Scheduling malleable jobs to minimize the Mean Flow Time

Yann Hendel^a Wieslaw Kubiak^b Ruslan Sadykov^a

^aLIX, Ecole Polytechnique, France

^bMemorial University, Newfoundland, Canada

Bordeaux January 31, 2008

・ロト ・同ト ・ヨト ・ヨト

Introduction: parallel jobs scheduling

- Scheduling malleable jobs on 2 machines to minimize the Mean Flow Time
 - A set of dominant schedules: π -schedules
 - A polynomial dynamic programming algorithm
 - **③** Proof of the dominance of the π -schedules
- Perspectives: the general case with m machines

向下 イヨト イヨト

Classic scheduling

A **classic job** can be executed on at most one processor (machine) at the same time.

Parallel scheduling

A **parallel job** can be executed on more than one processor at the same time.

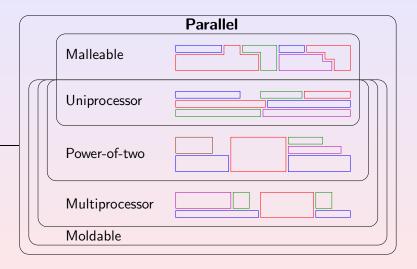
 δ_j — upper bound on the number of processors that may be used by job $J_j.$

・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・

Parallel computer applications

- Reliable computing
- Bandwidth allocation
- Manufacturing
 - Printed Circuit Boards
 - Textile
 - ...

イロン イボン イヨン 一座



Processing speed

The relation between the processing time p_j of job J_j and the number of assigned processors q:

- $p_j(q) = p_j/q$ (J_j is work preserving, no parallelism cost)
- $p_j(q) > p_j/q$ (parallelism costs)
 - $p_j(q) = f(q)$ (particular continuous function)
 - $p_j(q)$ is an arbitrary discrete function of q.

- Introduction: parallel jobs scheduling
- Scheduling malleable jobs on 2 machines to minimize the Mean Flow Time
 - A set of dominant schedules: π -schedules
 - 2 A polynomial dynamic programming algorithm
 - **③** Proof of the dominance of the π -schedules
- Perspectives: the general case with m machines

向下 イヨト イヨト

Problem definition

Notations

- 2 identical parallel machines: M_1 and M_2
- 2 kinds of jobs:
- A set A = {A₁, A₂,..., A_{n_A}} of preemptive jobs (δ_j^A = 1)
 A set B = {B₁, B₂,..., B_{n_B}} of malleable jobs (δ_j^B = 2)
 C_j^A and C_i^B are the completion times of jobs A_j and B_i
 p_j^A is the processing time of job A_j
 p_i^B is the processing time of job B_i, p_i^B(2) = p_i^B/2
 The objective is to minimize ∑_{j=1}^{n_A} C_j^A + ∑_{i=1}^{n_B} C_i^B

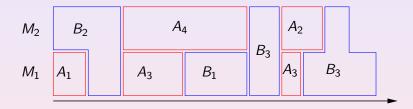
$\alpha |\beta| \gamma$ notation

$$P2 \mid var, \ p_j(q) = p_j/q, \ \delta_j \mid \sum C_j$$

Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov

Scheduling malleable jobs to minimize the MFT

ヘロン 人間と 人間と 人間と



◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ 三 ○

- Introduction: parallel jobs scheduling
- Scheduling malleable jobs on 2 machines to minimize the Mean Flow Time
 - A set of dominant schedules: π -schedules
 - A polynomial dynamic programming algorithm
 - **③** Proof of the dominance of the π -schedules
- Perspectives: the general case with m machines

向下 イヨト イヨト

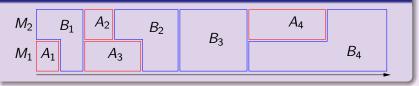
Definition

We say that a schedule σ is a π -schedule if it has the following properties:

- the jobs in A are processed, non-preemptively, in SPT (Shortest Processing Time) order,
- **2** the jobs in B are processed, non-preemptively, in SPT order,
- \bigcirc the jobs in *B* is completed on 2 machines
- for every job B_i , there exists at most one job A_j such that $S_i^B < C_i^A \le C_i^B$.

