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1 Introduction

Routing and logistics applications are often viewed as intractable for exact optimization tools. Al-
though such problems are naturally suited for a decomposition approach, branch-and-price-and-cut
algorithms of the literature typically do not scale to the size of real-life instances. Some recent progress
in stabilization techniques amongst other advances (such as diving heuristics, strong branching, and
the combination with cutting plane approaches) generate new ambitions for column generation ap-
proach in solving approximately very large scale instances. Let us for instance point to the new
benchmarks for the Capacitated Vehicle Routing Problem (CVRP) in [2]. This paper illustrates this
trend, showing exact results for freight transportation instances of a scale never considered before.
Our column generation algorithm yields dual bounds and serves as the core procedure for a primal
heuristic. The overal procedure is quite competitive in great part due to the convergence speed-ups
resulting from efficient stabilization schemes. It typically provides optimal solutions as primal and
dual bounds tend to be equal. The very large scale freight transportation instances (with up to
1,025 stations, 5,300 demands, and 12,651 rail cars) were submitted to us by our Russian partner
Freight-One.

2 The freight transportation application

In Russia, the activity of forming and scheduling freight trains is separated by a regulation from the
activity of managing the fleet of freight railcars. A state company is in charge of the first activity.
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Freight railcars are owned by several independent companies. Every such company can accept or
refuse a transportation demand. Then it must assign railcars to accepted demands. In some cases,
the company has a possibility to slightly modify the execution date of a demand, which gives more
flexibility to the decision process but makes it more complicated.

Thus, an operational plan of such a company is determined by 1) a set of accepted transportation
demands, 2) for each demand, its execution date and the set of cars assigned to it, and 3) empty cars
movements to supply each demand. As the company is commercial, a reasonable criterion for the
quality of an operational plan is the profit generated by it. The profit is determined by the difference
between the price collected for executing transportation demands and the costs paid to the state
company for exploiting the railroad network.

For this problem, we are given a railroad network, a set of transportation demands, an initial
location of cars of different types. The network data consists of a set of stations, travel times and
costs between them. As it was mentioned above, the company does not schedule trains. Thus,
actual transportation of loaded and empty railcars is performed by the state company, who charges
predetermined costs per trip. Estimated travel times for each “origin-destination” pair of stations
are also determined and applied by the state company. Times are measured in days and are rounded
up. The number of cars, as well as their initial locations and availability dates are known. Cars are
divided into types. The type c ∈ C of a car determines the types of products which can be loaded
on this car. The route of a car consists of a sequence alternating loaded and empty movements at
prescribed stations. Cars can wait at stations before and after executing transportation demands.
In this case, a charge is applied at some daily rate.

Each transportation demand q ∈ Q is defined by a number nq of cars and an origin-destination
pair of stations. Let Cq be the set of car types which can fulfil demand q. The client specifies
the availability date of the product and the delivery due date which cannot be exceeded. The
demand transportation time is known. This allows us to determine the latest date at which the
transportation must start. The profit for partially meeting the demand q ∈ Q depends on the
number of cars provided (at most equal to nq) and the dates of transportation. We emphasize that
the transportation contract is concluded on a “per car” basis; thus, the profit for delivering cars with
the product of a given demand at a certain date depends linearly on the number of cars. The profit
function already takes into account the charges paid for using the railroad network. Further details
on the application can be found in [4].

The problem can be modeled as an integer multi-commodity flow, each commodity being associated
with a type c ∈ C flowing in a large directed acyclic time-space graph Gc = (Vc, Ac). Set Acq ⊂ Ac

of arcs corresponds to performing a transportation demand q ∈ Q by a car of type c (Acq = ∅ if
c 6∈ Cq). Arcs in Ac \

⋂
q:c∈Cq

Acq correspond to empty car movements and waiting of cars of type
c. The flow balance b(v) is negative in vertices v ∈ Vc that define initial positions of cars of type c;
while the flow balance b(vct ) is positive in one artificially introduced terminal vertex vct and equal to
the number of cars of type c; and the flow balance of all remaining arcs in Vc is zero. An integer
variable xa represents the flow on arc a ∈

⋃
c∈C Ac. Let ga be the profit of unitary flow on arc a.

