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Notations

(K,v) is a (discretely) valued complete (or henselian) field.

Ok denotes its valuation ring.

Mg is the maximal ideal 0Ok

1Tis a uniformizing element in the discretely valued case

k := Ok /M the residue field, is algebraically closed of chas: 0

A = { — 1 where( is a primitive p-th root of 1.
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Abelian varieties

Theorem

(Grothendieck) Let A be an abelian variety over K. There isitefiseparable
extension K/K such that the neutral component of the special fiber of the
Néron modele’° of A = Ax K’ over Q¢ is semi-abelian (i.e.

0—T— o' xk— B— Owhere T is a torus and B is an abelian variety
over k). We say that A has semi-stable reduction over K
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Abelian varieties

Theorem

(Grothendieck) Let A be an abelian variety over K. There isitefiseparable
extension K/K such that the neutral component of the special fiber of the
Néron modele’° of A = Ax K’ over Q¢ is semi-abelian (i.e.

0—T— o' xk— B— Owhere T is a torus and B is an abelian variety
over k). We say that A has semi-stable reduction over K

w

@ Letm> 3 and prime tq, if the points ofm-torsion are rational ovef
thenA has semi-stable reduction over
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Abelian varieties

Theorem

(Grothendieck) Let A be an abelian variety over K. There isitefiseparable
extension K/K such that the neutral component of the special fiber of the
Néron modele’° of A = Ax K’ over Q¢ is semi-abelian (i.e.

0—T— o' xk— B— Owhere T is a torus and B is an abelian variety
over k). We say that A has semi-stable reduction over K

@ Letm> 3 and prime tq, if the points ofm-torsion are rational ovef
thenA has semi-stable reduction over

@ Moreover (see [Deschamps 81]) there is-aubschemgE of the
K-scheme,A of mdivision point of A such thatA has semi-stable
reduction oveK iff the points ofE areK-rational (note thatE = A
whenA has good reducton ovér ([Serre-Tate 68]).
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Curves

Definition
A curve X/k is semi-stablef it is reduced and if its singularities are ordinary
double points. It istableif it is semi-stable, connected, projectiy@,(X) > 2
and irreducible components P} intersect other irreducible components inja
least 3 points.

A curve C/K hassemi-stable reductiofresp.stable reductiohif there is a
model% over Spe©k with semi-stable (resp. stable) special fifsgroverk. )
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Curves

Definition
A curve X/k is semi-stablef it is reduced and if its singularities are ordinary
double points. It istableif it is semi-stable, connected, projectiy@,(X) > 2
and irreducible components P} intersect other irreducible components inja
least 3 points.

A curve C/K hassemi-stable reductiofresp.stable reductiohif there is a
model% over Spe©k with semi-stable (resp. stable) special fifsgroverk. )

Theorem

(Deligne-Mumford 69). Let C be a smooth, projective, gedosadly
connected curve of genus>g2 over K. Then there is KK finite separable
such that Cx K" has a unique stable mod#l over Q.. The special fiber
¢ x k doesn’t depend on’KK, we refer to it as th@otential stable
reduction of C.
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Curves

Definition
A curve X/k is semi-stablef it is reduced and if its singularities are ordinary
double points. It istableif it is semi-stable, connected, projectiy@,(X) > 2
and irreducible components P} intersect other irreducible components inja
least 3 points.

A curve C/K hassemi-stable reductiofresp.stable reductiohif there is a
model% over Spe©k with semi-stable (resp. stable) special fifsgroverk. )

Theorem

(Deligne-Mumford 69). Let C be a smooth, projective, gedosadly
connected curve of genus>g2 over K. Then there is KK finite separable
such that Cx K" has a unique stable mod#l over Q.. The special fiber
¢ x k doesn’t depend on’KK, we refer to it as th@otential stable
reduction of C.

C has stable reduction ovériff JacC has semi-stable reduction ouér
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Monodromy

Monodromy

Let X be an abelian variety or a curve ouer

There is a minimal (unique) extensi#ti/K such thafX x K’ has stable
reduction. We call it thdinite monodromy extensipits Galois group
Gal(K’/K) is themonodromy ground itsp-Sylow subgroup G&K’/K),y
thewild monodromy group
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Monodromy

Monodromy

Let X be an abelian variety or a curve ouer

There is a minimal (unique) extensi#ti/K such thafX x K’ has stable
reduction. We call it thdinite monodromy extensipits Galois group
Gal(K’/K) is themonodromy ground itsp-Sylow subgroup G&K’/K),y
thewild monodromy group

@ The quotient grou&% is cyclic of ordere the prime top part of

al(
[K’: K]. It corresponds to the tame cyclic extenskoh:= K (ri/¢) c K’
(thetame monodromy extensjon
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Monodromy problems

Problem
@ 0. Give algorithms to calculate monodromy groups
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@ 0. Give algorithms to calculate monodromy groups

@ 1. Which group (resp. p-group) can occur as a monodromy group
Gal(K’/K) (resp. wild monodromy grou@al(K’/K),)?
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Monodromy problems

Problem
@ 0. Give algorithms to calculate monodromy groups

@ 1. Which group (resp. p-group) can occur as a monodromy group
Gal(K’/K) (resp. wild monodromy grou@al(K’/K),)?

For curves one can fix the type of the potential stable redacti
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Monodromy problems

Problem
@ 0. Give algorithms to calculate monodromy groups

@ 1. Which group (resp. p-group) can occur as a monodromy group
Gal(K’/K) (resp. wild monodromy grou@al(K’/K),)?

For curves one can fix the type of the potential stable redacti

@ 2. For a given dimension for abelian varieties or a given gefar
curves (one can also fix the type of the potential stable taohjcwhat
are the groups in 1. which are maximal?

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008 6/ 3E



Base field
Base field

The answer certainly depends on the fikld

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008 7135



Baseifield
Base field

The answer certainly depends on the fikld

e charK = p > 0 (equal characteristic case). Th€r=k((T)) and
Kt = k((T¥®)) is again a power series field.
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The answer certainly depends on the fikld

e charK = p > 0 (equal characteristic case). Th€r=k((T)) and
Kt = k((T¥®)) is again a power series field.

In order to answer question 1, it is sufficient to answer qoes2.
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Baseifield
Base field

The answer certainly depends on the fikld

e charK = p > 0 (equal characteristic case). Th€r=k((T)) and
Kt = k((T¥®)) is again a power series field.

In order to answer question 1, it is sufficient to answer qoes2.

Indeed ifG = Gal(K'/K) for someK-curveC with genusg then any
subgroupH C G is the monodromy group of th¢"-curve
C x K™ andK™ is a power series field isomorphic ka
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Monodromy problems EEEER{TE]

@ charK =0 and chark = p > 0 (inequal characteristic case)
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Monodromy problems ERSERERITE]

@ charK =0 and chark = p > 0 (inequal characteristic case)

LetK!/K the maximal tame extension. For a cu@gK, the extension
K’K!/Kt is called thewild monodromy extensiorits Galois group is
isomorphic to GaK'/K).

So for wild monodromy, it is equivalent to answer our probleverK or
Kt
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Monodromy problems ERSERERITE]

@ charK =0 and chark = p > 0 (inequal characteristic case)

LetK!/K the maximal tame extension. For a cu@gK, the extension
K’K!/Kt is called thewild monodromy extensiorits Galois group is
isomorphic to GaK'/K).

