
On Sheduling a Single Mahine to Minimize a PieewiseLinear Objetive Funtion : A Compat MIP FormulationPhilippe Baptiste∗ Ruslan Sadykov∗June 20, 2008AbstratWe study the sheduling situation in whih a set of jobs subjeted to release datesand deadlines are to be performed on a single mahine. The objetive is to minimizea pieewise linear objetive funtion ∑

j Fj where Fj(Cj) orresponds to the ost of theompletion of job j at time Cj . This lass of funtion is very large and thus interesting bothfrom a theoretial and pratial point of view: It an be used to model total (weighted)ompletion time, total (weighted) tardiness, earliness and tardiness, et. We introduea new Mixed Integer Program (MIP) based on time interval deomposition. Our MIPis losely related to the well-known time-indexed MIP formulation but uses muh lessvariables and onstraints. Experiments on aademi benhmarks as well as on real-lifeindustrial problems show that our generi MIP formulation is e�ient.Keywords: Mixed Integer Program, Sheduling, Earliness, Tardiness1 IntrodutionA huge amount of researh has been arried on single mahine �total ost� sheduling prob-lems over the last 60 years. However, most of the papers are dediated to speial ases andthere are few results on generi objetive funtions. Objetive funtions of real-life manufa-turing problems are often muh more omplex than the well-known sheduling riteria suhas total (weighted) ompletion time, total (weighted) tardiness, earliness and tardiness, et.For instane, the ombination of time windows (release dates and deadlines) together witha sum objetive funtion is almost never onsidered in the literature. We refer to [40℄ for abrief overview of the omplexity of the manufaturing sheduling problems enountered bythe users of Ilog's Integrated prodution planning and sheduling software.The objetive of this paper is to introdue a new, e�ient and non-trivial MIP formulationthat an be used on a large variety of single mahine sheduling problem.
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We study the sheduling situation in whih a set N of jobs {1, 2, . . . , n} have to to beproessed without preemption on a single mahine. Eah job j ∈ N has a release date rj , apositive proessing time pj > 0 and a deadline dj . For eah job j, we also have a ost funtion
Fj whih is a pieewise linear funtion of the ompletion time Cj of j. If the deadline dj ofjob j is not expliitly given, it an be set to the sum of the beginning of the last linear pieeof Fj and the total proessing time of jobs. The objetive is to minimize the overall ost
∑

j Fj(Cj). This lass of funtions is very large and thus interesting both from a theoretialand pratial point of view: It an be used to model total (weighted) ompletion time, total(weighted) tardiness, earliness and tardiness, et.We �rst introdue some basi notation for the problem. Let T = maxj∈N dj denote thetime horizon of the problem. Without any loss of generality, we assume that there is a partitionof the interval (0, T ] into a set M = {1, . . . ,m} of intervals Iu = (eu−1, eu] (for u ∈ M), i.e.
e0 < e1 < · · · < em, suh that

• the ost funtion of any job j over any interval Iu is linear, i.e.,
Fj(Cj) = fu

j + wu
j · (Cj − eu−1), Cj ∈ Iu, u ∈ M, j ∈ N.where fu

j , wu
j are some onstant values (wu

j an be less or equal to zero),
• for every job j ∈ N , rj = ev and dj = eu for some v, u ∈ M .We say that suh a partition is linear. See an example of suh a partition in Figure 1.PSfrag replaements
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CjFigure 1: Linear partition of the time horizon � an example with 2 jobsThe major ontribution of this paper is to introdue a new MIP (Setion 4) for the singlemahine problem. It is based on basi properties (introdued in Setion 3) of linear partitions.This MIP is losely related to time-indexed MIPs (see Setion 2) but it uses muh less variablesand onstraints. A more e�ient (and more omplex) variant of the MIP is desribed inSetion 5. Experimental results are reported in Setion 6.2 Literature ReviewTo formulate the objetive funtion, we introdue the lateness Lj = Cj − dj, the tardiness
Tj = max{0, Lj}, the earliness Ej = max(0, dj −Cj) and the unit penalty Uj, where Uj = 0 if2



Cj ≤ dj and Uj = 1 otherwise. The objetive funtions (depited in Figure 2) to be minimizedare de�ned as follows:
• The Makespan Cmax = maxj Cj,
• the Maximum Lateness Lmax = maxj Lj ,
• the Maximum Tardiness Tmax = maxj Tj ,
• the Total Weighted Completion Time ∑

wjCj ,
• the Total Weighted Tardiness ∑

wjTj ,
• the Total Weighted Number of Tardy Jobs ∑

wjUj .
• the Earliness-Tardiness ∑

αjEj + βjTj.Weights an be all equal to 1 and in this ase, wj is dropped in the above notation.PSfrag replaements
wjCj Lj wjTj wjUj αjEj + βjTjFigure 2: Classial objetive funtions � weighted ompletion time, lateness, weighted tardi-ness, weighted number of late jobs, weighted earliness-tardiness2.1 Spei� Sheduling AlgorithmsIn this setion, it is always assumed that we do not have deadlines. A lot of researh has beenarried on the unweighted total tardiness problem with no release date. Powerful dominanerules have been introdued by Emmons [29℄. Lawler [35℄ has proposed a dynami programmingalgorithm that solves the problem in pseudo-polynomial time. Finally, Du and Leung haveshown that the problem is NP-Hard [27℄. Most of the exat methods for solving the totaltardiness problem strongly rely on Emmons' dominane rules. Potts and Van Wassenhove[43℄, Chang et al.[18℄ and Szwar et al.[54℄, have developed Branh and Bound methods usingthe Emmons rules oupled with the deomposition rule of Lawler [35℄ together with someother elimination rules. The best results have been obtained by Szwar, Della Croe andGrosso [54, 55℄ with a Branh and Bound method that e�iently handles instanes with up to500 jobs. The total weighted tardiness problem (∑wiTi) is strongly NP-Hard [35℄. For thisproblem, Rinnooy Kan et al.[50℄ and Rahamadugu [45℄ have extended the Emmons Rules[29℄. Exat approahes based on Dynami Programing and Branh and Bound have beentested and ompared by Abdul-Razaq, Potts and Van Wassenhove [1℄. Reently, Pan andShi [41℄ have proposed a very e�ient branh-and-bound algorithm whih solves instanes ofthe problem 1 ||

∑

wjTj with up to 100 jobs.There are less results on the total tardiness problem with arbitrary release dates. Chu andPortmann [23℄ have introdued a su�ient ondition for loal optimality whih allows them3



to build a dominant subset of shedules. Chu [21℄ has also proposed a Branh and Boundmethod using e�ient dominane rules. This method handles instanes with up to 30 jobs forthe hardest instanes and with up to 230 jobs for the easiest ones. More reently, Baptiste,Carlier and Jouglet [6℄ have desribed a new lower bound and some dominane rules whihare used in a Branh and Bound proedure whih handles instanes with up to 50 jobs for thehardest instanes and 500 jobs for the easiest ones. Let us also mention that exat Branhand Bound proedures have been proposed for the same problem with setup times [46, 53℄.For the total weighted tardiness problem (∑ wiTi) with release dates, Akturk and Ozdemir [3℄have proposed a su�ient ondition for loal optimality whih improves heuristi algorithms.This rule is then used with a generalization of Chu's dominane rules to the weighted ase ina Branh and Bound algorithm [2℄. This Branh and Bound method handles instanes withup to 20 jobs. Reently Jouglet et al. [32℄ have proposed a new Branh and Bound that solvesall instanes with up to 35 jobs.For the total ompletion time problem (∑wiCi), in the ase of idential release dates, boththe unweighted and the weighted problems an easily be solved polynomially in O(n log n) byapplying the Shortest Weighted Proessing Time priority rule, also alled Smith's rule [52℄.For the unweighted problem with release dates, several researhers have introdued dominaneproperties and proposed a number of algorithms [17, 26, 25℄. Chu [20, 22℄ has proved severaldominane properties and has provided a Branh and Bound algorithm. Chand, Traub andUzsoy used a deomposition approah to improve Branh and Bound algorithms [16℄. Amongthe exat methods, the most e�ient algorithms [20, 16℄ an handle instanes with up to 100jobs. The weighted ase with release dates is NP-Hard in the strong sense [49℄ even when thepreemption is allowed [34℄. Several dominane rules and Branh and Bound algorithms havebeen proposed [10, 11, 31, 48℄. To our knowledge, the best results are obtained by Pan andShi [42℄ with a hybrid Branh and Bound-Dynami Programming algorithm whih has beentested on instanes involving up to 200 jobs.Many exat methods have been proposed for the problem of minimizing the number of latejobs (∑Ui) [7, 24, 8℄. More reently, Sadykov [51℄ and M'Hallah and Bul�n [38℄ have proposede�ient exat algorithms for solving the general ase of this problem: 1 | rj |
∑

wjUj. Bothalgorithms are able to solve instanes with up to 100 jobs.Less papers are devoted to the problem with the earliness-tardiness objetive funtion. TheBranh and Bound algorithm by Sourd and Kedad-Sidhoum [30℄ and Branh and Bound andDynami Programming algorithms by Yau et al. [59℄ an be used to solve optimally instanesof the problem 1 ||
∑

