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ABSTRACT
A cross-docking terminal is a transshipment facility in sup-

ply chains, where products transported by inbound trucks are un-
loaded at inbound doors, sorted, and reloaded on outbound trucks
at outbound doors. In this study we address the truck-to-door
scheduling problem in a multi-door cross-docking terminal where
temporary storage is considered. We propose two types of time-
indexed formulation for the problem to assign trucks to dock
doors and determine their arrival and departure times so that tar-
diness and earliness as well as unsatisfied demand are minimized.
We examine the effectiveness of the proposed formulations by
numerical experiment.

NOMENCLATURE
C: the capacity of the cross-docking terminal.
I: the number of inbound doors.

M: the number of inbound trucks.
N: the number of outbound trucks.
O: the number of outbound doors.
P: the number of product types.
T : the length of the planning horizon.

Z+: the set of nonnegative integers.
apm: the number of units of product type p supplied by inbound

truck m.
bpn: the number of units of product type p requested from out-

bound truck n.

cn: the unit penalty for the earliness and tardiness of outbound
truck n.

dn: the duedate of outbound truck n.
fnt : the earliness and tardiness penalties for outbound truck n

to leave at time t: fnt := cn max(t −dn,dn − t).
ln: the release time (earliest arrival time) of outbound truck n.

pp: the unit penalty for the unsatisfied demand for product type
p.

rm: the release time of inbound truck m.
tio: the transfer time from inbound door i to outbound door o.

1 INTRODUCTION

Cross-docking terminals play an important role in supply
chains for reducing inventory, storage, and handling costs. An in-
bound truck that arrives at a cross-docking terminal is assigned to
an inbound door, where it unloads products. These products are
sorted and transferred across the dock to outbound doors where
they are loaded on outbound trucks. Various types of cross-
docking problem have been studied so far [1, 2]. However, most
studies assume that products are transferred between doors di-
rectly and do not consider intermediate storage inside the dock.
In this study we will address the cross-docking problem for multi-
door cross-docking terminals to assign trucks to dock doors and
determine their arrival and departure times with temporary stor-
age being considered. Following [2], we refer to this type of
problem, i.e. the problem of determining both truck-to-door as-
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signment and truck arrival/departure times, as the truck-to-door
scheduling problem.

In the cross-docking problem in [3, 4], the capacity of the
cross-docking terminal is taken into account, whereas the arrival
and departure times of trucks are fixed. Sadykov [5] studied the
problem of determining arrival and departure times of trucks so
that the storage cost is minimized, where only one inbound door
and one outbound door are considered. Ladier and Alpan [6] ad-
dressed a truck scheduling problem under soft time-window con-
straints on truck arrival/departure times. In their problem setting,
truck-to-door assignment is not considered, although temporary
storage is assumed. Assadi and Bagheri [7] gave an ILP formula-
tion of a truck-to-door scheduling problem to minimize earliness
and tardiness penalties where temporary storage buffers are as-
sumed to be located at every inbound door.

In this study, we propose two types of ILP formulation for a
similar problem to that in [7]. The primary differences from [7]
are:

1. We consider the capacity of the cross-dock terminal.
2. Unloading and loading times of products, and truck

changeover time in the formulation in [7] are ignored in our
model.

3. We give time-indexed formulations, unlike the formulation
in [7] where arrival and departure times of trucks are part of
decision variables.

We will examine the effectiveness of the proposed formulations
by numerical experiment.

2 PROBLEM DESCRIPTION
Consider that P types of products are transported from M ori-

gins to N destinations via a cross-docking terminal with I inbound
doors and O outbound doors. A total of apm units of product type
p is transported from origin m. Similarly, bpn units of product
type p is transported to destination n. An inbound truck m trans-
ports products from origin m and stays at a inbound door, where
it unloads them. The arrival time of inbound truck m should not
be earlier than rm. Material handling equipment such as forklifts
transfers products from inbound doors to outbound doors. An
outbound truck n loads products at a outbound door and trans-
ports them to destination n. The earliest arrival time and duedate
of outbound truck n are ln and dn, respectively. Preemption of
truck-to-door assignment is not allowed: A truck cannot return to
a door again once it leaves a door. The time required for trans-
ferring products from inbound door i to outbound door o is given
by tio. The products that cannot be transferred directly from in-
bound doors to outbound doors can be kept temporarily in storage
buffers at individual inbound doors. If demand for product type
p is not satisfied, a penalty pp is incurred for each unit of the un-
satisfied demand. The capacity of the cross-docking terminal in
each period is given by C, and the number of units transferred and
being transferred plus the number of units kept in storage buffers
should not exceed C in each period. All these parameters are as-
sumed to be integers. The objective is to find an optimal assign-
ment of trucks to doors in the planning horizon [0, T ) that mini-

mizes the earliness and tardiness penalties plus the total penalty
for unsatisfied demand.