() < </p>

Example



Properties

- A π -schedule is fully described by a sequence of jobs.
- Completion time of a job B_i in a π-schedule depends only on its position in the corresponding sequence.
- Completion time of a job A_j in a π-schedule depends only on its position and on the position of the job in B which is the last before A_j in the corresponding sequence.

- Introduction: parallel jobs scheduling
- Scheduling malleable jobs on 2 machines to minimize the Mean Flow Time
 - A set of dominant schedules: π -schedules
 - A polynomial dynamic programming algorithm
 - **③** Proof of the dominance of the π -schedules
- Perspectives: the general case with m machines

- (i, j, k) denotes the subproblem of scheduling jobs A_1, \ldots, A_j and B_1, \ldots, B_i such that A_k is the last job in A such that $C_k^A < C_i^B$.
- f(i, j, k) denotes the optimal value of the subproblem (i, j, k).
- Since we build π-schedules, there are two possible transitions from the state (i, j, k):
 - (i+1,j,j) (we add B_{i+1} at the end of the schedule)
 - (i, j + 1, k) (we add A_{j+1} at the end of the schedule)

A dynamic programming algorithm

 f(0,0,0) = 0
 ∀i ∈ {0,...,n_B}, ∀j ∈ {0,...,n_A}, ∀k ∈ {0,...,j} do: make transitions from state (i, j, k) to states (i + 1, j, j) and (i, j + 1, k)
 return min _{0≤k≤n_A} f(n_A, n_B, k)

Theorem

DP finds an optimal π -schedule.

Theorem

The complexity of DP is in $O(n_A^2 n_B)$.

- Introduction: parallel jobs scheduling
- Scheduling malleable jobs on 2 machines to minimize the Mean Flow Time
 - A set of dominant schedules: π -schedules
 - A polynomial dynamic programming algorithm
 - **③** Proof of the dominance of the π -schedules
- Perspectives: the general case with m machines

向下 イヨト イヨト

Lemma

There exists an optimal schedule such that

②
$$A_j$$
 is not preempted, $orall 1 \leq j \leq n_A$

() On each of the 2 machines, B_i is not preempted, $\forall 1 \leq i \leq n_B$

•
$$C_j^A \leq C_{j+1}^A, \forall 1 \leq j < n_A$$

• A_j is not preempted, $\forall 1 \leq j \leq n_A$

◆□> ◆□> ◆ヨ> ◆ヨ> ・三

•
$$C_j^A \leq C_{j+1}^A, \forall 1 \leq j < n_A$$

• A_j is not preempted, $\forall 1 \leq j \leq n_A$

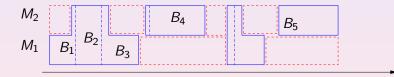
(ロ) (四) (注) (注) (注) (三)

$$\begin{array}{l} \bullet \quad C_j^A \leq C_{j+1}^A, \ \forall 1 \leq j < n_A \\ \bullet \quad A_j \ \text{is not preempted}, \ \forall 1 \leq j \leq n_A \end{array} \end{array}$$

◆□> ◆□> ◆ヨ> ◆ヨ> ・三

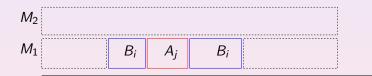
◆□ → ◆□ → ◆ 三 → ◆ 三 → 三 三

$$C_i^B \leq S_{i+1}^B, \ \forall 1 \leq i < n_B$$



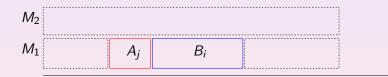
◆□> ◆□> ◆豆> ◆豆> ・豆

On each of the 2 machines, B_i is not preempted, $\forall 1 \leq i \leq n_B$

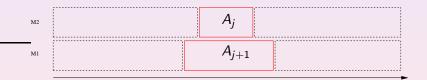


(ロ) (四) (E) (E) (E) (E)

On each of the 2 machines, B_i is not preempted, $\forall 1 \leq i \leq n_B$



There exists on optimal schedule in which the jobs in A are started and completed in SPT order.