αjEj + βjTj with up to 50 jobs. Another Branh and Bound algorithmhas been earlier proposed by Chen, Chu and Proth [19℄.2.2 Generi MIP FormulationsTime Indexed FormulationWhen all proessing times pj of jobs are integers, the single-mahine non-preemptive shedul-ing problem with an arbitrary ost funtion an be formulated as an Integer Program usingtime-indexed variables. Binary variable Xjt, j ∈ N , t ∈ [0, T ), takes value 1 if job j starts attime t, and otherwise Xjt = 0. We then have
4



min

T
∑

t=0

Fj(t + pj)Xjt (1)
s.t.

dj−pj
∑

t=rj

Xjt = 1, j ∈ N, (2)
∑

j∈N

t
∑

s=max{0,t−pj+1}

Xjs ≤ 1, t ∈ [0, T ), (3)
Xjt ∈ {0, 1}, j ∈ N, t ∈ [0, T ). (4)The onstraints (2) state that eah job starts exatly one within its time window. Theonstraints (3) guarantee that, at eah time moment, only one job is proessed. Release datesand deadlines an be taken into aount by setting appropriate variables to zero.The time-indexed formulation is known for more than 40 years. It was used, for example,in the works by Bowman [13℄, Pritsker et al. [44℄, Redwine and Wismer [47℄. The polyhedralstudy of this formulation was onduted by Dyer and Wolsey [28℄, Sousa and Wolsey [33℄,Akker et al. [57℄. The main advantage of this formulation is that, by solving its LP relaxation,one an obtain a very strong lower bound on the optimal solution value. In the speial asewhere proessing times are equal (∀i, pi = p), many problems turn to be polynomially solvable(see [5, 4℄) and the the ontinuous relaxation of the time-indexed formulation is sometimesintegral [15, 56, 58℄.Another obvious advantage is the possibility to model single-mahine non-preemptive prob-lem with any objetive funtion. Unfortunately, the formulation has one big drawbak. Forpratial instanes with a large number of jobs and large proessing times, the size of theformulation beomes so large that it is di�ult to solve even its LP relaxation in a reasonabletime.Linear Ordering FormulationAnother way to solve some single-mahine sheduling problems by Integer Programming is touse the following linear ordering formulation. Binary variable δij , i, j ∈ N , takes value 1 ifjob i preedes job j, and otherwise δij = 0. Continuous variable Cj, j ∈ N , represents theompletion time of job j. Now we an write the formulation for the ase without release dates.

min
∑

j∈N

Fj(Cj) (5)
s.t. δij + δji ≤ 1, i, j ∈ N, i < j, (6)

δij + δjk + δki ≤ 2, i, j, k ∈ N, i 6= j 6= k, (7)
dj ≥ Cj ≥

∑

i∈N,i6=j

piδij + pj, j ∈ N, (8)
δij ∈ {0, 1}, i, j ∈ N, i 6= j. (9)The onstraints (6) state that, for every pair of jobs, one should preede the other. Theonstraints (7) guarantee that, for every triple of jobs i, j, k ∈ N , if i preedes j and jpreedes k then i should preede k. The onstraints (8) relate the variables δ and C. To be5



able to express the objetive funtion ∑

j∈N Fj(Cj) using linear onstraints, Fj(Cj) should bepieewise linear and onvex.In order to take into aount the di�erent release dates (and thus, possible idle times inthe shedule), the onstraints
dj ≥ Cj ≥ rj + pj, j ∈ N, (10)should be added, and the onstraints (6) and (7) should be hanged to

Ci ≥ Cj + pi − M ′δij , i, j ∈ N, i 6= j, (11)where M ′ is su�iently big. In our ase, M ′ an be set to maxj∈N dj − minj∈N rj. Theonstraints (11) are usually alled �big-M� onstraints.A better variant of the linear ordering formulation for the ase with di�erent release datesand a regular (non-dereasing) objetive funtion was proposed by Nemhauser and Savels-bergh [39℄. The linear ordering formulation is ompat but its ontinuous relaxation is knownto be weaker (experimentally) than the ontinuous relaxation of the time-indexed formulation,espeially when the �big-M� onstraints are used. A more detailed survey on di�erent MIPformulations for mahine sheduling problems an be found in [37℄.3 Basi ResultsWe say that job j is �started� in interval Iu if its starting time is greater than or equal to eu−1and less than eu. We say that job j is �ompleted� in interval Iu if its ompletion time is suhthat eu−1 < Cj ≤ eu. Let Qu denote the set of jobs started and ompleted in interval Iu:
Qu =

{

j ∈ N :
(

Sj , Cj

]

⊆ Iu

}

.Claim 1 There exists an optimal shedule in whih, for any interval Iu, u ∈ M , and any twojobs i, j ∈ Qu, job i is sequened before job j when wu
i

pi
>

wu
j

pj
.This laim is based on a simple exhange argument between onseutive jobs. It is a straight-forward adaptation of Smith's rule (see for instane [14℄). In the following, we denote by σua permutation of jobs {1, 2, . . . , n} in whih �long� jobs ome �rst in any order, and �short�jobs ome last aording to Smith rule:

pi < eu − eu−1, pj < eu − eu−1,
wu

i

pi
>

wu
j

pj

or

pi ≥ eu − eu−1, pj < eu − eu−1















⇒ σu(i) < σu(j), ∀i, j ∈ N.Although several permutations satisfy this ondition, for eah u ∈ M , only one of them isused in the remaining of the paper. The neessity of moving �long� jobs to the beginning ofthe permutation will be lear in Setion 5.De�nition 1 Given a linear partition {Iu}u∈M , a shedule is alled anonial if, for eah
u ∈ M , 6



• there is at most one idle time period per interval Iu,
• jobs in Qu are proessed aording to the permutation σu, where jobs j ∈ Qu with wu

j ≥ 0are proessed before the idle time period in Iu and jobs j ∈ Qu with wu
j < 0 are proessedafter the idle time period in Iu (see Figure 3).

