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Abstract

Airborne radars are widely used to perform a large variety of tasks
in an aircraft (searching, tracking, identifying targets, etc.) Such tasks
play a crucial role for the aircraft and they are repeated in a “more or
less” cyclic fashion. This defines a scheduling problem that impacts a
lot on the quality of the radar output and on the overall safety of the
aircraft.

In our model, jointly defined with Thales Airborne Systems, the
radar executes the schedule of the current time frame while the sched-
ule of the next frame is computed. The radar is a single machine and
a radar task is a job to be scheduled on the machine. A job consists of
a chain of operations with identical processing times. The operations
of the same job should be ideally scheduled with a given frequency,
and any deviation from this frequency is penalized using a V-shape
function. Our objective is then to minimize the total penalty.

In this paper, we present three time-indexed formulations for the
problem. Two of the formulations are compact and can be solved
directly by a MIP solver. The third formulation relies on a Branch-
and-Price algorithm. Theoretical and experimental comparisons of
the formulations are reported.
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1 Airborne radars scheduling

A radar is a system using radio-waves to detect the presence of objects in
a given volume of space. It can also compute the range (distance) as well
as the relative radial velocity of these objects. Airborne radars consist of
a transmitter, a single antenna and a receiver. The transmitter generates
radio-waves which are sent out in a narrow beam by the antenna in a specific
direction. Objects located in the beam intercept this signal and scatter the
energy in all directions. A portion of this energy is scattered back to the
receiver of the radar listening to all potential echoes. See [11] and [14] for a
detailed description of airborne radars.

Recent radars have an Electronically Steered Antenna (ESA). An ESA is
a planar array antenna made of many individual radiating elements. Unlike
a mechanically steered antenna, an ESA lies in a fix position on the aircraft.
The phase of the radio-waves is controlled electronically so that the radar
beam lights up the desired direction.

One of the key advantages of ESA is that the beam is extremely agile.
As it is not subjected to the mechanical inertia of the antenna, it can be
moved instantaneously from one part of the space to another, even outside
the search domain. Moreover, the radar can switch almost instantaneously
to an appropriate waveform.

The following tasks have to be performed by an airborne radar (see Fig-
ure 1).

• Research. The radar is sweeping across a domain to detect the potential
presence of targets inside.

• Tracking. The radar is closely monitoring the behavior of targets (ini-
tially detected at the Research stage).

• Data Link. The radar is used as a communication tool with other
platforms.

• Calibration. The radar is performing cyclic calibration to ensure a high
reliability level.

Research, tracking, data link and calibration require incompatible wave-
forms. So all corresponding tasks have to be scheduled to ensure they do
not overlap in time. Moreover, research, tracking, data link and calibration
tasks have to be repeated in a more or less regular fashion. The execution
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Figure 1: Functions of the ESA radars

of any single radar operation is called a dwell. Depending on the task, the
periodicity constraint can be extremely important or not. For instance, as it
is absolutely forbidden to loose a tracked target, tracking dwells have to be
repeated with high regularity. Likewise, data link dwells are played at regu-
lar intervals, but there, the regularity constraint is much higher. Finally, to
ensure a surveillance of great quality, in any circumstances, the radar has to
play at least a minimum amount of research dwells.

The use of only one device for all radar functions results in certain limi-
tations. For instance, as different dwells cannot be played at the same time,
while the radar is used in tracking mode, the pilot has no knowledge of the
evolution of the tactical situation, that is new targets coming and so on.
Also, the more targets to track, the less time for the search. Thus, the prob-
lem is how to use the radar time resources to keep at best the whole situation
awareness. We are interested with the scheduling of the dwells to make the
radar more efficient while meeting the constraints informally described above.

Following the framework of Barbaresco [2], Winter and Baptiste [16] have
proposed a formal model based on cost functions that describes the problem.
In this model, dwells are scheduled on a frame duration and are executed
while the next schedule is computed. For each task, we know the duration of
its dwells and the desired periodicity of their repetition. We need to schedule
a certain number of dwells of each type within the next time frame. As
dwells cannot overlap in time, usually it is not possible to respect the desired
dwell periodicity of each task. Therefore a deviation from ideal periodicity is
permitted but penalized proportionally to the deviation. For different tasks,
penalties differ according to the periodicity importance. The objective is to
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find a feasible schedule which minimizes the total penalty.
This model has been used in [16] to compare several fast scheduling heuris-

tics. In this paper, we propose methods to find optimal solutions or good lower
bounds. Of course, these methods cannot be used in real-time however, such
lower bounds are very useful to assess the intrinsic quality of the heuristics.
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Figure 2: Penalty Functions

Formal definition of the problem

A set N = {1, . . . , n} of jobs (which represent radar tasks) has to be processed
on a single machine. Each job i ∈ N consists of a chain (Oi0, Oi1, . . . , Oi,n(i))
of identical operations (representing dwells) which should be processed in the
same order within a given time horizon [0, h]. We denote by N(i), i ∈ N , the
set {1, . . . , n(i)} and by H the set {0, 1, . . . , h−1}. Processing of an operation
cannot be interrupted, and the machine can process only one operation at a
time. The processing time of each operation of job i is equal to pi > 0. The
starting time of operation Oij will be denoted as Sij . For each job i ∈ N ,
the starting time Si0 of operation Oi0 is given and cannot be changed.

The operations of each job i ∈ N should be ideally scheduled with a
given frequency li (the distance between starting times of two consecutive
operations of a job should be ideally equal to li). For each job i ∈ N , a penalty
function δi(x) for the distance between starting times of two consecutive
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operations of i is introduced. We set

δi(x) = max{αi(li − x), βi(x − li)}.

Examples of penalty functions used for different radar tasks are presented in
Figure 2. So, given {n(i), pi, li, αi, βi, Si0}i∈N and h, the problem consists in
finding a feasible schedule {Sij}i∈N,j∈N(i) which minimizes the total penalty

F =
∑

i∈N

∑

j∈N(i)

δi(Sij − Si,j−1). (1)

We assume that all data except {αi, βi}i∈N are integers. If this assumption
does not hold, to obtain an equivalent instance in which all necessary data
are integers, we can multiply {pi, li, Si0}i∈N and h by a certain value (and
divide {αi, βi}i∈N by the same value). However, this transformation increases
the length of the time horizon, i.e. the size of the instance.
Complexity: If each job i consists of two operations Oi0 and Oi1 and if h
is large enough, then the problem reduces to the classic earliness-tardiness
problem on a single machine [4] denoted as 1||

∑
αjEj +βjTj in the standard

scheduling notation [7]. This problem is NP-hard in the strong sense [6].

Cyclic variant of the problem

In this variant, we want to find a cyclic schedule, i.e. a schedule which
is repeated every certain period of time. The penalty of a cyclic schedule
depends also on the difference between the first and the last operations of
each job (the “zero” operations are absent).

This variant of the problem is not considered in the paper. We introduce
it to show that it has relations with some real-time scheduling problems.
For example, the cyclic variant is an optimization version of the DCTS non-
preemptive scheduling problem [8] (DCTS stands for Distance-Constraint
Task System) and the Periodic Maintenance Problem [15] (PMP).