So for wild monodromy, it is equivalent to answer our probleverK or
Kt

If, as in the equal characteristic case, we want a fixed balske there is
a natural oné& := (Frw(k))! (it doesn’t matter if it is not discretely
valued); but this time the answer to question 2 doesn’t sqixieri
question 1.
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SIEBEITES
Elliptic curves

Monodromy groups

Following [Silverberg-Zarhin 04], we define the followingtof groups
@ 2,(0,0) = {1}
° 25(1,0) ={Cy}
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° 2,(0,0) = {1}
° %y(1,0) = {C}
We denotex(0,1) = {C,, C3,Cy,Cs}, then
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Ellipticcurves
Elliptic curves

Monodromy groups
Following [Silverberg-Zarhin 04], we define the followingtf groups

° 2,(0,0) = {1}
° %y(1,0) = {C}
We denotex(0,1) = {C,, C3,Cy,Cs}, then

o 22(07 1) = Z(O, 1) U {Q87 SLZ(F:”)})
@ 23(0,1) =2(0,1) UC3 x Cy
@ 25(0,1) =2(0,1) forp>5
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Ellipticcurves
Elliptic curves

Monodromy groups
Following [Silverberg-Zarhin 04], we define the followingtf groups

° 2,(0,0) = {1}
° %y(1,0) = {C}
We denotex(0,1) = {C,, C3,Cy,Cs}, then

o 22(07 1) = Z(O, 1) U {Q87 SLQ(F?’)}?
@ 23(0,1) =2(0,1) UC3 x Cy
@ 25(0,1) =2(0,1) forp>5

If E/K is an elliptic curve with non semi-stable reduction thenrf&&2],
[Kraus 90], [Cali 04], the monodromy group GHl /K) € 2,(0,1) if the
reduction is potentially good arne Z,(1,0) if the reduction is potentially
multiplicative. Conversely the groups listed above ocauthis way.
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LGEIEWREREIESE  Elliptic curves

It follows that the wild monodromy group G#’/K),, belongs to
o {1} forp>5.
o {1},{Cs} forp=3
o {1},{Ca},{Cs},{Qg} forp=2.
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LGEIEWREREIESE  Elliptic curves

It follows that the wild monodromy group G&’/K),, belongs to
o {1} forp>5.
o {1}, {C3} forp=3
o {1},{Cz},{C4},{Qs} forp=2.
Whenp = 2, letK = Q, andK""" the maximal Kraus (90) has shown that the

groups in this list are the monodromy groups @&aK""" /K4"") for elliptic
curves oveK = Q».
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LGEIEWREREIESE  Elliptic curves

It follows that the wild monodromy group G&’/K),, belongs to
o {1} forp>5.
o {1},{Cs} forp=3
o {1},{Ca},{Cs},{Qg} forp=2.

Whenp = 2, letK = Q, andK"Y"" the maximal Kraus (90) has shown that the
groups in this list are the monodromy groups @&aK""" /K4"") for elliptic
curves oveK = Q».

Moreover Kraus [90] and Cali [04] (resp. Billerey [08]) , gian algorithm to
calculate GgK’/K) for K an unramified (resp. a quadratic totally ramified)
extension ofQ,,
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Abelian\varieties
Abelian varieties

@ Silverberg-Zarhin [98], [04) found conditions on the mormdy group
Gal(K’/K) for an abelian variet/K.
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Abelian\varieties
Abelian varieties

@ Silverberg-Zarhin [98], [04) found conditions on the mormdy group
Gal(K’/K) for an abelian varietp/K.

ForL/K finite, we denote by, (resp.a, ) the toric (resp. abelian) rank of the
special fibre of the Néron model éfx L.
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Abelian varieties

@ Silverberg-Zarhin [98], [04) found conditions on the mormdy group
Gal(K’/K) for an abelian varietp/K.

ForL/K finite, we denote by, (resp.a, ) the toric (resp. abelian) rank of the
special fibre of the Néron model éfx L.

By the functoriality of Neron model, for all primé+ p there is an injection
Gal(K'/K) — Gl, 4 (Z) x SPy(a,, —ac) (Qr)
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Abelian\varieties
Abelian varieties

@ Silverberg-Zarhin [98], [04) found conditions on the mormdy group
Gal(K’/K) for an abelian varietp/K.

ForL/K finite, we denote by, (resp.a, ) the toric (resp. abelian) rank of the
special fibre of the Néron model éfx L.

By the functoriality of Néron model, for all primé+ p there is an injection
Gal(K'/K) — Gl, 4 (Z) x sz(aK,_aK)(Qg)

where the first projection is independent/adnd the second one has a
characteristic polynomial with integer coefficients, ipdadent of.
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Abelian\varieties
Abelian varieties

@ Silverberg-Zarhin [98], [04) found conditions on the mormdy group
Gal(K’/K) for an abelian varietp/K.

ForL/K finite, we denote by, (resp.a, ) the toric (resp. abelian) rank of the
special fibre of the Néron model éfx L.

By the functoriality of Néron model, for all primé+ p there is an injection
Gal(K'/K) — Gl, 4 (Z) x SpZ(aK,_aK)(Qg)

where the first projection is independent/adnd the second one has a
characteristic polynomial with integer coefficients, ipdadent of.

They deduce bounds on the order (resp. the largest primgodief the order)
of the monodromy group.
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Abelian surtaces
Abelian surfaces

In the case of abelian surfaces, as in the case of elliptiesythis leads to a
restricted list of finite groups which are liable to occur asnodromy groups
over some local fiel&K.

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008 12/ 3¢



LUGEIEWREGEIES  Abelian surfaces

Abelian surfaces

In the case of abelian surfaces, as in the case of elliptiesythis leads to a
restricted list of finite groups which are liable to occur asnodromy groups

over some local field.
For the wild monodromy groups their list is the set of the sohgs of:
o {1} forp>7.
o {Cs}forp=5
o {C3xCg}forp=3
o {(Qs x Qg) x Cy} for p= 2 whereC, exchanges th@g factors.

12/ 3¢
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LUGEIEWREGEIES  Abelian surfaces

Realization

Silverberg-Zarhin (04) show that the restricted list idyfukalizable over
Fpo((T)).
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Realization

Silverberg-Zarhin (04) show that the restricted list idyfukalizable over
Fpo((T)).

There are three main ingredients in their proof:
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LUGEIEWREGEIES  Abelian surfaces

Realization
Silverberg-Zarhin (04) show that the restricted list idyfukalizable over

Fpo((T)).
There are three main ingredients in their proof:

o 1. Itis sufficient to realize maximal groups (this is due te ggual
characteristic case).
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LUGEIEWREGEIES  Abelian surfaces

Realization

Silverberg-Zarhin (04) show that the restricted list idyfukalizable over
Fpo((T)).

There are three main ingredients in their proof:

o 1. Itis sufficient to realize maximal groups (this is due te ggual
characteristic case).

@ 2. The description of the absolute Galois grougk@t)) for k an
algebraically closed field of chagp.> 0.
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LUGEIEWREGEIES  Abelian surfaces

Realization

Silverberg-Zarhin (04) show that the restricted list idyfukalizable over
Fpo((T)).

There are three main ingredients in their proof:

o 1. Itis sufficient to realize maximal groups (this is due te ggual
characteristic case).

@ 2. The description of the absolute Galois grougk@t)) for k an
algebraically closed field of chagp.> 0.

@ 3. A cohomological argument in order to twist abelian vaeigtnamely:
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LUGEIEWREGEIES  Abelian surfaces

Theorem
Let K be a local field with an algebraically closed residuedief char. p> 0.
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LUGEIEWREGEIES  Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residuedief char. p> 0.
Let B be an abelian variety over K with semi-stable reducticet K'/K be a
finite Galois extension with group G.
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LUGEIEWREGEIES  Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residuedief char. p> 0.
Let B be an abelian variety over K with semi-stable reducticet K'/K be a
finite Galois extension with group G.

Fori: G — Aut(B), an injective homomorphism we denote by c the cocyal
defined by the composition

Gal(Ks/K) — Gal(K'/K) = G — Aut(B).

