq][1 : Iq] the

defect of the extension (Lo,wo) C (L,w) (written def( )).

If rku>o (= rkw) = 1, this is a classical concept and is known to have the

following properties (cf. [12, p. 355 and 1, p. 148, Corollary 2]).

(i) If either wq is discrete or char/o = 0, then def(L/Lo) = 1; while if char/o =

p > 0, then def (L/L0) = Pl for some i > 0.

(ii) def(L/Lo) is multiplicative, i.e. if Lq c Li ci are finite algebraic extensions

of rank-1 valued fields, then def(L/Lo) = def(L/Li)def(Li/Lo)- (This follows from

the fact that the other expressions in the definition of defect are multiplicative.)

Note that, while (ii) clearly does not involve the rank-1 assumption, (i) is false

for valuations of arbitrary rank. A more useful concept in the general case may be

that of henselian defect, which is defined as above using the henselization in place

of the completion; cf. [8].

2. Applications to residually tr. extensions. We now return to the notation

of the introduction. Thus, (K0,vq) C (Kq(x),v) is a residually tr. extension having

value groups Go C G and residue fields fco C fc.

For any element s G K0(x)\K0, we have defined deg s to be [K0(x) : K0(s)]. In

the proof of the next theorem we need the following alternative characterization

of deg s (cf. [15, p. 197, Theorem]): if s = f(x)/g(x), where f(x) and g(x) are

relatively prime elements of iioNi then deg s = maxldeg^. f(x),degx g(x)}.

2.1 THEOREM. Let (Ko,vq) C (Kq(x),v) be a residually tr. extension, and let

t be a residually tr. element of Kq(x) of minimal degree (= E).  Then

[Kq(x) : K0(t)] = [K0(xr : K0(tn

PROOF. By definition of E, [K0(x) : K0(t)] = E = degx over K0(t); so B =

{l,x,... ,xE~1} is a vector space basis of Ko(x)/Ko(t). Since x is tr. over Kq

(because otherwise k/ko would be algebraic), B is linearly independent over Kq.

The lemma below shows B satisfies the hypothesis of 1.6 (by taking L0 = ifo

and L = Ko(x)"'m 1.6), so, by 1.6, B is linearly independent over Ka(t)"~. Since

Kq(x)~= K0(t)~+ Kq(í)~x + ■■■ + K0(t)"xE-1, we are done.

LEMMA. Under the hypothesis of Theorem 2.1, t satisfies the condition

(inf /(Kq + Kqx + ■■■ + KoxE~1)).

PROOF. We must show: if b0,..., bn are in K0 + K0x + ■'•'• + K0xE~1, then

v(b0 + bit-\-1- bntn) = inf{v(bi)\i = 0,..., n). This is immediate if all the bi are
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0, so we may assume some one of them is ^ 0. Let s = bo + bit H-\- bntn, and let

bj be an element of minimal value from bo,... ,bn. We must then show v(s/bj) = 0,

or equivalently, (s/b3)* ^ 0. But

(s/bj)* = (bo/bj)* + (bi/b3)*t* + ■■■ + (bn/bj)*t*n,

and the bi/bj (i = 0,..., n) are all of degree < E; so, by definition of E, the (bi/bj)*

are algebraic over fco. Since t* is tr. over fc0, we conclude (s/bj)* ^ 0.

2.2 COROLLARY. Assume the hypothesis of 2.1, and let vt = v\K0(t). Then v

is the unique extension, up to dependence, of vt to Kq(x), i.e. any two extensions

of vx to Kq(x) are dependent.

PROOF. Apply 1.8 and 2.1.

2.3 REMARK. It should be emphasized that in the rank-1 case dependence in

2.2 is the same as equivalence. Moreover, if vq is complete rank 1, the uniqueness

property of 2.2 generalizes to 1-dim function fields (cf. [7, p. 197, Theorem 3]);

and if vq is not complete, this result remains true if the function field satisfies an

additional property which is trivial to verify in the case of a simple tr. extension

(cf. [13]).
2.4 The defect of a residually tr. extension. Let (Kq,vo) C (Kq(x),v) be a resid-

ually tr. extension having extension degi?, index I, and residue degR, as defined

in the introduction. (Recall that this means: E = degi, where t is any residually

tr. element of K0(x) of minimal deg; I = [G : Go]; and R = [k0 : ko], where k'0 is

the algebraic closure of fc0 in fc.)