3 PROBLEM FORMULATION
In this section we give an ILP formulation of our problem.

The formulation uses the following binary decision variables:

xI
mist : 1 iff inbound truck m is assigned to inbound door i in

duration [s, t). 1 ≤ m ≤ M, 1 ≤ i ≤ I, rm ≤ s < t ≤ T .
xO

nost : 1 iff outbound truck n is assigned to outbound door o
in duration [s, t). 1≤ n≤N, 1≤ o≤O, ln ≤ s< t ≤ T .

Integer decision variables are summarized as follows:

gI
pmit : The number of units of product type p transferred from

inbound truck m at inbound door i to outbound doors
in duration [t, t+1). 1 ≤ p ≤ P, 1 ≤ m ≤ M, 1 ≤ i ≤ I,
rm ≤ t ≤ T −1.

hI
pmit : The number of units of product type p transferred

to storage buffer i from inbound truck m in dura-
tion [t, t + 1). 1 ≤ p ≤ P, 1 ≤ m ≤ M, 1 ≤ i ≤ I,
rm ≤ t ≤ T −1.

gO
pnot : The number of units of product type p transferred to

outbound truck n at outbound door o in duration [t, t+
1). 1 ≤ p ≤ P, 1 ≤ n ≤ N, 1 ≤ o ≤ O, ln ≤ t ≤ T −1.
For ease of notation, we assume that gO

pnot = 0 for t <
ln.

hO
pit : The number of units of product type p transferred from

storage buffer i in duration [t, t + 1). 1 ≤ p ≤ P, 1 ≤
i ≤ I, 0 ≤ t ≤ T −1.

qpiot : The number of units of product type p transferred from
inbound door i to outbound door o in duration [t, t +
tio + 1). 1 ≤ p ≤ P, 1 ≤ i ≤ I, , 1 ≤ o ≤ O, 0 ≤ t ≤
T − tio −1. Let qpiot = 0 if t < 0 or t ≥ T − tio for ease
of notation.

spit : The number of units of product type p stored in storage
buffer i at time t. 1 ≤ p ≤ P, 1 ≤ i ≤ I, 1 ≤ t ≤ T −1,
and spi0 = spiT = 0.

Introducing the earliness-tardiness coefficient fnt by fnt =
cn max(t −dn, dn − t), we obtain the ILP (P1):

min
N

∑
n=1

T

∑
t=ln+1

fnt

O

∑
o=1

t−1

∑
s=ln

xO
nost +

P

∑
p=1

pp

N

∑
n=1

(
bpn −

O

∑
o=1

T−1

∑
t=0

gO
pnot

)
,

(1)

s.t.
I

∑
i=1

T−1

∑
s=rm

T

∑
t=s+1

xI
mist = 1, 1 ≤ m ≤ M, (2)

O

∑
o=1

T−1

∑
s=ln

T

∑
t=s+1

xO
nost = 1, 1 ≤ n ≤ N, (3)

M

∑
m=1

t

∑
s=rm

T

∑
u=t+1

xI
misu ≤ 1, 1 ≤ i ≤ I, 0 ≤ t ≤ T −1, (4)
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N

∑
n=1

t

∑
s=ln

T

∑
u=t+1

xO
nosu ≤ 1, 1 ≤ o ≤ O, 0 ≤ t ≤ T −1, (5)

T−1

∑
t=rm

(gI
pmit +hI

pmit)≤ apm

T−1

∑
s=rm

T

∑
t=s+1

xI
mist ,

1 ≤ p ≤ P, 1 ≤ m ≤ M, 1 ≤ i ≤ I, (6)

gI
pmit +hI

pmit ≤ apm

t

∑
s=rm

T

∑
u=t+1

xI
misu,

1 ≤ p ≤ P, 1 ≤ m ≤ M, 1 ≤ i ≤ I, rm ≤ t ≤ T −1, (7)
T−1

∑
t=ln

gO
pnot ≤ bpn

T−1

∑
s=ln

T

∑
t=s+1

xO
nost ,

1 ≤ p ≤ P, 1 ≤ n ≤ N, 1 ≤ o ≤ O, (8)