PSfrag replaements
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Figure 3: Sequening of jobs in a anonial sheduleClaim 2 There exists an optimal anonial shedule.Proof: Consider an optimal shedule whih is not anonial and u ∈ M suh that jobs in

Qu are not proessed aording to σu. Obviously, | Qu |≥ 2, meaning that j ∈ Qu ⇒ pj <
eu − eu−1. Now we rearrange jobs in Qu aording to σu. By Smith's rule, the ost of theshedule do not inrease, and the shedule remains optimal. Then, we shift jobs j ∈ Qu,
wu

j ≥ 0, to the left, and jobs j ∈ Qu, wu
j > 0, to the right as muh as possible and as longas they remain in Qu. By doing this, we again do not inrease the ost of the shedule andredue the number of non-empty idle time periods in Iu to at most one. By implementing thisproedure for eah u ∈ M , we obtain an optimal anonial shedule. �So, we an restrit our searh for an optimal solution to only anonial shedules. There-fore, our problem redues to

• determining in whih intervals jobs are started and ompleted;
• �nding the lengths of the idle time periods in eah interval.In the paper, we rely on the following notation. Let Bu

j and Au
j , j ∈ N , u ∈ M , be the setsof jobs whih ome, respetively, before and after job j in the permutation σu. Let also NBuand NSu denote the sets of �big� and �small� jobs for a given interval Iu: NBu = {i ∈ N :

pi > eu − eu−1}, NSu = {i ∈ N : pi ≤ eu − eu−1}. We also de�ne the sets ABu
j = Au

j ∩NBu,
BBu

j = Bu
j ∩ NBu, ASu

j = Au
j ∩ NSu, BSu

j = Bu
j ∩ NSu.4 The interval-indexed formulationFirst, we introdue the variables of the model. The binary variable Xu

j , j ∈ N , u ∈ M , takesvalue 1 if job j is started in interval Iu or earlier, and otherwise Xu
j = 0. The binary variable

Y u
j , j ∈ N , u ∈ M , takes value 1 if job j is ompleted in interval Iu or earlier, and otherwise

Y u
j = 0. For eah j ∈ N , we set X0

j = 0, Xm
j = 1, Y 0

j = 0, Y m
j = 1. The ontinuous variable

Wu, u ∈ M , denotes the length of the idle time period in interval Iu. The ontinuous variables7



F u
j , j ∈ N , u ∈ M , are used to ompute the di�erene between the atual ost of job j andthe minimum ost of j over the interval Iu:

F u
j =











0, Cj 6∈ Iu or wu
j = 0,

Cj − eu−1, Cj ∈ Iu and wu
j > 0,

eu − Cj , Cj ∈ Iu and wu
j < 0,Then, if job j is ompleted in interval Iu, Fj(Cj) = fu

j + |wu
j |F

u
j , and the objetive funtionan be written as

min
∑

j∈N

∑

u∈M

| wu
j | F u

j +
∑

j∈N

∑

u∈M

min{Fj(eu−1), Fj(eu)}(Y u
j − Y u−1

j ). (12)4.1 Feasibility onstraintsEah anonial shedule is determined by a vetor (X,Y,W ) ∈ {0, 1}nm × {0, 1}nm × R
m
+ ofinstantiated variables. The following onstraints desribe feasible anonial shedules.

Y u−1
j ≤ Y u

j , ∀u ∈ M, ∀j ∈ N, (13)
Xu−1

j ≤ Xu
j , ∀u ∈ M, ∀j ∈ N, (14)

Y u
j ≤ Xu

j , ∀u ∈ M, ∀j ∈ N, (15)
Xu−1

j ≤ Y u
j , ∀u ∈ M, ∀j ∈ NSu, (16)

Y u
j ≤ Xu−1

j , ∀u ∈ M, ∀j ∈ NBu, (17)
Xu

j = 0, ∀j ∈ N, rj = eu, (18)
Y u

j = 1, ∀j ∈ N, dj = eu, (19)
∑

j∈N

pjY
u
j +

u
∑

v=1

Wv ≤ eu −
∑

i∈N

ǫ(Xu
i − Y u

i ), ∀u ∈ M, (20)
∑

j∈N

pjX
u
j +

u
∑

v=1

Wv ≥ eu +
∑

i∈N

ǫ(Xu
i − Y u

i ), ∀u ∈ M, (21)
∑

i∈N

(Xu
i − Y u

i ) ≤ 1, ∀u ∈ M, (22)
Wu ≤ eu − eu−1 − (eu − eu−1) ·

∑

i∈N

(

Xu−1
i − Y u

i

)

, ∀u ∈ M, (23)
∑

i∈NBu

(Xu−1
i − Y u

i ) + Y u
j − Xu−1

j ≤ 1, ∀u ∈ M, ∀j ∈ NSu, (24)
Y u

j ∈ {0, 1}, ∀u ∈ M,∀j ∈ N, (25)
Xu

j ∈ {0, 1}, ∀u ∈ M,∀j ∈ N. (26)The inequalities (13) and (14) ensure that the values taken by variables Y and X areonsistent with the de�nition of these variables. The onstraints (15) state that, if a job isompleted in some interval, it should be started in this interval or before. The inequalities(16) re�et the fat that, if a job is �small� for an interval, it annot be started before thebeginning of the interval and ompleted after the end of the interval. The inequalities (17)state that, if a job is �big� for an interval, it annot be started and ompleted in this interval.8



Note that the onstraints (16) and (17) an be omitted after a suitable modi�ation of theinequalities (13) and (15). The onstraints (18) and (19) are needed to take into aount therelease dates and deadlines of jobs.The onstraints (20), (21) guarantee that the sum of the proessing times of jobs ompleted(started) in the �rst u intervals plus the total idle time in these intervals is not more (less) than
eu, i.e. the total length of these intervals. The terms with ǫ are used here to impose the stritonditions: if job j is started in Iu then Sj < eu; if job j is ompleted in Iu then Cj > eu−1.
ǫ should be hosen in suh a way that, for all u ∈ M , eu/ǫ is integer, and for all j ∈ N , pj/ǫis integer. Note that the terms with ǫ an be omitted as long as fu−1

j + wu
j (eu − eu−1) ≤ fu

jfor all u ∈ M , j ∈ N (this obviously holds for regular objetive funtions).The onstraints (22) state that there is at most one job that is started before time moment
eu and �nished after it. The onstraints (23) put the length of the idle time period in an intervalto zero, if some job is started before the beginning of the interval and ompleted after the endof the interval. Note that the onstraints (23) imply the onstraints (22). The onstraints(24) eliminate the possibility of �overlapping�, when some job i is started before the beginningof an interval Iu and ompleted after the end of Iu and some job j is fully proessed insideinterval Iu.We have just showed that the onstraints (13)-(26) are valid. In other words, if a anonialshedule is feasible, the orresponding vetor (X,Y,W ) satisfy the onstraints (13)-(26). Wenow show that these onstraints su�e to desribe the set of all feasible anonial shedules.Proposition 1 Given a linear partition {Iu}u∈M , let vetor (X,Y,W ) satisfy the onstraints(13)-(26). Then the orresponding anonial shedule is feasible.Proof: Let x(j), j ∈ N , be the index suh that X

x(j)
j − X

x(j)−1
j = 1 and y(j), j ∈ N , bethe index suh that Y

x(j)
j − Y

x(j)−1
j = 1. By the onstraints (14) and (13), x(j) and y(j) arede�ned identially. We �rst show that there is a permutation (j1, j2, . . . , jn) of jobs whihsatis�es the ondition
y(jk−1) ≤ x(jk), k ∈ {2, . . . , n}. (27)For this, we prove that there is no pair (i, j) of jobs suh that x(i) < y(j) and x(j) < y(i).Consider a pair (i, j) of jobs. Suppose that x(i) < y(j) and x(j) < y(i). Note that, by theonstraints (15), x(i) ≤ y(i) and x(j) ≤ y(j). Then, there an be two possibilities.1. Let x(i) < y(i) and x(j) < y(j). We denote x = max{x(i), x(j)} and y = min{y(i), y(j)}.Then we have x < y, and therefore Xx

i = Xx
j = 1 and Y x

i = Y x
j = 0. But this is impos-sible due to the onstraints (22). Contradition.2. Let x(i) = y(i) or x(j) = y(j). Without loss of generality, assume that x(j) = y(j).Then X

x(j)
j = Y

x(j)
j = 1, X

x(j)−1
j = Y

x(j)−1
j = 0, and j ∈ NSx(j), otherwise theonstraints (17) would be violated. We have x(i) < y(j) = x(j) < y(i), therefore

X
x(j)−1
i = 1, Y

x(j)
i = 0, and i ∈ NBx(j), otherwise we would violate the onstraints(16). Consequently, X

x(j)−1
i −Y

x(j)
i = 1 and Y

x(j)−1
j −X

x(j)
j = 1. But this is impossibledue to the onstraints (24). Contradition.So, there exists a permutation γ = (j1, . . . , jn) whih satis�es the ondition (27). We perturb

γ by sorting all jobs j suh that x(j) = y(j) = u aording to the permutation σu for all
u ∈ M . We obtain permutation δ = (j1, . . . , jn) whih still satis�es (27).9



Let Bδ
j and Aδ

j , j ∈ N , be the sets of jobs whih ome, respetively, before and after job jin permutation δ. Now we onstrut shedule π by setting
Cj(π) =

