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RESUMO
Este artigo propõe uma heurı́stica baseada em geração de colunas capaz de tratar instâncias

grandes e difı́ceis do problema da atribuição generalizada. Inicialmente, apenas para conseguir

obter a convergência da geração de colunas em tempos razoáveis, é utilizado uma sofisticada

estabilização dual “tripla”, combinando funções de penalidade lineares por partes, o esquema de

suavização dual proposto por Wentges e a suavização direcional por sub-gradiente. Para obter

soluções boas inteiras viáveis, uma heurı́stica de mergulho com diversidade é proposta. O método

foi capaz de encontrar novas melhores soluções para todas as instâncias clássicas em aberto do

problema de atribuição generalizada.

PALAVRAS CHAVE. Geração de colunas, Estabilização dual, Heurı́stica de mergulho.

Área Principal: Programação Matemática

ABSTRACT
This paper proposes a column generation based heuristic suitable for large and hard ins-

tances of the generalized assignment problem. First, just to be able to obtain the convergence of

the column generation is reasonable times, it uses a sophisticated “triple” dual stabilization, com-

bining piecewise linear penalty functions, Wentges’ dual smoothing and sub-gradient directional

smoothing. In order to obtain integer good feasible solutions, a diversified diving heuristic is pro-

posed. The overall method have found new best solutions for all open classic large-size instances

of the generalized assignment problem.
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1. Problem definition
In the generalized assignment problem, we need to assign n jobs to m machines (or

agents). Each machine i has a given capacity, ui. For each pair j = 1, . . . , n and i = 1, . . . ,m,

the assignment of job j to machine i consumes dij units of its capacity and contributes cost cij to

the objective function. The problem consists in assigning each job to exactly one machine such that

the capacities of machines are respected and the total cost is minimized. Using binary variables

xij which determine whether job j is assigned to machine i, the problem can be modeled as the

following Integer Program:

min

m∑

i=1

n∑

j=1

cijxij (1)

m∑

i=1

xij = 1, ∀j = 1, . . . , n, (2)

n∑

j=1

dijxij ≤ ui, ∀i = 1, . . . ,m, (3)

xij ∈ {0, 1}, ∀i = 1, . . . ,m, ∀j = 1, . . . , n (4)

Here constraints (2) ensure that every job is assigned to some machine, and (3) guarantee that the

capacity of each machine is respected.

Very often in the literature one works with the set covering reformulation of the problem.

Here we use binary variables λi
g for each subset g ∈ Gi of jobs which can be simultaneously

assigned to machine i without violating its capacity. Subsets g ∈ Gi are defined by values ag such

that agij = 1 if job j is in set g, and agij = 0 otherwise. The reformulation is then

min

m∑

i=1

∑

g∈Gi

cija
g
ijλ

i
g (5)

m∑

i=1

∑

g∈Gi

agijλ
i
g ≥ 1, ∀j = 1, . . . , n, (6)

∑

g∈Gi

λi
g ≤ 1, ∀i = 1, . . . ,m, (7)

λi
g ∈ {0, 1}, ∀i = 1, . . . ,m, ∀g ∈ Gi. (8)

Here constraints (6) ensure again that every job is put to some machine, and (7) guarantee that at

most one subset of variables is assigned to each machine.

2. Literature review
There are two main exact approaches for the problem in the literature. The Branch-and-

Cut approach is based on the compact formulation (1)–(4). The Branch-and-Price approach is

based on the set-covering formulation (5)–(8). The first Branch-and-Price algorithm was proposed

by [Savelsbergh, 1997]. The first Branch-and-Cut algorithm was suggested by [de Farias Jr. and Nemhauser, 2001],

in which, in addition to standard knapsack valid inequalities, a specific family of inequalities was

proposed.

[Pigatti et al., 2005] presented an improved Branch-and-Price algorithm. In order to im-

prove a slow convergence of the column generation procedure embedded in the Branch-and-Price,

the authors proposed a stabilization method based on 2-piece linear penalty functions. All but two

OR-Library instances with up to 200 jobs were solved to optimality.

