Etude de fonction d'une variable réelle

- 1. Généralités
- 2. Continuité, dérivabilité
- 3. Plan d'étude d'une fonction
- 4. Formule de Taylor

1. Généralités

Ensemble de définition I={x ∈ R tel que f(x) existe}

Exemple:

$$g(x) = \frac{1}{\sqrt{x-1}} \qquad Dg =]1,+\infty[$$

b) Ensemble d'étude

<u>Définition</u>: Parité/imparité **Parité f(x)=f(-x)**(symétrie par rapport à l'axe Oy)

Imparité f(x)=-f(-x) (symétrie centrale par rapport à l'origine)

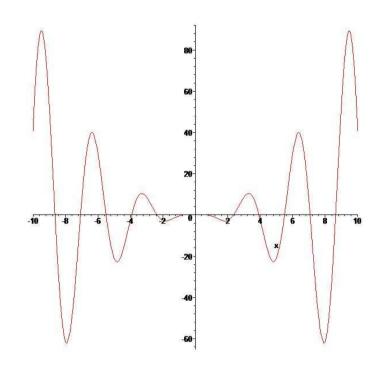
Définition : périodicité
f est de période T si pour tout x de Df
f(x+T)=f(x)

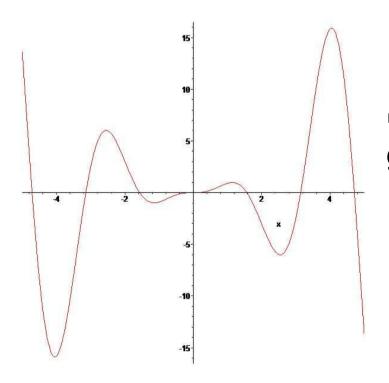
Exemples:

■ parité: Soit f(x)= -x² cos(2x)

$$f(-)=-(-x)^2 \cos(-2x)=f(x)$$

f est donc paire (sym / axe Oy)





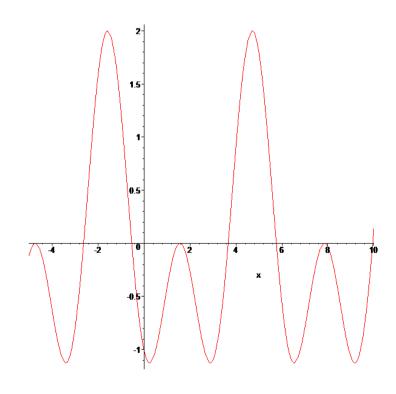
imparité : Soit g(x)= x² sin(2x)
 g est impaire (sym centrale O)

périodicité :

Soit $h(x)= 2 \sin^2(x)-\sin(x)-1$ on cherche la valeur T la plus petite possible telle que h(x+T)=h(x) pour tout x.

$$h(x+2\pi)= 2 \sin^2(x+2\pi)-\sin(x+2\pi)-1=h(x)$$

car $\sin(x+2\pi)=\sin(x)$



2. Continuité, dérivabilité

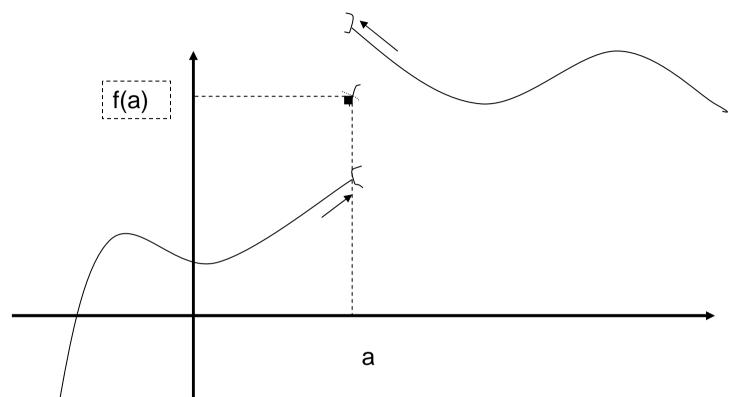
a) <u>Définitions</u>

Définition

On dit que f est continue en a si

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = f(a)$$

f est dite continue sur un intervalle I si elle est continue en tout point a de I.



Sur ce graphe d'une fonction f:

la limite de f(x) quand x tend vers a par valeur supérieure n'est pas égale à la limite de f(x) quand x tend vers a par valeur inférieure et ces limites ne sont pas égales à f(a).

La fonction n'est pas continue en a sur ce graphe.

Remarque:

On sait déjà que les fonctions usuelles (ln, exp, sin, cos, tan, puissances,...) sont continues là où elles sont définies.

Opérations:

Soient f et g continues sur I. Soit a un réel alors af, f+g, f-g, fg et f/g (là où g ne s'annule pas) sont continues.