∑

i∈Bδ
j ∪{j}

pi +

u(j)
∑

v=1

Wv, ∀j ∈ N, (28)where u(j) =







y(j) − 1, w
y(j)
j ≥ 0 or x(j) < y(j),

y(j), w
y(j)
j < 0 and x(j) = y(j).As u(j1) ≤ · · · ≤ u(jn), we have Cjk

(π)− pjk
≥ Cjk−1

(π), ∀k ∈ {2, . . . , n}. To show that πis a feasible shedule, it remains to show that rj + pj ≤ Cj(π) ≤ dj . As the partition is linear,we have rj = eω for some ω ∈ M . Note that ω < x(j), otherwise the onstraints (18) wouldbe violated. As Xω
j = 0, ∀i ∈ Aδ

j ∪ {j}, and ω ≤ u(j),
Cj(π)

(28)
≥

∑

i∈Bδ
j

pi +
ω

∑

v=1

Wv + pj

(21)
≥ eω + pj = rj + pj.In the same manner, using the onstraints (19), we an prove that the ompletion times donot violate the deadlines of jobs.We now show that, for eah j ∈ N , ex(j)−1 ≤ Sj(π) < ex(j) and ey(j)−1 < Cj(π) ≤ ey(j).As x(j) − 1 ≤ u(j) and x(j) ≤ x(i), ∀i ∈ Aδ

j , we have X
x(j)−1
i = 0, ∀i ∈ Aδ

j ∪ {j}, and
X

y(j)−1
i = 0, ∀i ∈ Aδ

j . Therefore,
Sj(π) =

∑

i∈Bδ
j

pi +

u(j)
∑

v=1

Wv ≥
∑

i∈Bδ
j

pi +

x(j)−1
∑

v=1

Wv

(21)
≥ ex(j)−1,

Cj(π)
(28)
≥

∑

i∈Bδ
j ∪{j}

pi +

y(j)−1
∑

v=1

Wv

(21)
≥ ey(j)−1 + ǫ

∑

i∈N

(

X
y(j)−1
i − Y

y(j)−1
i

)

.Suppose Cj(π) = ey(j)−1, then, as pj > 0, by the onstraints (21), X
y(j)−1
j = 1, and Y

y(j)−1
j =

0 implying Cj(π) ≥ ey(j)−1 + ǫ, ontradition. Therefore, Cj(π) > ey(j)−1.Note that the onstraints (23) imply
y(j)−1
∑

v=x(j)+1

Wv = 0, ∀j ∈ N. (29)As y(i) ≤ x(j) ≤ y(j), ∀i ∈ Bδ
j , we have Y

x(j)
i = 1, ∀i ∈ Bδ

j , and Y
y(j)
i = 1, ∀i ∈ Bδ

j ∪ {j}.Therefore,
Cj(π)

(28)
≤

∑

i∈Bδ
j∪{j}

pi +

y(j)
∑

v=1

Wv

(20)
≤ eyj

.

10



Let u(j) = y(j) − 1, then
Sj(π) =

∑

i∈Bδ
j

pi +

y(j)−1
∑

v=1

Wv =
∑

i∈Bδ
j

pi +

x(j)
∑

v=1

Wv +

y(j)−1
∑

v=x(j)+1

Wv(20),(29)
≤ exj

− ǫ
∑

i∈N

(

X
x(j)
i − Y

x(j)
i

)

.Let u(j) = y(j) implying x(j) = y(j), then
Sj(π)

(28)
≤

∑

i∈Bδ
j

pi +

x(j)
∑

v=1

Wv

(20)
≤ exj

− ǫ
∑

i∈N

(

X
x(j)
i − Y

x(j)
i

)

.Suppose Sj(π) = ex(j), then, as pj > 0, by the onstraints (20), Y
x(j)
j = 0, and X

x(j)
j = 1,implying Sj(π) ≤ ex(j) − ǫ, ontradition. Therefore, Sj(π) < ex(j).Finally, by onstrution, π is a anonial shedule. �4.2 Constraints Related to the Overall CostNow we desribe the onstraints that relate variables X, Y , W and F .

11



F u
j ≥

∑

i∈N\{j}

piY
u−1
i + pjY

u
j +

u−1
∑

v=1

Wv − eu−1,

∀u ∈ M, ∀j ∈ NBu, wu
j > 0, (30)

F u
j ≥

∑

i∈N\{j}

piY
u−1
i + pjX

u−1
j +

u−1
∑

v=1

Wv − eu−1,

∀u ∈ M, ∀j ∈ NSu, wu
j > 0, (31)

F u
j ≥ pjY

u
j +

∑

i∈Bu
j

piY
u
i +

∑

i∈ABu
j

piY
u
i +

∑

i∈ASu
j

piX
u−1
i +

u−1
∑

v=1

Wv − eu−1 − (1 − Y u
j + Xu−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NSu, wu
j > 0, (32)

F u
j ≥

∑

i∈N\{j}

pi(1 − Xu−1
i ) +

m
∑

v=u+1

Wv − (T − eu) −

(1 − Y u
j + Y u−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NBu, wu
j < 0, (33)

F u
j ≥

∑

i∈N\{j}

pi(1 − Xu−1
i ) +

m
∑

v=u+1

Wv − (T − eu) −

(1 − Xu−1
j + Y u−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NSu, wu
j < 0, (34)

F u
j ≥

∑

i∈Au
j ∪BBu

j

pi(1 − Xu−1
i ) +

∑

i∈BSu
j

pi(1 − Y u
i ) +

m
∑

v=u+1

Wv − (T − eu) − (1 − Y u
j + Xu−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NSu, wu
j < 0, (35)One the variables Y , X, W are instantiated, the onstraints (30)-(32) determine thevalues for variables F u

j , j ∈ N , u ∈ M , wu
j > 0, and the onstraints (33)-(35) determine thevalues for variables F u

j , j ∈ N , u ∈ M , wu
j < 0.Assume job j is ompleted in interval Iu in π. We onsider two ases.1. Either job j is �big� for Iu (then j is ompleted �rst in Iu in π) or job j is �small� for Iuand j is started in Iu−1 or earlier and ompleted in Iu in π.

• wu
j > 0. Cj(π) equals the sum of pj, the total proessing time of jobs ompletedin interval Iu−1 or earlier and the total idle time in the �rst u − 1 intervals. Here

F u
j = Cj(π) − eu−1. If j is �big� for Iu, F u

j is instantiated by the onstraint (30).If j is �small� for Iu, F u
j is instantiated by the onstraint (31).

• wu
j < 0. Cj(π) equals T minus the sum of the total proessing time of jobs in

N \ {j} started in interval Iu or later and the total idle time in the last m − uintervals. Here F u
j = eu − Cj(π). If j is �big� for Iu, F u

j is instantiated by theonstraint (33). If j is �small� for Iu, F u
j is instantiated by the onstraint (34).12



2. Job j is �small� for Iu, and j is started and ompleted in Iu in π.
• wu

j > 0. Cj(π) equals the sum of pj, the total proessing time of jobs in Bu
jompleted in interval Iu or earlier, the total proessing time of jobs in Au

j startedin interval Iu−1 or earlier and the total idle time in the �rst u − 1 intervals. Here
F u

j = Cj(π) − eu−1, F u
j is instantiated by the onstraint (32).