~
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LUGEIEWREGEIES  Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residuedief char. p> 0.
Let B be an abelian variety over K with semi-stable reducticet K'/K be a
finite Galois extension with group G.

Fori: G — Aut(B), an injective homomorphism we denote by c the cocyal
defined by the composition

Gal(Ks/K) — Gal(K'/K) = G — Aut(B).

Let A the K-abelian variety which is the twist of B by the cteys then K/K
is the monodromy extension for A.

~

.
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LUGEIEWREGEIES  Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residuedief char. p> 0.
Let B be an abelian variety over K with semi-stable reducticet K'/K be a
finite Galois extension with group G.

Fori: G — Aut(B), an injective homomorphism we denote by c the cocyal
defined by the composition

Gal(Ks/K) — Gal(K'/K) = G — Aut(B).

Let A the K-abelian variety which is the twist of B by the cteys then K/K
is the monodromy extension for A.

~

.

Most of the realizations given by Silverberg-Zarhin are qual characteristic
p>0.
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LUGEIEWREGEIES  Abelian surfaces

Theorem

Let K be a local field with an algebraically closed residuedief char. p> 0.
Let B be an abelian variety over K with semi-stable reducticet K'/K be a
finite Galois extension with group G.

Fori: G — Aut(B), an injective homomorphism we denote by c the cocyal
defined by the composition

Gal(Ks/K) — Gal(K'/K) = G — Aut(B).

Let A the K-abelian variety which is the twist of B by the cteys then K/K
is the monodromy extension for A.

~

v

Most of the realizations given by Silverberg-Zarhin are qual characteristic
p>0.
They ask for inequal characteristic realizations.
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EETE S C
Raynaud'’s theorem (Raynaud [90])

Theorem
Let Yx — Xk be a Galois cover with group G. Let us assume that:
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Raynaud'’s theorem (Raynaud [90])

Theorem
Let Yx — Xk be a Galois cover with group G. Let us assume that:

@ G is nilpotent.
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Raynaud'’s theorem (Raynaud [90])

Theorem

Let Yx — Xk be a Galois cover with group G. Let us assume that:
@ G is nilpotent.
@ Xk has a smooth mode?” over .
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Raynalidsthieorem
Raynaud'’s theorem (Raynaud [90])

Theorem
Let Yx — Xk be a Galois cover with group G. Let us assume that:

@ G is nilpotent.
@ Xk has a smooth mode?” over .
@ The Zariski closure B of the branch locug B 2 is étale over Q.

15/ 3¢
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Galois covers of the projective line ovepeadic field EESEWRETTER{lElIET]

Raynaud'’s theorem (Raynaud [90])

Theorem
Let Yx — Xk be a Galois cover with group G. Let us assume that:
@ G is nilpotent.
@ Xk has a smooth mode?” over .
@ The Zariski closure B of the branch locug B 2 is étale over Q.

Then, the intersection graph of the potential stable reidncof Y« is a tree
i.e. the Jacobian of i has potentially good reduction.
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Raynalidsthieorem
Raynaud'’s theorem (Raynaud [90])

Theorem
Let Yx — Xk be a Galois cover with group G. Let us assume that:
@ G is nilpotent.
@ Xk has a smooth mode?” over .
@ The Zariski closure B of the branch locug B 2 is étale over Q.

Then, the intersection graph of the potential stable reidncof Y« is a tree
i.e. the Jacobian of i has potentially good reduction.

Raynaud’s proof is geometric, it uses the existence of pialestable
reduction and works by induction on the size of the gr@upt doesn’t give
any information on the monodromy extension. It seems difficugive a
constructive proof in the simplest cases.
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Raynalidsthieorem
Raynaud'’s theorem (Raynaud [90])

Theorem
Let Yx — Xk be a Galois cover with group G. Let us assume that:
@ G is nilpotent.
@ Xk has a smooth mode?” over .
@ The Zariski closure B of the branch locug B 2 is étale over Q.

Then, the intersection graph of the potential stable reidncof Y« is a tree
i.e. the Jacobian of i has potentially good reduction.

Raynaud’s proof is geometric, it uses the existence of pialestable
reduction and works by induction on the size of the gr@upt doesn’t give
any information on the monodromy extension. It seems difftcugive a
constructive proof in the simplest cases.

In Lehr-Matignon [06], we give a proof in the caseptyclic covers of the
projective line.
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Galois covers of the projective line ovepeadic field JEAUIGInlelfs]sl ) EYO XAT[BY=

Monodromy

Let C/K a curve. From the unicity of the stable mo@we deduce a faithful
action of the monodromy group on the potential stable rednaif C:

Gal(K’/K) — Aut(% x k).
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Altomorphismsiofictives
Monodromy

Let C/K a curve. From the unicity of the stable mo@we deduce a faithful
action of the monodromy group on the potential stable rednaif C:

Gal(K’/K) — Autk(% x k).
Gal(K’/K) is a semi-direct product of a cyclic group of order primeptand a
p group.
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[CELEROVE SRR ER(ERIEIINENOVET E-GIA (M Automorphisms of curves

Bounds on monodromy groups for potentially good
reduction

Assume tha¥” x k is smooth of genug > 2, (potentially good reduction).
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[CELEROVE SRR ER(ERIEIINENOVET E-GIA (M Automorphisms of curves

Bounds on monodromy groups for potentially good
reduction

Assume tha¥” x k is smooth of genug > 2, (potentially good reduction).
o Write | Gal(K'/K)| = ep" with (e,p) = 1.
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Galois covers of the projective line ovepeadic field JEAUIGInlelfs]sl ) EYO XAT[BY=

Bounds on monodromy groups for potentially good
reduction

Assume tha¥” x k is smooth of genug > 2, (potentially good reduction).
o Write | Gal(K'/K)| = ep" with (e,p) = 1.
@ Then the tame monodromy group is cyclic of oréet 4g+ 2.
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Bounds on monodromy groups for potentially good
reduction

Assume tha¥” x k is smooth of genug > 2, (potentially good reduction).
o Write | Gal(K'/K)| = ep" with (e,p) = 1.
@ Then the tame monodromy group is cyclic of oréet 4g+ 2.

@ By Stichtenoth [73] Nakajima [87] one has:
p" < max{4g, %> ¢}
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Bounds on monodromy groups for potentially good
reduction

Assume thats’ x k is smooth of genug > 2, (potentially good reduction).
o Write | Gal(K'/K)| = ep" with (e,p) = 1.
@ Then the tame monodromy group is cyclic of oréet 4g+ 2.
@ By Stichtenoth [73] Nakajima [87] one has:
p" < max{4g, %> ¢}
@ In the case of potential stable reduction with trivial tgpart, one can

prove using the action ofitorsion point of Pi&(C) with ¢ # 2, p that
w<a+[a/p]+..., witha= [%],and is an optimal bound for

gep(p—1)/2
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CUIICE S ECTET=S
Maximal curves in chap. > 0

Definition
Let C/k a curve of genug > 2 andG C Aut(C).
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Maximal curves in chap. > 0

Definition

Let C/k a curve of genug > 2 andG C Aut,(C). We say thatC,G) is a big
actionif G is ap-group and% > %
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[CELEROVE SRR ER(ERIEIINENOVET E-GIA (M Automorphisms of curves

Maximal curves in chap. > 0

Definition

Let C/k a curve of genug > 2 andG C Aut,(C). We say thatC,G) is a big
actionif G is ap-group and% > %

Theorem

Lehr-Matignon [05] Let(C, G) a big action. Theﬁg%' > (pfl)z iff there is
C

Z(F) e k{F} and f = cX+ XZ(F)(X) € k[X] with C~ C; : WP — W = f(X).

v
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[CELEROVE SRR ER(ERIEIINENOVET E-GIA (M Automorphisms of curves