We shall now define the defect of K0(x)/K0 to be the rational number E/IR:

def(Ko(x)/K0) = E/IR.

2.4.1 COROLLARY. If t is any residually tr. element of Kq(x) of minimal

degree, then def(K0(x)/K0) = def(K0(x)/K0(t)).

PROOF. By definition (cf. 1.9), def(K0(x)/K0(t)) = [K0(x)~ : K0(tr]/ItRt,

where It is the index and Rt is the residue degree of K0(x)/K0(t). By 2.1,

[K0(xr : K0(tr] = [Ko(x) : K0(t)] = E.

As for It and Rt, since t is residually tr., the value group of Ko(t) is Go and the

residue field is k0(t*) (cf. [1, p. 161, Proposition 2]); so It = [G : Go] = I, and

Rt = [k: k0(t*)], which, by [11, p. 17, Theorem 3.3], = [fc0 : fc0] = R- Q.E.D.
Note that we have actually proved

2.4.2 COROLLARY. If t is any residually tr. element of K0(x) of minimal

degree, then the extension degree, index, residue degree, and defect of the (simple

tr.) extension Kq(x)/Kq are, respectively, equal to the degree, index, residue degree,

and defect of the (simple algebraic) extension Kq(x)/Ko(t) (and therefore these

latter quantities are independent of the choice oft).

By applying the remarks of 1.9 to the equality E = IR def (K0(x)/K0(t)) given

by 2.4.1, we have

2.4.3 COROLLARY. Assume rkt;0 (= rku) = 1. Ifv0 is discrete or char fc0 = 0,

then E = IR; while if char fco = p > 0, then E = IRp1 for some integer i > 0.

As noted in the introduction, 2.4.3 is false without the rank-1 hypothesis; more-

over, special cases of the corollary appear in [5, 9, and 10], and it affirms some
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conjectures of [10]. (It was also conjectured in [10], and proved in the case 1 = 1,

that if vo is henselian of arbitrary rank and char fco = 0, then E = IR; this conjec-

ture has now been proved and will appear in [8].)

The next theorem asserts that in the rank-1 case 2.4.1 holds for arbitrary resid-

ually tr. elements t of K0(x), and not just for those of minimal deg. The rank-1

hypothesis cannot be omitted, as we shall see in Example 2.6.

2.5 THEOREM. Let (K0,v0) c (K0(x),v) be a residually tr. extension, and

assume rkvo = 1. Ift is any residually tr. element ofKo(x), then def(Ko(x)/Ko) =

def(K0(x)/Ko(t)).

The proof requires two lemmas, the first of these being a special case of the

theorem.

2.5.1 LEMMA. The theorem is true if there exists a generator of K0(x)/K0

which is residually tr.; in fact, then both defects are 1.

PROOF. We might as well assume x is residually tr.; then the value group

G of K0(x) is Go and the residue field fc is fco (a;*). Thus, E = I = R = 1 and

def(if0(x)/ü:o) = E/IR = 1. Since G = G0, the index of üf0(x)/ií:o(í) is also 1, and

therefore, by definition, def(K0(x)/K0(t)) = [K0(x)~: K0(t)"]/[ko(x*) : k0(t*)]; so

the lemma is equivalent to the assertion: [Ko(x)^ : Kq(í)"] = [fco(x*) : fco(£*)].

By the remarks of 1.4, Kq(x)~ = K0(t)~(x); so it suffices to prove: degx over

Ko(t)~= degx* over fco(i*).

