Numerical results

The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation

Boris Detienne¹, Ruslan Sadykov¹, Shunji Tanaka² 1 : Team Inria RealOpt, University of Bordeaux, France 2 : Department of Electrical Engineering, Kyoto University, Japan

Multidisciplinary International Scheduling conference: Theory and Application MISTA 2015

August 25th, 2015

Branch-and-bound

< □ > < □ > < □ > < □ > < □ >

< E

Numerical results

Outline

1

Introduction

- Problem description
- Literature
- Contribution

2 Lower bounds

- Network flow formulation
- Extended network flow formulation

3 Branch-and-bound

4 Numerical results

1 Introduction

- Problem description
- Literature
- Contribution

2 Lower bounds

- 3 Branch-and-bound
- Numerical results

臣

Branch-and-bound

Numerical results

Two-machine flow-shop problem $F2|ST_{SI}| \sum C_i$

Input data: A set I of n jobs composed of 2 operations

- The first operation is processed on machine 1, the second on machine 2
- For all $i \in I$, s_i^2 is the sequence-independent setup time on machine 2
- Assumption: data are integer and deterministic

Constraints

- Each machine can process only one operation at a time
- Operations of a same job cannot be processed simultaneously

Objective

Find a schedule that minimizes the sum of the completion times of the jobs on the second machine.

Introduction

Lower bounds

Branch-and-bound

Numerical results

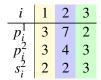
æ

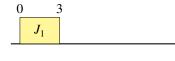
Introduction

Lower bounds

Branch-and-bound

Numerical results





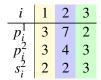
		J_1			
1	1	3 ()		

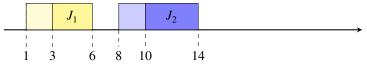
æ

◆□▶ ◆□▶ ◆□▶ ◆□▶

Branch-and-bound

Numerical results





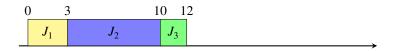
æ

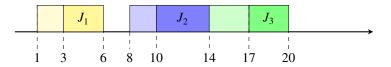
◆□▶ ◆□▶ ◆□▶ ◆□▶

Branch-and-bound

Numerical results

i	1	2	3
p_i^1	3	7	2
p_i^2	3	4	3
s_i^2	2	2	3



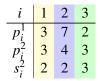


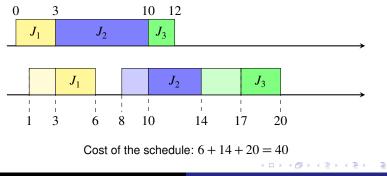
æ

◆□▶ ◆□▶ ◆□▶ ◆□▶

Branch-and-bound

Numerical results





Properties of the problem

Complexity

Strongly NP-hard [Conway et al., 1967]

Dominating solutions

There is a least one optimal schedule that is:

- active (operations are performed as soon as possible, no unforced idle time)
- such that the sequences of the jobs on both machines are the same (permutation schedule) [Conway et al., 1967, Allahverdi et al., 1999]
- \rightarrow The problem comes to find **one** optimal sequence of jobs.

Branch-and-bound

Numerical results

Literature

Lower bounds and exact algorithms

L.B.: Single machine problems

[Ignall and Schrage, 1965], [Ahmadi and Bagchi, 1990], [Della Croce et al., 1996], [Allahverdi, 2000] Branch-and-bound, up to 10, 15 and 30 jobs ($p_i \leq 20$), 20 jobs ($p_i \leq 100$)

- L.B.: Lagrangian relaxation of precedence constraints [van de Velde, 1990], [Della Croce et al, 2002], [Gharbi et al., 2013] Branch-and-bound, up to 20 and 45 jobs ($p_i \leq 10$)
- L.B.: linear relaxation of a positional/assignment model [Akkan and Karabati, 2004], [Hoogeven et al., 2006], [Haouari and Kharbeche, 2013], [Gharbi et al., 2013] : 35 jobs (p_i ≤ 100)
- L.B.: Lagrangian relaxation of the job cardinality ctr., flow model [Akkan and Karabati, 2004] Branch-and-bound, up to 60 jobs ($p_i \le 10$), 45 jobs ($p_i \le 100$)

・ロト ・四ト ・ヨト ・ヨト

Branch-and-bound

Numerical results

Contribution

Branch-and-bound based on the network flow model of [Akkan and Karabati, 2004]