Maximal curves in chap. > 0

Definition

Let C/k a curve of genug > 2 andG C Aut,(C). We say thatC,G) is a big
actionif G is ap-group and% > %

Theorem
Lehr-Matignon [05] Let(C, G) a big action. Theﬁg%' > (pfl)z iff there is
C

Z(F) e k{F} and f = cX+ XZ(F)(X) € k[X] with C~ C; : WP — W = f(X).
Moreover there are two possibilities for G:

v
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Maximal curves in chap. > 0

Definition

Let C/k a curve of genug > 2 andG C Aut,(C). We say thatC,G) is a big
actionif G is ap-group and% > %

Theorem

Lehr-Matignon [05] Let(C, G) a big action. TheH— > )2 iff there is

2(F) e k{F} and f = cX+ XX(F)(X) € k[X] with C Cf Wp—W_ f(X).
Moreover there are two possibilities for G:

° 'gG| = (p4p)2 and G= G, 1(f) the p-Sylow subgroup @futy(Cs).
C

v
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Maximal curves in chap. > 0

Definition

Let C/k a curve of genug > 2 andG C Aut,(C). We say thatC,G) is a big
actionif G is ap-group and% > %

Theorem

Lehr-Matignon [05] Let(C, G) a big action. TheH— > )2 iff there is

Z(F) e k{F} and f = cX+ XZ(F)(X) € k[X] with C Cf Wp—W_ f(X).
Moreover there are two possibilities for G:
|gc(;:| = (p 1)2 and G= G, 1(f) the p-Sylow subgroup @futy(Cs). For

deg>(F) = s, itis the extraspecial group of ordefp* and exponent p
forp> 2
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Maximal curves in chap. > 0

Definition

Let C/k a curve of genug > 2 andG C Aut,(C). We say thatC,G) is a big
actionif G is ap-group and% > %

Theorem

Lehr-Matignon [05] Let(C, G) a big action. TheH— > )2 iff there is

Z(F) e k{F} and f = cX+ XZ(F)(X) € k[X] with C Cf Wp—W_ f(X).
Moreover there are two possibilities for G:
|gc(;:| = (p 1)2 and G= G, 1(f) the p-Sylow subgroup @futy(Cs). For

deg>(F) = s, itis the extraspecial group of ordefp* and exponent p
forp> 2.
|g%| = (pfl)z and GC G.,1(f) has index p.

C

o

v
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Monodiormyjpolynomial
Monodromy polynomial

e LetC — P be birationally given by the equation:
Zg = f(XO) = Hlﬁifm(xo_xi)ni S OK[XO]v (ni7p) =1land
(n:=degf,p) = 1,v(x —X) = V(x) = 0 fori #].

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008 19/ 3¢



Monodiormyjpolynomial
Monodromy polynomial

e LetC — P be birationally given by the equation:
Z§ = f(Xo) = Ma<i<m(Xo — %)™ € Ox[Xa], (i, p) = 1 and
(n:= degf,p) = 1,v(x —X) = v(x) = 0 fori #].

o f'(Y)/f(Y) =Si(Y )/So( ) (S(Y),S1(Y)) = 1; then degS; (Y)) = m—1
and degS(Y)) =m
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Monodiormyjpolynomial
Monodromy polynomial

e LetC — P be birationally given by the equation:
Z8 = f(Xo0) = Ma<izm(Xo— )™ € Ok [Xo], (n,p) = 1 and
(n:=degf,p) =1,v(x —%) = V(X)) =0fori #]j.

o F/(Y)/E(Y) =S(Y)/S(Y), (S(Y),S(Y)) = 1; then degS(Y)) =m—1
and degS(Y)) =m.

o F(X+Y)=f(Y)((L+a1(Y)X+ ..+ (Y)X)P = 51 1cicn A (V)X),
wherer + 1= [n/p], a(Y),A(Y) € K(Y).
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Monodiormyjpolynomial
Monodromy polynomial

e LetC — P be birationally given by the equation:
Z8 = f(Xo0) = Ma<izm(Xo— )™ € Ok [Xo], (n,p) = 1 and
(n:=degf,p) = 1,v(x —X) = v(x) = O fori #].

o F/(Y)/F(Y) =Su(Y)/S(Y), (S(Y),Si(Y)) = 1; then degS,(Y)) =m—1
and degS(Y)) =m.

o F(X+Y) =F(YV)(1+a1(Y)X+ . 48 (V)X)P — 3, 1icn A (Y)X),
wherer + 1= [n/p], a(Y),A(Y) € K(Y).

@ There is a uniquer such thar < p? < n< po+!
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Monodromy polynomial

e LetC — P be birationally given by the equation:
Z8 = f(Xo0) = Ma<izm(Xo— )™ € Ok [Xo], (n,p) = 1 and
(n:=degf,p) = 1,v(x —X) = v(x) = O fori #].

o F/(Y)/F(Y) =Su(Y)/S(Y), (S(Y),Si(Y)) = 1; then degS,(Y)) =m—1
and degS(Y)) =m.

o F(X+Y) =F(YV)(1+a1(Y)X+ . 48 (V)X)P — 3, 1icn A (Y)X),
wherer + 1= [n/p], a(Y),A(Y) € K(Y).

@ There is a uniquer such thar < p? < n< po+!

o There isT(Y) € O[Y] with Ags (Y) = — (1/%)" STV
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Monodiormyjpolynomial
Monodromy polynomial

e LetC — P be birationally given by the equation:
Z8 = f(Xo0) = Ma<izm(Xo— )™ € Ok [Xo], (n,p) = 1 and
(n:=degf,p) = 1,v(x —X) = v(x) = O fori #].

o F/(Y)/F(Y) =Su(Y)/S(Y), (S(Y),Si(Y)) = 1; then degS,(Y)) =m—1
and degS(Y)) =m.

o F(X+Y) =F(YV)(1+a1(Y)X+ . 48 (V)X)P — 3, 1icn A (Y)X),
wherer + 1= [n/p], a(Y),A(Y) € K(Y).

@ There is a uniquer such thar < p? < n< po+!

o There isT(Y) € O[Y] with Ags (Y) = — (1/%)" STV

o .Z(Y):=Si(Y)P +pT(Y). This is a polynomial of degree” (m— 1)
which is called themonodromy polynomiaf f ().
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Markedstablelmode}
Special fiber of the easy model

By easy model, we mean ti@-model%p, defined by
Zg =f(Xo) = |_|l§i§m(xO_Xi)ni € OK[Xo].

\/\\/v

W T

Figure: 6o, ®o, k — PPt with singularities and branch locus
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Markedstablelmode}
Stable model

Theorem
@ The components with genus0 of the marked stable model of C
correspond bijectively to the Gauss valuatiogswith pjXj = Xo — Y,
where y is a zero of the monodromy polynomi#l(Y)

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008 21/ 3¢



Markedstablelmode}
Stable model

Theorem

@ The components with genus0 of the marked stable model of C
correspond bijectively to the Gauss valuatiogswith pjXj = Xo — Y,
where y is a zero of the monodromy polynomi#l(Y)

o pj € Ox9 satisfies Ypj) = max{1 V<A|( )) forr+1<i<n}.
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Markedstablelmode}
Stable model

Theorem

@ The components with genus0 of the marked stable model of C
correspond bijectively to the Gauss valuatiogswith pjXj = Xo — Y,
where y is a zero of the monodromy polynomi#l(Y)

o pj € Ox9 satisfies Ypj) = max{1 V(M )) forr+1<i<n}.

