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Monodromy and automorphism groups.

» R is a strictly henselian DVR of inequal
characteristic (0, p).
K := FrR ; for example K/(Q)gr finite.
m a uniformizing parameter.
k .= RK /ﬂ'RK .
C/K smooth projective curve, g(C) > 1.
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K := FrR; for example K/Qgr finite.
7 a uniformizing parameter.
k .= RK/ﬂ'RK .
C/K smooth projective curve, g(C) > 1.

» C has potentially good reduction over K if there is
L/K (finite) such that C x« L has a smooth model
over R.. Then:
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K := FrR; for example K/Qgr finite.
7 a uniformizing parameter.
k .= RK /7TRK .
C/K smooth projective curve, g(C) > 1.

» C has potentially good reduction over K if there is
L/K (finite) such that C x« L has a smooth model
over R.. Then:

» There is a minimal extension L/K with this
property; it is Galois and called the monodromy
extension.
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Monodromy and automorphism groups.

» R is a strictly henselian DVR of inequal
characteristic (0, p).
K := FrR; for example K/Qgr finite.
7 a uniformizing parameter.
k .= RK /7I'RK .
C/K smooth projective curve, g(C) > 1.

» C has potentially good reduction over K if there is
L/K (finite) such that C x« L has a smooth model
over R.. Then:

» There is a minimal extension L/K with this
property; it is Galois and called the monodromy
extension.

» Ga(L/K) is the monodromy group.

Automorphisms

C. LEHR , M. MATIGNON

Plan

Introduction
Monodromy and automc

Automorphism groups
Covers of the affine line
Structure of G 1(f)
Bounds for |G, 1(f)|
Characterization of G .

Actions of p-groups
Nakajima condition
More about G,
Riemann surfaces
Ray class fields
Big actions
Maximal curves

Monodromy
Marked stable model
Potentially good reductic
Genus 2

Références



Monodromy and automorphism groups.

» R is a strictly henselian DVR of inequal
characteristic (0, p).
K := FrR; for example K/Qgr finite.
7 a uniformizing parameter.
k .= RK /7I'RK .
C/K smooth projective curve, g(C) > 1.

» C has potentially good reduction over K if there is
L/K (finite) such that C x« L has a smooth model
over R.. Then:

» There is a minimal extension L/K with this
property; it is Galois and called the monodromy
extension.

» Ga(L/K) is the monodromy group.
» Its p-Sylow subgroup is the wild monodromy
group .
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» The base change C xx K29 induces an
homomorphism ¢ : Gal(K#9 /K ) — Aut,Cs, where
Cs is the special fiber of the smooth model over
Ry and L = (K&9)kere,
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» The base change C xx K29 induces an
homomorphism ¢ : Gal(K#9 /K ) — Aut,Cs, where
Cs is the special fiber of the smooth model over
RL and L = (K29)kere,

» Let ¢ be a prime number, then,
ng .= vy(|Ga(L/K)|) < ve(|AutgCs)).
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» The base change C xx K29 induces an
homomorphism ¢ : Gal(K#9 /K ) — Aut,Cs, where
Cs is the special fiber of the smooth model over
RL and L = (K29)kere,

» Let ¢ be a prime number, then,
ng := ve(|Ga(L/K)|) < ve(JAutcCs)).

» If ¢ ¢ {2,p}, then ("¢ is bounded by the maximal
order of an ¢-cyclic subgroup of GL4(Z/(Z) i.e.
M < 0(g).
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The base change C xx K29 induces an
homomorphism ¢ : Gal(K29 /K ) — Aut,Cs, Where
Cs is the special fiber of the smooth model over
RL and L = (K29)kere,

Let ¢ be a prime number, then,

ng := ve(|Ga(L/K)|) < ve(JAutcCs)).

If ¢ ¢ {2,p}, then ¢" is bounded by the maximal
order of an ¢-cyclic subgroup of GL4(Z/(Z) i.e.
" < 0(g).

If p > 2, then

np < inf@égp Vp(|GL2g(Z/€Z)|) =a+ [a/p] + ...,
where a = [%].

This gives an exponential type bound in g for
|Auty Cs|. This justifies our interest in looking at
Stichtenoth ([St 73]) and Singh ([Si 73]).
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Theorem
([Ra 90]). Let Yx — Xk be a Galois cover with group

G. Let us assume that:
» G is nilpotent.
» Xy has a smooth model X.
» The Zariski closure B of the branch locus Bk in X
is étale over Rg.
Then,
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Theorem
([Ra 90]). Let Yx — Xk be a Galois cover with group
G. Let us assume that:
» G is nilpotent.
» Xk has a smooth model X.
» The Zariski closure B of the branch locus Bk in X
is étale over Rg.
Then,
» the special fiber of the stable model Y is

tree-like, i.e. the Jacobian of Yk has potentially
good reduction.
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Theorem
([Ra 90]). Let Yx — Xk be a Galois cover with group
G. Let us assume that:
» G is nilpotent.
» Xk has a smooth model X.
» The Zariski closure B of the branch locus Bk in X
is étale over Rg.
Then,
» the special fiber of the stable model Y is

tree-like, i.e. the Jacobian of Yk has potentially
good reduction.

» Raynaud’s proof is qualitative and it seems difficult
to give a constructive one in the simplest cases.
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Theorem
([Ra 90]). Let Yx — Xk be a Galois cover with group
G. Let us assume that:

» G is nilpotent.
» Xk has a smooth model X.

» The Zariski closure B of the branch locus Bk in X
is étale over Rg.

Then,

» the special fiber of the stable model Y is
tree-like, i.e. the Jacobian of Yk has potentially
good reduction.

» Raynaud’s proof is qualitative and it seems difficult
to give a constructive one in the simplest cases.

» We have given in [Le-Ma3] such a proof in the
case of p-cyclic covers of the projective line.
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p-cyclic covers of the affi ne line

k is an algebraically closed of char. p > 0.
» f(X) € Xk[X] monic,degf = m > 1 prime to p,
monic.
» C; : WP —W = f(X). Let co be the point of Cs
above X = oo and z a local parameter. Then,
g:=9(C) =B(m-1)>0.
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p-cyclic covers of the affi ne line

k is an algebraically closed of char. p > 0.

» f(X) € Xk[X] monic,degf = m > 1 prime to p,
monic.

» C; : WP —W = f(X). Let co be the point of C;
above X = oo and z a local parameter. Then,
g:=9(C) =B(m-1)>0.

> Goo(f) := {0 € AutCs | o(o0) = oo}.
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p-cyclic covers of the affi ne line

k is an algebraically closed of char. p > 0.

» f(X) € Xk[X] monic,degf = m > 1 prime to p,
monic.

» C; : WP —W = f(X). Let co be the point of C;
above X = oo and z a local parameter. Then,
g:=9(C) =B(m-1)>0.

> Goo(f) := {0 € AutCs | o(o0) = oo}.

> G i(f) = {0 € AutyCs | Vo (0(z) — 2) > 2} , the
p-Sylow.
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p-cyclic covers of the affi ne line

k is an algebraically closed of char. p > 0.

» f(X) € Xk[X] monic,degf = m > 1 prime to p,
monic.

» C; : WP —W = f(X). Let co be the point of C;
above X = oo and z a local parameter. Then,
g:=9(C) =B(m-1)>0.

> Goo(f) := {0 € AutCs | o(o0) = oo}.

> G i(f) = {0 € AutyCs | Vo (0(z) — 2) > 2} , the
p-Sylow.

> ([St 73]) Let g(Cs) > 2, then G, 1(f) is a p-Sylow
of Auty, Ct.
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p-cyclic covers of the affi ne line

k is an algebraically closed of char. p > 0.

>

f(X) € Xk[X] monic,degf = m > 1 prime to p,
monic.

Cs : WP —W = f(X). Let co be the point of Cs
above X = oo and z a local parameter. Then,

g:=9(Cf) = Pz*(m 1) >0.

Goo(f) :={o € AutyCs | o(00) = o0}

> G i(f) = {0 € AutyCs | Vo (0(z) — 2) > 2} , the

p-Sylow.

([St 73]) Let g(Ct) > 2, then G, 1(f) is a p-Sylow
of Auty, Ct.

It is normal except for f(X) = X™ where m|1 + p.
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Structure of G, 1(f)

» Let p(X) =X, p(W) =W + 1, then
<p>=0Gx2 CZ(Goop)

» 0 —-<p>—>Gy1—V —0, §Z’3§L”s'?o?f|§§;ig§|
V = {Ty| Ty(X) =X +y, y c k} Cr-maracterizationowa
f(X +y) =f(X)+f(y)+ (F — Id)(P(X,y)), " Nakima coniton
P(X,y) € Xk[X]. Riemann sufaces
V ~ (Z/pZ)' as a subgroup of k. e
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Structure of G, 1(f)

> Let p(X) =X, p(W) =W + 1, then
<p>=Gup CZ(Guo)

»0—-<p>>G,1—V —0,
V={ny|ny(X)=X+y, y ek}
f(X +y) = f(X) +F(y) + (F — Id)(P(X,y)),
P(X,y) € Xk[X].
V ~ (Z/pZ)¥ as a subgroup of k.