Improvements

Stronger lower bound by using a larger size network

- Advantages
 - Stronger Lagrangian relaxation bound
 - Allows integration of dominance rules inside the network
- Disadvantages
 - (Too) high memory and CPU time requirements

 \rightarrow Reduction of the size of the network using Lagrangian cost variable fixing

Extension to sequence-independent setup times

- Network flow formulation
- Extended network flow formulation

3 Branch-and-bound

4 Numerical results

臣

Branch-and-bound

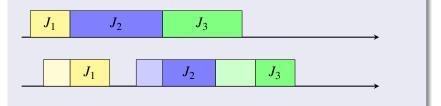
Numerical results

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

 $L_k^c = C_{[k]}^2 - C_{[k]}^1$: time **lag** elapsed between the completion of the job in position *k* on machine 1 and on machine 2

Total completion time



Branch-and-bound

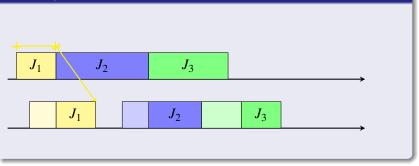
Numerical results

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

 $L_k^c = C_{[k]}^2 - C_{[k]}^1$: time **lag** elapsed between the completion of the job in position *k* on machine 1 and on machine 2

Total completion time



Branch-and-bound

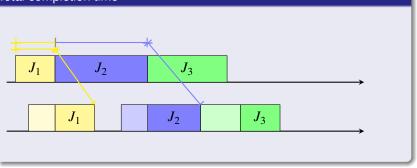
Numerical results

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

 $L_k^c = C_{[k]}^2 - C_{[k]}^1$: time **lag** elapsed between the completion of the job in position *k* on machine 1 and on machine 2

Total completion time



Branch-and-bound

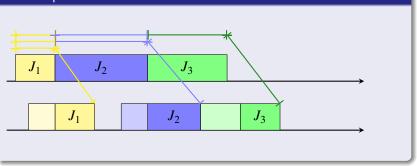
Numerical results

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

 $L_k^c = C_{[k]}^2 - C_{[k]}^1$: time **lag** elapsed between the completion of the job in position *k* on machine 1 and on machine 2

Total completion time



Branch-and-bound

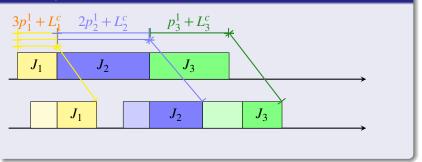
Numerical results

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

 $L_k^c = C_{[k]}^2 - C_{[k]}^1$: time **lag** elapsed between the completion of the job in position *k* on machine 1 and on machine 2

Total completion time



ヘロト 人間 とくほとくほとう

Э

Branch-and-bound

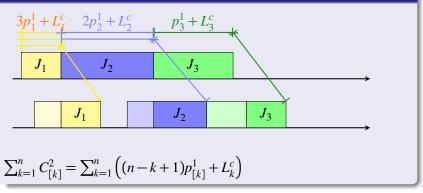
Numerical results

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

 $L_k^c = C_{[k]}^2 - C_{[k]}^1$: time **lag** elapsed between the completion of the job in position *k* on machine 1 and on machine 2

Total completion time



Branch-and-bound

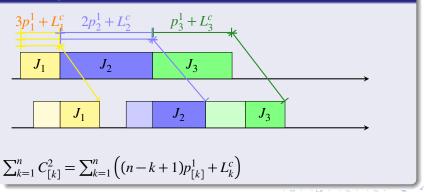
Numerical results

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

Recursive formula for lag:
$$L_{k}^{c} = \max \left\{ 0, L_{k-1}^{c} + s_{[k]}^{2} - p_{[k]}^{1} \right\} + p_{[k]}^{2}$$

Total completion time



Branch-and-bound

Numerical results

Network flow formulation [Akkan et Karabati, 2004]

Lag-based models

The contribution of a job to the objective function only depends on:

- Its position in the sequence
- Its lag, which is directly deduced from the lag of the preceding job

Structure of the network

- One node \equiv a pair (position, lag)
- One arc \equiv the processing of a job
 - initial node determines the position
 - terminal node determines the lag

 \rightarrow The cost of an arc is the corresponding contribution to the objective function