@ The dual graph of the special fiber of the marked stable maddglis an
oriented tree whose ends are in bijection with the companehgenus
> 0.
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fatsnusivjsoodiedacecy
Potentially good reduction with small conductor

Letp=3andK C Qp'
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fatsnusivjsoodiedacecy
Potentially good reduction with small conductor

Letp=3andK C Qp'
f(Xo) = (14 X0+ X3) (1+ X0)?
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[eE ROV ENOR (R ERIEEINENOVET LI Potentially good reduction

Potentially good reduction with small conductor

Letp=3andK C Qp'

f(Xo) = (1+Xo+X3) (14 Xo)?
f'(Xo) 2x3

f(Xo) (L-+Xo+X3) (1+Xo) mod 3,
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Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

Potentially good reduction with small conductor

Letp=3andK C Qp'

f(Xo) = (1+Xo+X3) (14 Xo)?
f'(Xo) 2x3

f(Xo) (1+Xo0+X3) (1+Xo)

It follows that the special fiber of the easy mo@eto, k has only one cusp
and hence is a good candidate for having potentially goodatézh.

mod 3,

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008 22/ 3¢



Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

Potentially good reduction with small conductor

Letp=3andK C Qp'

f(Xo) = (1+Xo+X3) (14 Xo)?
f'(Xo) 2x3

f(Xo) (1+Xo0+X3) (1+Xo)

It follows that the special fiber of the easy mo@eto, k has only one cusp
and hence is a good candidate for having potentially goodatézh.

Note thatm=4,n=5 and sq@? = 3

mod 3,
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Rotentiallygoad reduction
Potentially good reduction with small conductor

Letp=3andK C Qp'

f(Xo) = (14 Xo+X3) (14 Xo)?
f'(Xo) 2x3

f(Xo) (L-+Xo+X3) (1+Xo)

mod 3,

It follows that the special fiber of the easy mo@eto, k has only one cusp

and hence is a good candidate for having potentially goodatézh.
Note thatm=4,n=5 and sq@? = 3

Using Maple we solve the equation

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008

22/ 3¢



Rotentiallygoad reduction
Potentially good reduction with small conductor

Letp=3andK C Qp'
f(Xo) = (1+Xo+X3) (1+X0)?

f'(X0) 2x3
f(Xo) 7 (14+Xo+X3)(1+Xo) mod 3,

It follows that the special fiber of the easy mo@eto, k has only one cusp

and hence is a good candidate for having potentially goodatézh.
Note thatm=4,n=5 and sq@? = 3
Using Maple we solve the equation

f(X+Y) 1= 59+ 51X + X%+ X3+ 54X+ X° =
So((1+agX)3 + ApX2 + AgX3 + AgX* + AgX®)
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Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

@ The monodromy polynomial is the simplified numeraarof As:
ZL(Y) =64Y° +18Y8 1 45Y7 1 72Y8 + 27Y4 - 27Y2 4 54Y +27 mod 3
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Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

@ The monodromy polynomial is the simplified numeraarof As:
ZL(Y) =64Y° +18Y8 1 45Y7 1 72Y8 + 27Y4 - 27Y2 4 54Y +27 mod 3

@ The Newton polygon has only one slope and so the igois<i <9
have valuatiorgv(3).
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@ The monodromy polynomial is the simplified numeraarof As:
ZL(Y) =64Y° +18Y8 1 45Y7 1 72Y8 + 27Y4 - 27Y2 4 54Y +27 mod 3

@ The Newton polygon has only one slope and so the igois<i <9
have valuatiorgv(3).

o Using Magma, we check that the monodromy polynomial is incsole
overQ¥™eand as/(discr(.Z(Y)) = 27v(3), it follows thatv(y; —y;) = 3.
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Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

@ The monodromy polynomial is the simplified numeraarof As:
ZL(Y) =64Y° +18Y8 1 45Y7 1 72Y8 + 27Y4 - 27Y2 4 54Y +27 mod 3

@ The Newton polygon has only one slope and so the igois<i <9
have valuatiorgv(3).

o Using Magma, we check that the monodromy polynomial is incsole
overQ¥™eand as/(discr(.Z(Y)) = 27v(3), it follows thatv(y; —y;) = 3.

o MoreoverA, = Y+ GY‘;(*?! :ﬁﬁs&ﬁwz* % and so fory; € Z(Z(Y)) we
getv(Az(yi)) = v(3).
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@ The monodromy polynomial is the simplified numeraarof As:
ZL(Y) =64Y° +18Y8 1 45Y7 1 72Y8 + 27Y4 - 27Y2 4 54Y +27 mod 3

@ The Newton polygon has only one slope and so the igois<i <9
have valuatiorgv(3).

o Using Magma, we check that the monodromy polynomial is incsole
overQ¥™eand as/(discr(.Z(Y)) = 27v(3), it follows thatv(y; —y;) = 3.

o MoreoverA, = Y+ GY‘;(*?! :ﬁ%{s&?w* % and so fory; € Z(Z(Y)) we
getv(Az(yi)) = v(3).

_ 245Y N
® A4= Tavravisvaravirys and sov(Aq(yi)) =0

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008 23St



Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

@ The monodromy polynomial is the simplified numeraarof As:

ZL(Y) =64Y° +18Y8 1 45Y7 1 72Y8 + 27Y4 - 27Y2 4 54Y +27 mod 3

@ The Newton polygon has only one slope and so the igois<i <9

have valuatiorgv(3).

o Using Magma, we check that the monodromy polynomial is incsole
overQ¥™eand as/(discr(.Z(Y)) = 27v(3), it follows thatv(y; —y;) = 3.

6 5 4 3 2
o MoreoverA, = YO HINV L2V gnd g0 fory; € Z(Z(Y)) we

3(Y3+Y+D)f(Y)
getv(Ax(yi)) = v(3).

_ 245Y N
® A4= Tavravisvaravirys and sov(Aq(yi)) =0

°ay= 3+6Y+6;2(¢)8Y3+ 5" and sov(ay(yi)) = V(yi) > 0
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@ The monodromy polynomial is the simplified numeraarof As:
ZL(Y) =64Y° +18Y8 1 45Y7 1 72Y8 + 27Y4 - 27Y2 4 54Y +27 mod 3

@ The Newton polygon has only one slope and so the igois<i <9
have valuatiorgv(3).

o Using Magma, we check that the monodromy polynomial is incsole
overQ¥™eand as/(discr(.Z(Y)) = 27v(3), it follows thatv(y; —y;) = 3.

o MoreoverA, = Y+ GY‘;(*?! :ﬁ%{s&?w* % and so fory; € Z(Z(Y)) we

getv(Az(yi)) = v(3).

_ 245Y N
® A4= Tavravisvaravirys and sov(Aq(yi)) =0

°ay= 3+6Y+6;2(¢)8Y3+ 5" and sov(ay(yi)) = V(yi) > 0

o Finally if we write Xg = T 4+ Vy; we get
f(Xo) = (i) ((1+an(yi)rT)3+Ao(yi)r2T2 + Aa(y)r*T? + As(yi )r°T>)
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[eE ROV ENOR (R ERIEEINENOVET LI Potentially good reduction

o LetZ:= AW-f(y))Y3(1+ay(yi)rT) andr := A%* then
W3 —W = 2T4 modA
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Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

o LetZ:= AW-f(y))Y3(1+ay(yi)rT) andr := A%* then
W3 —W = 2T4 modA

o LetK’/K the monodromy extension, by the minimality
K’ < K(y;,f(y;)¥?) for eachi,1 <i < 9.
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o LetZ:= AW-f(y))Y3(1+ay(yi)rT) andr := A%* then
W3 —W = 2T4 modA

o LetK’/K the monodromy extension, by the minimality
K’ < K(y;,f(y;)¥?) for eachi,1 <i < 9.

o Leto € Gal(K’/K) with a(y;) = y; theno acts trivially on the
coordinateXp and soo (T) =T + @
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o LetZ:= AW-f(y))Y3(1+ay(yi)rT) andr := A%* then
W3 —W = 2T4 modA

o LetK’/K the monodromy extension, by the minimality
K’ < K(y;,f(y;)¥?) for eachi,1 <i < 9.

o Leto € Gal(K’/K) with a(y;) = y; theno acts trivially on the
coordinateXp and soo (T) =T + @

o Fori #j, asv(X-2) =0, it follows thato induces an automorphism of
the curveWs? — W = 214 overIFg'g, which is a translation off.
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LetZ:= AW +f(y))Y3(14ay(y)rT) andr := A%* then
W3 —W = 2T4 modA

(]

(]

LetK’/K the monodromy extension, by the minimality
K’ < K(y;,f(y;)¥?) for eachi,1 <i < 9.