gO
pnot ≤ bpn

t

∑
s=ln

T

∑
u=t+1

xO
nosu,

1 ≤ p ≤ P, 1 ≤ n ≤ N, 1 ≤ o ≤ O, ln ≤ t ≤ T −1, (9)
M

∑
m=1

gI
pmit +hO

pit =
O

∑
o=1

qpiot ,

1 ≤ p ≤ P, 1 ≤ i ≤ I, 0 ≤ t ≤ T −1, (10)
I

∑
i=1

qpio,t−tio =
N

∑
n=1

gO
pnot ,

1 ≤ p ≤ P, 1 ≤ o ≤ O, 0 ≤ t ≤ T −1, (11)

spit = spi,t−1 −hO
pit +

M

∑
m=1

hI
pmit ,

1 ≤ p ≤ P, 1 ≤ i ≤ I, 1 ≤ t ≤ T, (12)
P

∑
p=1

I

∑
i=1

(
spi,t+1 +

O

∑
o=1

t

∑
s=t−tio

qpios

)
≤C,

0 ≤ t ≤ T −1, (13)

gI
pmit ∈ Z+,

1 ≤ p ≤ P, 1 ≤ m ≤ M, 1 ≤ i ≤ I, rm ≤ t ≤ T −1, (14)

gO
pnot ∈ Z+,

1 ≤ p ≤ P, 1 ≤ n ≤ N, 1 ≤ o ≤ O, ln ≤ t ≤ T −1, (15)

hI
pmit ∈ Z+,

1 ≤ p ≤ P, 1 ≤ m ≤ M, 1 ≤ i ≤ I, rm ≤ t ≤ T −1, (16)

hO
pit ∈ Z+, 1 ≤ p ≤ P, 1 ≤ i ≤ I, 0 ≤ t ≤ T −1, (17)

qpiot ∈ Z+,

1 ≤ p ≤ P, 1 ≤ i ≤ I, 1 ≤ o ≤ O, 0 ≤ t ≤ T −1, (18)

spit ∈ Z+, 1 ≤ p ≤ P, 1 ≤ i ≤ I, 0 ≤ t ≤ T, (19)

xI
mist ∈ {0, 1},

1 ≤ m ≤ M, 1 ≤ i ≤ I, rm ≤ s < t ≤ T, (20)

xO
nost ∈ {0, 1},

1 ≤ n ≤ N, 1 ≤ o ≤ O, ln ≤ s < t ≤ T. (21)

The first term of the objective function (1) of (P1) describes
the earliness and tardiness penalties, and the second term is the
penalty for unsatisfied demand. Constraints (2) ensure that each
inbound truck i is assigned to an inbound door exactly once. Simi-
larly, constraints (3) ensure that each outbound truck o is assigned
to an outbound door exactly once. Constraints (4) and (5) guaran-
tee that each door is occupied by at most one truck in each dura-
tion [t, t+1) ((4) for inbound door i and (5) for outbound door o.)
From constraints (6), the total number of units of product type p
unloaded from inbound truck m at inbound door i is at most apm if
inbound truck m is assigned to inbound door i, and equal to 0 oth-
erwise. In duration [t, t+1), the number of units of product type p
transferred from inbound truck m at inbound door i is at most apm
if inbound truck m is at inbound door i in this duration, and equal
to 0 otherwise. It is ensured by constraints (7). Constraints (8)
and (9) are counterparts of (6) and (7), respectively, for outbound
truck n and outbound door o. Constraints (10) guarantee that the
total number of units of product type p transferred from inbound
door i in the duration starting at t is equal to the total number
of units of product type p transferred from inbound door i and
storage buffer i in duration [t, t + 1). Similarly, constraints (11)
guarantee that the total number of units of product type p trans-
ferred from inbound door i in the duration starting at t − tio and
thus ending at t+1 is equal to the number of units of product type
p transferred to outbound door o in duration [t, t+1). Constraints
(12) define the increase of product type p stored in storage buffer
i from time t−1 to t: The second and third terms of the righthand
side denote the numbers of units transferred from storage buffer i
and to storage buffer i, respectively. Finally, constraints (13) en-
sure that the total number of units of products being transferred
and stored in duration [t, t +1) does not exceed capacity C.