If we use our notations, the PMP consists in finding a cyclic schedule
with zero penalty. In the DCTS scheduling problem, we need to find a
cyclic schedule in which, for each job i ∈ N , the distance between every
two consecutive operations does not exceed li (a schedule with zero penalty
given that αi = 0, ∀i ∈ N). A special case of the latter problem, in which all
processing times are equal to 1, is called the Pinwheel Scheduling Problem [3].
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Structure of the paper

In Section 2 we present a basic time-indexed formulation of the problem [13].
In Section 3 we introduce a new objective function and we show that it leads
to the same set of optimal schedules as for the initial objective function.
This leads to an alternative time indexed formulation that contains much
less variables. We prove that, under some reasonable assumption, the LP re-
laxation of this alternative formulation always provides tighter bounds than
the initial LP relaxation. In the end of the Section 3, a variant of the al-
ternative formulation is presented in which identical jobs can be aggregated
into groups. This aggregation reduces further the size of the formulation.
Section 4 is devoted to a non-compact formulation of the problem. We show
how to solve the LP relaxation of this formulation by column generation
procedure, and we describe how the latter can be combined with branching
resulting in a branch-and-price algorithm for the problem. Experiments have
been executed on real life and random instances (Section 5). Conclusions are
drawn in Section 6.

2 Basic time-indexed formulation

First, we formulate the problem as a Integer Linear Programming (ILP)
problem in a straightforward way. We use the standard time-indexed for-
mulation for non-preemptive single-machine scheduling problems [13]. The
binary variable Xijt, i ∈ N , j ∈ N(i), t ∈ H , takes value 1 if and only if op-
eration Oij is started at time moment t. The continuous variable Sij , i ∈ N ,
j ∈ N(i), equals the starting time of operation Oij. The values of variables
Si0, i ∈ N , are fixed. Finally, the continuous variable Wij , i ∈ N , j ∈ N(i),
represents the value δi(Sij − Si,j−1). We now present the time-indexed ILP
formulation.
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(TI)

min
∑

i∈N

∑

j∈N(i)

Wij (2)

s.t.

h−pi∑

t=0

Xijt = 1, ∀i ∈ N, j ∈ N(i) ∪ {0}, (3)

∑

i∈N

∑

j∈N(i)∪{0}

t∑

t′=max{t−pi+1,0}

Xijt′ ≤ 1, ∀t ∈ H, (4)

Sij =
∑

t∈H

t · Xijt, ∀i ∈ N, j ∈ N(i) ∪ {0}, (5)

Si,j−1 + pi ≤ Sij, ∀i ∈ N, j ∈ N(i), (6)

Wij ≥ αi(li − Sij + Si,j−1), ∀i ∈ N, j ∈ N(i) (7)

Wij ≥ βi(Sij − Si,j−1 − li), ∀i ∈ N, j ∈ N(i), (8)

Xijt′ ∈ {0, 1}, ∀i ∈ N, j ∈ N(i) ∪ {0}, t ∈ H. (9)
The objective function (2) follows from (1). The constraints (3) state that

each operation should start and finish within interval [0, h]. The constraints
(4) prevent overlapping (ensure that only one operation is processed at a
time). The constraints (5) link the variables X and S. The constraints (6)
guarantee that operations of a job are processed in the given order. The
constraints (7)-(8) are used to compute the values of the variables W .

In order to make the formulation (TI) more sparse, we introduce the
binary variables Y . Yt, t ∈ H , takes value 1 if and only if the machine is idle
(does not process any operation) at time moment t. Then the constraints
(4) can be rewritten as

∑

i∈N

∑

j∈N(i)∪{0}

Xij0 + Y0 = 1, (10)

∑

i∈N

∑

j∈N(i)∪{0}

Xijt −
∑

i∈N,

t−pi≥0

∑

j∈N(i)∪{0}

Xi,j,t−pi
+ Yt − Yt−1 = 0,

∀t ∈ H \ {0} (11)

See [9] for details of such transformation. Note that, in each of the constraints
(10)-(11), there are at most

∑

i∈N 2n(i) + 2 non-zero coefficients, whereas,
in each of the constraints (4), there are up to

∑

i∈N pi · n(i) non-zero coef-
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ficients. We denote as (TIS) the formulation (TI) where the constraints (4)
are replaces by the constraints (10)-(11).

3 New formulation

One of disadvantages of the (TI) formulation is that we use distinct variables
for operations of the same job. As all operations of a job are identical, it
would be more natural and more efficient to use the same set of variables for
them. For example, we can introduce binary variables Xit, i ∈ N , t ∈ H ,
that state that some operation of job i is started at time t. However, using
these variables, it is not a priori possible to express the objective function
(1). To overcome this difficulty, in the following subsection, we introduce
another objective function which is equivalent to (1).

3.1 Reformulation of the problem

We now reformulate the problem. Consider a given schedule and let ni(t),
i ∈ N , t ∈ H , be the number of operations of job i started within interval
[t − li + 1, . . . , t] (see example in Figure 3). We define now sets

∆i = {Si0, Si0 + 1, . . . , Si,n(i) + li − 1}, ∀i ∈ N.

Note that, if the operations of job i are scheduled with the ideal frequency
li then ni(t) = 1 for all t ∈ ∆i. We now introduce an alternative penalty
function γi:

γi(t) = max {αi(ni(t) − 1), βi(1 − ni(t))} .

00000 1111111111111111 2222222 33ni(t)

Si0 Si1 Si2 Si3

∆i

t

li

Figure 3: A schedule for job i (n(i) = 3, pi = 2, li = 9)

As shown in Theorem 1, the penalty functions δ and γ give the same total
penalty for a given schedule.
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Theorem 1 For a given schedule (Si0, Si1, . . . , Si,n(i)) of job i,

∑

j∈N(i)

δi(Sij − Si,j−1) =
∑

t∈∆i

γi(t).

Proof. We denote Bi = {t ∈ ∆i : ni(t) = 0} and Ai = {t ∈ ∆i : ni(t) ≥ 1}.
Note that Bi ∪ Ai = ∆i. We have now

∑

t∈∆i

γi(t) = αi ·
∑

t∈Ai

(ni(t) − 1) + βi · |Bi|. (12)

We also denote Dij = Sij−Si,j−1, j ∈ N(i). Remember that, for all j ∈ N(i),

δi(Dij) = αi · max{li − Dij, 0}
︸ ︷︷ ︸

=Eij

+βi · max{Dij − li, 0}
︸ ︷︷ ︸

=Tij

, (13)

where Eij is the relative earliness of operation Oij and Tij is its relative
tardiness. From (12) and (13) it follows that, to prove the proposition, it
suffices to show that

∑

j∈N(i) Tij = |Bi| and
∑

j∈N(i) Eij =
∑

t∈Ai
ni(t)−|Ai|.

We now partition the operations of job i into blocks of consecutive opera-
tions in the following way. A block contains operations (Oij′, Oi,j′+1, . . . , Oij′′).
The first operation Oij′ in a block either is late (Tij′ > 0 and Eij′ = 0) or is
the “zero” operation (j′ = 0). All other (if any) operations (Oi,j′+1, . . . , Oij′′)
in a block are early or on-time (Eij ≥ 0 and Tij = 0).