> Let (W) :=W +ay +P(X,y), ay € Fp, then
[7y, 2] = p¥?), where e : V x V — Fp is an
alternating form.
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Structure of G, 1(f)

> Let p(X) =X, p(W) =W + 1, then
<p>=Gup CZ(Guo)

»0—-<p>>G,1—V —0,
V ={ry|y(X) =X +y,y ek}
f(X +y) = f(X) +F(y) + (F — Id)(P(X,y)),
P(X,y) € Xk[X].
V =~ (Z/pZ)¥ as a subgroup of k.

> Let (W) :=W +ay +P(X,y), ay € Fp, then
[7y, 2] = p¥?), where e : V x V — Fp is an
alternating form.

> € is non degenerated iff < p >= Z (G 1).
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Bounds for |G 1(f)|

Lemma
IFf(X) =Y 1ciemtiX' € k[X] is monic, then:
> AF)(X,Y) = (X +Y) —F(X) —f(Y) =
R(X,Y)+ (F —1d)(Ps(X,Y)),
where R € ®L%J§ip"(i)<m, (i,p)=1 K[Y]X'"
Pr € XK[X, Y].

n(i
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Bounds for |G 1(f)|

Lemma
IFf(X) =Y 1ciemtiX' € k[X] is monic, then:
> AF)(X,Y) = (X +Y) —F(X) —f(Y) =
R(X,Y)+ (F —1d)(Ps(X,Y)), _
where R € @L%Jsip"“km, (i,p)=1 k[Y]X'pn(l) and
Pr € XK[X, Y].

> Pr=(Id+F + ...+ F"-1)(A()) mod X[ T+,
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Bounds for |G 1(f)

Lemma
IFf(X) =Y 1ciemtiX' € k[X] is monic, then:
> AF)(X,Y) = F(X +Y) —F(X) —f(Y) =
R(X,Y)+ (F —1d)(P:(X,Y)), _
where R € @ m |<ipni<m, (i p)=1 k[Y]x*®"" and
Pr € XK[X, Y].

> Pr=(Id+F + ... + F""1)(A(f)) mod x!™» 1+,

» Let us denote by Ads(Y) the content of
R(X,Y) e k[Y][X].
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Bounds for |G 1(f)

Lemma
IFf(X) =Y 1ciemtiX' € k[X] is monic, then:
> AF)(X,Y) = F(X +Y) —F(X) —f(Y) =
R(X,Y)+ (F —1d)(P:(X,Y)), _
where R € @ m |<ipni<m, (i p)=1 k[Y]x*®"" and
Pr € XK[X, Y].

> Pr=(Id+F + ... + F""1)(A(f)) mod x!™» 1+,

» Let us denote by Ads(Y) the content of
R(X,Y) e k[Y][X].

» Ad:(Y ) is an additive and separable polynomial.
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Bounds for |G 1(f)

Lemma
IFf(X) =Y 1ciemtiX' € k[X] is monic, then:
> AF)(X,Y) = F(X +Y) —F(X) —f(Y) =
R(X,Y)+ (F —1d)(P:(X,Y)), _
where R € @ m |<ipni<m, (i p)=1 k[Y]x*®"" and
Pr € XK[X, Y].

> Pr=(Id+F + ... + F""1)(A(f)) mod x!™» 1+,

» Let us denote by Ads(Y) the content of
R(X,Y) e k[Y][X].

» Ad:(Y ) is an additive and separable polynomial.

> Z(Adi(Y)) ~ V.
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Letm — 1 = ¢p® with (¢,p) = 1.

> ([St 73]) |Goo 1| = pdegAdi < p(m — 1), i.e.
|Goo,1| < 4p
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Letm — 1 = ¢p® with (¢,p) = 1.

> ([St 73]) [Guo 1| = pdegAdy < p(m —1)?, ie.
|Goo,1| < 4p
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Letm — 1 = ¢p® with (¢,p) = 1.
> ([St 73]) |Goo 1| = pdegAdi < p(m — 1), i.e.

|Goo,1| < 4p
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Letm — 1 = ¢p® with (¢,p) = 1.
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Letm — 1 = ¢p® with (¢,p) = 1.

> ([St 73]) [Goo1| = pdegAdi < p(m — 1), i.e.

S < ol
> ([St73])s=0i.e.(m—1,p)=1,then |Gy 1| =p.
» Ifs >0,
> £>1,p=2,then|G§L1|§§
» {>1,p>2,then 'G°°1' gil

» ([St73)¢>1, m—1+p then (Gl
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N=~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo,1(f) is an extension of this type). Then
G’ c N cCZ(G).
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N=~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo,1(f) is an extension of this type). Then

G'cNC Z(G) Covers of the affine line
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N=~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo,1(f) is an extension of this type). Then
G’ c N cCZ(G).

» If G’ =Z(G), G is called extraspecial.

» Then, |G| = p?*! and there are 2 isomorphism
classes for a given s.
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N=~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo,1(f) is an extension of this type). Then
G’ c N cCZ(G).

» If G’ =Z(G), G is called extraspecial.

» Then, |G| = p?*! and there are 2 isomorphism
classes for a given s.

» If p > 2, we denote by E(p2) (resp. M(p?)) the
non abelian group of order p® and exponent p
(resp. p?). Then, G ~ E(p3) * E(p3) x ... x E(p?) or
M(p?) * E(p®) * ... * E(p®), according as the
exponent is p or p2.
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N=~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo,1(f) is an extension of this type). Then
G’ c N cCZ(G).

» If G’ =Z(G), G is called extraspecial.

» Then, |G| = p?*! and there are 2 isomorphism
classes for a given s.

» If p > 2, we denote by E(p2) (resp. M(p?)) the
non abelian group of order p® and exponent p
(resp. p?). Then, G ~ E(p3) * E(p3) x ... x E(p?) or
M(p?) * E(p®) * ... * E(p®), according as the
exponent is p or p2.

» If p =2,then G ~ Dg * Dg % ... * Dg or
Qs * Dg * ... x Dg (in both cases, the exponent is
22).
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Characterization of G, 1(f)

» We consider the extensions of type
0—-N=~Z/pZ— G — (Z/pZ)" — 0 (note that
Goo,1(f) is an extension of this type). Then
G’ c N cCZ(G).

» If G’ =Z(G), G is called extraspecial.

» Then, |G| = p?*! and there are 2 isomorphism
classes for a given s.

» If p > 2, we denote by E(p2) (resp. M(p?)) the
non abelian group of order p® and exponent p
(resp. p?). Then, G ~ E(p3) * E(p3) x ... x E(p?) or
M(p?) * E(p®) * ... * E(p®), according as the
exponent is p or p2.

» If p =2,then G ~ Dg * Dg % ... * Dg or
Qs * Dg * ... x Dg (in both cases, the exponent is
22).

» If G’ € Z(G), G is a subgroup of an extraspecial
group E with Z(E) =N C G.
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» Theorem
(lLe-Ma 1]). Let f(X) = XE(F)(X) € XKk[X],
Y(F) =Y p<ics @&F' € k{F} an additive
polynomial with degf = 1 + pS. Then,
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» Theorem
([Le-Ma 1]). Let f(X) = XZ(F)(X) € Xk[X],
Y(F) =Y p<ics @&F' € k{F} an additive
polynomial with degf = 1 + pS. Then,
> Adi(Y) = F3(Xoci<s(aiF' +Fa)(Y)), a
palyndromic polynomial. o R
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» Theorem
([Le-Ma 1]). Let f(X) = XX (F)(X) € Xk[X],
Y(F) = > o<i<s aiF' € k{F} an additive
polynomial with degf = 1 + pS. Then,
> Adi(Y) = F* (D oci<s(@F' + Fai)(Y)), a
palyndromic polynomial.
» Go,1(f) is an extraspecial group with cardinal
p2s*1 and exponent p for p > 2, and of type
Qg*Dg*...*Dngfpzz.
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» Theorem

([Le-Ma 1]). Let f(X) = XX (F)(X) € Xk[X],
Y(F) = > o<i<s aiF' € k{F} an additive
polynomial with degf = 1 + pS. Then,
> AdH(Y) = F3(Coqs(@F' +Fa)(Y)), a
palyndromic polynomial.
» Go,1(f) is an extraspecial group with cardinal
p2s*1 and exponent p for p > 2, and of type
Qg*Dg*...*Dngfpzz.

» Theorem

([Le-Ma 1]). If G is an extension of type
0—7Z/pZ — G — (Z/pZ)" — 0, there is
f € Xk[X] with G ~ G, 1(f).
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» Theorem

([Le-Ma 1]). Let f(X) = XX (F)(X) € Xk[X],
Y(F) = > o<i<s aiF' € k{F} an additive
polynomial with degf = 1 + pS. Then,
> AdH(Y) = F3(Coqs(@F' +Fa)(Y)), a
palyndromic polynomial.
» Go,1(f) is an extraspecial group with cardinal
p2s*1 and exponent p for p > 2, and of type
Qg*Dg*...*Dngfpzz.