Later, [Avella et al., 2010] came up with an improved Branch-and-Cut approach, in which

they proposed an algorithm for exact separation of knapsack valid inequalities, which are usually
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separated only heuristically. They managed to solve all but 13 classic instances of the problem with

up to 1,600 jobs.

The latest exact algorithm in the literature is due to [Posta et al., 2012]. In this work, the

authors proposed a branch-and-bound algorithm based on a destructive Lagrangian dual bound. To

obtain this bound, a bundle method is applied. To reduce the running time of the algorithm, the

reduced cost variable fixing procedure is used. The proposed algorithm is able to solve all but 10

classic instances of the problem with up to 1,600 jobs. To our knowledge, these 10 instances remain

open until now.

A heuristic algorithm which obtained the best published primal bounds for 8 of those

open instances was presented by [Yagiura et al., 2006]. This algorithm is based on a path relinking

approach with ejection chains.

3. Column generation
To solve the linear relaxation of the set covering reformulation (5)–(8), which is called

master program, one can apply the column generation procedure. This procedure can be viewed as

an application of the revised simplex algorithm with a specific procedure for pricing. One iteratively

solves a version of the master program restricted to a subset of its variables, collects the dual solution

π, and check the optimality of the current solution by pricing non-basic columns. Pricing is done by

optimizing the reduced-cost value of solutions of the subproblem mixed integer polyhedra. In our

case, the pricing problem is decomposed into binary knapsack subproblems, one for each machine

i:

min

n∑

j=1

(cij − πj) · xj (9)

n∑

j=1

dijxj ≤ ui, (10)

xj ∈ {0, 1}, ∀j = 1, . . . , n. (11)

This pricing problem is precisely that resulting from the Lagrangian relaxation of the

complicating constraints (2). Hence, its solution allows to define a valid Lagrangian dual bound.

Thus, the procedure yields a sequence of price vectors (dual solutions to the master program) {πt}t,
where t denotes the iteration counter, converging towards π∗ ∈ Π∗, where Π∗ denotes the set

of optimal dual solution to the master LP; and associated Lagrangian bound values, {L(πt)}t,
converging towards the Lagrangian dual value L∗.

4. Stabilization
However, the textbook application of column generation to our problem suffers from very

slow convergence. This is caused by the several drawbacks of the column generation procedure

[Vanderbeck, 2005]:

• Dual oscillations: the dual values may oscillate widely in the first iterations. The “extreme

columns” obtained from such extreme duals have no chance of appearing in an optimal solu-

tion.

• Tailing-off effect: in latter iterations, the added columns are likely to “cut” a marginal volume

of the dual space, resulting in slow convergence.

• Primal degeneracy and alternative optimal dual solutions: the dual system has typically less

active constraints than variables, thus admiting many alternative solutions. As a consequence,

the column generation may pass by a number of such alternative dual solutions without ma-

king progress in the objective function.
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Several stabilization techniques have been proposed to accelerate the convergence of se-

quence {πt}t, including Bundle methods [Oliveira and Sagastizábal] and interior-point methods

[Gondzio et al., 2013]. In this work, we opted for only using families of techniques that allow one

to continue to use the simplex algorithm for solving the restricted master problem.

Dual stabilization of [du Merle et al., 1999] is based on introduction of a piecewise linear

function which penalizes deviation from the stability center, typically defined as the incumbent dual

solution π̂. The penalty function and the stability center are changing during the column generation

procedure until the convergence to an optimal dual solution where the penalty function becomes

null.

In [Pigatti et al., 2005], this stabilization technique was applied to the generalized assign-

ment problem. The authors used the symmetric penalty function with 2 pieces. However, as it was

showed by [Avella et al., 2010], this stabilization is still not sufficient for handling classic instances

with more than 400 jobs.

Another family of stabilization techniques is based on the smoothing of dual

values [Wentges, 1997]. Here, the separation point π̃t (dual solution passed to the pricing problem)

is calculated as π̃t = απ̂+(1−α)πt. Parameter α ∈ [0, 1) determines the position of the separation

point on the line between stability center π̂ and the current dual solution πt of the restricted master.

In [Pessoa et al., 2014], another kind of smoothing is proposed: the directional smoothing.