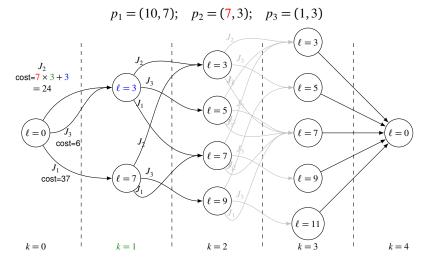
• □ ▶ • • □ ▶ • • □ ▶ • •

Introduction 00000 Lower bounds

Branch-and-bound

Numerical results

Network flow formulation [Akkan et Karabati, 2004]: G_1



Shortest path + Each job is processed exactly once

3

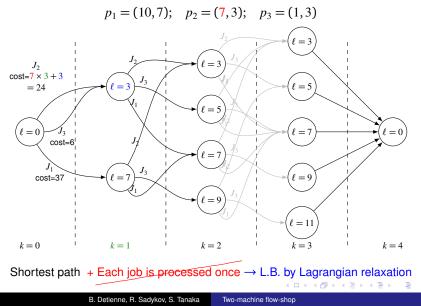
・ロト ・ 母 ト ・ 国 ト ・ 国 ト …

Introduction 00000 Lower bounds

Branch-and-bound

Numerical results

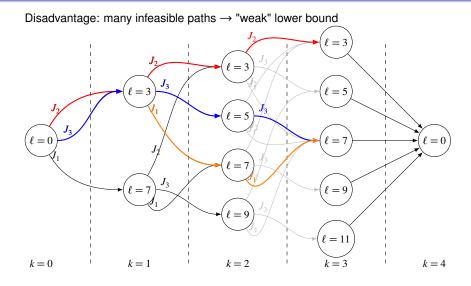
Network flow formulation [Akkan et Karabati, 2004]: G_1



Branch-and-bound

Numerical results

Network flow formulation [Akkan et Karabati, 2004]: G_1



Branch-and-bound

Numerical results

Extended network flow formulation: G_2

Structure of the network

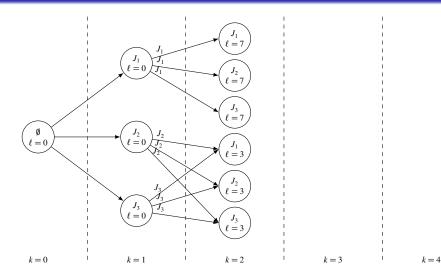
- One node ≡ a triplet (position, lag, job)
- One arc ≡ the processing of a job
 - initial node determines the position and the job
 - terminal node determines the lag and the next job

 \rightarrow The cost of an arc is the corresponding contribution to the objective function

Branch-and-bound

Numerical results

Extended network G_2

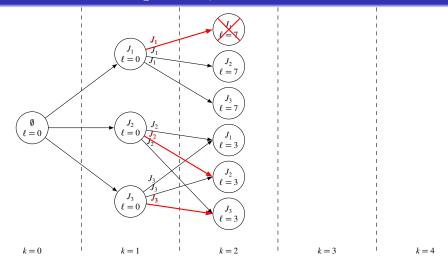


æ

Branch-and-bound

Numerical results

Extended network G_2 - Example of reduction



Jobs cannot be processed twice consecutively

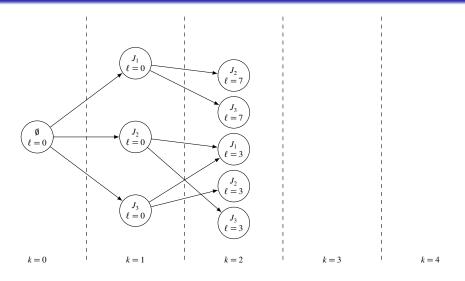
ロトス団トメヨトメヨト

æ

Branch-and-bound

Numerical results

Extended network G_2 - Example of reduction



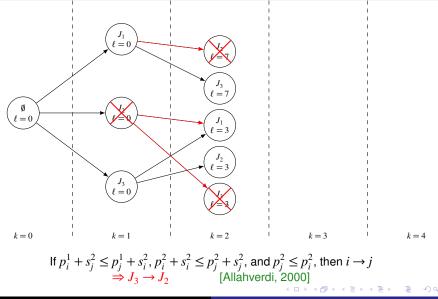
æ

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・

Branch-and-bound

Numerical results

Extended network G_2 - Example of reduction



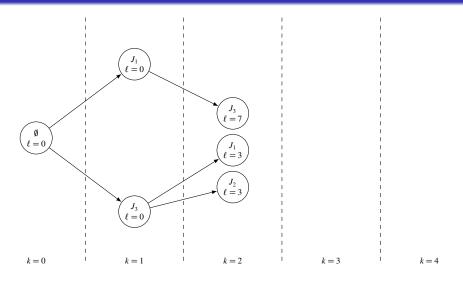
Introduction

Lower bounds

Branch-and-bound

Numerical results

Extended network G_2 - Example of reduction



Э

Extended network G_2 - Example of reduction

Given a position k, a lag ℓ and a sub-sequence σ :