» Theorem

([Le-Ma 1]). If G is an extension of type
0—7Z/pZ — G — (Z/pZ)" — 0, there is
f € Xk[X] with G ~ G 1(f).

» Sketch proof: Extraspecial groups with exponent

p? are realized by a modification by a Witt cocycle
of the polynomial f in the theorem above.

Automorphisms

C. LEHR , M. MATIGNON

Plan

Introduction
Monodromy and automc

Automorphism groups
Covers of the affine line
Structure of G 1(f)
Bounds for |G, 1(f)|
Characterization of G o

Actions of p-groups
Nakajima condition
More about G,
Riemann surfaces
Ray class fields
Big actions
Maximal curves

Monodromy
Marked stable model
Potentially good reductic
Genus 2

Références



» Theorem

([Le-Ma 1]). Let f(X) = XX (F)(X) € Xk[X],
Y(F) = > o<i<s aiF' € k{F} an additive
polynomial with degf = 1 + pS. Then,
> AdH(Y) = F3(Coqs(@F' +Fa)(Y)), a
palyndromic polynomial.
» Go,1(f) is an extraspecial group with cardinal
p2s*1 and exponent p for p > 2, and of type
Qg*Dg*...*Dngfpzz.

» Theorem

([Le-Ma 1]). If G is an extension of type
0—7Z/pZ — G — (Z/pZ)" — 0, there is
f € Xk[X] with G ~ G, 1(f).

» Sketch proof: Extraspecial groups with exponent
p? are realized by a modification by a Witt cocycle
of the polynomial f in the theorem above.

» We can see G as a subgroup of an extraspecial
group E, then we realize E with fg and a suitable
modification of fg will limit G 1(fe) to G.
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Big actions (1)

» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1.
If IG%' > 551 (4 for p = 2), then
f(X) =cX + XX (F)(X) € k[X].
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Big actions (1)

» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1.
If [Sooal ot (4 for p = 2), then
f(X) =cX + XZ(F)(X) € k[X].

» Sketch proof: One shows that monomials in f with
a degree ¢ 1 + p" will limit the degree of Ad;.
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B|g aCtlonS (I) Automorphisms

C. LEHR , M. MATIGNON

» Theorem o
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1. [
|G<x>,1‘ p 2 _ Monodromy and automc
If g > ﬁ (§ for p - 2)’ then Automorphism groups
f(X) = CX + XZ(F)(X) (S k[X] Covers of the affine line

Structure of G, 1(f)

» Sketch proof: One shows that monomials in f with S e
a degree ¢ 1 + p" will limit the degree of Ad;. P
» Let (C,G) with G C AutyC. We say that (C,G) is Nakajma condition

More about G,

a blg aCtlon |f G |S a p-group and Riemann surfaces
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It follows from ([Na 87]) that there is co € C, with
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Big actions (1)

» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1.
If % > 55 (4 for p = 2), then
f(X) =cX + XX(F)(X) € k[X].

» Sketch proof: One shows that monomials in f with
a degree ¢ 1 + p" will limit the degree of Ad;.

» Let (C,G) with G C AutyC. We say that (C,G) is
a big action if G is a p-group and
(N) gc >Oand% > %
It follows from ([Na 87]) that there is co € C, with

» C—>C/G~P; —cis étale and G = G 1.
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Big actions (1)

» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1.
If % > 55 (4 for p = 2), then
f(X) =cX + XX(F)(X) € k[X].
» Sketch proof: One shows that monomials in f with
a degree ¢ 1 + p" will limit the degree of Ad;.
» Let (C,G) with G C AutyC. We say that (C,G) is
a big action if G is a p-group and
(N) gc >Oand% > %
It follows from ([Na 87]) that there is co € C, with
» C—>C/G~P; —cis étale and G = G 1.
» Goo2 # Guoo1and C/G, o ~ PL
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Big actions (1)

» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1.
If % > 55 (4 for p = 2), then
f(X) =cX + XX(F)(X) € k[X].
» Sketch proof: One shows that monomials in f with
a degree ¢ 1 + p" will limit the degree of Ad;.
» Let (C,G) with G C AutyC. We say that (C,G) is
a big action if G is a p-group and
(N) gc >Oand% > %
It follows from ([Na 87]) that there is co € C, with
» C—>C/G~P; —cis étale and G = G 1.
> Goo,2 75 Goo,l and C/Goo,Z i Pi‘
» Then, G 1/G. 2 acts as a group of translations
of the affine line C /G, » — {o0}.
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Big actions (1)

» Theorem
([Le-Ma 1]). Let f(X) € Xk[X] with (degf,p) = 1.
If 'G‘g”l‘ > 55 (4 for p = 2), then
f(X) =cX + XX (F)(X) € k[X].

» Sketch proof: One shows that monomials in f with
a degree ¢ 1 + p" will limit the degree of Ad;.
» Let (C,G) with G C AutyC. We say that (C,G) is
a big action if G is a p-group and
(N) gc >0and% > %
It follows from ([Na 87]) that there is co € C, with
» C—>C/G~P; —cis étale and G = G 1.
> Goo,2 75 Goo,l and C/Goo,Z i Pi‘
» Then, G 1/G. 2 acts as a group of translations
of the affine line C /G, » — {o0}.

» Transfert of condition (N) to quotients. Let
(C,G) a big action, if H < G and if g(C/H) > 0,
then (C/H,G/H) is a big action.

Automorphisms

C. LEHR , M. MATIGNON

Plan

Introduction
Monodromy and automc

Automorphism groups
Covers of the affine line
Structure of G 1(f)
Bounds for |G, 1(f)|
Characterization of G .

Actions of p-groups
Nakajima condition
More about G,
Riemann surfaces
Ray class fields
Big actions
Maximal curves

Monodromy
Marked stable model
Potentially good reductic
Genus 2

Références



Condition (N) and G,

In this section (C, G) is a big action. Let G; be the
lower ramification groups.
» LetH < G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.
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Condition (N) and G,

In this section (C, G) is a big action. Let G; be the
lower ramification groups.
» LetH < G and H with index p in G, (H exists!),
then (C/H, G/H) is a blg action. Automorphism groups
» (G/H)2 = Go/H ~ Z/pZ. Srueune of G (1)
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Condition (N) and G»

In this section (C, G) is a big action. Let G; be the
lower ramification groups.
» Let H <« G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.
> (G/H)2 = GZ/H (5 Z/pZ.
» Thereis S(F) € k{F},
f1 = cX + XX(F)(X) € k[X] with C/H ~ C;,.
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Condition (N) and G»

In this section (C, G) is a big action. Let G; be the
lower ramification groups.
» LetH < G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.
> (G/H)2 = Gz/H (5 Z/DZ.
» Thereis S(F) € k{F},
f1 = cX + XX(F)(X) € k[X] with C/H ~ C;,.
» If G, ~ (Z/pZ)!, then k(C) = k(X, W4y, ..., W;) and
P(W1, ..., Wy) = (f1(X),f2(X), ..., f (X)) € (K[X])!
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Condition (N) and G»

In this section (C, G) is a big action. Let G; be the
lower ramification groups.
» Let H <« G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.
> (G/H)2 = Gz/H (5 Z/pZ.
» Thereis S(F) € k{F},
f1 = cX + XX(F)(X) € k[X] with C/H ~ C;,.
» If G, ~ (Z/pZ)!, then k(C) = k(X, W4y, ..., W;) and
P(W1, ..., Wy) = (f1(X),f2(X), ..., f (X)) € (K[X])!
> f1(X), .., (X) are Fp-free  mod p(k[X]).
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Condition (N) and G»

In this section (C, G) is a big action. Let G; be the
lower ramification groups.

>

LetH < G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.

(G/H)2 = G2/H ~ Z/pZ.

Thereis S(F) € k{F},

f1 = cX + XX(F)(X) € k[X] with C/H ~ C;,.

If G, ~ (Z/pZ)t, then k(C) = k(X, Wy, ..., W;) and
P(W1, ..., Wy) = (f1(X),f2(X), ..., f (X)) € (K[X])!
f1(X), .., (X) are Fp-free  mod p(k[X]).

The group extension

0— Gy, — Gy —V =(Z/pZ)" — 0induces a
representation p : V. — Gl¢(IFp)
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Condition (N) and G»

In this section (C, G) is a big action. Let G; be the
lower ramification groups.

>

LetH < G and H with index p in G, (H exists!),
then (C/H,G/H) is a big action.

(G/H)2 = G2 /H ~ Z/pZ.

Thereis S(F) € k{F},

f1 = cX + XX(F)(X) € k[X] with C/H ~ C;,.

If G, ~ (Z/pZ)t, then k(C) = k(X, Wy, ..., W;) and
P(W1, ..., Wy) = (f1(X),f2(X), ..., f (X)) € (K[X])!
f1(X), .., (X) are Fp-free  mod p(k[X]).