Consider such a block of consecutive operations. We define A′ = {Sij′, . . . ,
Sij′′ + li−1} and, if j′ 6= 0, B′ = {Si,j′−1 + li, . . . , Sij′ −1}. Note that A′ ⊆ Ai

and B′ ⊆ Bi. Clearly, |B′| = Dij′ − li = Tij′. Summing this equality over all
blocks (except the first one), we obtain |Bi| =

∑

j∈N(i) Tij .

Then, each operation in the block is counted li times in the sum
∑

t∈A′ ni(t).
Therefore,

∑

t∈A′

ni(t) − |A′| = li(j
′′ − j′ + 1) − (Sij′′ + li − Sij′)

=

j′′
∑

j=j′+1

(li − Sij + Si,j−1) =

j′′
∑

j=j′+1

Eij .
(14)

Summing (14) over all blocks, we obtain
∑

t∈Ai
ni(t) − |Ai| =

∑

j∈N(i) Eij.
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3.2 Alternative time-indexed formulation

Using penalty function γ, we will now alter the formulation (TI). We consider
an extended time horizon for each job i ∈ N :

Hi = {Si0, · · · , h − pi + li} .

Integer variable Xit, i ∈ N , t ∈ H , is now the number of operations of job i
started before or at time moment t. Continuous variable Wit, i ∈ N , t ∈ Hi,
represents the value γi(t). The main issue with the alternative objective
function is that the starting times Si,n(i), i ∈ N , are not known a priori.
Therefore, we need to use additional binary variables Eit, i ∈ N , t ∈ Hi,
which indicate whether t ∈ ∆i. We now present the alternative time-indexed
ILP formulation.

(TIA)

min
∑

i∈N

∑

t∈Hi

Wit (15)

s.t. Xi,Si0
= 1, Xi,Si0−1 = 0, ∀i ∈ N. (16)

Xi,t−1 ≤ Xit, ∀i ∈ N, t ∈ H \ {0}, (17)

Xi,h−pi
= n(i) + 1, ∀i ∈ N, (18)

∑

i∈N

Xit −
∑

i∈N,

t−pi≥0

Xi,t−pi
≤ 1, ∀t ∈ H, (19)

Eit ≥ Xi,t−li+1, ∀i ∈ N, t ∈ Hi, t ≥ Si0 + li, (20)

Eit ≤ Ei,t−1 ≤ 1, ∀i ∈ N, t ∈ Hi \ {Si0}, (21)

Wit ≥ αi(Xit − Xi,t−li − Eit), ∀i ∈ N, t ∈ Hi, (22)

Wit ≥ βi(Eit − Xit + Xi,t−li), ∀i ∈ N, t ∈ Hi, (23)

Xit ∈ Z+, ∀i ∈ N, t ∈ H. (24)
The constraints (17) reflect the nature of the variables X. The constraints

(18) state that exactly n(i)+1 operations of job i should be processed within
interval [Si0, h]. The constraints (19) prevent overlapping. The constraints
(20)-(21) are used to compute the values for the variables E. Once variables
Xit is equal to 1, variables Eit′ , Si0 ≤ t′ ≤ t+ li − 1, are forced to be equal to
1 by these constraints. Note that we do not need to impose the integrality
on the variables E. Whenever the variables X are integer, the variables E
are also integer. The constraints (22)-(23) are used to compute the values of
the variables W .

10



3.3 Theoretical comparison

Here we show that, under some reasonable assumption, the LP relaxation of
(TIA) is at least as strong as the LP relaxation of (TI).

Note that the difference between the total relative tardiness Ti and the
total relative earliness Ei of job i ∈ N depends only on li, n(i), Si0, Si,n(i)

which are fixed:

Ti − Ei =
∑

j∈N(i)

max{Sij − Si,j−1 − li, 0} −
∑

j∈N(i)

max{li − Sij + Si,j−1, 0}

=
∑

j∈N(i)

(Sij − Si,j−1 − li) = Si,n(i) − Si0 − lin(i).

Then, αiEi + βiTi = αiEi + βiEi − βiEi + βiTi = βi(Ti − Ei) + (αi + βi)Ei.
By Theorem 1, we have Ei =

∑

t∈∆i
max{ni(t) − 1, 0}. The LP relaxations

of the formulations (TI) and (TIA) can now be rewritten:

(SC)

min
∑

i∈N

∑

j∈N(i)

Wij +
∑

i∈N

βi ·
(
Si,n(i) − Si0 − lin(i)

)
(25)

s.t. (3) − (5),

Wij ≥ (αi + βi) · (li − Sij + Si,j−1), ∀i ∈ N, j ∈ N(i), (26)

Wij ≥ 0, ∀i ∈ N, j ∈ N(i). (27)

0 ≤ Xijt ≤ 1, ∀i ∈ N, j ∈ N(i), t ∈ H. (28)

(SCA)

min
∑

i∈N

∑

t∈∆i

Wit +
∑

i∈N

βi ·
(
Si,n(i) − Si0 − lin(i)

)
(29)

s.t. (16) − (19),

Xi,Si,n(i)
= n(i) + 1, Xi,Si,n(i)−1 = n(i), ∀i ∈ N. (30)

Wit ≥ (αi + βi) · (Xit − Xi,t−li − 1), ∀i ∈ N, t ∈ ∆i, (31)

Wit ≥ 0, ∀0 ≤ Xit ≤ n(i) + 1, i ∈ N, t ∈ H. (32)
We denote by ν∗

F and νF (X̄) the values of an optimal solution and solution
X̄ of formulation (F).

Theorem 2 If the starting times of the last operations of jobs are fixed, then
ν∗

SC ≤ ν∗
SCA.

Proof. To prove the theorem, we will show that, given a feasible solution
X∗ of the formulation (SCA), a feasible solution X ′ of the the formulation
(SC) can be found such that νSC(X ′) ≤ νSCA(X∗).
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For all i ∈ N , given X∗
i , we build X ′

i in the following way:

X ′
ijt = min

{

1 −

t−1∑

t′=0

X ′
ijt′, X

∗
it − X∗

i,t−1 −

j−1
∑

k=1

X ′
ikt

}

, ∀j ∈ N(i), t ∈ H.

Basically, every positive value (X∗
it − X∗

i,t−1), t ∈ H , is “distributed” among
variables X ′

ijt, j ∈ N(i), in such a way that X ′
ijs > 0 and X ′

i,j+1,t > 0 only

if s ≤ t. It is easy to see that X ′
ijt ∈ [0, 1]n(i)×h, and the constraints (3) are

satisfied for X ′
i. As

∑

j∈N(i)

∑t

t′=t−pi+1 X ′
ijt′ = X∗

it − X∗
i,t−pi

, t ∈ H , and X∗
i

satisfies (19), X ′
i satisfies the constraints (4). Then, for each j ∈ N(i) and

t ∈ H , we have
h−1∑

t′=t

X ′
i,j−1,t′ ≤

h−1∑

t′=t+pi

X ′
ijt′ , (33)

otherwise we would have X∗
i,t+pi

−X∗
it ≥

∑t+pi

t′=t+1(X
′
i,j−1,t +X ′

ijt) > 1, and the
constraints (19) would be violated. Given j ∈ N(i), we sum up (33) for all
t ∈ [1, h] and obtain

S ′
i,j−1 =

h∑

t=0

tX ′
i,j−1,t ≤

h∑

t=pi

(t − pi)X
′
ijt

=

h∑

t=pi

tX ′
ijt − pi

h∑

t=pi

X ′
ijt = S ′

ij − pi,

and X ′
i satisfies the constraints (6).