• wu
j < 0. Cj(π) equals T minus the sum of the total proessing time of jobs in

Bu
j ompleted in interval Iu+1 or later, the total proessing time of jobs in Au

jstarted in interval Iu or later and the total idle time in the last m − u intervals.
F u

j = eu − Cj(π), F u
j is instantiated by the onstraint (35).To prove the orretness of the interval-based formulation, it remains to show the validityof the onstraints (30)-(35). We do this in the next proposition. Let F u

j (k) be the value ofthe right-hand side of the onstraint (k), and
F u

j =























F u
j (30), j ∈ NBu, wu

j > 0,

max
{

F u
j (31), F u

j (32)
}

, j ∈ NSu, wu
j > 0,

F u
j (33), j ∈ NBu, wu

j < 0,

max
{

F u
j (34), F u

j (35)
}

, j ∈ NSu, wu
j < 0.Proposition 2 The formulation (12)-(26), (30)-(35) is orret.Proof: Consider vetor (X,Y,W ) satisfying the onstraints (12)-(26) and the orrespondinganonial shedule. To prove the proposition, we show that F u

j = max{F u
j , 0}, i.e.1. if job j is ompleted in interval Iu, then wu

j > 0 implies F u
j = Cj(π)− eu−1, and wu

j < 0implies F u
j = eu − Cj(π);2. if job j is not ompleted in interval Iu, then F u

j ≤ 0.Case 1. Let job j is ompleted in interval Iu, implying Y u
j = 1 and Y u−1

j = 0. We havetwo sub-ases.1.a. Either j ∈ NBu (then j is ompleted �rst in Iu in π) or j ∈ NSu , j is started in
Iu−1 or earlier and ompleted in Iu in π. We have

wu
j > 0 : Cj(π) =

∑

i∈N\{j},

y(i)≤u−1

pi + pj +

y(j)−1
∑

v=1

Wv

=
∑

i∈N\{j}

piY
u−1
i + pjY

u
j +

u−1
∑

v=1

Wv. (36)
wu

j < 0 : Cj(π) = T −
∑

i∈N\{j},

x(i)≥u

pi −
m

∑

v=y(j)+1

Wv

= T −
∑

i∈N\{j}

pi(1 − Xu−1
i ) −

m
∑

v=u+1

Wv. (37)13



Let j ∈ NBu, wu
j > 0. Then Cj(π) = (36) = F u

j (30) + eu−1.Let j ∈ NBu, wu
j < 0. Then Cj(π) = (37) = eu − F u

j (33).Let j ∈ NSu, wu
j > 0. Cj(π) = (36) = F u

j (31) + eu−1. Also, as Xu−1
j = 1 = Y u

j , using (16),
F u

j (32) is less or equal to
∑

i∈N

piY
u
i +

u−1
∑

v=1

Wv − eu

(20)
≤ 0. (38)Let j ∈ NSu, wu

j < 0. Cj(π) = (37) = eu − F u
j (34) + eu−1. Also, as Xu−1

j = 1 = Y u
j , using(16), F u

j (35) is less or equal to
∑

i∈N\{j}

pi(1 − Xu−1
i ) +

m
∑

v=u+1

Wv − T + eu−1 (39)
≤ −

∑

i∈N\{j}

piX
u−1
i −

u−1
∑

v=1

Wv + eu−1

(21)
≤ 0.1.b. j ∈ NSu, j is started and ompleted in Iu in π. Then Xu−1

j = 0, Y u
j = 1, and wehave

wu
j > 0 : Cj(π) =

∑

i∈Bu
j
,

y(i)≤u

pi +
∑

i∈Au
j
,

x(i)≤u−1

pi + pj +

y(j)−1
∑

v=1

Wv

=
∑

i∈Bu
j

piY
u
i +

∑

i∈Au
j

piX
u−1
i + pjY

u
j +

u−1
∑

v=1

Wv. (40)
wu

j < 0 : Cj(π) = T −
∑

i∈Bu
j ,

y(i)≥u+1

pi −
∑

i∈Au
j ,

x(i)≥u

pi −
m

∑

v=y(j)+1

Wv

= T −
∑

i∈Bu
j

pi(1 − Y u
i ) −

∑

i∈Au
j

pi(1 − Xu−1
i ) −

m
∑

v=u+1

Wv. (41)Let wu
j > 0. Then, using (17) and (24), Xu−1

i = Y u
i , ∀i ∈ ABu

j , and therefore Cj(π) = (40) =

F u
j (32) + eu−1. Also, as Xu−1

j < Y u
j , F u

j (31) < (38) ≤ 0.Let wu
j < 0. Then, using (17) and (24), Xu−1

i = Y u
i , ∀i ∈ BBu

j , and therefore Cj(π) = (41) =
eu − F u

j (33). Also, F u
j (34) = (39) ≤ 0.Case 2. Let job j is not ompleted in interval Iu, implying Y u

j = Y u−1
j . We have twosub-ases.2.a. j ∈ NBu. Then, F u

j (30) is equal to
∑

i∈N

piY
u−1
i +

y(j)−1
∑

v=1

Wv − eu−1

(20)
≤ 0. (42)Also, F u

j (33) = (39) ≤ 0. 14



2.b. j ∈ NSu. Then Y u−1
j

(15)
≤ Xu−1

j

(16)
≤ Y u

j = Y u−1
j ⇒ Y u−1

j = Xu−1
j . Therefore,

F u
j (31) = (42) ≤ 0. Using (16), we have F u

j (32) ≤ (38) ≤ 0 and F u
j (35) ≤ (39) ≤ 0. Finally,

F u
j (34) = (39) ≤ 0. �Clearly, the interval-indexed formulation is ompat. The number of variables do notexeed 3nm+m = O(nm), the number of onstraints do not exeed 6nm+4m = O(nm). Forthe lassial objetive funtions, we have m = O(n), and the size of the formulation beomes

O(n2) × O(n2).4.3 Additional onstraintsA usual way to strengthen a MIP formulation is to add redundant onstraints whih ut o�some frational solutions. In this subsetion, we suggest suh onstraints for the interval-indexed formulation.Consider intervals Iv and Iu, v, u ∈ M , v ≤ u, and a job j ∈ N .
• Let pj ≤ eu − ev . Then job j annot be started before ev and ompleted after eu,therefore Y u

j ≥ Xv
j . This onstraint is not dominated by other onstraints of this typeif pj > eu − ev+1 and pj > eu−1 − ev .

• Let pj < eu − ev. Then job j annot be started after or at ev and ompleted before orat eu, therefore Y u
j ≤ Xv

j . This onstraint is not dominated by other onstraints of thistype if pj ≤ eu+1 − ev and pj ≤ eu − ev−1.
• Let wu

j > 0, ev−1 + pj ≤ eu and ev−1 + pj > eu−1, meaning that, one started ininterval Iv, job j should be ompleted in Iu or later. Then, if j is ompleted in Iu,
F u

j ≥ pj − (eu−1 − ev−1), and the onstraint
F u

j ≥ (pj − eu−1 + ev−1)(Y
u
j − Xv−1

j ) (43)is valid. Moreover, if ev + pj ≤ eu, one started in Iv, j should be ompleted in Iu, and(43) an be strengthened to
F u

j ≥ (pj − eu−1 + ev−1)(X
v
j − Xv−1

j ).

• Let wu
j < 0, ev + pj ≤ eu and ev + pj > eu−1, meaning that, one started in interval Iv,job j should be ompleted in Iu or earlier. Then, if j is ompleted in Iu, F u

j ≥ eu−ev−pj,and the onstraint
F u

j ≥ (eu − ev − pj)(X
v
j − Y u−1

j ) (44)is valid. Moreover, if ev−1 + pj > eu−1, one started in Iv, j should be ompleted in Iu,and (44) an be strengthened to
F u

j ≥ (eu − ev − pj)(X
v
j − Xv−1

j )Note that the overall number of the suggested onstraints whih are not dominated is O(nm).
15



5 Tightening the MIP with appropriate partitions of the timehorizonIn this setion, we will restrit the lass of anonial shedules. This will allow us to strengthenthe interval-indexed formulation by
• reduing the number of feasible solutions of the formulation,
• tightening the onstraints (32) and (35), as the term −(1−Y u

j +Xu−1
j ) · (eu − eu−1) willbe hanged to −(1 − Y u

j + Y u−1
j ) · (eu − eu−1).Additionally, it will be possible to formulate a speial ase of the problem using only variables

Y and F (subsetion 5.3).Remember that, in a anonial shedule, jobs in Qu (started and ompleted in Iu) aresequened aording to the permutation σu. Let now Q̄u denote the set of jobs ompleted, butnot neessarily started in interval Iu:
Q̄u =