In it, the separation point is moved towards a sub-gradient of the Lagrangian function at incumbent

dual solution π̂. Here parameter β ∈ [0, 1) determines how much the separation point is moved.

Following [Pessoa et al., 2014], we combine all the three mentioned stabilization tech-

niques (penalty function with 3 pieces, Wentges smoothing, and directional smoothing) in order

to improve convergence and reduce the running time of the column generation algorithm. Self-

adjusting schemes are used for parameters α and β, that control the degree of smoothing and di-

rectional smoothing applied to dual solutions, respectively. The only parameter κ of this combined

stabilization technique is needed to determine the shape of the penalty function.

In Figure 1, we present comparison regarding running times of different stabilization tech-

niques on 18 classic instances of the problem taken from [Yagiura et al., 2006]. Name of instances

is in the format class-m-n. We used the following instances: D-20-100, E-20-100, D-10-100, E-10-

100, D-20-200, E-20-200, D-40-400, E-40-400, D-5-100, E-5-100, D-10-200, E-10-200, D-20-400,

E-20-400, D-5-200, E-5-200, D-10-400, E-10-400.

A point (x, y) on the performance profile associated to a stabilization scheme indicates

that, for a fraction y of instances, the column generation algorithm with this scheme was not more

than x times slower than the fastest algorithm for those instances.

One can see from the performance profiles that the combination of three stabilization

techniques clearly outperforms all these techniques applied separately. Moreover, the “triple” stabi-

lisation technique allowed us to solve the master problem for classic instances with 900 and 1,600

jobs for the first time.

5. Diversified diving heuristic
To obtain a feasible primal solution of the problem, a rounding heuristic procedure can be

applied to the master LP solution. A standard rounding strategy consists of 2 steps: (i) an initial

partial solution is obtained by rounding downwards the master LP solution; (ii) then, columns

whose LP values are closest to the next integer are then considered for round up while feasible.

However, reaching feasibility remains a difficult issue.

Diving heuristics are generic ways of “repairing” infeasibility. The residual master pro-

blem that remains after a rounding operation must be “cleanup” before re-optimization, deleting

all columns that could not be part of an integer solution to the residual problem (and hence would

lead to infeasibility if selected). Such preprocessing is a key feature in diving heuristics. It helps to

avoid the primal heuristic dead-ending with an infeasible solution. Note that the re-optimization of
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Figura 1: Performance profile for different stabilization techniques

the residual master might not necessarily be trivial and it can lead to generating new columns. This

mechanism yields the “missing” complementary columns to build feasible solutions.

To add a diversification component to the diving heuristic, we rely on using the Limited
Discrepancy Search (LDS) paradigm of [Harvey and Ginsberg, 2005], as proposed by [Joncour et al., 2010].

This search in the neighborhood of the reference (first dive) solution do have a great impact in im-

proving the performance of the pure diving method.

In the search of better quality solution, the algorithm considers deviation from the refe-

rence solution up to depth maxDepth, in up maxDiscrepancy ways. Specifically, we avoid selecting

columns present in a tabu list (of size ≤ maxDiscrepancy) that consists of columns selected in

previous branches from which we wish to diversify the search. After the first (pure) diving, we

backtrack until the current depth is equal to maxDepth. Then, we set the current branch as the only

tabu in the tabu list to avoid selecting the corresponding column in the next dive, and we restart

the diving from its ancestor node. The discrepancy of such diving will be exactly one. In a ge-

neric execution of the procedure, we backtrack while the current depth is greater than maxDepth,

or the current discrepancy level = maxDiscrepancy. If such backtracking is not possible, the al-

gorithm stops. Otherwise, after backtracking, a new branch is created that is defined by a tabu list

made of columns that were tabu at the ancestor node or were selected in previous child nodes of

the ancestor node. The resulting exploration tree is illustrated in Figure 2 for maxDepth = 3 and

maxDiscrepancy = 2.