It remains to show that, for each i ∈ N , νSC(X ′
i) ≤ νSCA(X∗

i ), i.e.

∑

j∈N(i)

max
{
li − S ′

ij + S ′
i,j−1, 0

}
≤
∑

t∈∆i

max
{
X∗

it − X∗
i,t−li

− 1, 0
}

.

Consider job i ∈ N . Similarly to Theorem 1, we again partition the
operations of job i into set M of block. Remember that the first operation
in a block either is tardy or is the “zero” operation, and other operations in
a block are early or on-time.

Consider block k ∈ M containing operations (Oi,j′
k
, Oi,j′

k
+1, . . . , Oi,j′′

k
),

where number of operations is at least two (j′k < j′′k ). Let t1k be the last
time moment such that X ′

ij′
k
t > 0 and t2k be the first time moment such that

X ′
ij′′

k
t > 0. We denote ∆ik = {t1k, . . . , t

2
k + li − 1}. Note that t2k + li ≤ t1k+1,
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otherwise S ′
ij′′

k
≥ t2k > t1k+1 − li ≥ S ′

ij′
k+1

− li which would contradict the fact

that operation Oij′
k+1

is tardy. Therefore,

νSCA(X∗
i ) =

∑

t∈∆i

max{X∗
it − X∗

i,t−li
− 1, 0}

≥
∑

k∈M

∑

t∈∆ik

max{X∗
it − X∗

i,t−li
− 1, 0}

≥
∑

k∈M

(
∑

t∈∆ik

(X∗
it − X∗

i,t−li
)

︸ ︷︷ ︸

=ηk

−(t2k + li − t1k)

)

,

where ηk is introduced to simplify the presentation.
Note that the contribution of each variable Xijt of the formulation (TI)

to the sum
∑

t∈∆ik
ni(t) = ηk is equal to

∑

t∈H

X ′
ijt · max

{
li − max{t1k − t, t − t2k, 0}, 0

}
.

Then, by definition of t1k and t2k and by construction of X ′,
∑t2

k

t=t1
k

X ′
ijt = 1

for all j′k < j < j′′k . Therefore,

ηk ≥

j′′
k
−1
∑

j=j′
k
+1

li +
∑

t∈H

X ′
ij′

k
t max{li − t1k + t, 0} +

∑

t∈H

X ′
ij′′

k
t max{li − t + t2k, 0}

≥ li(j
′′
k − j′k − 1) + li − t1k + S ′

ij′
k
+ li − S ′

ij′′
k

+ t2k

= li(j
′′
k − j′k + 1) + S ′

ij′
k
+ S ′

ij′′
k
− t1k + t2k.

Finally,

νSCA(X∗
i ) ≥

∑

k∈M

(
ηk − t2k − li + t1k

)
≥
∑

k∈M

j′′
k∑

j=j′
k
+1

(
li − S ′

ij + S ′
i,j−1

)
,

which is exactly equal to νSC(X ′
i).

Unfortunately, inequality ν∗
SC ≤ ν∗

SCA does not always hold when values
Si,n(i), i ∈ N , are not known in advance. For example, if we take the instance
which data is shown in Table 1 (h = 120), then ν∗

TI ≈ 36.1 > 33.2 ≈ ν∗
TIA.

13



i pi li n(i) Si0 αi βi

1 9 12 8 5 1 1
1 5 5 6 0 1 1

Table 1: Data for a counterexample instance for ν∗
TI ≤ ν∗

TIA

Nevertheless, Theorem 2 suggests that the LP relaxation of the alternative
time-indexed formulation is usually stronger than the one of the standard
time-indexed formulation. This is confirmed by the numerical experiments
reported in Section 5.

3.4 Aggregation of identical jobs

In the available practical test instances, usually, there are identical jobs. We
call two jobs a and b identical if pa = pb, la = lb, αa = αb and βa = βb. In
order to decrease the size of the formulation (TIA) we will aggregate jobs
into groups. We partition the set N of jobs into the set Q = {1, . . . , q}
of groups {Gk}k∈Q of identical jobs. It is easy to show that there exists an
optimal schedule, in which the operations of jobs in the same group alternate,
i.e. j-th operations of the jobs in the same group are processed in the same
order as the “zero” operations of these jobs. Using this fact, in the next
proposition, we show that the penalty functions γi for the jobs i in group Gk,
k ∈ Q, can be “aggregated” into a single penalty function θk for the group.
Let Gkt = {i ∈ Gk : t ∈ ∆i}. We renumber the jobs such that, for each
k ∈ Q, Gk = {i′k, i

′
k +1, . . . , i′′k}, Si′

k
0 < Si′

k
+1,0 < . . . < Si′′

k
. We set H̄k = Hi′

k
,

and

θk(t) = max

{

αi

(
∑

i∈Gk

ni(t) − |Gkt|

)

, βi

(

|Gkt| −
∑

i∈Gk

ni(t)

)}

.

Theorem 3 Consider a group Gk, k ∈ Q, of jobs and a schedule
{Si0, Si1, . . . , Si,n(i)}i∈Gk

, in which the operations of jobs in Gk alternate.
Then, for all t ∈ H̄k, ∑

i∈Gkt

γi(t) = θk(t).

Proof. To prove the proposition, we need to show that, given t ∈ Hk,
∑

i∈Gk

ni(t) ≥ |Gkt| ⇔ ni(t) ≥ 1, ∀i ∈ Gkt, (34)
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∑

i∈Gk

ni(t) ≤ |Gkt| ⇔ ni(t) ≤ 1, ∀i ∈ Gkt, (35)

The implication “⇐” of (34) is obvious. We will now prove the implication
“⇒” (34) by contradiction. Suppose that

∑

i∈Gk
ni(t) ≥ |Gkt| and there

exists a job i′ ∈ Gkt such that ni′(t) = 0. Then, there is a job i′′ ∈ Gkt such
that ni′′(t) ≥ 2. This means that, in the schedule, between two operations of
job i′′, there are no operations of job i′ and an operation of job i′ starts later
than at t (as i′ ∈ Gkt and ni′(t) = 0). This contradicts the condition of the
proposition which states that the operations of jobs i′ and i′′ alternate.

The implications in (35) can be proved in the same way.

