
Experimental comparison of branch-and-bound algorithms for

the 1 | rj | Lmax problem

Ruslan Sadykov (Speaker) ∗ Alexander Lazarev †

1 Introduction

We consider the problem 1 | rj | Lmax. A set N = {1, . . . , n} of jobs has to be scheduled on a
single machine. Each job j ∈ N has a processing time pj , a release date rj and a due date dj .
Lateness Lj of a job j ∈ N in a schedule π is the difference between its completion time and
due date: Lj = cj(π)− dj . The goal is to find a schedule that minimizes the maximum lateness
Lmax(π) = maxj∈N Lj .

This problem is one of classic scheduling problems. It is NP-hard in the strong sense [3].
The main interest is to develop exact algorithms for this problem. Such algorithms help to solve
more complex and practical scheduling problems, for example, job-shop problem.

Several branch-and-bound algorithms have been developed for the problem. Two of them
have been shown to be quite efficient when used in practice. These algorithms have been
suggested by McMahon and Florian [4] and by Carlier [2]. Unfortunately, to the best of our
knowledge, these two algorithm have never been compared computationally. The first result
of this work is realization of this comparison. Second result is an improvement of the Carlier
algorithm. This improvement is based on embedding “Edge-Finding” filtering algorithm [1,
p.24] developed earlier for using in Constraint Programming. This modification of the Carlier
algorithm allowed to increase its efficiency and robustness.

2 Branch-and-bound algorithms

We tested computationally the efficiency of four branch-and-bound algorithms for the 1 | rj |
Lmax problem. First one is the algorithm by McMahon and Florian (MMF). Second one is the
algorithm by Carlier (CAR). Both algorithm were implemented using the recursive backtrack
search strategy, whereas originally the “best bound” search strategy have been used. Moreover,
in the algorithm CAR, lower bounds are obtained in the same way as in the algorithm MMF.
This modification of lower bounding strategy allowed to increase efficiency of the algorithm
CAR.

∗
sadykov@core.ucl.ac.be. Center of Operations Research and Econometrics, Université Catholique de Lou-

vain, voie du Roman Pays 34, 1348 Louvain-la-Neuve, Belgium.
†
Alexandr.Lazarev@ksu.ru. Chair of Economic Cybernetics, Kazan State University, Kremlevskaya Street

18, 420008 Kazan, Russia

1

Then, we tested Constraint Programming algorithm (CP). This algorithm solves a sequence
of feasibility problems. Each feasibility problem tests whether there exists a schedule with
maximum lateness not more than some value L′. For each job j ∈ N we set a deadline
d̄j := dj+L′. Then the Constraint Satisfaction Problem with one disjunctive resource constraint
is solved [1]. This algorithm is implemented with the Carlier branching strategy.

The fourth algorithm (HYB) is a modification of the algorithm CAR. At each node of the
search tree the algorithm HYB uses the “Edge-Finding” filtering algorithm to tighten the time
windows of jobs and to detect infeasibility if it is possible. To do this for each job j ∈ N we set
a deadline d̄j = dj + UB − 1, where UB is the current upper bound on the optimal solution.

3 Numerical experiments

The experiments have been carried out on a computer with a 2 GHz processor and 512 Mb
of memory. For the experiments we used two test instances which were generated using the
following scheme. Processing times, release and due dates were uniformly generated in the
intervals [10, 100], [1,Kr · n] and [1,Kd · n], correspondingly. Parameters Kr, Kd take values
from the set {20, 30, 40, 50, 60}. For each couple of parameters there are 100 instances in the
test set. In total there are 2500 instances for each n ∈ {50, 100, 200, 300} .

In the experiments we were interested in the following statistics. P1m is the percentage of
instances solved to optimality in 1 minute. Tav is the average time in milliseconds, needed to
solve an instance to optimality. Nav is the average number of nodes in the search tree, needed
to solve an instance to optimality.

Notice that if the time limit is reached when solving an instance, the statistics take into
account the current time and the current number of solved nodes. Therefore, if there exist
unsolved instances for some algorithm, the given values of the statistics Tav, Nav are lower
bounds of their real values.

Table 1: Experimental comparison of four algorithms
MMF CAR

n P1m Tav Nav P1m Tav Nav

50 94.24% 3523.2 151842.5 99.84% 109.4 7192.1
100 96.32% 2213.3 31048.3 99.60% 247.9 5431.2
200 97.88% 1278.7 5438.1 99.76% 148.3 956.6
300 97.84% 1314.5 2853.4 99.64% 228.6 596.1

CP HYB
n P1m Tav Nav P1m Tav Nav

50 100% 11.7 18.6 100% 3.4 5.6
100 100% 64.6 32.0 100% 18.2 10.0
200 100% 407.0 56.2 100% 119.0 18.7
300 100% 1179.6 75.6 100% 373.2 27.4

Results of the experiments are presented in Table 1. The algorithm MMF was the worst in
all terms. The algorithm CAR was much more efficient and does not able to solve only less than
0.5% of instances in one minute. Therefore, the efficiency of the algorithm CAR is satisfactory

2

to use it in the practice. Although, if it is needed to solve quickly all the given set of instances
to optimality without exception, the algorithms CP or HYB are preferable. They are able to
solve all the test instances. The probability of encountering instances which can not be solved
by these algorithms in a reasonable time seems to be negligible.

Among the last two algorithms, CP is clearly worse. The reason is that it needs to solve
several similar Constraint Satisfaction Problem instances (in the experiment it solved 3 such
instances on average).

We tried to increase the time limit up to 30 minutes and apply the algorithm CAR to
instances which were not solved in 1 minute. Only a small part (20-30%) of such instance were
solved in more time.

The main conclusion of this work is that adding filtering (propagation) algorithms developed
for Constraint Programming may really improve the efficiency and robustness of combinatorial
algorithms for scheduling problems. However, one should use or develop a branching scheme
that allows embedding of filtering algorithms.

References

[1] Ph. Baptiste, C. Le Pape, W. Nuijten (2001)Constraint-based scheduling: applying

constraint programming to scheduling problems. Kluwer Academic Publishers.

[2] J. Carlier (1972)The one-machine sequencing problem.European Journal of Operations
Research, 11(1):42-47.

[3] J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker (1975)Complexity of machine
scheduling problems.Annals of Operations Research 1:343-362.

[4] G. McMahon, M. Florian (1975)On scheduling with ready times and due dates to
minimize maximum lateness.Operations Research, 23:475-482.

3