4 COMPACT FORMULATION

In the formulation (P1) in the preceding section, we assigned
a binary decision variable to every pair of arrival and departure
times of a truck as in [6]. Thus the number of binary decision
variables is approximately (MI +NJ)T (T + 1). In this section,
we provide an alternative formulation with at most 2(MI +NJ)T
binary decision variables.

This formulation is inspired by formulations of the unit com-
mitment problem in the literature [8–10]. The objective of the unit
commitment problem is to determine the daily on-off schedule of
(thermal) power generators so as to minimize operational cost. In
the majority of the formulations of the unit commitment problem,
the state (on or off) of a generator in each time slot is expressed by
a binary decision variable (state binary decision variable). To fur-
ther model the startup cost, startup binary decision variables are
introduced that take one iff the generator is turned on in the cor-
responding time slot. The shutdown cost is modeled in a similar
way using shutdown binary decision variables.

In the new formulation (P2), we introduce the following bi-
nary decision variables for trucks in place of xI

mist and xO
nost in

(P1):
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yI
mit : 1 iff inbound truck m departs from inbound door i at t.

1 ≤ m ≤ M, 1 ≤ i ≤ I, rm +1 ≤ t ≤ T .
uI

mit : 1 iff inbound truck m occupies inbound door i in dura-
tion [t, t + 1). 1 ≤ m ≤ M, 1 ≤ i ≤ I, rm ≤ t ≤ T − 1.
We assume uI

mit = 0 for t < rm and t = T .
yO

not : 1 iff outbound truck n departs from outbound door o at
t. 1 ≤ n ≤ N, 1 ≤ o ≤ O, ln +1 ≤ t ≤ T .

uO
not : 1 iff outbound truck n occupies outbound door o in

duration [t, t + 1). 1 ≤ n ≤ N, 1 ≤ o ≤ O, ln ≤ t ≤
T −1. We assume uO

not = 0 for t < ln and t = T .
Using these decision variables together with integer ones

gI
pmit , hI

pmit , gO
pnot , hO

pit , qpiot , and spit , we obtain the following
formulation (P2).

min
N

∑
n=1

T

∑
t=ln+1

fnt

O

∑
o=1

yO
not +

P

∑
p=1

pp

N

∑
n=1

(
bpn −

O

∑
o=1

T−1

∑
t=0

gO
pnot

)
,

(22)

s.t.
I

∑
i=1

T

∑
t=rm+1

yI
mit = 1, 1 ≤ m ≤ M, (23)

O

∑
o=1

T

∑
t=ln+1

yO
not = 1, 1 ≤ n ≤ N, (24)

M

∑
m=1

uI
mit ≤ 1, 1 ≤ i ≤ I, 0 ≤ t ≤ T −1, (25)

N

∑
n=1

uO
not ≤ 1, 1 ≤ o ≤ O, 0 ≤ t ≤ T −1, (26)

T−1

∑
t=rm

(gI
pmit +hI

pmit)≤ apm

T

∑
t=rm+1

yI
mit ,

1 ≤ p ≤ P, 1 ≤ m ≤ M, 1 ≤ i ≤ I, (27)

gI
pmit +hI

pmit ≤ apmuI
mit ,

1 ≤ p ≤ P, 1 ≤ m ≤ M, 1 ≤ i ≤ I, rm ≤ t ≤ T −1, (28)
T−1

∑
t=ln

gO
pnot ≤ bpn

T−1

∑
s=ln

yO
not ,

1 ≤ p ≤ P, 1 ≤ n ≤ N, 1 ≤ o ≤ O, (29)

gO
pnot ≤ bpnuO

not ,

1 ≤ p ≤ P, 1 ≤ n ≤ N, 1 ≤ o ≤ O, ln ≤ t ≤ T −1, (30)

yI
mit ≤ uI

mi,t−1,

1 ≤ m ≤ M, 1 ≤ i ≤ I, rm +1 ≤ t ≤ T, (31)

yI
mit ≥ uI

mi,t−1 −uI
mit ,

1 ≤ m ≤ M, 1 ≤ i ≤ I, rm +1 ≤ t ≤ T, (32)

yO
not ≤ uO

no,t−1,

1 ≤ n ≤ N, 1 ≤ o ≤ O, ln +1 ≤ t ≤ T, (33)

yO
not ≥ uO

no,t−1 −uO
not ,

1 ≤ n ≤ N, 1 ≤ o ≤ O, ln +1 ≤ t ≤ T, (34)