So, to find an optimal solution of the problem, we can limit the search to
the set of “alternating” schedules and use the penalty function

∑

k∈Q

∑

t∈H̄k
θk(t)

instead of
∑

i∈N

∑

t∈Hi
γi(t). We will now modify the formulation (TIA). In-

teger variable Xkt, k ∈ Q, t ∈ H , is now equal to the number of operations
of jobs in Gk started before or at time moment t. Continuous variable Wkt,
k ∈ Q, t ∈ H̄k, now represents the value θk(t). Here we again need to in-
troduce additional variables E in order to compute |Gkt|, k ∈ Q, t ∈ H . To
limit the number of such variables and to simplify the formulation, to the
same group we include identical jobs a and b only if either n(a) = n(b) or
n(a) = n(b)+1 and Sa0 < Sb0. Binary variable Ekst, k ∈ Q, s ∈ {1, . . . , |Qk|},
t ∈ Hk, takes value 1 if and only if |Gkt| ≥ s. Again, we do not need to impose
the integrality on these variables. We now present the aggregated alternative
time-indexed ILP formulation. For each k ∈ Q, we set p̄k = pi′

k
, l̄k = li′

k
,

ᾱk = αi′
k
, β̄k = βi′

k
.
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(TIAA)

min
∑

k∈Q

∑

t∈H̄k

Wkt (36)

s.t. Xk,Si0
= i′′k − i + 1, ∀k ∈ Q, i ∈ Gk, (37)

Xk,Si0−1 = i′′k − i, ∀k ∈ Q, i ∈ Gk, (38)

Xk,t−1 ≤ Xkt, ∀k ∈ Q, t ∈ H \ {0}, (39)

Xk,h−p̄i
=
∑

i∈Gk

(n(i) + 1), ∀k ∈ Q, (40)

∑

k∈Q

Xkt −
∑

k∈Q,

t−p̄k≥0

Xk,t−p̄k
≤ 1, ∀t ∈ H, (41)

Ek1t ≥ Xk,t−l̄k+1, ∀k ∈ Q, t ∈ H̄k, t ≥ Si′′
k
,0 + l̄k, (42)

Ekst ≥ Xk,t−l̄k+1 + Ek,s−1,t+1,

∀k ∈ Q, s ∈ {2, . . . , |Qk|}, t ∈ H̄k, t ≥ Si′′
k
,0 + l̄k, (43)

Ekst ≤ Ek,s,t−1 ≤ 1,

∀k ∈ Q, s ∈ {1, . . . , |Qk|}, t ∈ H̄k, t > Si′′
k
,0, (44)

Wkt ≥ ᾱk



Xkt − Xk,t−l̄k
−

|Qk|∑

s=1

Ekst



 , ∀k ∈ Q, t ∈ H̄k, (45)

Wkt ≥ β̄k





|Qk|∑

s=1

Ekst − Xkt + Xk,t−l̄k



 , ∀k ∈ Q, t ∈ H̄k, (46)

Xkt ∈ Z+, ∀k ∈ Q, t ∈ H, (47)

Ekst = 0, ∀k ∈ Q, s ∈ {2, . . . , |Qk|}, t ∈ H̄k, t < Si′
k
+s−1,0.(48)

The constraints (37)-(38) fix the position of the “zero” operations. The
constraints (39) reflect the nature of the variables X. The constraints (40)
state that all operations of jobs in Gk should be processed within the time
horizon. The constraints (41) prevent overlapping. The constraints (42)-(44)
relate the variables X and E. The constraints (45)-(46) are used to compute

the values of the variables W . Here
∑|Qk|

s=1 Ekst = |Gkt|, ∀k ∈ Q, t ∈ H̄k.
The formulation (TIAA) has roughly (2q + n)h variables, qh from which

are integer, (3q + 2n + 1)h constraints and (10q + 8n)h non-zero coefficients
in the matrix. So, the size of this formulation depends first and foremost on
the length of the time horizon h, then on the number of groups of identical
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jobs q, and after all the others on the number of jobs n.

4 Non-compact formulation

The objective function (1) is the sum of penalty functions for jobs. So, for
each job and each possible schedule of this job, we are able associate a binary
variable stating whether this schedule is used or not. Using these variables,
the formulation (TI) can be reformulated and decomposed into the master
problem and n pricing sub-problems (one for each job). We now present
details of this Dantzing-Wolfe formulation.

4.1 The master problem

In the following, Sk
i , k ∈ Ki, is the k-th possible schedule (Sk

i0, S
k
i0, . . . , S

k
i,n(i))

for job i ∈ N , and wk
i be the total penalty for it. Let also χ(i, k, t) be a

characteristic function which indicates whether schedule Sk
i is “active” at

time moment t:

χ(i, k, t) =







1, t ∈

n(i)
⋃

j=0

[Sk
ij , S

k
ij + pi − 1],

0, otherwise.

Binary variable Xik, i ∈ N , k ∈ Ki, represents whether schedule Sk
i is

included in the solution. We are now ready to write down the master problem.

(MP)

min
∑

i∈N

∑

k∈Ki

wk
i Xik (49)

s.t.
∑

i∈N

∑

k∈Ki

χ(i, k, t)Xik ≤ 1, ∀t ∈ H. (50)

∑

k∈Ki

Xik = 1, ∀i ∈ N, (51)

Xik ∈ {0, 1}, ∀i ∈ N, k ∈ Ki. (52)
The constraints (50) forbid overlapping, i.e. state that at each time mo-

ment only one schedule is active. The constraints (51) guarantee that each
job is processed.
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4.2 The pricing sub-problems

The formulation (MP) cannot be directly solved by a MIP solver, as the
number of variables is huge. The standard approach for solving the master
problem is column generation. It consists in iterating between a solution of
the LP relaxation (RMP) of the master problem involving only a subset of the
columns, and the solution of the pricing problem. The pricing sub-problem
for job i ∈ N is used to generate an additional column corresponding to a
schedule in Ki with a negative reduced cost, or to prove that no such column
exists.

Given a solution of (RMP), let π ∈ R
h be the optimal values of the

dual variables which correspond to the constraints (50), and µ ∈ R
n be the

optimal values of the dual variables which correspond to the constraints (51).
Then, the reduced cost for column column Xk

i is equal to

wk
i +

∑

t∈H

χ(i, k, t)πt − µi. (53)

Consequently, to verify if there is a column with a negative reduced cost, the
pricing problem should be solved in which we search a schedule Sk

i minimizing
(53). Given the structure of the reduced cost function (53), the pricing
problem can be decomposed into sub-problems, one for each job i ∈ N .
Each sub-problem can be formally written as

(PSi)
min

∑

j∈N(i)

δi(Sij − Si,j−1) +

n(i)
∑

j=0

Sij+pi−1
∑

t=Sij

πt − µi (54)

s.t. Sij ≥ Si,j−1 + pi, ∀j ∈ N(i), (55)

Si,n(i) + pi ≤ h. (56)
Basically, this sub-problem consists in finding a schedule of operations of

job i which minimizes the sum of the penalty plus a dual cost (an arbitrary
function πt of the starting times of the operations).

As the sequence of the operations is fixed, the problem (PSi) can be solved
by dynamic programming. Let Ri(j, t) denote the minimal reduced cost of a
schedule of operations Oij, . . . , Oi,n(i) assuming that Sij = t. We also define

function Πi(t) =
∑t+pi−1

s=t πs, t ∈ [0, h − pi]. As the basis of the recursion,
we use the fact that Ri(n(i), t) = Πi(t), t ∈ [0, h − pi]. Then, the recursion
formula is

Ri(j, t) = Πi(t) + min
t′∈[t+pi,h−pi]

{δi(t
′ − t) + Ri(j + 1, t′)}, (57)
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where j ∈ {0, . . . , n(i) − 1} and t ∈ [0, h − pi].
The solution value of the problem (PSi) is equal to Ri(0, Sj0)−µi. Using

the recursion above, the problem (PSi) can be solved in O(n(i) · h2) time,
which is not practical. As shown in the next subsection, this can be improved
when using the structure of the penalty function δ.