{

j ∈ N : Cj ∈ Iu

}

.De�nition 2 Given a linear partition {Iu}u∈M , a shedule is alled stritly anonial if it isanonial and, for eah u ∈ M , jobs in Q̄u are proessed aording to the permutation σu.Unfortunately, the set of stritly anonial shedules does not keep the optimality property,as shown in the next example.Example: Consider the partition {(0, 9], (9, 20]} of the time horizon and the 3-job instanewith data shown in Table 1. There is only one optimal shedule π∗ = (2, 1, 3) in whih all jobsare ompleted in interval I2 = (9, 20], but the permutation σ2 is (1, 3, 2). ♠
j pj rj dj (f1

j , w1
j ) (f2

j , w2
j )1 4 0 20 (0, 0) (0, 2)2 10 0 20 (0, 0) (0, 3.5)3 6 0 20 (0, 0) (0, 2.4)Table 1: The data for Example 5So, for an arbitrary linear partition of the time horizon, there is not always an optimalstritly anonial shedule.De�nition 3 A linear partition of the time horizon is alled appropriate if there exists anoptimal stritly anonial shedule for it.5.1 Obtaining an appropriate partitionIn this subsetion, we will give su�ient onditions for a linear partition to be appropriate.We then desribe how an appropriate partition whih satisfy these onditions an be obtained.16



For u ∈ M and i, j ∈ N suh that σu(i) < σu(j), we denote as T u
ij the minimum time moment

t ∈ [eu−1, eu − pi] suh that, if j is the immediate predeessor of i and Cj ≥ t then exhanging
j and i do not inrease the ost of the shedule:

T u
ij = min

t∈[eu−1,eu−pi]

{

t : ∀s ∈ (t, eu], Fj↔i(s) ≤ 0
}

,where Fj↔i(s) = Fi(s + pi − pj) + Fj(s + pi) − Fj(s) − Fi(s + pi).If eu−1 > eu − pi, we set T u
ij = eu−1.Now we explain how the values T u

ij an be obtained. First note, that only the �rst term ofthe funtion Fj↔i(s) is pieewise linear in interval [eu−1, eu − pi], other three terms are linearin it. Therefore, in interval [eu−1, eu − pi], Fj↔i(s) is pieewise linear with in�etions onlypossible at points ev + pj − pi, v ≤ u− 1. Knowing this, it is easy to �nd T u
ij by heking thevalue of Fj↔i at all in�etion points and at eu−1. So, the omplexity of �nding one value T u

ijis O(m).Proposition 3 A linear partition {Iu}u∈M is appropriate if, for eah u ∈ M and eah pairof jobs i, j ∈ N suh that σu(i) < σu(j), at least one of the following two onditions is true:
eu ≤ eu−1 + pj, (45)
eu−1 ≥ T u

ij . (46)Proof: Consider an optimal shedule whih is not stritly anonial. We will transform itreursively to a stritly anonial shedule without inreasing the ost. We begin with u = m.Main step. First we rearrange jobs in Qu aording to σu and leave at most one idle timeperiod (between jobs with wu
j ≤ 0 and wu

j < 0). This an be done without inreasing theost of the shedule. If now jobs in Q̄ are proessed aording to σu, we set u := u − 1 anddo the main step from the beginning. If not, this means that σu(j) > σu(i), where j is thejob ompleted but not started in Iu and i is the job proessed �rst among jobs in Q. Thereannot be an idle time between j and i, otherwise wu
j < 0 and shifting j to the right wouldderease the ost � ontradition with the optimality of the shedule. By the onstrutionof σu, pj < eu − eu−1. So, (45) is violated, meaning that (46) is satis�ed. Therefore, as

Cj > eu−1 ≥ T u
ij , exhanging j and i do not inrease the ost of the shedule.Now there are two possible ases.1. Job i still ompletes in Iu. Then we an rearrange jobs in Qu aording to σu withoutinreasing the ost and, as σu(i) = mink∈Qu

{σu(k)}, jobs in Q̄u are proessed aordingto σu. We set u := u − 1 and go to the main step.2. Job i does not omplete in Iu anymore. Then we go to the main step without dereasing
u (but with less jobs in Q̄u).We stop when u = 0. �By the de�nition of the problem, a linear partition of the time horizon is given. In orderto hek if it is appropriate, we hek whether

Hu
ij = [T u

ij , eu−1 + pj ] 6⊂ Iu, ∀u ∈ M, ∀i, j ∈ N : σu(i) < σu(j).17



If, for some u ∈ M , there exist pairs of jobs i, j ∈ N suh that Hu
ij ⊂ Iu, it su�es to divide theinterval Iu into sub-intervals in a way that they do not stritly ontain intervals Hu

ij. Clearly,a sub-partition of a linear partition is also linear. In Algorithm 1, we outline the proedurefor �nding an appropriate sub-partition for a given partition. It is easy to see that the overallproedure has a polynomial omplexity. In pratie, the time needed to �nd an appropriatelinear partition is negligible in omparison with the time needed to solve the interval-indexedformulation.Algorithm 1 A proedure for �nding an appropriate sub-partition1: Partition {Iu}1≤u≤m is given2: Find σu, 1 ≤ u ≤ m3: u := 14: while u ≤ m do5: Bu := ∅; k := 16: for all (i, j) ∈ N : σu(i) < σu(j) do7: Find Hu
ij = [T u

ij , eu−1 + pj]8: if Hu
ij ⊂ Iu then9: Bu := Bu ∪ {Hu

ij}10: end if11: end for12: if Bu 6= ∅ then13: Find (t0, t1, . . . , tk) suh that t0 = eu−1, tk = eu,and H 6⊂ (tl−1, tl], ∀1 ≤ l ≤ k, ∀H ∈ Bu.14: Divide interval Iu into sub-intervals {(tl−1, tl]}1≤l≤k15: m := m + k − 1; update σv, f v
j , wv

j , ∀u ≤ v ≤ m, ∀j ∈ N16: end if17: u := u + k18: end while19: return {Iu}1≤u≤mExample: Consider the 3-job instane of Table 1 and the initial partition {(0, 9], (9, 20]}. Wehave B1 = ∅ and
B2 =

{

H2
12 = [12, 19],H2

32 = [11.75, 19],H2
13 = [9.8, 15]

}

.We divide interval I2 = (9, 20] into sub-intervals (9, 12] and (12, 20] and obtain an appropriatepartition {(0, 9], (9, 12], (12, 20]}. Now, σ1 = σ3 = (2, 1, 3), σ2 = (1, 3, 2), (f2
1 , w2

1) = (0, 2),
(f2

2 , w2
2) = (0, 3.5), (f2

3 , w2
3) = (0, 2.4), (f3

1 , w3
1) = (6, 2), (f3

2 , w3
2) = (10.5, 3.5), (f3

3 , w3
3) =

(7.2, 2.4). ♠
18



5.2 Tightening the formulationOne an appropriate linear partition of the time horizon is known, the onstraints whihdetermine the values for variables F u
j , u ∈ M , j ∈ NSu, an be strengthened: the onstraints(31) and (32) an be replaed by the onstraint

F u
j ≥ pjY

u
j +

∑

i∈Bu
j

piY
u
i +

∑

i∈ABu
j

piY
u
i +

∑

i∈ASu
j

piX
u−1
i +

u−1
∑

v=1

Wv − eu−1 − (1 − Y u
j + Y u−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NSu, wu
j > 0, (47)and the onstraints (34) and (35) an be replaed by the onstraint

F u
j ≥

∑

i∈Au
j ∪BBu

j

pi(1 − Xu−1
i ) +

∑

i∈BSu
j

pi(1 − Y u
i ) +

m
∑

v=u+1

Wv − (T − eu) − (1 − Y u
j + Y u−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NSu, wu
j < 0. (48)To keep the formulation orret the onstraint (24) should be replaed by the onstraint

∑

i∈BBu

(Xu−1
i − Y u

i ) +
∑

i∈Au
j

(Xu−1
i − Y u−1

i ) + Y u
j − Xu−1

j ≤ 1,

∀u ∈ M, ∀j ∈ NSu. (49)Proposition 4 Given an appropriate linear partition of the time horizon, the formulation(12)-(23), (25)-(26), (30), (33), (47)-(49) is orret.Proof: We �rst show that the onstraint (49) uts o� vetors (X,Y,W ) whih orrespond toshedules whih are anonial but not stritly anonial. In suh a shedule, for some u ∈ M ,job j ∈ NSu started and ompleted in Iu sueeds a job i ∈ Au
j ompleted but not started in