Write t = g(x)/h(x), where g(x), h(x) are relatively prime elements of ÄoN- By

dividing the coefficients of g(x) and h(x) by an element of least value from among

all of these coefficients, we may assume the coefficients of g(x) and h(x) have value

> 0. Then

(2.5.2) g*(X)-t*h*(X)=ai(X)bi(X,t*)

in ko[t*,X], where ai(X) = gcd{g*(X),h*(X)} in k0[X].

Note that bi(X,t*) is the irreducible polynomial for x* over fco(i*) (cf. [15, p.

197]), and ai(X) and bi(X, t*) are relatively prime in k0(t*)[X]. By Hensel's lemma

(which requires the rank-1 hypothesis; cf. [3, p. 120]), the factorization (2.5.2)

in fco(i*)[X] lifts to a corresponding factorization in Ko(t)~[X]: g(X) — th(X) =

a(X)b(X), where a*(X) = ai(X), b*(X) = bi(X) and degb(X) = degbi(X). Then
0 = a(x)b(x); and since a*(x*) = ai(x*) ^ 0, we must have b(x) = 0. Therefore

degx over Ko(t)~< degx* over fco(r*), so = holds.

2.5.3 LEMMA. Let (Ko,vo) C (i?o(x),t;) be a residually tr. extension, let Ki

be a finite algebraic extension of Ko, and assume v has been extended (arbitrarily)

to a valuation of Ki(x). Ift is any residually tr. element of Kq(x), then

def(Ki(t)/Ko(t)) = def(Ki/Ko).

PROOF. Since t is residually tr., the index and residue degree of Ki(t)/K0(t) are,

respectively, equal to the index and residue degree of Ki/Kq- Thus, the conclusion

of the lemma is equivalent to [Ki(t)~: üf0(í)1 = [iff': Kq]. (These completions

may be assumed to lie inside a fixed completion of Ä"i(x).)

Let so = l,si,...,sn G KÎ be a vector space basis of K^/Kq. Since t is

residually tr. over fco, it is also residually tr. over the residue field of K0(sq, ■ ■ ■, sn);
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and therefore t satisfies the condition (inf /(KqSq + ■ • ■ + Kosn)) of 1.1. It follows

that the hypotheses of 1.6 are satisfied (with L = iTi(x)~and Lo = Kq), so by 1.6

we conclude that sq,.. .,sn are linearly independent over Ko(t)~. Since Ki(t)~ =

Ko(t)~so + ■ ■ ■ + Ko{t)"sn, we are done.

PROOF OF 2.5. Let Kg be an algebraic closure of K0, and extend v to Kg(x).

Since Ko(x)/Ko is residually tr., there exist a,b E Kq such that (x — a)/b is

residually tr. (over fc0). (This is seen as follows: Choose t to be any residually

tr. element of ifo(x), and write t = f/g, where f,g E Ko[x]. Since the value

group of Kq is divisible, there exists c G Kq such that v(f) = v(g) = v(c). Then

(f/c)*/(g/c)* = t* implies (f/c)*, say, is tr. over fc0. Now factor f/c in Kg[x].

After dividing the linear factors by appropriate elements of Kq again, one of these

factors is residually tr.)

Let Ki = Ko(a,b), and note that Ki(x)/Ki has a residually tr. generator

(namely (x — a)/b):
Ki(t)    -    Ki(x)

K0(t) Kq(x)

By the multiplicative property of def( ) (cf. 1.9), we have

(2.5.4)
def(Ki(x)/Ki(t))def(Ki(t)/Ko(t))=def(Ki(x)/K0(x))def(K0(x)/Ko(t)).

By 2.5.1, def(Ki(x)/Ki(t)) = 1, and, by 2.5.3, def(ífi(í)//fo(í)) = def(Ki/K0).
Substituting in (2.5.4), we obtain

def(Ki/Ko) = def(Ki(x)/Ko(x))def(K0(x)/K0(t)),

which shows def(Ko(x)/Ko(t)) ^s independent of the choice of i. In particular,

def(Ko(x)/K0(t)) = the defect given in 2.4.1.        Q.E.D.