4.3 Fast algorithm for the pricing sub-problem

First, we define the following functions.

ai(j, t) = argmin
t′∈[0,t]

{αi(t − t′) + Ri(j + 1, t′)},

bi(j, t) = argmin
t′∈[t,h−pi]

{βi(t
′ − t) + Ri(j + 1, t′)}.

Using these functions, we can rewrite the formula (57). If ai(j, t + li) ≥
t + pi then

Ri(j, t) = Πi(t) + min
t′∈{ai(j,t+li),bi(j,t+li)}

{δi(t
′ − t) + Ri(j + 1, t′)}. (58)

If ai(j, t + li) < t + pi then

Ri(j, t) = Πi(t) + min
t′∈[t+pi,t+li)∪{bi(j,t+li)}

{δi(t
′ − t) + Ri(j + 1, t′)}. (59)

We now estimate the complexity of computing values Ri(j, t), t ∈ [0, h−
pi], for a given j. Clearly, when j = n(i), this can be done in O(h) time.
Suppose now that j < n(i) and values Ri(j + 1, t), t ∈ [0, h− pi], are known.
Then, values ai(j, t) and bi(j, t) can be also found in O(h) time in the following
way. We set ai(j, 0) = 0, bi(j, h − pi) = h − pi, and then

ai(j, t) =







t, Pi(j + 1, t) < P (j + 1, ai(j, t − 1))+

αi · (t − ai(j, t − 1)),
ai(j, t − 1), otherwise,

bi(j, t) =







t, Pi(j + 1, t) < P (j + 1, bi(j, t + 1))+

βi · (bi(j, t + 1) − t),
bi(j, t + 1), otherwise.
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So, if one uses the recursion (58)-(59), the complexity of the dynamic
programming algorithm becomes O(n(i) · h · max{1, li − pi}). In practice,
the complexity of solving the problem (PSi) is close to O(n(i) · h). Experi-
ments showed that the time needed to solve the pricing sub-problems for all
jobs is negligible in comparison with the overall running time of the column
generation algorithm.

At some iteration of the column generation procedure, no column with
a negative reduced cost will be found after resolution of all the pricing sub-
problems. In this case, the procedure stops and gives an optimal solution of
the LP relaxation of the master problem (MP). Of course, this solution can
be fractional. Therefore, the column generation approach should be com-
plemented by a branching procedure. Such a combination is conventionally
called a branch-and-price algorithm.

4.4 Branch-and-price algorithm

One of the most important properties of a branch-and-price algorithm is
that its branching procedure should not destroy the structure of the pricing
problem. Otherwise, the algorithm for solving the pricing problem could
not be applied beyond the top node of the search tree. For example, a
usual way to branch on variables of the master problem is not appropriate
in our case. At a node of the search tree, where some variables are fixed to
zero, application of the dynamic programming algorithm presented above is
not possible. The latter cannot take into account the additional constraints
stating that some particular schedules should not be considered. Moreover,
the branching on variables X would result in a highly unbalanced search tree.

Instead, we propose to branch on the domains of possible starting times
of operations. Given a feasible solution X ′ of the LP relaxation of the for-
mulation (MP), let Z ′

ijt be the part of operation Oij started at time moment
t in X ′:

Z ′
ijt =

∑

k∈Ki,

Sk
ij=t

X ′
ik, i ∈ N, j ∈ N(i), t ∈ H.

It is easy to see that Z ′ is integer if and only if X ′ is integer. If the solution
X ′ is fractional (and therefore Z ′ is), we compute mean starting times for all
operations

S ′
ij =

∑

t∈H

tZ ′
ijt, i ∈ N, j ∈ N(i),
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and choose an operation Oi′j′ with the maximum deviance D′
i′j′, where

D′
ij =

∑

t∈H

Z ′
ijt(t − S ′

ij)
2, i ∈ N, j ∈ N(i).

Then, two child nodes are created. At the first one, we add the constraint
Si′j′ ≤ ⌊S ′

i′j′⌋, and at the second one, the constraint Si′j′ ≥ ⌊S ′
i′j′⌋ + 1 is

added.
Note that the dynamic programming algorithm for the pricing sub-problems

can easily take into account these additional constraints. If, at the current
node of the search tree, the domain of possible starting times of operation
Oij, i ∈ N , j ∈ N(i), is equal to [Sij, Sij], then the recursion formula (57)
becomes

Ri(j, t) = Πi(t) + min
t′∈[max{t+pi,Si,j+1},Si,j+1]

{δi(t
′ − t) + Ri(j + 1, t′)}.

The recursion (58)-(59) can be also modified appropriately.
To accelerate the search in the branch-and-price tree, at each node, a

heuristic is executed to obtain an upper bound. The heuristic transforms
a fractional solution Z ′ of the column generation procedure to a feasible
solution. For this, we use the notion of an α−point [10]. An α−point of
operation Oij is defined to be the first time moment t(αij), 0 < αij ≤ 1, in
which the αij fraction of operation Oij has been started, according to Z ′:

t(αij) = min

{

t ∈ H :

t∑

t′=0

Z ′
ijt ≥ αij

}

.

The heuristic sequence of operations is obtained by ordering them ac-
cording to their α−points. Then, the best schedule is found in which the
operations are processed according to the heuristic sequence. For this, it
suffices to solve a linear program.

In our implementation, at each node of the search tree, 30 heuristic
schedules are built, and the best one is chosen. The first 10 schedules Sk,
k = {1, . . . , 10}, are obtained using αij = 1/k. To build a schedule from the
last twenty, the values αij , are chosen randomly. The penalty of the best
found schedule gives us an upper bound.

21



5 Experimental research

We have performed an experimental research to compare the practical effi-
ciency of the formulations (TI), (TIA) and (MP). All tests have been per-
formed on 1.8 GHz PC running Linux. We use Cplex 10.1 as an LP and
MIP solver.

In the experiments, we were interested in the efficiency of both the LP
relaxations of the formulations and the formulations themselves. In the fol-
lowing, we will present results for the following statistics:

• LB — lower bound given by an LP relaxation, or the best lower bound
obtained while solving a formulation.

• UB — the best upper bound (solution) obtained while solving a for-
mulation.

• Tm — the time needed to solve an LP relaxation/formulation (if the
resolution was interrupted before the termination, the time limit is
given, preceded by “>”).

• Nd — the number of nodes in the branch-and-bound or branch-and-
price tree.

First, we have tested the formulations of thee small instances, which data
is given in Table 2. These test instances are of the same type as real life
instances but of a reduced size. Results are presented in Table 3.