- $f(k, \ell, \sigma)$: cost of scheduling σ at (k, ℓ)
- $L(k, \ell, \sigma)$: lag of the last job of σ scheduled at (k, ℓ)

Dominance

Sub-sequence σ is dominated at (k, ℓ) by sub-sequence σ' if:

- The set of jobs in σ and σ' is the same
- $f(k, \ell, \sigma) > f(k, \ell, \sigma')$

The partial schedule up to the end of σ' will be less costly

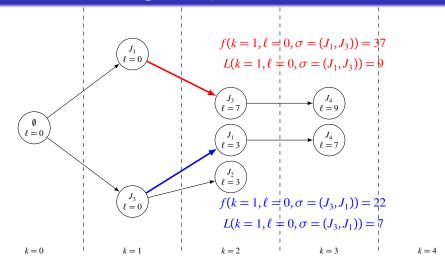
• $L(k, \ell, \sigma) \ge L(k, \ell, \sigma')$

The partial schedule after σ' will not be more costly

Branch-and-bound

Numerical results

Extended network G_2 - Example of reduction



Example: $|\sigma| = 2$ allows us to remove some arcs

・ロト・西ト・モン・ 日本

Branch-and-bound

Numerical results

Lagrangian cost variable fixing

Additional input data

An upper bound UB of the optimum is known

Principle

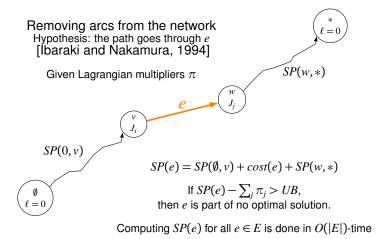
- Assume that one dominant optimal solution satisfies hypothesis *h* The optimal path goes through a given arc
- Compute a (Lagrangian) lower bound LB_h under h
- If LB_h > UB, then h is not satisfied in any optimal dominant solution

The arc can be removed from the graph

Branch-and-bound

Numerical results

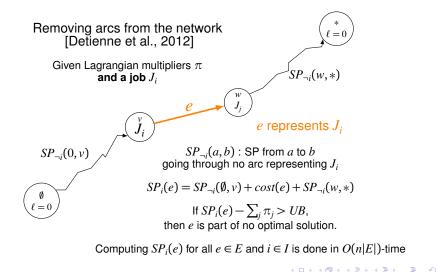
Lagrangian cost variable fixing (1)



Branch-and-bound

Numerical results

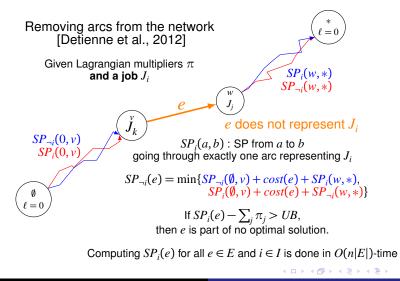
Lagrangian cost variable fixing (2)



Branch-and-bound

Numerical results

Lagrangian cost variable fixing (2)



1 Introduction

- 2 Lower bounds
- 3 Branch-and-bound
- 4 Numerical results

æ

ヘロト 人間 とくほ とくほとう

Branch-and-bound

Numerical results

Preprocessing

Initial upper bound

A good feasible solution is obtained by a local search procedure *Dynasearch* [Tanaka, 2010]

Pre-computation of lower bounds

- Construction of network G₁
- Lagrangian cost variable fixing (subgradient procedure)
- Construction of the extended network G₂ from G₁
- Lagrangian cost variable fixing (subgradient procedure)
- For the best Lagrangian multipliers, SP_i(v, *) and SP_{¬i}(v, *) are stored for each i ∈ I and v ∈ V

Branch-and-bound

Branching scheme

Solution space explored

- Feasible sequences of jobs \equiv Feasible constrained paths in G_2
- Depth-First Search, starting from start node Ø

Branching

Current sequence σ (\equiv path) is extended with job J_i iff:

- There is a corresponding arc in G₂
- All predecessors of J_i are in σ and J_i is not in σ
- The sequence of the last 5 jobs obtained would not be dominated by one of its permutations
- The sequence is not dominated by a previously explored sequence (*Memory Dominance Rule, [Baptiste et al., 2004], [T'Kindt et al., 2004], [Kao et al., 2008]*)