(]

Let o € Gal(K’/K) with a(y;) =y; theno acts trivially on the
coordinateXo and soo(T) = T+ 4224,

Fori #j, asv(¥-2) =0, it follows thato induces an automorphism of
the curveWs? — W = 214 overIFg'g, which is a translation off.

(]

In this way we get 9 distinct translations and as the full Ba@&y
subgroup of automorphisms of the cuMé& — W = 2T* is the non
abelian group of order®3and exponent 3 it follows that we get the full
3-Sylow subgroup.

(]
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[eE ROV ENOR (R ERIEEINENOVET LI Potentially good reduction

The same method works wififXo) = 1+ X3+ X3.
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Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

The same method works wififXo) = 1+ X3+ X3.

Finally the two curve3 = 1+ X3+ X§ andZ3 = (1+ Xo + X3)(1+ Xo)?
both have genus 3, maximal wild monodromy o@§™®, and the same type
of potential stable reduction.
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The same method works wififXo) = 1+ X3+ X3.

Finally the two curve3 = 1+ X3+ X§ andZ3 = (1+ Xo + X3)(1+ Xo)?
both have genus 3, maximal wild monodromy o@§™¢ and the same type
of potential stable reduction.

Yet, as covers oP%, these two curves have different branch cycle descriptic
owing to the multiplicities in their defining equations.
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Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

The same method works wififXo) = 1+ X3+ X3.

Finally the two curve3 = 1+ X3+ X§ andZ3 = (1+ Xo + X3)(1+ Xo)?
both have genus 3, maximal wild monodromy o@§™¢ and the same type
of potential stable reduction.

Yet, as covers oP%, these two curves have different branch cycle descriptic
owing to the multiplicities in their defining equations.

This suggests that we can refine the problem of realizing malxvild
monodromy groups ov@g"meand also prescribe the branch cycle
description.
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fatsnusivjsoodiedacecy
Potentially good reduction witm= 1+ p®

Theorem
e p>2s>1,K= ng(pl/(p%rl)’ {), { a primitive p-th root of 1. and
C — P} is birationally defined by the equation
ZP = f(Xo) = 14 pt/ P+ X" XPFL
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Rotentiallygoad reduction
Potentially good reduction witm= 1+ p®

Theorem
e p>2s>1,K= ng(pl/(p%rl)’ {), { a primitive p-th root of 1. and
C — P} is birationally defined by the equation
ZP = f(Xo) = 1+ pY (FHOXE 4 T,

@ Then, C has potentially good reduction with special fibeatianal to
the curve W—w = tP"*1 and Z(Y) is irreducible over K.
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Rotentiallygoad reduction
Potentially good reduction witm= 1+ p®

Theorem
e p>2s>1,K= ng(pl/(psﬂ)’ {), { a primitive p-th root of 1. and
C — P} is birationally defined by the equation
ZP = (Xo) = 14 p (FHDXE 4 xPHL,
@ Then, C has potentially good reduction with special fibeatianal to
the curve W—w = tP"*1 and Z(Y) is irreducible over K.

@ The monodromy extensior K is the decomposition field d?(Y)
obtained by adjoining the p-rootgy)/P, for y describing the zeroes of
Z(Y).
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Rotentiallygoad reduction
Potentially good reduction witm= 1+ p®

Theorem
e p>2s>1,K= ng(pl/(psﬂ)’ {), { a primitive p-th root of 1. and
C — P} is birationally defined by the equation
ZP = f(Xo) = 1+ pY (FHOXE 4 T,

@ Then, C has potentially good reduction with special fibeatianal to
the curve W—w = tP"*1 and Z(Y) is irreducible over K.

@ The monodromy extensior K is the decomposition field d?(Y)
obtained by adjoining the p-rootgy)/P, for y describing the zeroes of
Z(Y).

@ The monodromy group is the extraspecial group with expopeamid
order p?>t1 (which is maximal for this conductor).
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[eE ROV ENOR (R ERIEEINENOVET LI Potentially good reduction

Comments on the proof
The proof involves the monodromy polynomi&f(Y) in an indirect way.
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Rotentiallygoad reduction
Comments on the proof

The proof involves the monodromy polynomi&f(Y) in an indirect way.
In this case it igp-adically near from

L(Y) 1= s1(Y)P = ()P (—p)P P s (Y )P~ Ls(Y)
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[eE ROV ENOR (R ERIEEINENOVET LI Potentially good reduction

Comments on the proof

The proof involves the monodromy polynomi&f(Y) in an indirect way.
In this case it igp-adically near from

L(Y) := S1(Y)P* = (= 1)P (—p)PHP P (Y)P L5 (Y)

We prove inductively that foy € Z(L(Y)) andX = A ﬁsT,

F(X+Y) = (s0(y)P +X(as(y, X))P + X7 modAPM, as(y, X) € M [T]

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008 27/ 3¢



[eE ROV ENOR (R ERIEEINENOVET LI Potentially good reduction

Comments on the proof

The proof involves the monodromy polynomi&f(Y) in an indirect way.
In this case it igp-adically near from

L(Y) := S1(Y)P* = (= 1)P (—p)PHP P (Y)P L5 (Y)

We prove inductively that foy € Z(L(Y)) andX = A e T,

F(X+y) = (S0P +X(as(y, X)) + X 7" modAPM, as(y, X) € M [T]

Generalization
Letg(t) :==t Z(F)(t), whereZ(F) = uyF 4 ... + us_1FS 1 + FS € k{F}.

v

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008 27/ 3¢




[eE ROV ENOR (R ERIEEINENOVET LI Potentially good reduction
Comments on the proof

The proof involves the monodromy polynomi&f(Y) in an indirect way.
In this case it igp-adically near from

L(Y) := S1(Y)P* = (= 1)P (—p)PHP P (Y)P L5 (Y)

We prove inductively that foy € Z(L(Y)) andX = A e T,

F(X+y) = (S0P +X(as(y, X)) + X 7" modAPM, as(y, X) € M [T]

V.

Generalization
Letg(t) :==t Z(F)(t), whereZ(F) = uyF 4 ... + us_1FS 1 + FS € k{F}.
Letf(Xp) =
1 S S
1+ prUsXEP 4 ppUaXE ™ - ps qUs g X7 4 pl/ P+ X8 4 xP*

v
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Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]
Comments on the proof

The proof involves the monodromy polynomi&f(Y) in an indirect way.
In this case it igp-adically near from

L(Y) := S1(Y)P* = (= 1)P (—p)PHP P (Y)P L5 (Y)

We prove inductively that foy € Z(L(Y)) andX = A e T,

F(X+y) = (S0P +X(as(y, X)) + X 7" modAPM, as(y, X) € M [T]

V.

Generalization

Letg(t) :==t Z(F)(t), whereZ(F) = uyF 4 ... + us_1FS 1 + FS € k{F}.
Letf(Xp) =

1+ P1U1X(1)+p+ p2U2 Xéﬂlz + .o+ Ps-1Us- lel)er& +pt/ (P Xg X(F))s+l

with pj = A 1+p andy; is the residual class af;.

v
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Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

Comments on the proof

The proof involves the monodromy polynomi&f(Y) in an indirect way.
In this case it igp-adically near from

L(Y) := S1(Y)P* = (= 1)P (—p)PHP P (Y)P L5 (Y)

We prove inductively that foy € Z(L(Y)) andX = A e T,

F(X+y) = (S0P +X(as(y, X)) + X 7" modAPM, as(y, X) € M [T]

V.