The group extension

0— Gy, — Gy —V =(Z/pZ)" — 0induces a
representation p : V. — Gl¢(IFp)

dual to the one given by V acting via translation:
(v e V) x (fo(X), f2(X), ..., f (X)) mod p(k[X])! —
— (X +Vv), (X +V),... (X +V))

mod o(k[X])"
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» Imp is a unipotent subgroup of Gl¢(IF,) which is
the identity iff G, C Z(G). In this case
fi(X) = ¢iX + XX (F)(X) where &;(F) € k{F}
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.
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» Imp is a unipotent subgroup of Gl(IFp) which is
the identity iff G, C Z(G). In this case
fi(X) = ciX + XX;(F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.

» Letf; := X (aF)(X) = aX*P with aP + a = 0;
then Ad;, = YP* — Y.
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» Imp is a unipotent subgroup of Gl(IFp) which is
the identity iff G, C Z(G). In this case
fi(X) = ciX + XX;(F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.

» Letf; := X (aF)(X) = aX*P with aP + a = 0;
then Ad;, = YP* — Y.

» Letf, := X1t2P _ X2+P then
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Imp is a unipotent subgroup of Gli(F,) which is
the identity iff G, C Z(G). In this case

fi(X) = ciX + XX;(F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.

Let f; := X (aF )(X) = aX*P with aP + a = 0;
then Ad;, = YP* — Y.

Let f, ;= X1+2P — X2+P then

fo(X +Y) —f(X) —fo(Y) = 2(YP — Y)XI+P ¢
(Y — YP)X2P 4 (Y2P® ¥ 24 2y 1+P _ Dy P+p?)XP
mod p(k[X,Y])
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» Imp is a unipotent subgroup of Gl(IFp) which is
the identity iff G, C Z(G). In this case

fi(X) = ciX + XX;(F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.

Let f; := X (aF )(X) = aX*P with aP + a = 0;
then Ad;, = YP* — Y.

Let f, ;= X1+2P — X2+P then

fo(X +Y) —f(X) —fo(Y) = 2(YP — Y)XI+P ¢

(Y — YP)X2P 4 (Y2P® ¥ 24 2y 1+P _ Dy P+p?)XP
mod p(k[X,Y])

Ify € Z(Ad,) = Fg2 one has

f(X +y) = 206 (X) + f(X) + p(P2).
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Imp is a unipotent subgroup of Gli(F,) which is
the identity iff G, C Z(G). In this case

fi(X) = ciX + XX;(F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.

Let f; := X (aF )(X) = aX*P with aP + a = 0;
then Ad;, = YP* — Y.

Let f, := X1+2P — X2+P then

fa(X +Y) = f(X) = fo(Y) = 2(YP — Y )X P 4

(Y — YP)X2P 4 (Y2P® ¥ 24 2y 1+P _ Dy P+p?)XP
mod p(k[X,Y])

Ify € Z(Ad,) = Fg2 one has

f(X +y) = 206 (X) + f(X) + p(P2).

p_ o o o
y — w is @ non zero linear form over FF > with
value in Fp.
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>

>

>

Imp is a unipotent subgroup of Gli(F,) which is
the identity iff G, C Z(G). In this case

fi(X) = ciX + XX;(F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.

Let f; := X (aF )(X) = aX*P with aP + a = 0;
then Ad;, = YP* — Y.

Let f, ;= X1+2P — X2+P then

fo(X +Y) —f(X) —fo(Y) = 2(YP — Y)XI+P ¢

(Y — YP)X2P 4 (Y2P® ¥ 24 2y 1+P _ Dy P+p?)XP
mod p(k[X,Y])

Ify € Z(Ad,) = Fg2 one has

f(X +y) = 206 (X) + f(X) + p(P2).

p_ o o o
y — w is @ non zero linear form over FF > with
value in Fp.

|G| = p?p?and g = 2% (p + p * 2p).
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Imp is a unipotent subgroup of Gli(F,) which is
the identity iff G, C Z(G). In this case

fi(X) = ciX + XX;(F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.

Let f; := X (aF )(X) = aX*P with aP + a = 0;
then Ad;, = YP* — Y.

Let f, := X1+2P — X2+P then

fa(X +Y) = f(X) = fo(Y) = 2(YP — Y )X P 4

(Y — YP)X2P 4 (Y2P® ¥ 24 2y 1+P _ Dy P+p?)XP
mod p(k[X,Y])

Ify € Z(Ad,) = Fg2 one has

f(X +y) = 206 (X) + f(X) + p(P2).

y — 2% ) is a non zero linear form over F,, with
value in Fp.
G| = p?p? and g = P32 (p + p * 2p).

IGl _ 2p p?
g p—11+2p°
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Imp is a unipotent subgroup of Gli(F,) which is
the identity iff G, C Z(G). In this case

fi(X) = ciX + XX;(F)(X) where ¥i(F) € k{F }
and v € V is a commun zero to the palyndromic
polynomials Ad;, € k{F,F~1}.

Let f; := X (aF )(X) = aX*P with aP + a = 0;
then Ad;, = YP* — Y.

Let f, := X1+2P — X2+P then

fa(X +Y) = f(X) = fo(Y) = 2(YP — Y )X P 4

(Y — YP)X2P 4 (Y2P® ¥ 24 2y 1+P _ Dy P+p?)XP
mod p(k[X,Y])

Ify € Z(Ad,) = Fg2 one has

f(X +y) = 206 (X) + f(X) + p(P2).

p_ o o o
y — w is @ non zero linear form over FF > with
value in Fp.

G| = p2p2and g = B2 (p + p = 2p).
» Gl _ 2p p?

g p—11+2p°
» Gl — _4 __p _

g2 ~ (p—1)2 (1+2p)%"
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» Theorem
([Le-Ma 4]) Assume G, is non abelian, then
G, =G
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» Theorem
([Le-Ma 4]) Assume G, is non abelian, then
G, =G

» Sketch proof: If G’ # G,, there is H <1 G with
G'CcH CGzand [G,: H]=p.
(C/H,G/H) is abig action;; Structure of G (1)
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» Theorem
([Le-Ma 4]) Assume G, is non abelian, then

G, = G
» Sketch proof: If G’ # G,, there is H <1 G with
G'CcH CGzand [G,: H]=p.

Covers of the affine line

(C/H,G/H) is abig action;; Structure of G (1)

» C/H: WP —W =f:= XE(F)(X), o
deg(f) =1+ ps. Actions of p-groups
Nakajima condition
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Big actions
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» Theorem

([Le-Ma 4]) Assume G5 is non abelian, then

= @,

» Sketch proof: If G’ # G,, there is H < G with
G'CcH CGzand [G,: H]=p.
(C/H,G/H) is abig action;

» C/H:WP —W =f = XI(F)(X),
deg(f) =1 + pS.

» (AutC/H) 1 := E is extraspecial with order

2s+1
psstt,
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Theorem

([Le-Ma 4]) Assume G5 is non abelian, then

G, =G

Sketch proof: If G’ # G,, there is H <1 G with
G'CcH CGzand [G,: H]=p.

(C/H,G/H) is abig action;

C/H:WP —W =f :=XX(F)(X),

deg(f) =1 + pS.

(AutC/H). 1 := E is extraspecial with order
p2stl,

G/H is abelian and normal in E.
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v

Theorem

([Le-Ma 4]) Assume G5 is non abelian, then
G, =G

Sketch proof: If G’ # G,, there is H <1 G with
G'CcH CGzand [G,: H]=p.

(C/H,G/H) is abig action;

C/H:WP W =f = XX(F)(X),

deg(f) =1 + pS.

(AutC/H). 1 := E is extraspecial with order
p23+1.

» G/H is abelian and normal in E.

([Hu 67] Satz 13.7 p 353) |G/H| < pS*t! and so

+

IG/H|/9(C/H) < 2y = 25, & contradiction.

We deduce the following corollary from ([Su 86]
4.21 p.75).
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v

Theorem

([Le-Ma 4]) Assume G5 is non abelian, then
G, =G

Sketch proof: If G’ # G,, there is H <1 G with
G'CcH CGzand [G,: H]=p.

(C/H,G/H) is abig action;

C/H:WP —W =f :=XX(F)(X),

deg(f) =1 + pS.

(AutC/H). 1 := E is extraspecial with order
p23+1.

» G/H is abelian and normal in E.

([Hu 67] Satz 13.7 p 353) |G/H| < pS*t! and so

+

IG/H|/9(C/H) < 2y = 25, & contradiction.

We deduce the following corollary from ([Su 86]
4.21 p.75).

Corollary
If |G,| = p3, then G, is abelian.
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Riemann surfaces

» In characteristic 0, an analogue of big actions is
given by the actions of a finite group G on a
compact Riemann surface C with gc > 2 such
that |G| = 84(gc — 1) (we say that C is an
Hurwitz curve) ([Co 90]).
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Riemann surfaces

» In characteristic 0, an analogue of big actions is
given by the actions of a finite group G on a
compact Riemann surface C with gc > 2 such
that |G| = 84(gc — 1) (we say that C is an
Hurwitz curve) ([Co 90]).