Instance bib2 bib3 bib5
n 3 5 6

(n(i); pi, di; αi, βi) (4; 9,35; 10,10) (4; 9,50; 10,10) (4; 6,50; 2,2)
(4; 13,35; 10,10) (4; 9,50; 10,10) (4; 6,50; 2,2)

(12; 5,5; 1,1) (4; 13,50; 10,10) (5; 6,40; 2,2)
(4; 13,50; 10,10) (4; 9,50; 1,1)

(6; 5,5; 1,1) (4; 9,50; 1,1)
(5; 9,40; 1,1)

h 150 208 200

Table 2: Data for small instances
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Test (TIS) (TIAA) Branch-and-price
LB UB Tm LB UB Tm LB UB Tm

bib2(LP) 62.3 1.3s 136.5 0.3s 143.2 9.1s
bib2 101.8 1604 >10m 248.0 248 17s 248.0 248 6m

bib3(LP) 132.0 3.4s 188.5 1.2s 243.8 9.0s
bib3 158.4 — >10m 302.0 302 32s 302.0 302 37s

bib5(LP) 10.0 0.3s 46.0 1.4s 46.0 1.4s
bib5 15.0 132 >30m 105.0 105 11m 105.0 105 23m

Table 3: Comparison of formulations

From these results it is clear that the formulation (TIS) is much less effi-
cient than the other two formulations. So, it was excluded from the following
numerical experiments.

The second set of test instances was generated together with the en-
gineering department of Thales (www.thalesonline.com). These instances
represent real life situations arising while using an airborne radar. Note that,
in reality, the length of a time unit is usually set to 1 millisecond. In our
experiments, we increased this length to 10 milliseconds to decrease the size
of instances. However, in most cases, this increase does not have an impact
on the set of optimal solutions (as the durations of dwells and frequencies are
usually multiples of 10). The results for the second set of test instances are
presented in Tables 4 and 5. Note that the first number in the names of the
“bib” instances denotes jobs number, and the second one — total number of
operations (excluding the “zero” operations). For the “sc” instances, these
numbers are shown in brackets.

In general, the efficiency of the algorithms when solving real life instances
is satisfactory. The instances of the type “bib” seem to be easier to solve
than instances of the type “sc”. This can be explained by the fact that, for
the “bib” instances, the LP relaxation lower bound is quite strong. For the
“bib” instances which were not solved optimally, the gap between lower and
upper bounds found is small. An exception is the instance “bib 20 171 i1”.
The reason seems to be its size, mainly the length of the time horizon.

The instances of the type “sc” are very hard for the branch-and-price
algorithm. The column generation procedure on the top node could not
even terminate in a reasonable time (therefore the results for these instances
are not presented in Table 5). The reason is that such instances contain
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jobs representing research dwells (for these jobs we have pi = li) with large
number of operations. These instances are highly symmetric, i.e. there
are an enormous number of schedules (and columns) with the same penalty
value. Therefore the column generation algorithm needs to generates a lot
of columns before converging to an optimum.

The formulation (TIAA) is much more successful on the “sc” instances.
In some time, it manages to close the LP relaxation gap which is quite
significant.

Finally, we tested the formulation (TIA) and the branch-and-price algo-
rithm on random test instances generated using the following procedure. The
time horizon length h, the density d (the relation between the total process-
ing time of operations and the horizon length), the number n of jobs and
the total number of operations o =

∑n

i=1 n(i) are fixed. Let a = ⌊ o
n
⌋ and

b = ⌊dh
o
⌋. Then, for each job i ≤ n, n(i) and pi are uniformly generated over

[1, 2a] and [1, 2b] accordingly in such a way that
∑n

i=1 pin(i) = dh. Next, for
each job i, we set li = ⌊ h

n(i)
⌋. At last, “zero” operations are scheduled before

time moment 0 one just after another in the reverse order:

S10 = −p1, Si0 = Si−1,0 − pi, i ∈ [2, . . . , n].

The instances were generated for the next values of the parameters: h ∈
{250, 500}, d ∈ {0.5, 0.75, 1.0}, o ∈ {30, 60, 100, 150}, n ∈ {3, 6, 15, 30}. For
each combination of values {h, d, o, n} satisfying the conditions 3o < dh and
3n < o, 2 instances were created. Therefore, in total, 234 instances were
tested.

The formulation (TIS) was not tested. Firstly, because of its poor results
for the three small instances. Secondly, because of the quality of the lower
bound given by the LP relaxation of the formulation (TIS). For the gener-
ated random instances, it was always less than the lower bound of the LP
relaxation of the formulation (TIA), and on the average the relation between
these two bounds was only 25.7%.

In the following, we present results for the following statistics:

• P — percentage of instances solved within 30 minutes.

• Tm — average solution time (if, for some instance, the time limit of
1800 seconds was reached, this time limit is included into statistics).

• Gap — average difference between the best upper bound known and the
best lower bound obtained, in percents from the best solution known
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(this statistics takes into account only instances for which an upper
bound is known and the LP relaxation can be solved within the time
limit).

• Nd — average number of nodes in the branch-and-bound or branch-
and-price tree (only instances for which the LP relaxation can be solved
within the time limit).

The results for the random instances are presented in Tables 6 and 7. The
statistics for the whole set of instances show that the efficiency of the both
approaches is roughly the same. The strength of the lower bound given by the
solution of the LP relaxation of the formulation (TIA) is almost the same in
comparison to the lower bound obtained by the column generation procedure
(in average, the relation is 94.2%). This advantage of the column generation
procedure results in slightly smaller gaps on average for the branch-and-price
algorithm. Unfortunately, these gaps remain quite large even after 30 minutes
of the solution time. So, the random instances happened to be harder to solve
than the real life instances.

It can be also seen that instances with longer time horizon or with bigger
operations density d are harder to solve. The impact of the number of jobs is
not that simple. The results show that instances with small number of jobs
are simpler for the formulation (TIA) and harder for the branch-and-price
algorithm. This can be better seen in Table 8 where detailed results for the
statistics TLP , GapLP and Gap are presented. From Table 8 it is clear that
such a dependence of the approach efficiency from the number of jobs comes
from the LP relaxations. The solution of the LP relaxation of the formulation
(TIA) takes much more time for instances with larger number of jobs. The
contrary takes place when the column generation procedure is concerned.

The main conclusion of the experimental research is that the formulation
(TIA) or (TIAA) should be used when the number of jobs (or the number of
groups of identical jobs) is small (6 or less). When the number of jobs is more
and each job contains a moderate number of operations, the branch-and-price
algorithm should be preferred.

6 Conclusions and perspectives

In this paper we have introduced a generalization for the classic earliness-
tardiness single machine scheduling problem. The motivation for this gen-
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eralization came from the airborne radars scheduling. Given the theoretical
and practical complexity of the problem and a shortage of time we possess
to find a solution, heuristics should be used in practice. In this work, for the
first time, we have proposed methods to find good lower bounds and optimal
solutions. Such methods are needed to estimate the quality of heuristics.

Among three methods considered, the theoretical and experimental re-
search showed the superiority of the branch-and-price algorithm and the for-
mulation (TIA) which can be solved by a MIP solver. These two approaches
are somewhat complementary to each other. The latter is better suited for
solving instances with small number of jobs, and the former is more efficient
when applied to instances for which the relation between the total number
of operations and the number of jobs is small.

The approaches we proposed are based on time-indexed MIP formula-
tions which are known to provide tight lower bounds for some scheduling
problems when integrality constraints are relaxed [1, 9]. Unfortunately, this
is not the case for the problem we consider. The results of the experimental
research on a set of random instances showed that usually a significant gap
between lower and upper bound remains even after 30 minutes of the solution
time. Nevertheless, we could solve to optimality many real life instances of a
moderate size. Real life instances seem to be easier to solve than randomly
generated instances, mainly because the integrality gap is usually not large
for them.