Soit f continue sur I et g continue sur f(I) alors gof (composée de f par g) est continue sur I.

Exemple: Soient $f(x)=\ln(x+1)$ et g(x)=x f est continue sur]-1;+ ∞ [(comme composée de $x \rightarrow \ln(x)$ et $x\rightarrow x+1$) et g est continue sur \mathbb{R} . donc $x\rightarrow \ln(x+1)/x$ est continue sur]-1;0[et sur]0;+ ∞ [

Définition:

On dit que f est dérivable en a si

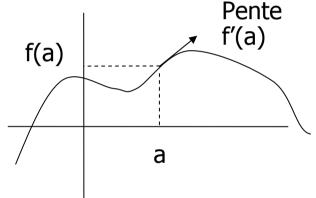
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

vaut une valeur finie I et alors f'(a) est égale à cette limite I.

Exemple: $f(x)=x^2+1$ en a=0

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 + 1 - 0^2 - 1}{x - 0} = \lim_{x \to 0} \frac{x^2}{x} = 0 = f'(0)$$

Sur la représentation graphique de f, f'(a) est la pente de la tangente à la courbe en a.



Définition:

f est dite dérivable sur un intervalle I si elle est dérivable en tout point a de I.

Remarque:

On connait déjà les dérivées de fonctions usuelles (ln, exp, sin, cos, tan, puissances,...) et leurs ensembles de définition.

Exemple: f: $x \rightarrow ln(x)$ est définie sur $l=]0;+\infty[$ et admet une dérivée définie aussi sur l, f'(x)=1/x.

Opérations :

Soient f et g dérivables sur I. Soit a un réel alors af, f+g, f-g, fg et f/g (là où g ne s'annule pas) sont dérivables.

Soit f dérivable sur I et g dérivable sur f(I) alors gof (composée de f par g) est dérivable sur I.

b) Régles de dérivation

Soient f et g deux fonctions dérivables, et f' et g' leurs dérivées respectives

f+g	a f	fg	f/g	fog	f ⁻¹
f'+g'	a f'	f'g+fg'	(f'g-fg')/g ²	f'og xg'	1/(f'of ⁻¹)

Rappel notation : f⁻¹ est la réciproque de f

c) Tableau de dérivées classiques (où u est une fonction dérivable)

a (constante)	0
u ^a (x)	au'(x)u ^{a-1} (x)
sin(u(x))	u'(x)cos(u(x))
cos(u(x))	-u'(x)sin(u(x))
tan(u(x))	u'(x)(1+tan²(u(x)))
exp(u(x))	u'(x)exp(u(x))
ln u(x)	u'(x)/u(x)
cosh(u(x))	u'(x)sinh(u(x))
sinh(u(x))	u'(x)cosh(u(x))

4. Plan d'étude d'une fonction

- a) Ensemble de définition et d'étude
- b) Continuité, dérivabilité
- c) Limites aux bornes de l'ensemble de définition
- d) Sens et tableau de variation
- e) Points et tangentes remarquables
- f) Représentation graphique

Sens et tableau de variation

<u>Définition</u>: Soit f une fonction définie sur I.

f est dite croissante si pour tout (x1,x2) de I

$$x1 \le x2 \Leftrightarrow f(x1) \le f(x2)$$

f est dite décroissante si pour tout (x1,x2) de l $x1 \le x2 \Leftrightarrow f(x1) \ge f(x2)$

(strictement :remplacer par < ou >)

Rappel: le signe de la dérivée sur un intervalle donne le sens de variation.

Tableau de variation

Exemple : $f(x) = x^2 + 2x - 1$

f'(x)=2x+2

X	-∞ -1 +∞
f'(x)	- O +
f(x)	+ ∞ + ∞ -2

Points et tangentes remarquables: tangente horizontale, asymptote, point d'inflexion éventuellement étude des branches infinies...

Représentation graphique...

4. Formule de Taylor (développement limité)

Soit f dérivable n fois sur I un intervalle contenant a.

$$f(x)=f(a)+f'(a)(x-a)+f^{(2)}(a)(x-a)/2!+...$$

+ $f^{(n)}(a)(x-a)^n/n!+R(x)$

pour tout x réel dans I

R(x) est appelé le reste:
R(x)=(x-a)ⁿ
$$\epsilon$$
(x) avec ϵ (x) ->0 quand x->a

Développement limité

Si a=0 (et reste de Taylor-Young), on parle de développement limité

$$f(x)=f(0)+f'(0)x+f^{(2)}(0)x^{2}/2!+....$$
$$+f^{(n)}(0)x^{n}/n!+x^{n}\varepsilon(x)$$