» Let us mention Klein’s quartic (G ~ PSL,(F7)) ([El
99)).
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Riemann surfaces

» In characteristic 0, an analogue of big actions is
given by the actions of a finite group G on a
compact Riemann surface C with gc > 2 such
that |G| = 84(gc — 1) (we say that C is an
Hurwitz curve) ([Co 90]).

» Let us mention Klein’s quartic (G ~ PSL,(F7)) ([El
99)).

» The Fricke-Macbeath curves with genus 7
(G ~ PSLy(Fg)) ([Mc] 65).
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Riemann surfaces

» In characteristic 0, an analogue of big actions is

given by the actions of a finite group G on a
compact Riemann surface C with gc > 2 such
that |G| = 84(gc — 1) (we say that C is an
Hurwitz curve) ([Co 90]).

Let us mention Klein’s quartic (G ~ PSL,(F7)) ([El
99)).

The Fricke-Macbeath curves with genus 7

(G ~ PSLy(Fg)) ([Mc] 65).

Let C be an Hurwitz curve with genus gc. Let

n > 1 and C, the maximal unramified Galois
cover whose group is abelian with exponent n.
The Galois group of C,/C is (Z/nZ)?%. It follows
from the unicity of C,, that the k-automorphisms of
C have n?9 prolongations to C,,. Therefore

gc, — 1 =n?9(gc — 1) and n?9|AutcC| < |Aut,Cpl,
where |Aut,Cp| > 84(gc, — 1); Cn is an Hurwitz
curve ([Mc] 61).
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Ray class fi elds

» If (C,G) is a big action then C — C/G is an étale
cover of the affine line whose group is a p-group;
it follows that the Hasse-Witt invariant of C is
zero; therefore, in order to adapt the previous
proof to char. p > 0, one needs to accept
ramification. This is done with the so called ray
class fields of function fields over finite fields.
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Ray class fi elds

» If (C,G) is a big action then C — C/G is an étale
cover of the affine line whose group is a p-group;
it follows that the Hasse-Witt invariant of C is
zero; therefore, in order to adapt the previous
proof to char. p > 0, one needs to accept
ramification. This is done with the so called ray
class fields of function fields over finite fields.

> LetK :=Fq(X) where q = p®, S the set of finite
rational places (X —v), v € Fgand m € N. Let
K a9 be an algebraic closure. Let KI' ¢ K29, the
biggest abelian extension L of K with conductor
< moo and such that the places in S are
completely decomposed.
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> ([La 99], [Au 00]) The constant field of KT is Iq
and Gg(m) := Ga(K{"/K) ~ (1 4+ TFq[[T]])/ <
1+TMFy[[T]],1—VT,v € Fq >, is a p-group.
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> ([La 99], [Au 00]) The constant field of K" is [y
and Gg(m) := Ga(K{"/K) ~ (1 4+ TFq[[T]])/ <
1+ TMFy[[T]],1 —VvT,v € Fq >, is a p-group.

> ([Le-Ma 4]) Let C,, /IFq be the smooth projective
curve with function field KI'. The translations
X — X +v, v € Fq stabilize S and oo ; they can
be extended to Fq-automorphisms of KZ'. In this
way, we get an action of a p-group G(m) on Cp,
with 0 — Gg(m) — G(m) — Fq — 0
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> ([La 99], [Au 00]) The constant field of K" is Fg
and Gg(m) := Ga(K{"/K) ~ (1 4+ TFq[[T]])/ <
1+ TMFy[[T]],1 —VvT,v € Fq >, is a p-group.

> ([Le-Ma 4]) Let C,, /IFq be the smooth projective
curve with function field KI'. The translations
X — X +v, v € Fq stabilize S and oo ; they can
be extended to Fq-automorphisms of KZ'. In this
way, we get an action of a p-group G(m) on Cp,
with 0 — Gg(m) — G(m) — Fq — 0

» ([Au 00]) If Ny := |Gs(m)|, then
gcn =1+ Nm(—=1+m/2) —(1/2) 3 ojcm-1 N <
Nm(—1+m/2)
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IG(m)| - Nmd = —1__ Thisis a “big

gcm  — Mm(=14m/2) — 1+m/2
action” as soon as — +m “TEm2 > po1 (we have
G2 = Gs(m)) Structure of G 1(f)
i _ Bounds for |G 1 (f
> LetNg := [Cm(Fq)|. Tfhlle”, Ng = 1 +[G(m)], and Characienzaton sl G
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Nm(

L 1sm) <
dcm

= Mm(=1+m/2) —1fm/2-

This is a “big

g ” [¢] 2_p
action” as soon as “TEmz > po1 (we have
Gz = Gs(m))

> Let Nq = |Cm(]Fq)| Then1 Nq =1+ |G(m)" and
the quotient 'Gg(c—m)' ~

Ng

GJis > p.

dem
» ([La99)) If g = p&,m; := pl®/21+1 { p + 1is the
smallest conductor m such that the exponent of
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Gm)| ~ Nmd _ _ q
9cm  — Nm(=1+m/2) —1+m/2"

action” as soon as —tos > =& (we have
Gz = Gs(m))
Let Ng := |Cm(Fq)|. Then, Ng =1 + |G(m)|, and

iant [G(M)[ _ Ng
the quotient dor o

(ILa 99]) If g = p&,m, := p[®/21*1 L p + 1is the
smallest conductor m such that the exponent of
GJis > p.

If e > 2, (Cm,, G(my)) is a big action and G; is
abelian with exponent p2.

This is a “big
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Big actions (Il)
From now on, k is any algebraically closed field
and (C,G) is a big action.
» If G, ~Z/p"Z, then n = 1 ([Le-Ma 4]).
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Big actions (Il)

From now on, k is any algebraically closed field
and (C,G) is a big action.
» If G, ~ Z/p"Z, then n = 1 ([Le-Ma 4]).
> Sketch proof: Let H = G2 then (C/H,G/H)is a
big action, so one can assume that n = 2. Then
C — C/Gz is given by p(Wo,Wl) = (fo,fl) with
fo = XZ(F)(X), degfo =1+ pS.
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Big actions (Il)

From now on, k is any algebraically closed field
and (C,G) is a big action.
» If G, ~ Z/p"Z, then n = 1 ([Le-Ma 4]).
> Sketch proof: Let H = G2 then (C/H,G/H)is a
big action, so one can assume that n = 2. Then
C— C/Gz is given by p(Wo,Wl) = (fo,fl) with
fo = XZ(F)(X), degfo =1+ p°.
» Letv € V :=Z(Ad,) and P € k[X] with
fo(X +Vv) =fo(X) + p(P) alors f1 (X +v) —f1(X) =
((v)fo(X) + 2(fo(X)P + P(X)P — P(X)P" — (fo(X) +
P(X))P —fo(X + V)P + (fo(X + V) + P(X)P)P)
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Big actions (Il)
From now on, k is any algebraically closed field
and (C,G) is a big action.
» If G, ~ Z/p"Z, then n = 1 ([Le-Ma 4]).
> Sketch proof: Let H = G2 then (C/H,G/H)is a

big action, so one can assume that n = 2. Then
C— C/Gz is given by p(Wo,Wl) = (fo,fl) with
fo = XZ(F)(X), degfo =1+ p°.

Letv € V :=Z(Ady,) and P € k[X] with

fo(X +Vv) =fo(X) + p(P) alors f1 (X +v) —f1(X) =
((v)fo(X) + 2(fo(X)P + P(X)P — P(X)P" — (fo(X) +

P(X))P —fo(X + V)P + (fo(X + V) + P(X)P)P)
= 0(v)fo(X) + Y 1cicp1 (*li)'_ vixp—i+p*t
mod X" where ¢ : V — Iy is a linear form.
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Big actions (Il)

From now on, k is any algebraically closed field
and (C,G) is a big action.
» If G, ~ Z/p"Z, then n = 1 ([Le-Ma 4]).
> Sketch proof: Let H = G2 then (C/H,G/H)is a
big action, so one can assume that n = 2. Then
C— C/Gz is given by p(Wo,Wl) = (fo,fl) with
fo = XZ(F)(X), degfo =1+ p°.
» Letv € V :=Z(Ad,) and P € k[X] with
fo(X +Vv) =fo(X) + p(P) alors f1 (X +v) —f1(X) =
2
(v)fo(X) + 5 (fo(X)P +P(X)P — P(X)P" — (fo(X) +
P(X))” — fo(X + V)P + (fo(X + V) +P(X)?)P)
> = UV(X) + Tygrepy v
mod X" where ¢ : V — Iy is a linear form.

» For G, abelian with exponent p€, e > 2, one can
expect for its p-rank a lower bound in O(log(gc)).
This is the case in the preceding situation i.e.
(C,G) = (Cm,,G(my)) (IM. Rocher, thesis in

Nnranaratinnl)

Automorphisms

C. LEHR , M. MATIGNON

Plan

Introduction
Monodromy and automc

Automorphism groups
Covers of the affine line
Structure of G, 1(f)
Bounds for |G, 1(f)]
Characterization of G .