6. Results
Using the column generation method with the “triple” stabilization technique coupled

with the diversified diving heuristic, we improved the primal bounds published in the literature for

all open instances from [Yagiura et al., 2006] of the problem. In our implementation, the stabili-

zation parameter κ was set to 200. The parameters for diving heuristic with limited backtracking

were set as following: maxDepth = 2 and maxDiscrepancy = 3. The knapsack subproblems were

solved by the MINKNAP algorithm proposed in [Pisinger, 1997].

The columns in Table 1 give the instance name (in the format class-m-n), the best known

dual and primal bounds (taken from [Posta et al., 2012]), the new primal bounds found by our heu-

ristic, and the time taken by it. Note that we have found an optimal solution for instance D-15-900

for the first time. That solution is shown in Table 2.
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Figura 2: Diving heuristic with limited backtracking

Dual Previous New

Instance Bound BKS BKS Time

D-20-200 12235 12244 12238 18s

D-20-400 24563 24585 24568 1m03s

D-40-400 24350 24417 24356 4m01s

D-15-900 55404 55414 54404 8m52s

D-30-900 54834 54868 54840 4m51s

D-60-900 54551 54606 54554 14m09s

D-20-1600 97824 97837 97825 17m06s

D-40-1600 97105 97113 97106 15m19s

D-80-1600 97034 97052 97037 3h01m

C-80-1600 16284 16289 16285 33m33s

Tabela 1: Improved best known solutions obtained by the diversified diving heuristic
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Machine Jobs

1 2, 6, 8, 9, 15, 21, 24, 25, 29, 44, 60, 66, 70, 85, 87, 94, 118, 185, 202, 209, 210, 217, 223, 226, 258,

282, 293, 302, 331, 341, 366, 375, 395, 399, 405, 406, 444, 446, 453, 467, 476, 509, 513, 598, 643,

644, 660, 690, 698, 713, 714, 745, 746, 773, 793, 794, 808, 809, 818, 822, 828, 836, 860, 863, 870, 890

2 5, 38, 42, 58, 62, 65, 67, 112, 121, 131, 149, 151, 158, 184, 200, 201, 205, 206, 211, 219, 230, 287,

303, 344, 359, 390, 429, 441, 450, 466, 479, 498, 541, 551, 553, 557, 558, 588, 591, 606, 617, 620,

646, 650, 658, 693, 695, 701, 712, 723, 733, 741, 742, 747, 756, 784, 791, 830, 850, 851, 852

3 1, 12, 45, 55, 63, 110, 116, 129, 169, 178, 179, 198, 199, 249, 254, 261, 278, 279, 309, 310, 326, 327,

351, 354, 362, 364, 381, 387, 389, 397, 408, 430, 443, 482, 492, 535, 552, 585, 587, 595, 611, 625,

637, 711, 728, 731, 738, 759, 787, 800, 824, 832, 835, 840, 844, 893, 895

4 33, 41, 49, 53, 81, 98, 108, 119, 146, 154, 155, 177, 180, 203, 222, 227, 231, 250, 270, 283, 286, 328,

338, 347, 363, 368, 373, 382, 383, 384, 393, 412, 452, 472, 503, 530, 561, 571, 581, 602, 628, 630,

633, 634, 663, 665, 717, 721, 732, 740, 748, 763, 775, 781, 788, 812, 857, 861, 877, 881, 888, 898

5 40, 50, 61, 88, 107, 130, 138, 161, 168, 176, 207, 221, 224, 241, 275, 277, 290, 297, 298, 304, 321,

335, 342, 361, 378, 415, 418, 426, 431, 470, 518, 527, 548, 564, 603, 615, 626, 651, 653, 670, 675,

689, 716, 719, 778, 819, 820, 834, 845, 847, 862, 882

6 27, 34, 36, 39, 52, 71, 79, 122, 128, 132, 134, 143, 183, 193, 208, 232, 233, 236, 301, 308, 311, 316,

323, 337, 343, 358, 367, 391, 403, 404, 421, 447, 448, 460, 465, 477, 500, 532, 572, 580, 601, 607,

609, 618, 638, 639, 648, 649, 657, 672, 704, 749, 802, 846, 854, 871, 883, 889

7 23, 32, 64, 68, 80, 95, 135, 162, 172, 196, 228, 239, 244, 247, 259, 268, 276, 281, 318, 325, 356, 392,