2.6. An example to show 2.5.1 (and a fortiori 2.5) is false without the rank-1

hypothesis. Let y and z be indeterminates over a field fco, let Ko = ko(y,z), and

consider the places pWo : Ko —► fco (y) and pUo : fco (y) —► ko whose valuation rings

are Wo = ko(y)[z]^ and Uo = ko[y](y). Let pVo = pUo opWo be the composite place

Kq —> fco, and let Vo be the associated discrete rank-2 valuation ring of iio- Now

extend uq, vq, wq via infs w.r.t. x to valuations u, v, w of their respective fields with

x adjoined. Let * denote image under the residue map for w and ** image under

the residue map for v. Since the valuation ring of v is contained in the valuation

ring of w, the topologies defined by v and w on Ä"o(x) coincide (cf. 1.7); let ~denote

completion w.r.t. this topology.

Let, say, t = yx2 + x. By considering the rank-1 extension w/wq, we conclude

[Äo(x)~ : ÄoMI = [Mî/) 0e*) : k0(y)(t*)] = 2, the latter equality since t* =
yx*2 + x*. But t** = x**, so [fc0(x**) : k0(t**)] = 1. Thus, as noted at the start of

the proof of 2.5.1, def(Ko(x)/K0(t)) = 2 and def(K0(x)/K0) = 1.
2.7 A defect for function fields. In [6, 7] the defect has been defined for rank-1

valued function fields which residually conserve dim. Thus, let (Lo, wq) C (L, w) be

an arbitrary finitely generated extension of rank-1 valued fields with value groups

Ho C H and residue fields /o C /, and assume tr. deg of L/Lq = tr. deg of I/Iq.

If ¿i,..., in is any set of elements of L of value 0 such that t\,..., t*n is a tr. basis

of I/Iq, then def(L/Lo(ii,... ,£«)) can be seen to be independent of the choice of

ti,... ,tn and may therefore be defined to be the defect of L/Lq. One can give a
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proof related to that of 2.5, but a stronger form of 2.5.1, one which uses a theorem

of Grauert and Remmert [4, p. 119], is needed. The result is a consequence of the

following (cf. [6, §1.4.2, Corollary 1, 7, p. 190, §1-3]):

def(L/L0(¿i,..., ín)) = sups{dimL- S/ J2jeJ dim;0 S*}, where the sup is taken

over all 5 / 0 contained in L~ (or c L if L0 is complete) which are finite dim vector

spaces over Lq, J is a set of representatives in H for (the finite group) H/Ho, and

S* is the Zo-vector space {s G S|w(s) > j}/{s E S[w(s) > j}.

3. An existence theorem.

3.1 THEOREM. Let (Ko,vq) be a nontrivially valued field having value group

Go and residue field ko, let Go C Gi be an inclusion of totally ordered groups such

that [Gi : Go] is finite, and let fci be a finite algebraic extension of ko. There exists

t E Kq[x] of degree [Gi : Go][fci : fco] with the property that if v is any extension

of Vq to Kq(x) such that v(t) = 0, then the value group of v contains Gi and the

residue field of v contains fci.

(To be precise, the value group of v contains a Go-order-isomorphic copy of Gi

and the residue field of v contains a fco-isomorphic copy of fci.)

3.2 COROLLARY. There exists a residually tr. extension v of vq to Kq(x) such

that the value group of v is Gi, the algebraic closure of ko in the residue field of v

is fci, and E = IR.

PROOF OF 3.2. Choose / by 3.1. First extend vQ to K0(t) by assigning value 0

to t and taking infs, and then further extend arbitrarily from Ko(t) to a valuation

v of Kq(x). Since v(t) = 0, by 3.1, Gi C value group of v and fci C residue field of

v. Then deg,, t> E >IR>[Gi: G0][fci : fc0]. But by 3.1 the first and last terms
of this chain are equal.        Q.E.D.

The proof of 3.1 involves putting together two special cases of the theorem.

Case (i). Gi = Go- This case is disposed of by applying [2, p. 90, Lemma

22.4]. (Note. The proof of the corresponding result in [3, p. 206] is quite different

and does not apply to the present situation. Perhaps this explains why the second

author previously overlooked [2] in writing p. 595 of [10], which also contains a

proof of Case (i).)