Iu. Then Y u
j − Xu−1

j = 1, Xu−1
i − Y u−1

i = 1, and the onstraint (49) is violated. Moreover,(49) implies (24). So, a vetor (X,Y,W ) satisfying the onstraints (14)-(23), (25)-(26), (49)orresponds to a feasible stritly optimal shedule.In Proposition 2, we have showed that F u
j = max{F u

j (30), 0}, j ∈ NBu, wu
j > 0 and

F u
j = max{F u

j (33), 0}, j ∈ NBu, wu
j < 0. It now su�es to show that

F u
j =

{

max
{

F u
j (47), 0

}

, j ∈ NSu, wu
j > 0,

max
{

F u
j (48), 0

}

, j ∈ NSu, wu
j < 0.Case 1. Let job j is ompleted in interval Iu, implying Y u

j = 1 and Y u−1
j = 0. We have
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wu
j < 0 : Cj(π) =

∑

i∈Bu
j ,

y(i)≤u

pi +
∑

i∈Au
j ,

y(i)≤u−1

pi + pj +

y(j)−1
∑

v=1

Wv

=
∑

i∈Bu
j

piY
u
i +

∑

i∈Au
j

piY
u−1
i + pjY

u
j +

u−1
∑

v=1

Wv. (50)
wu

j < 0 : Cj(π) = T −
∑

i∈Bu
j ,

y(i)≥u+1

pi −
∑

i∈Au
j ,

y(i)≥u

pi −
m

∑

v=y(j)+1

Wv

= T −
∑

i∈Bu
j

pi(1 − Y u
i ) −

∑

i∈Au
j

pi(1 − Y u−1
i ) −

m
∑

v=u+1

Wv. (51)Let wu
j > 0. Then, using (49), (22) and (17), Y u−1

i = Y u
i , ∀i ∈ ABu

j , and, using (49), (22)and (16), Y u−1
i = Xu−1

i , ∀i ∈ ASu
j . Therefore Cj(π) = (50) = F u

j (47) + eu−1.Let wu
j < 0. Then, using (49) and (22), Y u−1

i = Xu−1
i , ∀i ∈ Au

j , and Y u
i = Xu−1

i , ∀i ∈ BBu
j .Therefore Cj(π) = (51) = eu − F u

j (48).Case 2. Let job j is not ompleted in interval Iu, implying Y u
j = Y u−1

j . Then, using (16),
F u

j (47) ≤ (38) ≤ 0 and F u
j (48) ≤ (39) ≤ 0. �5.3 Speial ase with regular objetive funtion and no idle timeWe now onsider a speial ase of the problem, in whih the objetive funtion is regular, i.e.

Fj is non-dereasing for all jobs j ∈ N . Additionally, we suppose that there exists an optimalshedule with no idle time. The last ondition holds, for example, if1. idle times are forbidden;2. release dates are the same (we an put them to zero).In this ase, given an appropriate linear partition, we an �get rid� of the variables X and
W and propose an interval-indexed formulation whih uses only variables Y and F :

min
∑

j∈N

∑

u∈M

wu
j F u

j +
∑

j∈N

∑

u∈M

fu
j (Y u

j − Y u−1
j ) (52)

s.t. Y u−1
j ≤ Y u

j , ∀j ∈ N, ∀u ∈ M, (53)
∑

j∈N

pjY
u
j ≤ eu, ∀u ∈ M, (54)

F u
j ≥ pjY

u
j +

∑

i∈Au
j

piY
u−1
i +

∑

i∈Bu
j

piY
u
i − eu−1 −

(1 − Y u
j + Y u−1

j ) · (eu − eu−1), ∀j ∈ N, ∀u ∈ M, (55)
Y u

j ∈ {0, 1}, ∀j ∈ N, ∀u ∈ M, (56)
F u

j ≥ 0, ∀j ∈ N, ∀u ∈ M. (57)20



Here the objetive funtion (52) and the onstraints (53)-(54) are onserved. The on-straint (55) link variables F and Y : if job j is ompleted in interval Iu then its ompletiontime equals the sum of proessing times of job j, jobs in Bu
j ompleted in Iu or earlier andjobs in Au

j ompleted in Iu−1 or earlier.6 Numerial experimentsIn order to ompare the time-indexed and interval-indexed formulations numerially, theseformulations have been tested on instanes of the problems 1 | rj |
∑

αjEj + βjTj and
1 ||

∑

wjTj. The experiments have been performed on a omputer with a 1.8Ghz proessorand 512 Mb of memory was using the Cplex 10.1 MIP solver.In the experiments, we were interested in the following statistis.
Pt � perentage of instanes solved to optimality within time limit t.
Tav � average time in seonds needed to solve an instane to optimality (only for instanessolved to optimality).
Ndav � average number of nodes in the searh tree (only for instanes solved to optimality).
Gap � average integrality gap, i.e. the average di�erene between the best found solution andthe best found lower bound, perentage wise the best found solution (only for instaneswhih were not solved to optimality and for whih at least one feasible solution wasfound).
XLP � average di�erene between the the best found solution and the lower bound at thetop node of the searh tree after generating standard uts, perentage wise the optimalsolution (only for instanes for whih the LP relaxation was solved within the time limit).6.1 Test instanesThe �rst group of the test instanes of the problem 1 | rj |

∑

αjEj +βjTj were generated usingthe following standard proedure. For a given number of jobs n, the proessing times of eahjob are �rst randomly drawn from the uniform distribution U [θ, 10 ·θ). Then the due dates aredrawn from U [dmin, dmin+ρP ] where dmin = max(0, P (τ −ρ/2)) and P =
∑n

j=1 pj, the releasedates rj , j ∈ N , are drawn from U [0, φdj ], and weights αj , βj are drawn from U [1, 5]. Thefour parameters θ, τ , ρ, φ are respetively the time, tardiness, range and release parameters.We generated instanes for n ∈ {10, 15, 20, 30}, θ ∈ {10, 50}, τ ∈ {0.2, 0.5, 0.8}, ρ ∈
{0.2, 0.5, 0.8}, φ ∈ {0.2, 0.5, 0.8}. For eah value of (n, θ, τ, ρ, φ), 1 instane was generated,making 27 instanes for eah ouple (n, θ). Note that for these instanes, the �big-M� on-straints should be used in the linear ordering formulation. The results are presented in Table 2.You an see that linear ordering formulation with the �big-M� onstraints is the worstone. Among the other two, the time-indexed formulation performs better when the proessingtimes are smaller, and the interval-indexed formulation is preferable when proessing timesare big. Note that, when (n, θ) = (20, 50), the time-indexed formulation was not able to �nda feasible solution in 1000 seonds for the half of instanes. The number of intervals m in21



Linear ordering �big-M� formulation
θ = 10 θ = 50

n P1000s Tav Ndav XLP Gap P1000s Tav Ndav XLP Gap10 100% 3.5 14652 73.4% 0.0% 100% 3.8 15695 72.7% 0.0%15 51.9% 136.3 373407 79.5% 35.9% 44.4% 96.2 266517 82.3% 35.1%20 7.4% 226.3 479945 85.3% 53.9% 11.1% 62.9 134472 86.1% 59.7%Time-indexed formulation
θ = 10 θ = 50

n P1000s Tav Ndav XLP Gap P1000s Tav Ndav XLP Gap10 100% 2.7 89.5 0.7% 0.0% 81.4% 135.0 627.1 1.3% 3.4%15 92.6% 47.3 1107.8 2.3% 1.3% 55.6% 316.1 98.3 3.3% 6.4%20 66.7% 152.8 1519.4 1.9% 2.2% 22.2% 383.5 0.0 11.3% 17.4%Interval-indexed formulation
θ = 10 θ = 50

n P1000s Tav Ndav XLP Gap P1000s Tav Ndav XLP Gap10 100% 7.1 820.3 25.8% 0.0% 100% 5.6 552.8 23.2% 0.0%15 85.2% 194.3 8340.9 25.6% 3.8% 85.2% 235.6 6949.8 23.5% 6.7%20 25.9% 255.6 2993.4 23.9% 13.6% 29.6% 394.5 4458.8 23.1% 10.7%Table 2: Comparison of the formulations on the �rst group of the test instanes of the problem
1 | rj |