Branch-and-bound

Numerical results

Lower bound for $\sigma \equiv$ path ending at *v* in G_2

Lower bound coming from jobs not sequenced yet

$$LB_1 = cost(\sigma) + \max_{i \notin \sigma} SP_i(v, *) - \sum_{i \notin \sigma} \pi_i$$

Lower bound coming from sequenced jobs

$$LB_2 = cost(\sigma) + \max_{i \in \sigma} SP_{\neg i}(v, *) - \sum_{i \notin \sigma} \pi_i$$

Computing $\max\{LB_1, LB_2\}$ is done in $\mathcal{O}(n)$ -time.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Branch-and-bound

Numerical results

Tentative upper bound

Weakness of the approach

If the initial upper bound is too large, variable fixing is not efficient.

Overall procedure

- **O** Build and filter G_2 using the initial upper bound (dynasearch)
- 2 If G_2 is sufficiently small, run the Branch-and-Bound, STOP
- Build and filter G₂ using a tentative upper bound
- Run the Branch-and-Bound
- If a feasible solution is found, it is optimal, STOP
- Otherwise, increase the tentative upper bound and go to 3

1 Introduction

- 2 Lower bounds
- 3 Branch-and-bound
- 4 Numerical results

æ

ヘロト 人間 とくほ とくほとう

Branch-and-bound

Numerical results

No setup times - $F_2 || \sum C_i$

Coded in C++ (MS VS 2012) MS Windows 8 laptop with 16GB RAM and Intel Core i7 @2.7GHz

Instances

- Randomly generated [Akkan and Karabati, 2004], [Haouari and Kharbeche 2013]
- Up to 100 jobs, p_i^1 and p_i^2 are drawn from $\mathscr{U}[1, 100]$

Results for 100-job instances (40 instances)

- Avg. time: 216 s., Max. time: 602 s.
- Tentative upper bound is useless Root gap $\approx 7 \times 10^{-4}$
- Variable fixing reduces the number of arcs by a factor 5 Avg.: ≈ 166K nodes, ≈ 1.4M arcs, Max.: 239K nodes, 2.9M arcs

Sequence-independent setup times - $F_2|ST_{SI}| \sum C_i$

Instances

- Subset of the testbed of [Gharbi et al., 2013]
- Up to 100 jobs, p_i^1 , p_i^2 and s_i^2 are drawn from $\mathscr{U}[1, 100]$

Results for 100-job instances (200 instances)

- Avg. time: 935 s., Max. time: 6443 s.
- Tentative upper bound is critical *Reduces the number of arcs from* 18.5*M to* 2.2*M at the root node*
- Lagrangian Variable fixing + Tentative upper bound reduce the number of arcs by a factor 17
 Avg.: ≈ 237K nodes, ≈ 2.2M arcs, Max.: 440K nodes, 4.9M arcs

Branch-and-bound

Conclusion

Contributions

- New lower bound for $F2||\sum C_i$ and $F2|ST_{SI}|\sum C_i$
- Efficient management of the size of the extended network
- Dominance rules are embedded in the structure of the network
- The lower bound is used with success in an exact solving approach
- All 100-job instances of our test bed are solved in less than two hours 98% are solved in less than one hour

Future directions

- Use Successive Sublimation Dynamic Programming instead of Branch-and-Bound
- Adapt for other min-sum objective functions?
- Adapt for more than two machines permutation flowshop?

Thank you for your attention

æ

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

r

Lower bounds

Numerical results

Network flow formulation [Akkan et Karabati, 2004]: G₁

- V_1, A_1 : sets of nodes and arcs
- $x_{v,w,j}$: amount of flow on the arc representing *j* between nodes *v* and *w*

$$\min \sum_{(v,w,j)\in A_1} c_{v,w,j} x_{v,w,j} s.t. \sum_{(v,w,j)\in A_1} x_{v,w,j} = \sum_{(w,v,j)\in A_1} x_{w,v,j} \qquad \forall v \in V_1 - \{(0,0), (n+1,0)\} \sum_{(v,w,j)\in A_1} x_{v,w,j} = 1 \qquad \forall j = 1, \dots, n \sum_{(0,w,j)\in A_1} x_{0,w,j} = 1 x_{v,w,j} \in \{0,1\} \qquad \forall (v,w,j) \in E_1$$