396, 401, 414, 461, 480, 506, 522, 525, 539, 542, 559, 599, 613, 624, 629, 654, 656, 669, 687, 696,

699, 735, 744, 762, 766, 796, 811, 817, 827, 839, 884, 900

8 17, 20, 37, 46, 48, 51, 57, 103, 106, 152, 187, 188, 237, 245, 253, 264, 285, 332, 352, 353, 369, 379,

424, 433, 462, 468, 473, 475, 485, 502, 511, 514, 529, 556, 567, 573, 574, 577, 582, 590, 610, 635,

641, 645, 671, 678, 685, 707, 729, 730, 753, 755, 758, 774, 777, 780, 810, 843, 849, 856, 864, 876,

880, 886, 896

9 3, 14, 35, 54, 73, 74, 104, 109, 117, 133, 137, 142, 145, 150, 160, 170, 171, 173, 204, 213, 215, 220,

234, 238, 272, 284, 313, 333, 340, 355, 372, 428, 435, 451, 454, 478, 483, 487, 494, 524, 534, 537,

547, 562, 570, 586, 605, 622, 659, 667, 679, 686, 703, 727, 736, 768, 792, 803, 866, 867, 875, 891

10 7, 59, 77, 82, 83, 102, 123, 139, 140, 147, 164, 174, 197, 216, 248, 263, 265, 271, 291, 295, 299, 312,

336, 345, 365, 374, 398, 413, 419, 425, 439, 504, 507, 520, 521, 526, 533, 560, 565, 575, 604, 619,

655, 662, 676, 677, 680, 691, 697, 705, 725, 737, 754, 757, 779, 816, 841, 887

11 10, 26, 31, 43, 76, 90, 92, 105, 120, 127, 156, 167, 181, 191, 255, 306, 307, 315, 334, 349, 357, 371,

409, 420, 456, 459, 463, 508, 512, 517, 519, 528, 554, 578, 623, 631, 640, 642, 664, 681, 694, 722,

734, 743, 752, 770, 782, 786, 789, 790, 798, 799, 804, 807, 815, 821, 825, 842, 848, 853, 865, 869, 879

12 28, 30, 78, 86, 91, 141, 153, 157, 165, 166, 175, 189, 195, 242, 246, 273, 280, 288, 296, 300, 314, 317,

320, 324, 329, 339, 348, 350, 370, 394, 402, 423, 436, 437, 438, 445, 488, 495, 499, 516, 544, 549,

555, 566, 569, 596, 597, 627, 652, 682, 683, 688, 706, 708, 710, 760, 765, 769, 785, 795, 813, 833,

858, 874, 897

13 4, 11, 13, 18, 19, 22, 84, 96, 97, 101, 114, 124, 136, 148, 194, 229, 235, 252, 322, 346, 416, 417, 440,

486, 489, 491, 501, 505, 510, 531, 536, 540, 550, 579, 583, 584, 593, 600, 612, 616, 632, 661, 673,

692, 702, 720, 724, 750, 764, 767, 783, 797, 805, 814, 831, 838, 855, 873

14 16, 47, 69, 72, 89, 93, 100, 115, 125, 126, 144, 163, 186, 190, 192, 212, 214, 218, 225, 243, 256, 257,

260, 262, 267, 289, 292, 305, 319, 330, 360, 376, 377, 380, 385, 386, 410, 427, 469, 471, 481, 490,

493, 523, 543, 545, 546, 563, 608, 621, 647, 684, 715, 751, 761, 771, 859, 885, 892, 899

15 56, 75, 99, 111, 113, 159, 182, 240, 251, 266, 269, 274, 294, 388, 400, 407, 411, 422, 432, 434, 442,

449, 455, 457, 458, 464, 474, 484, 496, 497, 515, 538, 568, 576, 589, 592, 594, 614, 636, 666, 668,

674, 700, 709, 718, 726, 739, 772, 776, 801, 806, 823, 826, 829, 837, 868, 872, 878, 894

Tabela 2: Optimal solution for the instance D-15-900
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