Actions of p-groups
Nakajima condition
More about G,
Riemann surfaces
Ray class fields
Big actions
Maximal curves

Monodromy
Marked stable model
Potentially good reductic
Genus 2

Références



Maximal curves (I)
Let us assume that (C, G) is a big action.
> Let io with G, = G3=..= Gio 2 Gi0+1. Then
9(Cc/Giyi1) = 3(1G2/Gig41| — 1)(io — 1).

o0,
Characterization of G

Actions of p-groups
Nakajima condition
More about G,
Riemann surfaces
Ray class fields
Big actions
Maximal curves

Monodromy
Marked stable model
Potentially good reductic
Genus 2

Références

B0



Maximal curves (I)
Let us assume that (C, G) is a big action.
> Let io with G, = G3=..= Gio 2 Gi0+1. Then
9(Cc/Giyi1) = 3(1G2/Gig41| — 1)(io — 1).
» 1f0 <M < 8l then
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Maximal curves (1)

Let us assume that (C, G) is a big action.
» Letigwith G, = G3 = ...
9(Cc/Giyi1) = 3(1G2/Gig41| — 1)(io — 1).

» 110 <M < 8 then
9c

i 1
> |G|o+1| < ™ 9<2:/G
i0+1

.= Gio 2 Gi0+1. Then

16/Gigal _ 1
= W ([Go/Ggnl 17

ove affi

of the
Structure of G

e line
(f)
Bounds for |G 1(f)|
Characterization of G

4|G2/Gig+1]
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Maximal curves (I)

Let us assume that (C,G) is a big action.
» Let i with G2 =Gz =
9(C/Gy1) = (|G2/G|o+1\

= |Gio+l| <%

» fO<M <
» Theorem

([Le-Ma 1]) If 'G'

2 Gj,41. Then

|G2/Giy 1] —1)?"

> thereis X(F) € k{F}

and f =cX +XZ(F)(X) € k[X] with C ~ C;.
Moreover there are two possibilities for G:
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Maximal curves (I)
Let us assume that (C, G) is a big action.
> LetigwithGy =Gz =.... =Gj, 2 2 Gjy+1- Then
9(C/Gyi1) = §(|G2/G|o+1\ 1)(ip — 1).
» 1f0 <M < 8l then

N
) 1 1G/Giy+1l 1 4G2/Gij 1|
" (Gonl S wg T S MG s
» Theorem
([Le-Ma 1) If 'G' > 2 there is T(F) € k{F}

and f =cX +XZ(F)(X) € k[X] with C ~ C;.
Moreover there are two possibilities for G:

'g‘i' (p 1)2 and G = G 1(f) or
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Maximal curves (I)
Let us assume that (C, G) is a big action.
> LetigwithGy =Gz =.... =Gj, 2 2 Gjy+1- Then
9(C/Gyi1) = §(|G2/G|o+1\ 1)(ip — 1).
» 1f0 <M < 8l then

N
) 1 1G/Giy+1l 1 4G2/Gij 1|
" (Gonl S wg T S MG s
» Theorem
([Le-Ma 1) If 'G' > 2 there is T(F) € k{F}

and f =cX +XZ(F)(X) € k[X] with C ~ C;.
Moreover there are two possibilities for G:
%:(p“—”l)zandG:GO“(f)or

IGI

>

= = 1 — and G C G, 1(f) has index p.
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Maximal curves (I)

Let us assume that (C, G) is a big action.

> Let io with G, = G3 = G,O = Gi0+1. Then
9(C/Gigr1) = §(|G2/Gio+1\ 1)(io — 1).
» IfO<M < % then
C
) 1 16/Gig11l _ 1 4IG2/Gigal
" Gl S g S MTe s
» Theorem

([Le-Ma 1]) If 'G‘ > 2 there is T(F) € k{F}

and f =cX +XZ(F)(X) € k[X] with C ~ C;.
Moreover there are two possibilities for G:

lchl (p 1)2 and G = G, 1(f) or
IGI _

g (- 12

>

and G C G, 1(f) has index p.

» Note that the sequence (pin)z

that |G 41| € p~ . We deduce bounds for
|G2/Giy+1/, [Gip+1| @and so for [G|.

is decreasing and
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Maximal curves (I1)

We still assume that (C, G) is a big action.
» One can push the "classification " of big actions
up to the condition |G| > G N - Sy Namely
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Maximal curves (I1)

We still assume that (C, G) is a big action.
» One can push the "classification " of big actions
up to the condition |G| > @ N - 1y Namely

Covers of the affine line
Structure of G 1(f)

» One first show that |Gz| divides p°. Bounds for |G . 1(f)]
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Maximal curves (II)

We still assume that (C, G) is a big action.

» One can push the “classification " of big actions

IGI
up to the condition a2 > (pz - Namely

» One first show that |G| divides p3.

» The condition G, = G} implies that G, is abelian.
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Maximal curves (II)

We still assume that (C, G) is a big action.

» One can push the “classification " of big actions

IG\
up to the condition a2 > (p2 - Namely

» One first show that |G| divides p3.
» The condition G, = G] implies that G, is abelian.

» Applying ([Mr 71]) to the case of abelian
extensions with group Z/pZ x Z/p?Z one shows
that G, has exponent p (we have seen above that
G, is cyclic iff G, = Z/pZ).
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Maximal curves (Il)

We still assume that (C, G) is a big action.

» One can push the “classification " of big actions

IG\
up to the condition a2 > (pz - Namely

» One first show that |G| divides p3.
» The condition G, = G] implies that G, is abelian.

» Applying ([Mr 71]) to the case of abelian
extensions with group Z/pZ x Z/p?Z one shows
that G, has exponent p (we have seen above that
G, is cyclic iff G, = Z/pZ).

» Theorem
([Le-Ma 4]) For all M > 0, the set 'G‘ > M, for

(C, G) a big action with G, abellan with exponent
p, is finite.
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» Sketch proof: We saw that |G,| and so t are
bounded above. We can assume that the G,
cover is given by the fj, 1 <i <t with
m; <m, < ... <m¢ where m; := degf; and in
such a way that
deg(d <<t Aifi) € {m;, L <i <t} for
[Ai] € P1(Fp).
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» Sketch proof: We saw that |G| and so t are
bounded above. We can assume that the G,
cover is given by the fj, 1 <i <t with
m; <m, < ... <m¢ where m; := degf; and in
such a way that
deg(d 1<t Aifi) € {mj, 1 <i <t} for
[Ai] € P1(Fp).

» If Imp is trivial.
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» Sketch proof: We saw that |G| and so t are
bounded above. We can assume that the G,
cover is given by the fj, 1 <i <t with
m; <m, < ... <m¢ where m; := degf; and in
such a way that
deg(d 1<t Aifi) € {mj, 1 <i <t} for
[Ai] € P1(Fp).

» If Imp is trivial.

» Thenm; —1=p“andv; < .. <1t
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» Sketch proof: We saw that |G| and so t are
bounded above. We can assume that the G,
cover is given by the fj, 1 <i <t with
m; <m, < ... <m¢ where m; := degf; and in
such a way that
deg(d 1<t Aifi) € {mj, 1 <i <t} for
[Ai] € P1(Fp).

» If Imp is trivial.

» Thenm; —1=p“andv; < .. <1t
> |G =p'|V| < pttP.
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» Sketch proof: We saw that |G| and so t are
bounded above. We can assume that the G,
cover is given by the fj, 1 <i <t with
m; <m, < ... <m¢ where m; := degf; and in
such a way that
deg(d 1<t Aifi) € {mj, 1 <i <t} for
[Ai] € P1(Fp).

» If Imp is trivial.

» Thenm; —1=p“andv; < .. <1t
> |G =p'|V| < pttPn,
> Oc = @(Zlgigt p'~1p")
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» Sketch proof: We saw that |G| and so t are
bounded above. We can assume that the G,
cover is given by the fj, 1 <i <t with
m; <m, < ... <m¢ where m; := degf; and in
such a way that
deg(d 1<t Aifi) € {mj, 1 <i <t} for
[Ai] € P1(Fp).

» If Imp is trivial.

» Thenm; —1=p“andv; < .. <1t
> |G =p'|V| < pttPn,
> Oc = (pgl)(Zgigt p'~1p")

t t
> M < p_IV] < 4p _
= 8% = (P12(Cici PP ML)
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» Sketch proof: We saw that |G| and so t are
bounded above. We can assume that the G,
cover is given by the fj, 1 <i <t with
m; <m, < ... <m¢ where m; := degf; and in
such a way that
deg(d 1<t Aifi) € {mj, 1 <i <t} for
[Ai] € P1(Fp).

» If Imp is trivial.

» Then i l=p“and i <..<nu
> |G| = p |V| < pttea,
> 9c = (Zl<|<t p'~tp*)

| \ 4p!
> M < S (p*1)2(21§|§t pi—lpui—ul)z
> Ui — g |s bounded above.
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bounded above. We can assume that the G,
cover is given by the fj, 1 <i <t with

< m¢ where m; := degf; and in
such a way that
deg(d 1<t Aifi) € {mj, 1 <i <t} for
[Ai] € P1(Fp).

» If Imp is trivial.