This profit can be negative. The formulation is then

max
∑
c∈C

∑
a∈Ac

gaxa (1)
∑
c∈Cq

∑
a∈Acq

xa ≤ nq ∀q ∈ Q (2)

∑
a∈δ−(v)

xa −
∑

a∈δ+(v)
xa = b(v) ∀c ∈ C, v ∈ Vc (3)

xa ∈ Z+ ∀c ∈ C, a ∈ Ac. (4)
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Constraints (2) specify that the number of cars assigned to demand q should not exceed nq. Con-
straints (3) are flow conservation constraints for each commodity.

A classic approach for solving the multi-commodity flow problem is to reformulate it using path
variables. In our case, each path variable corresponds to a route taken by a car. The linear relaxation
of this reformulation with path variables is solved using a column generation algorithm. However,
such method for solving the problem suffers from slow convergence.

3 Stabilization Techniques & Column Generation Strategy

The column generation procedure does suffer several drawbacks: dual oscillations, tailing-off effect,
primal degeneracy. Stabilization techniques are essential to address these drawbacks. The most
standard stabilization are linear programming based approaches such as piece-wise penalty function
approaches and so-called dual price smoothing techniques. In [3], we revisited those techniques to
adjust their parameters dynamically for a greater efficiency. The resulting speed-ups allows one to
handle much larger instance using column generation.

In this paper, we combine these two stabilization techniques: smoothing of dual values and adding
a piece-wise function in the dual space which penalizes a deviation from the current best dual solution.
These generic stabilization schemes to reduce the number of iterations are combined with a mutli-
column generation strategy attempting to generate complementary columns at each iteration. In the
specific context of this application, this scheme is implemented in the subproblem: we do not search
for a shortest path for each car individually, but for a tree of shortest paths for all cars of the same
type. More importantly, the search for a shortest tree is repeated several times removing the demand
already covered at previous stages (as explained in more details in [4]).

4 Diving Heuristic

To obtain a feasible solution for the problem, we combine stabilized column generation with a diving
heuristic as proposed in [1]. In short, after solving the linear relaxation, the variable with the
maximum fractional value is rounded to the next integer, and the residual problem is resolved again
by column generation. This rounding continues until an integer solution is found or until the problem
become infeasible.

5 Benchmark results

We applied our approach on six real-life freight car flow problem instances provided to us by our
partner company. These instances have different sizes depending on the length of the planning
horizon (from 40 to 140 days). These instances contain 1,025 stations, up to 5,300 demands, 11 car
types (or commodities), and 12,651 cars. The multi-commodity time-space graph,

⋃
c∈C Gc, contains

up to about 230,000 nodes and 7,500,000 arcs. Using our diving heuristic, we were able to obtain
optimal solutions to all instances. Indeed, for all instances, the optimal solution value is equal to the
lower bound value provided by the column generation.

In Table 1, we compare solution times (in seconds) of the diving heuristic with the time needed
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by Cplex 12.6 to solve IP formulation (1)–(4). There, we give, the instance size (length of the
planning horizon), solution time taken by non-stabilized column generation (TCG), column generation
with smoothing stabilization (Tsmooth), column generation with penalty function stabilization (Tpen),
column generation with combined stabilization (Tcomb), total solution time of our algorithm including
the diving heuristic, and the time taken by Cplex to solve the IP. Note that we excluded time needed
for reading the data and for the generation of the formulation (which is larger for the arc formulation
submitted to Cplex).

size TCG Tsmooth Tpen Tcomb Ttotal TCplex
40 23 19 32 21 22 51
60 117 73 155 95 100 111
80 570 234 178 114 145 245

100 2481 607 278 152 211 408
120 8947 1465 410 213 344 633
140 28884 3069 756 338 377 1127

Table 1: Comparision of solution times

As it can be seen from Table 1, non-stabilized column generation does not scaled up to instances
with longer time horizon. Each stabilization technique used separately accelerates the convergence.
But the best acceleration is achieved when both techniques are used together. This “double” stabi-
lization coupled with the diving heuristic allows us to solve to optimality all the instances, doing so
considerably faster than the Cplex MIP solver.
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