The solution methods presented seem to be straightforwardly modifiable
for the multi-machine variant (when machines or radars are identical) and
for the cyclic variant of the problem (with a fixed cycle length h). Note that
Theorem 2 holds for the cyclic variant. Different objective functions which
make sense in practice can be also considered.

In order to increase efficiency of the methods proposed, one may think of
applying a Lagrangean relaxation. For example, in [12], such an approach
was quite efficient in the context of a time-indexed formulation.
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Test h q LBLP TmLP LB UB Tm Nd
sc 2 01 4 (10,87) 600 4 59.1 185s 100.4 100.4 93m 448
sc 2 02 4 (10,75) 600 3 59.0 26s 92.7 92.7 37m 2038
sc 4 01 4 (11,77) 450 4 46.4 30s 74.3 74.3 15m 545
sc 4 02 4 (11,58) 450 4 43.9 14s 64.0 64.0 8m 568
sc 5 01 4 (11,91) 600 6 89.8 11m 528.7 528.7 212m 1087
sc 5 02 4 (11,80) 600 5 84.8 3m 143.1 143.1 54m 215
bib 9 57 i2 500 2 27000 1s 27000 27000 1s 0
bib 14 62 i2 500 2 3840 3s 3840 3840 3s 0
bib 14 83 i2 500 3 33500 21s 33500 33500 21s 0
bib 15 91 i2 500 5 7885.1 44s 8560 8560 79m 406
bib 15 91 i4 500 5 6723.5 24s 6728.2 6728.2 200s 18
bib 15 91 i8 500 5 80.2 88s 85.6 85.6 507s 265
bib 15 93 i2 500 5 8227.1 48s 8378.3 8880 >2h 1115
bib 15 93 i4 500 5 6728.6 47s 6730.2 6730.2 101s 5
bib 15 93 i8 500 5 85.6 102s 87.6 87.6 364s 65
bib 15 96 i2 500 5 8659.3 77s 8735.9 9810 >2h 338
bib 15 96 i4 500 5 6736.2 56s 6737.2 6737.2 64s 0
bib 15 96 i8 500 5 90.6 81s 94.6 94.6 857s 314
bib 18 72 i4 500 4 8598.8 7s 8653.8 8653.8 550s 169
bib 18 74 i8 500 4 87.3 89s 89.8 96.2 >2h 2811
bib 18 76 i2 500 4 7152.3 50s 7184.3 7184.3 158s 10
bib 15 151 i4 900 5 286.5 129s 292.7 292.7 321s 14
bib 15 151 i10 900 5 34.7 390s 44.9 44.9 6367s 571
bib 20 171 i1 1350 6 6977.2 5960s 6978.3 - >2h 1

Table 4: Results for real life instances — the formulation (TIAA)
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Test h LBLP TmLP LB UB Tm Nd
bib 9 57 i2 500 27000 2s 27000 27000 2s 0
bib 14 62 i2 500 3840 1s 3840 3840 1s 0
bib 14 83 i2 500 33500 52s 33500 33500 52s 0
bib 15 91 i2 500 8019.5 4s 8560 8560 24m 513
bib 15 91 i4 500 6728.2 2s 6728.2 6728.2 2s 0
bib 15 91 i8 500 84.8 2s 85.6 85.6 445s 355
bib 15 93 i2 500 8468.2 5s 8684.5 8760 >5h 4076
bib 15 93 i4 500 6730.2 5s 6730.2 6730.2 5s 0
bib 15 93 i8 500 86.7 4s 87.6 87.6 638s 131
bib 15 96 i2 500 8826.1 29s 9428.7 9700 >5h 338
bib 15 96 i4 500 6737.2 96s 6737.2 6737.2 96s 0
bib 15 96 i8 500 93.0 11s 94.6 94.6 6322s 17
bib 18 72 i4 500 8598.8 7s 8653.8 8653.8 3821s 2855
bib 18 74 i8 500 88.8 4s 95.9 95.9 4617s 1143
bib 18 76 i2 500 7153.7 12s 7184.3 7184.3 13082s 879
bib 15 151 i4 900 292.7 16s 292.7 292.7 16s 0
bib 15 151 i10 900 43.8 343s 44.0 44.9 >5h 4
bib 20 171 i1 1350 7524.8 10515s 7524.8 13210 >5h 2

Table 5: Results for real life instances — branch-and-price algorithm

Selection PLP TmLP GapLP P Tm Gap Nd
All instances 94.9% 222s 60.0% 26.1% 1458s 40.4% 2902
h = 250 100.0% 13s 57.2% 44.4% 1187s 26.4% 4660
h = 500 92.6% 315s 61.5% 17.9% 1578s 47.6% 1537
d = 0.5 100.0% 13s 47.6% 71.4% 772s 11.9% 1430
d = 0.75 100.0% 155s 59.3% 24.1% 1550s 37.9% 4090
d = 1.0 88.6% 363s 69.0% 13.3% 1597s 55.3% 4577
n = 3 100.0% 5s 68.2% 45.2% 1104s 37.4% 4291
n = 6 100.0% 36s 59.9% 22.6% 1568s 41.4% 1618
n = 15 100.0% 403s 50.4% 8.3% 1756s 45.5% 309
n = 30 33.3% 1614s 28.0% 0.0% 1800s 27.6% 1

Table 6: Results for random instances — the formulation (TIA)
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Selection PLP TmLP GapLP P Tm Gap Nd
All instances 93.2% 212s 57.2% 26.1% 1385s 32.4% 802
h = 250 97.2% 72s 54.6% 37.5% 1202s 20.8% 1443
h = 500 91.4% 274s 58.4% 21.0% 1467s 37.9% 499
d = 0.5 100.0% 1s 46.5% 73.8% 512s 5.2% 1389
d = 0.75 100.0% 2s 57.0% 33.7% 1321s 23.3% 1322
d = 1.0 86.7% 422s 63.8% 12.4% 1611s 48.8% 713
n = 3 86.9% 294s 67.5% 33.3% 1272s 35.7% 965
n = 6 94.1% 231s 57.6% 30.6% 1313s 30.1% 849
n = 15 100.0% 96s 47.8% 14.6% 1554s 31.9% 677
n = 30 100.0% 50s 38.7% 0.0% 1800s 30.3% 268

Table 7: Results for random instances — the branch-and-price algorithm

Branch-and-price
TmLP GapLP Gap

d = 0.5 0.75 1.0 0.5 0.75 1.0 0.5 0.75 1.0
n = 3 .2s 3s 682s 56% 70% 77% 8% 29% 67%
n = 6 .3s 1s 539s 45% 58% 65% 5% 23% 51%
n = 15 .6s 2s 191s 21% 46% 56% 0% 21% 49%
n = 30 - 2s 74s - 26% 45% - 10% 40%

Formulation (TIA)
TmLP GapLP Gap

d = 0.5 0.75 1.0 0.5 0.75 1.0 0.5 0.75 1.0
n = 3 1s 3s 9s 58% 72% 74% 8% 37% 56%
n = 6 8s 23s 61s 46% 61% 69% 17% 40% 57%
n = 15 63s 256s 600s 22% 48% 59% 8% 41% 58%
n = 30 - 1243s 1800s - 28% - - 28% -

Table 8: Detailed results for random instances
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