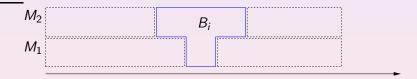


(ロ) (四) (E) (E) (E) (E)

There exists on optimal schedule in which the jobs in B are completed on 2 machines.

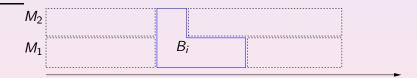
Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov Scheduling malleable jobs to minimize the MFT

There exists on optimal schedule in which the jobs in B are completed on 2 machines.



() < </p>

There exists on optimal schedule in which the jobs in B are completed on 2 machines.

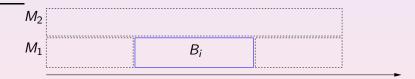


There exists on optimal schedule in which the jobs in B are completed on 2 machines.

イロト イラト イヨト イヨト

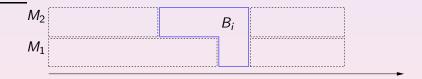
There exists on optimal schedule in which the jobs in B are completed on 2 machines.

There exists on optimal schedule in which the jobs in B are completed on 2 machines.



・ロン ・回 と ・ヨン ・ヨン

There exists on optimal schedule in which the jobs in B are completed on 2 machines.



() < </p>

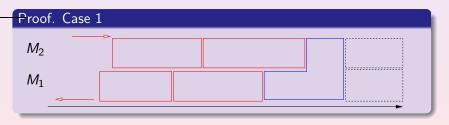
There exists on optimal schedule in which the jobs in B are completed on 2 machines.



イロト イラト イヨト イヨト

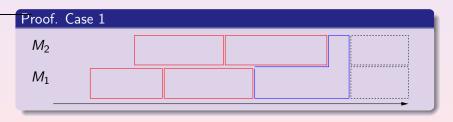
Claim

Consider a partial π -schedule in which the first job on M_1 is started not later than the first job on M_2 . Then, if we decrease the availability of M_1 by δ and increase the availability of M_2 by δ , the cost of the schedule does not increase.



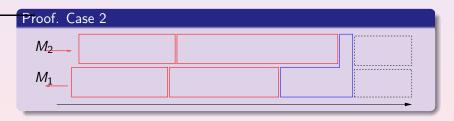
Claim

Consider a partial π -schedule in which the first job on M_1 is started not later than the first job on M_2 . Then, if we decrease the availability of M_1 by δ and increase the availability of M_2 by δ , the cost of the schedule does not increase.



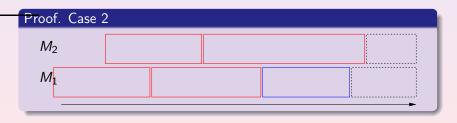
Claim

Consider a partial π -schedule in which the first job on M_1 is started not later than the first job on M_2 . Then, if we decrease the availability of M_1 by δ and increase the availability of M_2 by δ , the cost of the schedule does not increase.



Claim

Consider a partial π -schedule in which the first job on M_1 is started not later than the first job on M_2 . Then, if we decrease the availability of M_1 by δ and increase the availability of M_2 by δ , the cost of the schedule does not increase.



(日) (同) (E) (E) (E)

The main theorem

Theorem

There exists an optimal π -schedule.

Proof

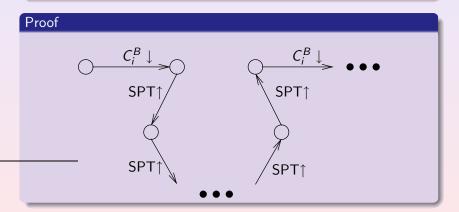
It is possible to transform an optimal schedule ϵ satisfying the Lemma and which is not a π -schedule into another optimal schedule such that

- either the completion time of at least one job in *B* is strictly decreased while the completion times of other jobs in *B* are not increased.
- or the number of jobs in A processed in the SPT order is increased, and the completion times of all jobs in B are not increased.

Applying this transformation a finite number of times, we can obtain an optimal π -schedule.