Branch-and-bound

Numerical results

Lower bound by Lagrangian relaxation

- V_1, A_1 : sets of nodes and arcs
- $x_{v,w,j}$: amount of flow on the arc representing *j* between nodes *v* and *w*

$$L(\pi) = \min \sum_{(v,w,j) \in A_1} c_{v,w,j} x_{v,w,j} + \sum_{j=1}^n \pi_j \left(\sum_{(v,w): (v,w,j) \in A_1} x_{v,w,j} - 1 \right)$$

s.t.
$$\sum_{(v,w,j) \in A_1} x_{v,w,j} = \sum_{(w,v,j) \in A_1} x_{w,v,j} \quad \forall v \in V_1 - \{(0,0), (n+1,0)\}$$
$$\sum_{(v,w,j) \in A_1} x_{v,w,j} = 1 \quad \forall j = 1, \dots, n$$
$$\sum_{(0,w,j) \in A_1} x_{0,w,j} = 1$$
$$x_{v,w,j} \in \{0,1\} \quad \forall (v,w,j) \in A_1$$

ヘロト 人間 とくほとくほとう

Branch-and-bound

Numerical results

Lower bound by Lagrangian relaxation

- V_1, A_1 : sets of nodes and arcs
- $x_{v,w,j}$: amount of flow on the arc representing *j* between nodes *v* and *w*

$$L(\pi) = \min \sum_{(v,w,j) \in A_1} (c_{v,w,j} + \pi_j) x_{v,w,j} - \sum_{j=1}^n \pi_j$$

s.t. $\sum_{(v,w,j) \in A_1} x_{v,w,j} = \sum_{(w,v,j) \in A_1} x_{w,v,j}$ $\forall v \in V_1 - \{(0,0), (n+1,0)\}$
 $\sum_{(v,w,j) \in A_1} x_{v,w,j} = 1$
 $\sum_{(0,w,j) \in A_1} x_{0,w,j} = 1$
 $x_{v,w,j} \in \{0,1\}$ $\forall (v,w,j) \in A_1$

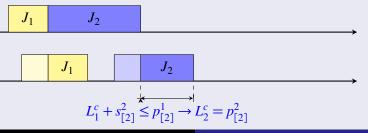
Subproblem: shortest path in the network

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

- $C^m_{[k]}$: completion time of the job in position k on machine m
- L_k^c : time **lag** elapsed between the completion of the job in position k on machines 1 and 2

$$L_{k}^{c} = C_{[k]}^{2} - C_{[k]}^{1} = \max\left\{0, L_{k-1}^{c} + s_{[k]}^{2} - p_{[k]}^{1}\right\} + p_{[k]}^{2}$$



Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

- $C^m_{[k]}$: completion time of the job in position k on machine m
- L_k^c : time **lag** elapsed between the completion of the job in position k on machines 1 and 2

Branch-and-bound

Numerical results

Lag-based models

Formulating the objective function

Minimizing the sum of completion times:

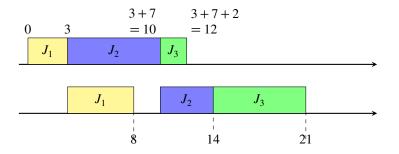
$$\sum_{k=1}^{n} C_{[k]}^{2} = \sum_{k=1}^{n} \left(C_{[k]}^{1} + L_{k}^{c} \right)$$
$$= \sum_{k=1}^{n} \left(\sum_{r=1}^{k} p_{[r]}^{1} + L_{k}^{c} \right)$$
$$= \sum_{k=1}^{n} \left((n-k+1)p_{[k]}^{1} + L_{k}^{c} \right)$$

臣

Branch-and-bound

Numerical results

$$p_1 = (3,5); p_2 = (7,4); p_3 = (2,7)$$



Cost of the schedule: $(3 \times 3 + 5) + (7 \times 2 + 4) + (2 \times 1 + 9) = 43$

æ

ヘロト 人間 とくほ とくほ とう

Branch-and-bound

Numerical results

Lower bound for $\sigma \equiv$ path ending at *v* in *G*₂

Lower bound coming from jobs not sequenced yet

$$LB_1 = cost(\sigma) + \max_{i \notin \sigma} SP_i(v, *) - \sum_{i \notin \sigma} \pi_i$$

Lower bound coming from sequenced jobs

$$LB_2 = cost(\sigma) + \max_{i \in \sigma} SP_{\neg i}(v, *) - \sum_{i \notin \sigma} \pi_i$$

Computing $\max\{LB_1, LB_2\}$ is done in $\mathcal{O}(n)$ -time.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))