∑

αjEj + βjTjappropriate linear partitions omputed for the instanes of the problem 1 | rj |
∑

αjEj +βjTjwas always below 3n.The seond group of the test instanes of the problem 1 | rj |
∑

αjEj+βjTj were generatedusing the proedure just presented but with one di�erene: here we limit by µn the numberof distint release and due dates. This allows us to derease the number of intervals forthe interval-indexed formulation. Suh a restrition makes sense, as in pratie, number ofdi�erent release and due dates of jobs is often very limited. For generating instanes, we set
µn = ⌈n · 2/3⌉. Again, for eah ouple (n, θ), 27 instanes were generated. The results for thetime-indexed and interval-indexed formulations are presented in Table 3.On these instanes, the interval-indexed formulation performs better, as the number ofintervals is redued. Though, still when the proessing times are smaller and number of jobsis 30 or less, the time-indexed formulation is preferable. On instanes with 40 jobs and more,the time-indexed formulation starts to have di�ulties, as less and less feasible solutions anbe found within the time limit. For the half of 40-job instanes and for all 50-job instanes,no feasible solution was found within 1000 seonds.22



Time-indexed Interval-indexed
(n, θ) P1000s Tav Ndav XLP Gap P1000s Tav Ndav XLP Gap

(10, 10) 100% 4.3 161.6 0.7% 0.0% 100% 1.3 703.2 33.2% 0.0%
(20, 10) 81.5% 201.0 1226.6 1.1% 1.3% 48.5% 393.9 26788.2 27.7% 7.7%
(30, 10) 40.7% 279.2 130.6 5.5% 8.9% 3.7% 393.9 948.1 28.7% 18.3%
(40, 10) 7.4% 508.4 170.0 10.7% 12.1% 0.0% 0.0 0.0 34.6% 30.0%
(50, 10) - - - - - 0.0% 0.0 0.0 40.7% 39.4%
(10, 50) 92.6% 86.1 124.1 0.7% 3.5% 100% 1.5 769.5 35.8% 0.0%
(15, 50) 48.2% 350.0 42.9 4.3% 8.2% 96.3% 130.8 23214.0 29.0% 1.2%
(20, 50) 18.5% 417.4 6.4 6.4% 10.8% 51.8% 225.5 16238.3 27.8% 6.6%Table 3: Comparison of the formulations on the seond group of the test instanes of theproblem 1 | rj |

∑

αjEj + βjTjThe test instanes of the problem 1 ||
∑

wjTj were generated using the following similarproedure. For a given number of jobs n, the proessing times of eah job are �rst ran-domly drawn from the uniform distribution U [1, 100]. Then the due dates are drawn from
U [dmin, dmin + ρP ] where dmin = max(0, P (τ − ρ/2)) and P =

∑n
j=1 pj , and weights aredrawn from U [1, 10]. We generated instanes for n ∈ {10, 20, 30}, τ ∈ {0, 0.2, 0.4, 0.6, 0.8},

ρ ∈ {0.2, 0.4, 0, 6, 0.8, 1}. For eah triple (n, τ, ρ), 5 instane were generated, making 125 in-stanes for eah n. The larger test instanes of the problem 1 ||
∑

wjTj were taken from theOR-Library [9℄. For the problem 1 ||
∑

wjTj, the interval-indexed formulation uses only thevariables Y and F . Then, the linear ordering formulation is used in the form (5)-(9). Theresults are presented in Table 4. Note that by using the time-indexed formulation no feasiblesolution ould be found within 10 minutes for 1% of the 20-job instanes, 2% of the 30-jobinstanes, 23% of the 40-job instanes, and 54% of the 50-job instanes.As it an be seen, the linear ordering and interval-indexed formulations learly outperformthe time-indexed formulation. It is also worth notiing that the time-indexed formulationformulation has the smallest XLP ratio, but the size of the formulation does not allow to useit even for small instanes.The linear ordering formulation is better when solving 30-jobs instanes, as it an solvemore instanes within the time limit. However, the two last formulations have solved almostthe same number of 40-jobs instanes. Moreover, the interval-indexed formulation (IIF) hassolved more 50-jobs instanes. We also notie that the interval-indexed formulation is muhtighter than the linear ordering formulation. The statistis XLP is more than 3 times smallerfor the interval-indexed one. Also, the average integrality gap is muh better for instanesunsolved by the interval-indexed formulation than for instanes unsolved by the linear orderingone.The linear ordering formulation has O(n3) onstraints. When the dimension of the probleminreases, the size of this formulation quikly grows and beomes very large. Therefore, itse�etiveness drops rapidly with the inrease of the dimension.The number of intervals m in appropriate linear partitions omputed for the instanes of23



Time-indexed
n P10m Tav Ndav XLP Gap10 100% 0.3 1.1 0.0% 0.0%20 99.2% 23.3 25.7 0.3% 0.0%30 80.0% 120.5 53.6 0.4% 9.9%40 51.2% 450.6 33.0 0.5% 12.1%50 31.2% 272.1 38.4 0.6% 7.4%Linear ordering
n P10m Tav Ndav XLP Gap10 100% 0.1 10.2 8.8% 0.0%20 98.4% 2.2 323.1 18.9% 22.0%30 88.0% 30.9 2380.5 23.0% 25.1%40 65.6% 37.9 1038.7 23.6% 30.6%50 47.2% 84.6 554.9 23.7% 30.5%Interval-indexed
n P10m Tav Ndav XLP Gap10 100% 0.1 14.1 4.7% 0.0%20 100% 1.7 338.3 6.8% 0.0%30 82.4% 30.8 5245.8 6.8% 3.0%40 64.8% 34.0 2320.0 7.0% 3.6%50 57.6% 56.5 2654.8 7.2% 3.9%Table 4: Comparison of the formulations on the test instanes of the problem 1 ||

∑

wjTjthe problem 1 ||
∑

wjTj was always below 2n.6.2 Pratial instanesReently, Le Pape and Robert have published a library of pratial instanes for the planningand sheduling problems [36℄. The instanes of the type �NCOS� in this library an be trans-formed to instanes of the problem 1 | rj |
∑

αjEj +βjTj . We have tested the interval-indexedand time-indexed formulations on the open instanes of this type.Using the interval-indexed formulation, the following previously open 4 instanes havebeen solved to optimality:
24



Name n TimeNCOS_04 10 5sNCOS_05 15 109sNCOS_14 25 102mNCOS_14d 25 51mAdditionally, using the time-indexed formulation, the following previously open 12 in-stanes have been solved to optimality:Name n TimeNCOS_11 20 193sNCOS_12 24 257sNCOS_12d 24 347sNCOS_13 24 53sNCOS_15 30 1320sNCOS_21a 50 <1sNCOS_21 50 <1sNCOS_32 75 2sNCOS_32d 75 2sNCOS_51 200 8sNCOS_51d 200 7sNCOS_61d 500 15sNote that the large instanes whih were solved ontain many idential jobs.7 ConlusionsIn this paper, we have introdued the interval-indexed formulation whih is the �rst ompatMIP formulation for the single mahine sheduling problem to minimize a pieewise linearobjetive funtion. This formulation has O(nm) variables and O(nm) onstraints, where n isthe number of jobs, and m is the number of intervals in whih the objetive funtions of alljobs are linear.Both the time-indexed and interval-indexed formulations have advantages. The �rst hasmuh less binary variables, and the seond provides very strong linear programming lowerbounds. The numerial experiments showed that the hoie of the formulation to use shouldbe made based on the properties of the given instane to solve. The larger the proessingtimes of jobs are the more likely that the interval-indexed formulation will provide betterresults. Experiments show that the diret appliation of these formulations are useful forsolving medium size instanes. Some open pratial instanes were solved.The main diretion for the future researh onerns the biggest disadvantage of the interval-indexed formulation: the relative weakness of lower bounds provided by its LP relaxation. Theformulation should be tightened in order to be more useful in pratie.Another researh diretion is an extension of the formulation to more general situations.These an be the presene of preedene relations between jobs, or the availability of severalidential or unrelated mahines.Adaptation to the speial ases of the problem is also a perspetive diretion. For example,25
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