(10)–(19),

yI
mit ∈ {0, 1}, 1 ≤ m ≤ M, 1 ≤ i ≤ I, rm +1 ≤ t ≤ T, (35)

uI
mit ∈ {0, 1}, 1 ≤ m ≤ M, 1 ≤ i ≤ I, rm ≤ t ≤ T −1, (36)

yO
not ∈ {0, 1}, 1 ≤ n ≤ N, 1 ≤ o ≤ O, ln +1 ≤ t ≤ T, (37)

uO
not ∈ {0, 1}, 1 ≤ n ≤ N, 1 ≤ o ≤ O, ln ≤ t ≤ T −1, (38)

Constraints (23)–(30) correspond to (2)–(9) in (P1), respec-
tively. Constraints (31) guarantee that yI

mit = 0 if uI
mi,t−1 = 0,

that is, the departure time of inbound truck m from inbound door
i is not equal to t if the truck is not at the door in duration
[t − 1, t). Constraints (32) ensure that yI

mit = 1 when uI
mi,t−1 = 1

and uI
mit = 0. Constraints (33) and (34) are counterparts of con-

straints (31) and (32), respectively, for outbound trucks.
The number of binary decision variables in (P1) is (MI +

NJ)T (T + 1) at the maximum, while that in (P2) is at most
2(MI + NJ)T . Nevertheless, the linear relaxation of (P2) pro-
vides the same lower bound as that of (P1), so that we can expect
that (P2) is easier to solve to optimality. The following theorem
explicitly describe the equivalence of the two linear relaxations.

Theorem 1. Let (LP1) and (LP2) be the linear relaxations of
(P1) and (P2), respectively. Then, the optimal objective values of
(LP1) and (LP2) are the same.

Proof. Since the decision variables (gI
pmit , hI

pmit , gO
pnot , hO

pit , qpiot ,
spit) are the same in (P1) and (P2), we will prove that a feasi-
ble solution (xI

mist , xO
nost) of (LP1) can be converted to a feasible

solution (yI
mit , uI

mit , yO
not , uO

not) of (LP2) and vice versa, without
changing the objective value.

First, we convert a feasible solution (xI
mist , xO

nost) of (LP1) to
a feasible solution (yI

mit , uI
mit , yO

not , uO
not) of (LP2). Let us define

yI
mit , uI

mit , yO
not , and uO

not as follows:

yI
mit =

t−1

∑
s=rm

xI
mist (39)

uI
mit =

t

∑
s=rm

T

∑
u=t+1

xI
misu, (40)

yO
not =

t−1

∑
s=ln

xO
nost , (41)

uO
not =

t

∑
s=ln

T

∑
u=t+1

xO
nosu. (42)

Then, it is obvious that (1), (4)–(9) are rewritten as (22), (25)–
(30), respectively. Noting

T−1

∑
s=rm

T

∑
t=s+1

xI
mist =

T

∑
t=rm+1

t−1

∑
s=rm

xI
mist , (43)

we can also rewrite (2) as (23). A similar argument holds true for
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(3) and (24). Furthermore, (31) follows from

uI
mi,t−1 =

t−1

∑
s=rm

T

∑
u=t

xI
misu =

t−1

∑
s=rm

xI
mist +

t−1

∑
s=rm

T

∑
u=t+1

xI
misu

= yI
mit +

t−1

∑
s=rm

T

∑
u=t+1

xI
misu ≥ yI

mit , (44)

and (32) from

uI
mi,t−1 −uI

mit = yI
mit +

t−1

∑
s=rm

T

∑
u=t+1

xI
misu −uI

mit

= yI
mit +

t−1

∑
s=rm

T

∑
u=t+1

xI
misu −

t

∑
s=rm

T

∑
u=t+1

xI
misu

= yI
mit −

T

∑
u=t+1

xI
mitu ≤ yI

mit . (45)

Again, (33) and (34) can be derived similarly.
Next, we convert a feasible solution (yI

mit , uI
mit , yO

not , uO
not ) of

(LP2) to a feasible solution (xI
mist , xO

nost) of (LP1). Here, we only
consider converting the decision variables for outbound doors and
trucks, yO

not and uO
not . We apply the following procedure:

1◦ Let t∗ be the minimum t satisfying yO
not > 0.

2◦ While yO
not∗ > 0, repeat the following:

(a) Let s∗ be the maximum s satisfying uO
no,s−1 < uO

nos and
s < t∗. Let δ := min(uO

nos∗ −uO
no,s∗−1,y

O
not∗).