Theorem

There exists an optimal π -schedule.



<ロ> <同> <同> <巨> <巨> <

Partial schedules of ϵ

$$\mathcal{A}_i = \{A_j: j \in N, \ C_i^B \leq C_j^A < C_{i+1}^B\}, \ 0 \leq i \leq m.$$

A partial schedule $\epsilon(i)$ contains jobs $\mathcal{A}_i \cup \cdots \cup \mathcal{A}_m \cup \{B_i, \ldots, B_m\}$. $\exists i: \epsilon(i) \text{ is not a } \pi\text{-schedule, } \epsilon(i+1) \text{ is a } \pi\text{-schedule.}$

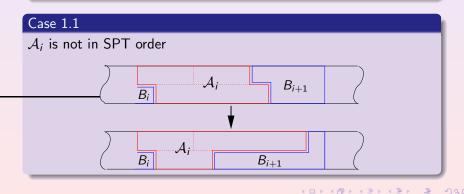
(日) (同) (E) (E) (E)

Proof of the main theorem

Partial schedules of ϵ

$$A_i = \{A_j : j \in N, \ C_i^B \le C_j^A < C_{i+1}^B\}, \ 0 \le i \le m.$$

A partial schedule $\epsilon(i)$ contains jobs $\mathcal{A}_i \cup \cdots \cup \mathcal{A}_m \cup \{B_i, \ldots, B_m\}$. $\exists i: \epsilon(i) \text{ is not a } \pi\text{-schedule, } \epsilon(i+1) \text{ is a } \pi\text{-schedule.}$



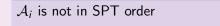
Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov

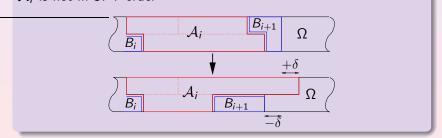
Partial schedules of ϵ

$$\mathcal{A}_i = \{A_j : j \in N, \ C_i^B \le C_j^A < C_{i+1}^B\}, \ 0 \le i \le m.$$

A partial schedule $\epsilon(i)$ contains jobs $\mathcal{A}_i \cup \cdots \cup \mathcal{A}_m \cup \{B_i, \ldots, B_m\}$. $\exists i: \epsilon(i) \text{ is not a } \pi\text{-schedule, } \epsilon(i+1) \text{ is a } \pi\text{-schedule.}$

Case 1.2





Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov

Scheduling malleable jobs to minimize the MFT

・ロト ・同ト ・ヨト ・ヨト

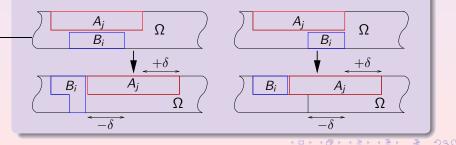
Partial schedules of ϵ

$$\mathcal{A}_i = \{A_j : j \in N, \ C_i^B \le C_j^A < C_{i+1}^B\}, \ 0 \le i \le m.$$

A partial schedule $\epsilon(i)$ contains jobs $\mathcal{A}_i \cup \cdots \cup \mathcal{A}_m \cup \{B_i, \ldots, B_m\}$. $\exists i: \epsilon(i) \text{ is not a } \pi\text{-schedule, } \epsilon(i+1) \text{ is a } \pi\text{-schedule.}$

Case 2

 A_i is in SPT order, B_i is completed on one machine



Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov

Proof of the main theorem

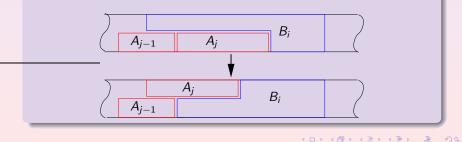
Partial schedules of ϵ

$$\mathcal{A}_i = \{A_j : j \in N, \ C_i^B \le C_j^A < C_{i+1}^B\}, \ 0 \le i \le m.$$

A partial schedule $\epsilon(i)$ contains jobs $\mathcal{A}_i \cup \cdots \cup \mathcal{A}_m \cup \{B_i, \ldots, B_m\}$. $\exists i: \epsilon(i) \text{ is not a } \pi\text{-schedule, } \epsilon(i+1) \text{ is a } \pi\text{-schedule.}$