» Then mi
G| = p IVI < pttan,

m; <mp < ...

> Jc =
>M<

2v.
pl
» B K
VI =

finite.

—1=pYandi; <

(Zl<|<t p'~'p¥)
< 4p'

~~§Vt
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» Sketch proof: We saw that |G| and so t are
bounded above. We can assume that the G,
cover is given by the fj, 1 <i <t with

m; <mp < ...

such a way that
deg(d 1<t Aifi) € {mj, 1 <i <t} for
[Ai] € P1(Fp).
» If Imp is trivial.

» Then mi

v

—1=pYandy <

Gl = p |V| < pttan,

< m¢ where m; := degf; and in

..SVt

and so {5+ |V\ “Vis
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Vi —1n |s bounded above.
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» If Imp isn’t trivial.
There is a smallest iy such that
fi,+1(X) # X + XX (F)(X).
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» If Imp isn’t trivial.

» There is a smallest iy such that
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» If Imp isn’t trivial.
» There is a smallest iy such that
fip+1(X) # X + XX (F)(X).
» Forv eV
fipr1(X + V) = fi1a(X) + X1 i<, GV (X)
mod p(k[X])
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» If Imp isn’t trivial.
» There is a smallest iy such that
fip+1(X) # X + XX (F)(X).
» Forv eV
fipr1(X + V) = fi1a(X) + X1 i<, GV (X)
mod p(k[X])

» ¢ is a non zero linear form on the Fy-space V. Bounds for |G . 1(f)]
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» If Imp isn’t trivial.

>

There is a smallest iy such that

fip+1(X) # X + XX (F)(X).

Forv e V

fiora (X + V) = fio11(X) + X1<i<ip G(V)FI(X)
mod o(k[X])

¢ is a non zero linear form on the Fy-space V.

Let W := My<i<i, ker 4 ; (W[ > L

= oo
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» If Imp isn’t trivial.

>

There is a smallest iy such that

fip+1(X) # X + XX (F)(X).

Forv e V

fiora (X + V) = fio11(X) + X1<i<ip G(V)FI(X)
mod (k[X])

¢ is a non zero linear form on the Fy-space V.

Let W := Ni<i<i, keréi; (W| > ';’—0'
Jc = @(Zlgigt pi(mi — 1)) >

€22 (plo (M1 - 1)).
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» If Imp isn’t trivial.

>

There is a smallest iy such that

fip+1(X) # X + XX (F)(X).

Forv e V

fiora (X + V) = fio11(X) + X1<i<ip G(V)FI(X)
mod (k[X])

¢ is a non zero linear form on the Fy-space V.

Let W := My<i<i, ker 4 ; (W[ > L

Z po-
Jc = @(Zlgigt pH(m; — 1)) >

@21 (plo(my 41 — 1))
2p|W| 2p
(p—1)(mjy11—1) = p—1
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» If Imp isn’t trivial.

>

There is a smallest iy such that

fip+1(X) # X + XX (F)(X).

Forv e V

fiora (X + V) = fio11(X) + X1<i<ip G(V)FI(X)
mod (k[X])

¢ is a non zero linear form on the Fy-space V.

Let W := Ni<i<i, ker/; ; |W| > l,:/T)l'
Oc = @(Zlgigt pi(mi — 1)) >

@23 (pio(miy1 — 1))
2p|W| 2p
(p—1)(mjy11—1) = p—1

gc > Brpl(mi4q — 1) > 2LV
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» If Imp isn’t trivial.

>

v

There is a smallest iy such that

fio+1(X) # X + XZ(F)(X).

Forv e V

fipr1(X + V) = fi1a(X) + X1 i<, GV (X)
mod (K [X])

¢ is a non zero linear form on the Fy-space V.

Let W := Ni<i<i, ker¢i; [W| > lplio‘.

gc = EA (S o pHmy - 1)) >
@21 (plo(my 41 — 1))

2p|W| 2p
(P—1)(mjy11—1) = p-1

gc > BP0 (Migy1 — 1) > B3HV|

t t
< PVl ~ _4p'|V]
M= 5 < ooove
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» If Imp isn’t trivial.

>

There is a smallest iy such that

fip+1(X) # X + XZ(F)(X).

Forv e V

fipr1(X + V) = fi1a(X) + X1 i<, GV (X)
mod p(k[X])

¢ is a non zero linear form on the Fy-space V.

Let W := Ni<i<i, ker¢i; [W| > lplio‘.

gc = EA (S o pHmy - 1)) >
@21 (plo(my 41 — 1))

2p|W| 2p
(P—1)(mjy11—1) = p-1

gc > BP0 (Migy1 — 1) > B3HV|

t t
< PVl ~ _4p'|V]
M= 5 < ooove

|V | is bounded above and g2 < p‘,l,lv‘ is also
bounded above .
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» If Imp isn’t trivial.

>

v

There is a smallest iy such that

fi,+1(X) # X + XX (F)(X).

Forv e V

fiora(X 4+ V) = fig1a(X) + X1 cicip Gi(V)Fi(X)
mod p(k[X])

¢ is a non zero linear form on the Fy-space V.

Let W := Ni<i<i, ker¢i; [W| > lplio‘.

Oc = @(Zlgigt pt(mi —1)) >
£ (pio (M, 41 — 1))
2p|W| 2p_
(p_l)(mi0+1_'l) — p-1
ge > BpEpl(miyy — 1) > B[V

t t
< PVl ~ _4p'|V]
M= 5 < ooove

|V | is bounded above and g2 < p"\|/|v‘ is also
bounded above .
{5 = ey is finite. /i
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Monodromy polynomial ([Le-Ma 3])

» Let C — PL birationally given by the equation:
z§ =f(Xo) = [Ti<i<mXo —Xi)" € R[Xo],
(ni,p) =1 and (degf,p) =1,

V(X —Xj) =Vv(xj) =0fori #j.
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Monodromy polynomial ([Le-Ma 3])

» Let C — Py birationally given by the equation:
Z§ =f(Xo) = [Ti<i<mXo —Xi)" € R[Xo],
(ni,p) =1 and (degf,p) =1,

V(X —Xj) =Vv(xj) =0fori #j.
FY)/E(Y) = S1(Y)/So(Y), (So(Y), Sa(
then deg(S1(Y)) = m — 1 and deg(So(Y

\_/ -<
N~—
N—r
Il
|_\
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Monodromy polynomial ([Le-Ma 3])

» Let C — Py birationally given by the equation:
Zg = f(Xo) = [L1<i<m(Xo — Xi)™ € R[Xq],
(ni,p) =1 and (degf,p) =1,
V(X —Xj) =Vv(xj) =0fori #j.

> F1(Y)/E(Y) = S1(Y)/So(Y). (So(Y), S1(Y)) = 1;
then deg(S;(Y)) = m — 1 and deg(Sp(Y)) =m .

> F(X +Y) =F(Y)((1+as(Y)X + ... +a(Y)X)P —

> rr<icn A(Y)XT), 0lr +1 =[n/p],
ai(Y),Ai(Y) e K(Y).

Automorphisms

C. LEHR , M. MATIGNON

Plan

Introduction
Monodromy and automc

Automorphism groups
Covers of the affine line
Structure of G, 1(f)
Bounds for |G, 1(f)|
Characterization of G

Actions of p-groups
Nakajima condition
More about G,
Riemann surfaces
Ray class fields
Big actions
Maximal curves

Monodromy
Marked stable model
Potentially good reductic
Genus 2

Références



Monodromy polynomial ([Le-Ma 3])

» Let C — Py birationally given by the equation:
Z§ =f(Xo) = [Ti<i<m(Xo —Xi)" € R[Xo],
(ni,p) = 1 and (degf,p) =1,
V(X —Xj) =Vv(xj) =0fori #j.

> F(Y)/E(Y) = S1(Y)/So(Y), (So(Y), S1(Y)) = 1;
then deg(S;(Y)) = m — 1 and deg(Sp(Y)) =m .

> F X +Y)=1(Y)((T+ar(Y)X + ... +ar(Y)X")P -
Zr+1§i§n AI(Y)XI)! OU r+ 1 = [n/p]a
ai(Y),Ai(Y) e K(Y).

» There is a unique « such thatr < p® < n < p®*+!
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Monodromy polynomial ([Le-Ma 3])

>

Let C — P birationally given by the equation:
Z§ = (Xo) = ITici<m(Xo — X)" € R[Xo),

(ni,p) =1 and (degf,p) =1,

V(X —Xj) =Vv(xj) =0fori #j.

F(Y)/f(Y) = S1(Y)/So(Y), (So(Y).S1(Y)) = 1;
then deg(S;(Y)) = m — 1 and deg(Sp(Y)) =m .
fFX+Y)=F(Y)(1+au(Y)X + ... +ar(Y)X")P -
D ri1<i<n Ai(Y)X"),our +1=[n/p],

ai(Y),Ai(Y) e K(Y).