Case (ii). fc0 = fci. This case is disposed of by the

LEMMA. There exists t E Kq[x] of degree [Gi : Go] such that if v is any exten-

sion of vo to Kq(x) such that v(t) = 0, then the value group of v contains Gi and

v(x) > 0.

PROOF. Since Gi/Go is finite, hence a direct sum of cyclics, there exist gi,.:.,

gm E Gi, all > 0, and integers «i,... ,nm > 1 such that Gi = G0 + .Z^i + ■ • ■ + Zgm;

nigi,... ,nmgm are in Go; and n¡ • • nm = [Gi : Go]- Choose bi,... ,bm E Kq such

that nigi — MM (i = 1,- ■ ■ ,m). Note that MM > 0 since g¿ > 0.
Now let ii =xn'/bi,t2 = (ti-l)n2 /b2, ■ ■ ■ ,tm = (im_i-l)n"'/6m. By induction

on m we see tm E Ko[x] and degiTO = ni -nm. Note that, for i = 2,...,m,

v(ti) = 0 implies n%v(ti-i — 1) = v(bi) > 0, which implies v(ti-i) = 0; so if

v(tm) = 0, then v(tm-i) — ■ ■ ■ = v(ti) = 0. Thus, we can let t = tm. Then v(t) = 0

implies f(í¿_i — 1) = gi (i = 2,...,m). Also, v(ti) = 0 implies niv(x) = v(bi),

hence v(x) = gx > 0.        Q.E.D.
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Now we can complete the

PROOF OF 3.1. Choose ix G K0[x] by Case (i). Let y — ti — 1, and apply the

lemma to Ko(y) to obtain ¿2 G iío[y]- We claim £ = £2 has the required properties.

First,

degxt = [Kq(x) : K0(t)] = [K0(x) : K0(ti)][K0(ti) : K0(t2)]

= (degxti)(degyt2) = [fc! : k0][Gi : G0].

Next, let v be any extension of vq to Kq(x) such that ^(¿2) = 0. By the lemma, we

have v(y) > 0, which implies v(ti) = 0. By Case (i) fci C residue field of v, and by

Case (ii) Gi C value group of v.

3.3 REMARKS. The existence proof of §3 differs from the proof of the corre-

sponding existence theorem for algebraic extensions in [2, pp. 84-97, §22] in only a

few details. In fact, it appears that if Endler's Theorem 22.6 were formulated in the

generality of his Lemma 22.4, then it would include our 3.1. To carry this a bit fur-

ther, the proof of 3.1 actually yields the following additional result: Let t = t(x) be

the polynomial of 3.1 and let a be an element of an extension field of Ko. If v is any

extension of vo to Ko(a) such that v(t(a)) = 0, then the value group oft; contains Gi

and the residue field of v contains fci. For example, let a be a root of the polynomial

t(x) - 1. Then [Gi : G0][fci : fc0] = deg£(x) > [K0(a) : K0] > [Gi : G0][fci : fc0], so

Gi = value group of Kq(o), fci = residue field of K0(a), and t(x) — 1 is irreducible

over Ao-

It is also possible to specify in 3.1 that t(x) should have a term of the form ex

with 0 / c G Ko. (This condition will insure that the algebraic extension Ko(a)/Ko

in the above example is separable and that Ko(x)/Ko(t) is separable in 3.2.) To see

this, one should first note that the definition of t shows that its leading coefficient

has minimum value (< 0) among its coefficients; this forces v(x) to be > 0 whenever

v(t) > 0. Therefore, if c is any nonzero element of Kq of value > 0 and t' = t — ex,

then v(t') = 0 iff v(t) = 0; so t may be replaced by t' in 3.1.

Finally, note that the extension v/vq constructed in 3.2 is rather special in that

there is a polynomial t in Kq[x] (and not just a rational function in Kq(x)) which

is residually tr. of minimal degree.
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