Generalization

Letg(t) :==t Z(F)(t), whereZ(F) = uyF + ... + us 1FS 1+ FS € k{F}.
Letf(Xp) =

1+ P1U1X(1)+p+ p2U2 Xéﬂlz + .o+ Ps-1Us- lel)er& +pt/ (P Xg X(F))s+l
with pj = A 1+p andy; is the residual class af;.

Then,z§ = f(Xo) has potentially good reduction with special fiber biratiah
to the curven® —w=g(t) .

S

v
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Galois covers of the projective line ovepeadic field JReIEIIEU A olole Ry=le (¥[lile]]

Comments on the proof

The proof involves the monodromy polynomi&f(Y) in an indirect way.
In this case it igp-adically near from

L(Y) := S1(Y)P* = (= 1)P (—p)PHP P (Y)P L5 (Y)

We prove inductively that foy € Z(L(Y)) andX = A e T,

F(X+y) = (S0P +X(as(y, X)) + X 7" modAPM, as(y, X) € M [T]

.

Generalization

Letg(t) :==t Z(F)(t), whereZ(F) = uyF 4 ... + us_1FS 1 + FS € k{F}.
Letf(Xp) =

14 pUiXs +'°+sz XEP ot ps aUs 1 XGTP 4 pl/ (P XE B

with pj = A 1+p andy; is the residual class af;.

Then,z§ = f(Xo) has potentially good reduction with special fiber biratiah
to the curven® —w=g(t) .

The monodromy group is again the extraspecial group wittoe&ptp and
orderp'*2s (which is maximal for this conductor).

S

v
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Galois covers of the projective line ovepeadic field [elhiER

Genus 2 curves

@ Casep=2andm=>5 (i.e. curves with genus 2 over a 2-adic field

C Qlame),
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Genus 2 curves

@ Casep=2andm=>5 (i.e. curves with genus 2 over a 2-adic field
C Qlame),

@ There are 3 types of degeneration for the marked stable model
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Genus 2 curves

@ Casep=2andm=>5 (i.e. curves with genus 2 over a 2-adic field

C Qlame),
@ There are 3 types of degeneration for the marked stable model
genus 1
curves
N\
enus 1
cuves™” /
~>pl ™ pL
.. K .. Kk
original component original component
Type 1 Type 2

Gal(K'/K)w — Qg x Qs Gal(K'/K)w — (Qg x Qg) X Z/2Z G
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Galois covers of the projective line ovepeadic field [elhiER

C — P} is birationally defined by the equatidg = f(Xp) with
f(Xo) = 1+ bpX3 + bsX3 + baXd + X3 € Ok [Xo].
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Galois covers of the projective line ovepaadic field ENelRIEW

C — P} is birationally defined by the equatidg = f(Xp) with
f(Xo) = 1+ X3+ baX3 + baXg + X3 € Ok [Xo.

Now, we see that the monodromy can be maximal for the 3 types of
degeneration.
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Galois covers of the projective line ovepaadic field ENelRIEW

C — P} is birationally defined by the equatidg = f(Xp) with
f(Xo) = 1+ X3+ baX3 + baXg + X3 € Ok [Xo.

Now, we see that the monodromy can be maximal for the 3 types of
degeneration.

o f(Xo) = 1+ 2%/5X3 + X3+ 22/°X3 4 X§ andK = Qy'(2Y/19);
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Galois covers of the projective line ovepaadic field ENelRIEW

C — P} is birationally defined by the equatidg = f(Xp) with
f(Xo) =1+ b2X§+b3X8+b4X3+X8 S OK[Xo].

Now, we see that the monodromy can be maximal for the 3 types of
degeneration.

o f(Xo) = 1+ 2%/5X3 + X3+ 22/°X3 4 X§ andK = Qy'(2Y/19);
C has a marked stable model of type 1.
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Galois covers of the projective line ovepaadic field ENelRIEW

C — P} is birationally defined by the equatidg = f(Xp) with
f(Xo) = 1+ X3+ baX3 + baXg + X3 € Ok [Xo.

Now, we see that the monodromy can be maximal for the 3 types of
degeneration.

o f(Xo) = 14 25/5X3 + X3+ 22/5X¢ + X§ andK = QY'(2Y/1%);
C has a marked stable model of type 1.

Two irreducible components birational Bo: w? —w = t3
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Galois covers of the projective line ovepaadic field ENelRIEW

C — P} is birationally defined by the equatidg = f(Xp) with
f(Xo) = 1+ 02X3 + bsX3 + baX3 -+ X5 € Ok [Xo).-

Now, we see that the monodromy can be maximal for the 3 types of
degeneration.
o f(Xo) = 14 2%/5X2 + X3+ 22/5X3 -+ X5 andK = Qy"(2%/15);
C has a marked stable model of type 1.
Two irreducible components birational Bo: w? —w = t3

The maximal wild monodromy group is Qs x Qs.
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Galois covers of the projective line ovepeadic field [elhiER

o LetK = QY'(a) with a’ =2 andf(Xp) = 1+ a3X§—i— aGXS—i— XS
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Galois covers of the projective line ovepeadic field [elhiER

o LetK = QY'(a) with a’ =2 andf(Xp) = 1+ a3X§—i— aGXS—i— XS

C has a marked stable model of type 2.
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Galois covers of the projective line ovepaadic field ENelRIEW

o LetK = QY(a) with a® = 2 andf (Xg) = 14 a3XZ +a®x3 + X3.
C has a marked stable model of type 2.

Two irreducible components birational Bo: w? —w = t3
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Galois covers of the projective line ovepaadic field ENelRIEW

o LetK = QY'(a) with & = 2 andf (Xo) = 1+ a3X2 + abX3 + X3.
C has a marked stable model of type 2.
Two irreducible components birational Bo: w? —w = t3

The maximal wild monodromy group is (Qg x Qg) x Z /27, where
7./ 27, exchanges the 2 factors.
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Galois covers of the projective line ovepaadic field ENelRIEW

o LetK = QY'(a) with & = 2 andf (Xo) = 1+ a3X2 + abX3 + X3.
C has a marked stable model of type 2.
Two irreducible components birational Bo: w? —w = t3

The maximal wild monodromy group is (Qg x Qg) x Z /27, where
7./ 27, exchanges the 2 factors.

o K =QY andf(Xg) = 1+ X3+ X3.
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Galois covers of the projective line ovepaadic field ENelRIEW

o LetK = QY'(a) with & = 2 andf (Xo) = 1+ a3X2 + abX3 + X3.
C has a marked stable model of type 2.
Two irreducible components birational Bo: w? —w = t3

The maximal wild monodromy group is (Qg x Qg) x Z /27, where
7./ 27, exchanges the 2 factors.

o K =QY andf(Xg) = 1+ X3+ X3.
C has potentially good reduction (i.e. is of type 3)
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Galois covers of the projective line ovepaadic field ENelRIEW

o LetK = QY'(a) with & = 2 andf (Xo) = 1+ a3X2 + abX3 + X3.
C has a marked stable model of type 2.
Two irreducible components birational Bo: w? —w = t3

The maximal wild monodromy group is (Qg x Qg) x Z /27, where
7./ 27, exchanges the 2 factors.

o K =QY andf(Xg) = 1+ X3+ X3.
C has potentially good reduction (i.e. is of type 3)

One irreducible component birational to the genus 2 cwfe w = t°
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Galois covers of the projective line ovepaadic field ENelRIEW

o LetK = QY'(a) with & = 2 andf (Xo) = 1+ a3X2 + abX3 + X3.
C has a marked stable model of type 2.
Two irreducible components birational Bo: w? —w = t3

The maximal wild monodromy group is (Qg x Qg) x Z /27, where
7./ 27, exchanges the 2 factors.

o K =QY andf(Xg) = 1+ X3+ X3.
C has potentially good reduction (i.e. is of type 3)
One irreducible component birational to the genus 2 cwfe w = t°

The maximal wild monodromy group is Qg * Dg.
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Galois covers of the projective line ovepeadic field JMEhiIElvEl(e]]

Generalization

Let C/k be a stable curve of gengs> 2, over an algebraically closed field of
char.p > 0.
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Generalization
Generalization

Let C/k be a stable curve of gengs> 2, over an algebraically closed field of
char.p > 0.

