
Machine scheduling by column-and-row generation on the

time-indexed formulation

Ruslan Sadykov (Speaker) ∗ François Vanderbeck †

1 Introduction

We consider the minimum cost scheduling of jobs j ∈ J = {1, . . . , n} with processing
times pj ∈ IN , on a single machine, a single job at a time, with no preemption. Let
T ≥

∑
j pj be the length of the planning horizon. Period t represents time interval

[t − 1, t) for t = 1, . . . T . We assume a generic cost function: the inputs allow us
to compute values cjt representing the cost of processing job j starts at the ouset of
period t.

One of the approaches to solve this problem uses the following time-indexed Integer
Programming formulation. Let a binary variable zjt, j ∈ J , t = 1, . . . , T , equals to one
if job j starts at the outset of period t. Let also job 0 with processing time 1 model the
machine idle time. The computationally most efficient such time-indexed formulation is
the so-called “flow” reformulation [1]:

[R] ≡ min
{∑

jt

cjt zjt :

T−pj+1∑
t=1

zjt = 1 ∀j ∈ J,
n∑

j=0

zj1 = 1,

n∑
j=0

(zjt − zj,t−pj ) = 0 ∀t ∈ {2, . . . , T}, zjt ∈ {0, 1} ∀j, t
}

where the first group of constraints models the assignment of each job to a time period,
while the others enforce the “one-job-at-a-time” restriction. The formulation has nT
variables and (n+ T ) constraints (note that T is pseudo-polynomial in the input size).

The linear programming (LP) relaxation of this formulation is known to produce very
tight lower bounds. However, its size becomes impractical for instances with a large time
horizon. One of the methods to overcome this difficulty is to apply the column generation
approach based on the totally uni-modular subsystem formed by the one-job-at-a-time
constraints, as done by [5]. This method consists in defining a reformulation:

[M ] ≡ min
{ ∑

g∈G
cg λg :

∑
g∈G

T−pj+1∑
t=1

zgjt λg = 1 ∀j ∈ J,
∑
g∈G

λg = 1, λg ∈ {0, 1} ∀g ∈ G
}

where G is the set of “pseudo-schedules” (in which each job does not necessarily appears
exactly once), vector zg, scalar cg define the associated solution and cost for a solution
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g ∈ G. The LP relaxation of [M] is solved by column generation. The pricing subproblem
can be modeled as the search for a shortest path: z∗ = arg min{

∑
jt(cjt − πj) zjt :∑n

j=0 zj1 = 1,
∑n

j=0(zjt − zj,t−pj ) = 0 ∀t > 1, zjt ∈ {0, 1} ∀j, t} , where πj is a dual
solution to the linear relaxation of [M]. Thus, each pseudo-schedule defines a path in a
graph whose nodes represent periods and where a job j is represented by arcs (t, t+ pj),
and idle times by arcs (t, t+ 1).

2 Column-and-row generation approach

An alternative approach is a column-and-row generation for the LP relaxation of [R].
The method is reviewed in [4]. Variables z are generated dynamically, not one at the
time, but by lots. To do it, we solve the above pricing subproblem (where π is the
dual solution of the assignment constraints of [R]), and add to [R] the components of
its solution z∗ with a negative reduced cost in the LP relaxation of [R] along with the
flow conservation constraints that are binding for that solution. The components of z∗

with a non-negative reduced cost are stored in the column pool and added to [R] on one
of the subsequent iterations if their reduced cost becomes negative. In [4], we indeed
showed that either the current LP value of [R] is optimal, or some components of z∗ must
have a negative reduced cost in the LP relaxation of [R]. Therefore, this column-and-row
generation approach solves the LP relaxation of [R] after a finite number of iterations.

Compare to a standard column generation approach for [M], the interest of this
alternative approach is to allow for the recombination of previously generated pricing
problem solutions, and thus to accelerate the convergence. To illustrate what is meant
by recombination, we picture below two pseudo-schedules (dashed) and a new pricing
problem solution z∗ (bold) that can be obtained by recombining these two without the
need to explictly generate it through pricing.

1 2 3 4 5 6 7 8

Note that such recombination is not feasible in [M] where the only feasible solutions
are those defined by the convex combinations of previously generated columns. Such
column-and-row generation approach applies to any problem admitting a decomposition
in which the subproblem is solved by the shortest path problem or, more generally, by
the min-cost flow problem or by dynamic programming.

3 Computational results

We performed a computational comparison of three approaches on the same computer:
solving the LP relaxation of [R] directly using Cplex 12.1 ; solving the LP relaxation of
[M] by standard column generation; and solving the LP relaxation of [R] by column-
and-row generation. Column[-and-row] generation algorithms were implemented using
BaPCod — a generic Branch-and-Price code developed by the INRIA RealOpt team in
Bordeaux. A problem-specific implementation is likely to produce better results.

The three approaches were tested on instances with 25, 50, and 100 jobs and the
total weighted tardiness objective function. The test instances were generated using
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the procedure from [3] which is the most used in the literature. The objective is to
minimize the total weighted tardiness. Processing times of jobs are uniformly distributed
in interval [1, 100]. For each n, we generated 25 instances, each for different pairs of two
parameters, varying the relative range of due dates and the average tardiness factor.

The results are presented in Table 1. “cpu” is the solution time (in seconds), “it”
is the number of iterations in the column[-and-row] generation procedure, “sp” is the
number of calls to the pricing subproblem solver, and “%z”is the percentage of z vari-
ables generated in the column-and-row generation approach (from the total number of z
variables in [R]). The column-and-row generation approach outperforms the other two.
Moreover, its advantage increases with the increase of n.

Cplex for [R] Column generation for [M] Column-and-row generation for [R]
n cpu it sp cpu it sp %z cpu

25 11.2 343 343 2.1 208 69 5.8% 1.5
50 153.0 1270 1270 39.4 339 106 4.5% 16.9

100 2233.0 8784 8784 2891.5 466 139 4.5% 169.1

Table 1: Computational results

4 Perspectives

Our further research agenda is (i) to combine the column-and-row generation with an
enumeration algorithm to solve the scheduling problem to optimality; (ii) to check
whether the combination of the column-and-row generation approach with a cutting
plane method is computationally advantageous; and (iii) to speed-up the column-and-
row generation using standard stabilization techniques for column generation and vari-
able fixing based on reduced cost (as in [2]). We also plan to experiment this column-
and-row generation approach on the arc-time indexed formulation in which each binary
variable zijt determines whether job i immediately precedes job j at time moment t. LP
relaxation of this formulation generates even better lower bounds [2].
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