» There is a unique « such thatr < p® < n < p®*+!
» Thereis T(Y) € R[Y] with

) SUPPT(Y),

1
Ape(Y) = _( g So(Y)P™

pa—l
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Monodromy polynomial ([Le-Ma 3])

>

Let C — P birationally given by the equation:
Z§ = (Xo) = ITici<m(Xo — X)" € R[Xo),

(ni,p) =1 and (degf,p) =1,

V(X —Xj) =Vv(xj) =0fori #j.

F(Y)/f(Y) = S1(Y)/So(Y), (So(Y).S1(Y)) = 1;
then deg(S;(Y)) = m — 1 and deg(Sp(Y)) =m .
fFX+Y)=F(Y)(1+au(Y)X + ... +ar(Y)X")P —
> rii<i<n Ai(Y)X"),our +1=[n/p],

ai(Y),Ai(Y) e K(Y).

» There is a unique « such thatr < p® < n < p®*+!
» Thereis T(Y) € R[Y] with

Apn(Y) = —( F,) ST
L(Y):=S1(Y)P* +pT(Y). This is a polynomial of
degree p®(m — 1) which is called the monodromy
polynomial of f(Y).
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Special fi ber of the easy model

We mean the R-model Cr defined by
2§ =f(Xo) = [Ti<i<m(Xo — X)) € R[Xo] (cf. fig 1).
Structur oflylfl) :

Bounds for |G 1(f)|
Characterization of G
Actions of p-groups

‘ Nakajima condition

ove

More about G,
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Big actions

Maximal curves
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FIG.: Cr ®r k — PL with singularities and branch locus cenis s
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» Theorem
([Le-Ma 3]) The components with genus > 0 of
the marked stable model of C correspond
bijectively to the Gauss valuations vy, with
piX; = Xo —Y;, Where y; is a zero of the
monodromy polynomial £(Y)
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» Theorem

([Le-Ma 3]) The components with genus > 0 of

the marked stable model of C correspond
bijectively to the Gauss valuations vy; with
piX; = Xo —Yj, Where y; is a zero of the
monodromy polynomial £(Y)

> p; € R satisfies

A—p

vier) =max(v (5

)forr+l§i§n}.
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» Theorem

([Le-Ma 3]) The components with genus > 0 of
the marked stable model of C correspond
bijectively to the Gauss valuations vy; with
piX; = Xo —Yj, Where y; is a zero of the
monodromy polynomial £(Y)
p; € R39 satisfies

p .
v(pj) = max{v (W) forr +1<i<n}.

The dual graph of the special fiber of the marked
stable model of C is an oriented tree whose ends

are in bijection with the components of genus > 0.
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Potentially good reduction with m = 1 + p®

Theorem
([Le-Ma 3])
» p > 2’ q - pni n 2 11 K - Qgr(pp/(q—i—l)) and ove 0 e affine line
C — P} is birationally defined by the equation Structure of G 1(f)
K Bounds for |G 1(Ff)|
Zg =f(Xo) =1+ pp/(q+1)xg + X(;H'l_ Cr-maracterization’owa
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Potentially good reduction with m = 1 + p°

Theorem
([Le-Ma 3])

> p>2g=p"n>1K=Qypa+)and
cC — IP& is birationally defined by the equation
Z0 = f(Xp) = 1 4 pP/@+Dx ¥ + X3t

» Then, C has potentially good reduction and £(Y)
is irreducible over K.
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Potentially good reduction with m = 1 + p°

Theorem
([Le-Ma 3])

> p>2g=p"n>1K=Qypa+)and
cC — Pk is birationally defined by the equation
Z0 = f(Xp) = 1 4 pP/@+Dx ¥ + X3t

» Then, C has potentially good reduction and £(Y)
is irreducible over K.

» The monodromy L/K is the extension of the
decomposition field of £(Y') obtained by adjoining
the p-roots f(y)/P, for y describing the zeroes of
L(Y).
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Automorphisms

Potentially good reduction with m = 1 + p°

C. LEHR , M. MATIGNON

Theorem Plan
([Le-Ma 3]) Introduction

Monodromy and automc
> p>29=p"n>1K=Q¥(pr/@+D)and

Automorphism groups
Covers of the affine line

cC — Pk is birationally defined by the equation
Then, C has potentially good reduction and £(Y)
is irreducible over K.

The monodromy L /K is the extension of the
decomposition field of £(Y') obtained by adjoining
the p-roots f(y)/P, for y describing the zeroes of
L(Y).

The monodromy group is the extraspecial group
with exponent p2 and order pg? (which is maximal
for this conductor).
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Curves of genus 2 ([Le-Ma 3])

» Case p=2and m =5 (i.e. curves with genus 2
over a 2-adic field c ¢&™°).
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Curves of genus 2 ([Le-Ma 3])

» Case p=2and m =5 (i.e. curves with genus 2
over a 2-adic field c ¢&™°).
» There are 3 types of degeneration for the marked
Stable mOdeI' Covers of the affine line
Structure of G 1(f)

Bounds for |G 1(f)|
Characterization of G
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Curves of genus 2 ([Le-Ma 3])

» Case p =2and m =5 (i.e. curves with genus 2

over a 2-adic field c ™).

» There are 3 types of degeneration for the marked

stable model.

>

genus 1

curves

\

.. k
original component

Type 1
GaI(K’/K)W = Qg X Qg

genus 1

curves

N\
(e
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Gal(K’/K)w — (Qg x Qg) x Z/2Z C



» C — IP& is birationally defined by the equation
Zé’ = f(Xp) with
f(Xo) = 1+ bpX@ +baX$ + baX$ + X§ € R[Xo).
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» C — IP& is birationally defined by the equation

Z5 = f(Xo) with
f(Xo) = 1+ baX§ + baXg + baXg + X5 € R[Xo]- S

» Now, we see that the monodromy can be maximal =00 00 00

for the 3 types of degeneration. Actions of p-groups
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Automorphisms
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dl = 7 3 A i Introduction
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ZO B f(Xo) W|th ) . Automorphism groups
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» C — P} is birationally defined by the equation
Z5 = f(Xo) with
f(Xo) = 1 +bpXZ + bsX3 + baX3 + X3 € R[Xo].

» Now, we see that the monodromy can be maximal
for the 3 types of degeneration.

> a) f(Xo) = 1+23/5X2 + X3 + 22/5X3 + X§ and
K = Qgr(zl/ls) :
» C has a marked stable model of type 1.

Automorphisms

C. LEHR , M. MATIGNON

Plan

Introduction
Monodromy and automc

Automorphism groups
Covers of the affine line
Structure of G, 1(f)
Bounds for |G, 1(f)|
Characterization of G

Actions of p-groups
Nakajima condition
More about G,
Riemann surfaces
Ray class fields
Big actions
Maximal curves

Monodromy
Marked stable model
Potentially good reductic
Genus 2

Références



v

v

v

v

v

CcC — Pk is birationally defined by the equation

Z5 = f(Xo) with

f(Xo) = 1+ boXZ + baX3 + buXg + X5 € R[Xg].
Now, we see that the monodromy can be maximal
for the 3 types of degeneration.

a) f(Xo) = 1+ 23/5X2 + X3 + 22/5X§ + X§ and

K — Qgr(zl/ls) :

C has a marked stable model of type 1.
The maximal monodromy group is ~ Qg x Qsg.
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» b) LetK = QY (a) with a® = 2 and
f(Xo) =1+ a3X3 +abx3 + X;.
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» b) LetK = QY (a) with a® = 2 and
f(Xo) =1+ a3X3 +abx3 + X;.
» C has a marked stable model of type 2.
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» b) LetK = QY (a) with a® = 2 and
f(Xo) =1+ a3X3 +abx3 + X;.

Covers of the affine line

» C has a marked stable model of type 2. Structure of G o, 1 (1)
. . Bounds for |G 1(f)]
» The maximal monodromy group is Characterization of G o

~ (Qg x Qg) x Z/27Z, where Z/27 exchanges the Actions of p-groups

Nakajima condition
2 factors. More about G,
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» b) LetK = QY (a) with a® = 2 and
f(Xo) =1+ a3X3 +abx3 + X;.
» C has a marked stable model of type 2.

» The maximal monodromy group is
~ (Qg x Qg) x Z/2Z, where Z /27 exchanges the
2 factors.

» ) K =QY and . f(Xo) = 1+ X7 + X5 .
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b) Let K = QY'(a) with a® = 2 and

f(Xo) = 1+ a3XZ +a®X3 + X§.

C has a marked stable model of type 2.

The maximal monodromy group is

~ (Qg x Qg) x Z/27Z, where Z/27 exchanges the
2 factors.

c) K = QY and . f(Xo) = 1+ X5 + X .

C has potentially good reduction (i.e. is of type 3)
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b) Let K = QY'(a) with a® = 2 and

f(Xo) = 1+ a3XZ +a®X3 + X§.

C has a marked stable model of type 2.

The maximal monodromy group is

~ (Qg x Qg) x Z/27Z, where Z/27 exchanges the
2 factors.

c) K = QY and . f(Xo) = 1+ X5 + X .

C has potentially good reduction (i.e. is of type 3)
The maximal monodromy group is ~ Qg * Dg.
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