(b) Let yO
not∗ := yO

not∗ −δ , uO
nou := uO

nou −δ for s∗ ≤ u < t∗,
and xO

nos∗t∗ := δ .

3◦ If yO
not = 0 for all t, terminate. Otherwise, go to 1◦.

From (34), yO
not > 0 if uO

no,t−1 > uO
not . It follows that uO

nos are
nondecreasing for s < t∗ in 1◦ of the first iteration. Furthermore,
they keep nondecreasing even after 2◦(b). Since uO

no,t−1 ≥ yO
not

from (33), 2◦ is terminated in a finite number of iterations with
yO

not∗ = 0 satisfied. When 2◦ is terminated, uO
no,t∗−1 ≤ uO

not∗ holds
because uO

no,t−1 − yO
not ≤ uO

not from (34). Thus, uO
nos are nonde-

creasing for s < t∗ in 1◦ of the second and later iterations. In 1◦

of the final iteration, uO
not∗ = 0 should be satisfied, so that (33) and

(34) yield yO
not∗ = uO

no,t∗−1. Therefore, uO
nos = 0 holds for any s

when the procedure is terminated. It is not difficult to check that
xO

nost now satisfy (41) and (42). As we have already seen, (22)–
(30) can be rewritten as (1)–(9), respectively, under (39)–(42).

⊓⊔

5 NUMERICAL EXPERIMENT
In this section we examine the effectiveness of the proposed

formulations (P1) and (P2) by numerical experiment. Test in-
stances were generated randomly as follows. The number of units
of product type p supplied by inbound truck m, apm, and the num-
ber of units of product type p requested from outbound truck n,
bpn, were generated from integer uniform distributions in [1, 20],

so that ∑M
m=1 apm = ∑N

n=1 bpn holds for every product type p. The
release date of inbound truck m, rm, and that of outbound truck n,
ln, were generated from integer uniform distributions in [0, T −1].
The duedate of outbound truck n, dn, was generated from an in-
teger uniform distribution in [ln + 1, T ]. We assume M = N and
I = J, and M, I, P, T were chosen as M ∈ {5, 10}, I ∈ {2, 3},
P ∈ {2, 3}, and T ∈ {N, 2N}. For each combination of M(= N),
I(= J), P, and T , five instances were generated. In all these in-
stances, the travel time from inbound door i to outbound door o
was set to tio = |i− o|. We solved instances using (P1) and (P2)
with capacity C changed as C = 20, 30, 40 and ∞. Gurobi Op-
timizer v7.5.2 [11] was used as an ILP solver. The computation
was conducted on a desktop computer with an Intel core i7-6700
CPU (3.4GHz) and 24GB RAM. The time limit was set to 30
minutes for each instance.

The results are summarized in Tables 1 and 2, where the col-
umn “opt” denotes the number of instances solved to optimality
within the time limit, and “time” denotes the average computation
time in seconds over instances solved to optimality. We can ob-
serve from the tables that the small-size instances with M =N = 5
are easy to solve to optimality regardless of capacity C. In the
case of M = N = 10, most instances can be solved to optimal-
ity, but not all. We can also see that instances with a smaller C
are harder to solve to optimality than those with a larger C. In
particular, all the instances without capacity constraints (C = ∞)
were solved to optimality by both (P1) and (P2). With regard to
the computation time of (P1) and (P2), (P2) yielded better results
than (P1) in most cases. Indeed, as presented in Table 3, the num-
ber of instances with M = N = 10 solved to optimality by (P2) is
128+14 = 142, whereas that by (P1) is 128+1 = 129.

6 CONCLUSION
In this study we proposed two types of ILP formulation

for the truck-to-door scheduling problem in a multi-door cross-
docking terminal where temporary storage is taken into account.
The first formulation employs binary decision variables indexed
by arrival and departure times of trucks. The second formula-
tion derives from those of the unit commitment problem and uses
binary decision variables representing states of trucks as well as
departure times. Numerical experiment showed that the latter for-
mulation yields shorter computation time than the former, primar-
ily due to fewer binary decision variables. Nevertheless, the lat-
ter formulation failed in solving some instances with 10 inbound
trucks and 10 outbound trucks. To solve larger-size instances
to optimality as well as these, it is necessary to construct dedi-
cated exact algorithms based on branch-and-bound, branch-and-
cut, and so on. It will also be worthwhile to construct heuristics
such as local search algorithms and Lagrangian heuristics. These
topics are left for future research.
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