Case 3

 A_i is in SPT order, B_i is completed on two machines



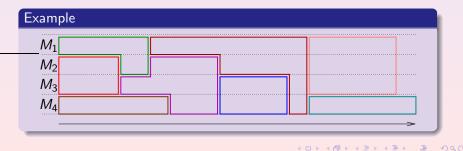
- Introduction: parallel jobs scheduling
- Scheduling malleable jobs on 2 machines to minimize the Mean Flow Time
 - A set of dominant schedules: π -schedules
 - 2 A polynomial dynamic programming algorithm
 - **③** Proof of the dominance of the π -schedules
- Perspectives: the general case with m machines

向下 イヨト イヨト

Theorem

For each instance of the problem

 $P \mid var, p_j(q) = p_j/q, \delta_j \mid \sum w_j C_j$ there exists an optimal schedule in which once a processor is assigned to a job, it remains assigned to this job until the job is completed (the number of processors assigned to a job cannot decrease over time while the job is not completed)



Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov

P3 | var,
$$p_j(q) = p_j/q$$
, $\delta_j \in \{1,3\} \mid \sum C_j$

π -schedules

- **1** the jobs in A are processed, non-preemptively, in SPT order
- 2 the jobs in B are processed, non-preemptively, in SPT order
- for every job B_i , there exists at most one job A_j such that $S_i^B < C_i^A \le C_i^B$
- the jobs of *B* is completed on 3 machines

- 4 回 5 - 4 三 5 - 4 三 5

P3 | var,
$$p_j(q) = p_j/q$$
, $\delta_j \in \{1,3\} \mid \sum C_j$

π -schedules

- the jobs in A are processed, non-preemptively, in SPT order
- ② the jobs in B are processed, non-preemptively, in SPT order
- for every job B_i , there exists at most one job A_j such that $S_i^B < C_i^A \le C_i^B$
- the jobs of *B* is completed on 3 machines

P3 | var,
$$p_j(q) = p_j/q$$
, $\delta_j \in \{1,3\} \mid \sum C_j$

π -schedules

- the jobs in A are processed, non-preemptively, in SPT order
- ② the jobs in B are processed, non-preemptively, in SPT order
- Solution for every job B_i , there exists at most one job A_j such that $S_i^B < C_i^A ≤ C_i^B$
- the jobs of *B* is completed on 3 machines

P3 | var,
$$p_j(q) = p_j/q$$
, $\delta_j \in \{1,3\} \mid \sum C_j$

π -schedules

- the jobs in A are processed, non-preemptively, in SPT order
- ② the jobs in B are processed, non-preemptively, in SPT order
- for every job B_i , there exists at most one job A_j such that $S_i^B < C_i^A \le C_i^B$
- the jobs of *B* is completed on 3 machines

・ 同 ト ・ ヨ ト ・ ヨ ト

P3 | var,
$$p_j(q) = p_j/q$$
, $\delta_j \in \{1,3\} \mid \sum C_j$

π -schedules

- **()** the jobs in A are processed, non-preemptively, in SPT order
- ② the jobs in B are processed, non-preemptively, in SPT order
- Solution of the exists of the exist of the exist
- the jobs of B is completed on 3 machines

Scheduling malleable jobs to minimize the MFT

(4回) (三) (三)

P3 | var, $p_j(q) = p_j/q$, $\delta_j \in \{1,3\} \mid \sum C_j$

$\pi ext{-schedules}$

- the jobs in A are processed, non-preemptively, in SPT order
- ② the jobs in B are processed, non-preemptively, in SPT order
- for every job B_i , there exists at most one job A_j such that $S_i^B < C_i^A \le C_i^B$
- the jobs of *B* is completed on the 3 machines
 The completion time of a job in a π-schedule depends now on the positions of all the preceding jobs in the corresponding sequence.

(日) (同) (E) (E) (E)

The end of the talk

Questions?

Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov Scheduling malleable jobs to minimize the MFT

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 の Q @