Pic®(C) is an extension of an abelian variety by a torus.
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Generalization
Generalization

Let C/k be a stable curve of gengs> 2, over an algebraically closed field of
char.p > 0.

Pic®(C) is an extension of an abelian variety by a torus.

The group Aug(C) is finite and injects into Ay(Pic’(C)).

Michel Matignon (IMB) Semi-stable reduction and maximal monodro Mini Workshop Oberwolfach 2008 31/3E



Generalization
Generalization

Let C/k be a stable curve of gengs> 2, over an algebraically closed field of
char.p > 0.

Pic®(C) is an extension of an abelian variety by a torus.
The group Aug(C) is finite and injects into Ay(Pic’(C)).

It can be described by considering its action on the torsimintp of Pié(C).
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Generalization
Generalization

Let C/k be a stable curve of gengs> 2, over an algebraically closed field of
char.p > 0.

Pic®(C) is an extension of an abelian variety by a torus.
The group Aug(C) is finite and injects into Ay(Pic’(C)).
It can be described by considering its action on the torsimintp of Pié(C).

Assume that PR{C) is an abelian variety (this is the case for the special fibe
of the stable models of thecyclic covers which appear in Raynaud’s
theorem).
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Generalization
Generalization

Let C/k be a stable curve of gengs> 2, over an algebraically closed field of
char.p > 0.

Pic®(C) is an extension of an abelian variety by a torus.
The group Aug(C) is finite and injects into Ay(Pic’(C)).
It can be described by considering its action on the torsimintp of Pié(C).

Assume that PR{C) is an abelian variety (this is the case for the special fibe
of the stable models of thecyclic covers which appear in Raynaud’s
theorem).

We can give a bound for @ Sylow subgroup Sy{(C) of Autk(C).
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Galois covers of the projective line ovepeadic field JMEhiIElvEl(e]]

LetNy(g) :=a+[a/p] + [a/p?] + ... wherea:= [ 2]. Then,
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Galois covers of the projective line ovepeadic field JMEhiIElvEl(e]]

LetNy(g) :=a+[a/p] + [a/p?] + ... wherea:= [ 2]. Then,

Vo(| SYl(C)]) < No(9) 1)
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Galois covers of the projective line ovepeadic field ENEEREIElFLTl]]

LetNy(g) :=a+[a/p] + [a/p?] + ... wherea:= [ 2]. Then,

Vo(| SYl(C)]) < No(9) 1)

Claim.Forg € p(p— 1)/2 this bound is optimal.
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Galois covers of the projective line ovepeadic field ENEEREIElFLTl]]

LetNy(g) :=a+[a/p] + [a/p?] + ... wherea:= [ 2]. Then,

Vo(| SYl(C)]) < No(9) 1)

Claim.Forg € p(p— 1)/2 this bound is optimal.
Proof. Letp > 2, let(Cy,) be the marked curvg’ —y = x2 andx(c) = oo,
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Galois covers of the projective line ovepeadic field ENEEREIElFLTl]]

LetNy(g) :=a+[a/p] + [a/p?] + ... wherea:= [ 2]. Then,

Vo(| SYl(C)]) < No(9) 1)

Claim.Forg € p(p— 1)/2 this bound is optimal.
Proof. Letp > 2, let(Cy,) be the marked curvg’ —y = x2 andx(c) = oo,

Forj > 1 we built inductively the marked stable cur(@j1,%j,1):
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Galois covers of the projective line ovepeadic field ENEEREIElFLTl]]

LetNy(g) :=a+[a/p] + [a/p?] + ... wherea:= [ 2]. Then,

Vo(| SYl(C)]) < No(9) 1)

Claim.Forg € p(p— 1)/2 this bound is optimal.
Proof. Letp > 2, let(Cy, ») be the marked curvg’ —y = x? andx(co) = oo,
Forj > 1 we built inductively the marked stable cur(@j1,%j,1):

Take the projective Iin@’%alg with the pointeoj,1 € P%alg (Fp).
p p
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Galois covers of the projective line ovepeadic field ENEEREIElFLTl]]

LetNy(g) :=a+[a/p] + [a/p?] + ... wherea:= [ 2]. Then,

Vo(| SYl(C)]) < No(9) 1)

Claim.Forg € p(p— 1)/2 this bound is optimal.
Proof. Letp > 2, let(Cy, ») be the marked curvg’ —y = x? andx(co) = oo,
Forj > 1 we built inductively the marked stable cur(@j1,%j,1):

Take the projective Iin@’%alg with the pointeoj,1 € ]P’IlFalg(}Fp).
p p

Patched transversally in each of fhetherFy-rational points to a copy of the
marked stable curvgCj, ;) at theco; point.
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Galois covers of the projective line ovepeadic field ENEEREIElFLTl]]

LetNy(g) :=a+[a/p] + [a/p?] + ... wherea:= [ 2]. Then,

Vo(| SYl(C)]) < No(9) 1)

Claim.Forg € p(p— 1)/2 this bound is optimal.

Proof. Letp > 2, let(Cy,) be the marked curvg’ —y = x2 andx(c) = oo,
Forj > 1 we built inductively the marked stable cur(@j1,%j,1):

Take the projective Iin@’%glg with the pointeoj 1 € ]P’Ilpglg(lﬁ‘p).

Patched transversally in each of fhetherFy-rational points to a copy of the
marked stable curvgCj, ;) at theco; point.

Then Sy}(Cj11) = Syl,(Cj) 1 Z/pZ, the wreath product (i.e. the semidirect
product ofp copies of Sy}(Cj) andZ/pZ where this last group acts cyclically
on the components). This gives equality in (1).
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Galois covers of the projective line ovepeadic field ENEEREIElFLTl]]

Forp = 2, a similar construction works fay= 2 and copies of the curve
y? —y = x3 (see genus 2 case above). ///
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Galois covers of the projective line ovepeadic field ENEEREIElFLTl]]

Forp = 2, a similar construction works fay= 2 and copies of the curve
y? —y = x3 (see genus 2 case above). ///

Question. The curve; (for all p) look like the special fibers gi-cyclic
covers of the projective line.
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Galois covers of the projective line ovepeadic field ENEEREIElFLTl]]

Forp = 2, a similar construction works fay= 2 and copies of the curve
y? —y = x3 (see genus 2 case above). ///

Question. The curve; (for all p) look like the special fibers gi-cyclic
covers of the projective line.

By Maugeais [Mau 03], we know that these curves lift over sdimigz
extension ofQy".
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Galois covers of the projective line ovepeadic field ENEEREIElFLTl]]

Forp = 2, a similar construction works fay= 2 and copies of the curve
y? —y = x3 (see genus 2 case above). ///

Question. The curve; (for all p) look like the special fibers gs-cyclic
covers of the projective line.

By Maugeais [Mau 03], we know that these curves lift over sdimigz
extension ofQ,'. We ask for a lift overQy' with maximal monodromy

Sylp(Autk(Cj)) ? (The cas@ = 2 and genus 2 corresponds to type 2 above)
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