Solving a scheduling problem at cross docking terminals

Ruslan Sadykov

EURO XXIV
Lisbon, July 12, 2010

Contents

Introduction

The problem

The algorithm

Numerical experiments

Appendix

Cross docking

- Product of several types should be delivered from several production/distribution points to several costumers.
- The cross docking terminal serves to reallocate goods according to their destinations (costumers) in order to reduce the transportation costs.

Cross-docking scheduling problem

- If a product unit goes to the storage, a cost should be paid.
- An incoming (outgoing) truck leaves the door only if it is fully unloaded (loaded)
- We need to schedule the sequences of incoming and outgoing trucks and obtain a product transfer policy which minimizes the cost.

Negative result

The problem is NP-hard in the strong sense even if

- There is only one receiving door and one shipping door.
- Incoming trucks supply products of at most 2 types.
- Outgoing trucks demand products of one type.
- Storage costs are unitary.
- Storage capacity is unlimited.

Exact methods

- Yu and Egbelu (2008)
- Boysen, Fliender, and Scholl (2010)

Contents

Introduction

The problem

The algorithm

Numerical experiments

Appendix

Cross docking scheduling problem: notations

- n incoming trucks, m outgoing trucks ($m=n$ for simplicity)
- T different products types
- An incoming truck \mathbf{I}_{i} supplies $a_{i t}$ units of product type t
- An outgoing truck \mathbf{O}_{o} demands $b_{o t}$ units of product type t
- Each outgoing truck demands products of at most q types
- The cost of storing one unit of product type t is c_{t}
- The volume of a unit of product type t is d_{t}
- Storage capacity is D.

Cross docking scheduling problem: special case

- There is only one receiving door and one shipping door.
- The sequences of incoming and outgoing trucks are fixed:

- We need to find
- an aggregate sequence of truck arrivals/departures,
- a product transfer policy,
which minimize the storage cost (maximizes the weighted number of product units transferred directly).
- Introduced by Maknoon, Baptiste, and Kone (2009) $(q=1)$.

A dominance rule

Observation
There exists an optimal policy in which, each time trucks \mathbf{I}_{k} and
\mathbf{O}_{j} are at the doors, for each t, \mathbf{I}_{k} transfers directly to \mathbf{O}_{j} as many products of type t as possible.

Consequence

- We call a policy complying with the observation direct first.
- For each departure sequence of trucks, there is exactly one direct first policy.

Contents

Introduction

The problem

The algorithm

Numerical experiments

Appendix

Dynamic programming states: first group

$S^{\text {out }}(i, o, f)$ - departure sequence is

$$
\ldots, \mathbf{O}_{o-1}, \mathbf{I}_{i}, \ldots
$$

$f=\left\{f_{t}\right\}_{t \in T_{o}}, \quad 0 \leq f_{t} \leq \min \left\{a_{i t}, b_{o t}\right\}$,
f_{t} - number of products of type t transferred from \mathbf{I}_{i} to \mathbf{O}_{o}

cross-docking platform

Dynamic programming states: second group

$\mathbf{S}^{i n c}(i, o, f)$ - departure sequence is

$$
\ldots, \mathbf{I}_{i-1}, \mathbf{O}_{o}, \ldots
$$

$f=\left\{f_{t}\right\}_{t \in T_{o}}, \quad 0 \leq f_{t} \leq \min \left\{a_{i t}, b_{o t}\right\}$,
f_{t} - number of products of type t transferred from \mathbf{I}_{i} to \mathbf{O}_{o}

The underlying graph for the dynamic programming

Number of the dynamic programming states

- In a state $\mathbf{S}(i, o, f)$, for every type t,

$$
0 \leq f_{t} \leq \min \left\{a_{i t}, b_{o t}\right\}
$$

- Then, the overall number of states is a pseudo-polynomial of n and an exponential of q :

$$
|\mathbf{S}|=\sum_{i=1}^{n} \sum_{o=1}^{n} \prod_{t: b_{o t}>0}\left(\min \left\{a_{i t}, b_{o t}\right\}+1\right)=O\left(n^{2} \cdot A B^{q}\right)
$$

where $A B=\max _{i, o, t} \min \left\{a_{i t}, b_{o t}\right\}$.

- But the number of direct first states (which correspond to a direct first policy) is polynomial.

Complexity of the dynamic programming algorithm

Theorem
The total number of the direct first states $\mathbf{S}^{\text {out }}$ is $O\left(q n^{3}\right)$ (same holds for $\mathbf{S}^{i n c}$).

- Complexity of checking whether a state $\mathbf{S}(i, o, f)$ has been already visited is $O\left(q \log \left(q n^{2}\right)\right)=\rho$.
- Complexity of making all moves from a state $\mathbf{S}(i, o, f)$ is $O(n(q+\rho))=O(n q \log n)$.

Theorem
The complexity of the dynamic programming algorithm is

$$
O\left(q^{2} n^{4}(q+\log n)\right)
$$

Contents

Introduction

The problem

The algorithm

Numerical experiments

Appendix

Test instances

Parameters

- $n=100,200,400,800$
- $q=1,2,4,8$
- $|T|=10 q$
- $a_{i t} \in U[1,1000]$
- $c_{t} \in U[1,10]$
- storage capacity is unlimited

Number of instances
10 instances generated for each pair (n, q)

Numerical results

| S | - number of the created states, in thousands
$R T$ - average running time, in seconds

	$q=1$		$q=2$		$q=4$		$q=8$	
n	$\|\mathbf{S}\|$	$R T$						
100	13	0.01	18	0.02	24	0.03	36	0.06
200	77	0.13	107	0.19	168	0.40	286	0.92
400	365	1.37	533	2.09	877	4.22	$1^{\prime} 549$	10.05
800	1 '626	15.97	$2^{\prime} 444$	22.53	$4{ }^{\prime} 175$	41.56	$7^{\prime} 477$	93.52

When n doubles, running time is 11.3 times larger on average.
When q doubles, running time is 1.9 times larger on average.

Conclusions and perspectives

Conclusion

- We presented a polynomial dynamic programming algorithm for the problem.
- Note that the complexity question was open (even for $q=1$).

Perspectives

- Linear Programming formulation?

Contents

Introduction

The problem

The algorithm

Numerical experiments

Appendix

Number of different values for f_{t}

- Value f_{t} is canonical in a state $\mathbf{S}(i, o, f)$ if

$$
f_{t} \in\left\{0, \min \left\{a_{i t}, b_{o t}\right\}\right\}
$$

- From any state $\mathbf{S}^{\text {out }}(i, o, f)$, we can pass to at most one direct first state $\mathbf{S}^{i n c}\left(i^{\prime}, o, f^{\prime}\right), i^{\prime}>i$, with a non-canonical value f_{t}.
- From any state $\mathbf{S}^{i n c}(i, o, f)$, we can pass to at most one direct first state $\mathbf{S}^{o u t}\left(i, o^{\prime \prime}, f^{\prime \prime}\right), o^{\prime \prime}>0$, with a non-canonical value f_{t}.
- Therefore, any state with a canonical value f_{t} "generates" at most $2 n$ direct first states with non-canonical values f_{t}.
- Then, the number of different values for f_{t} in all direct first states is $O\left(n^{3}\right)$.

Number of the direct first DP states

Lemma
For fixed i^{*} and o^{*}, there are no two direct first states
$\mathbf{S}^{\text {out }}\left(i^{*}, o^{*}, f^{\prime}\right)$ and $\mathbf{S}^{\text {out }}\left(i^{*}, o^{*}, f^{\prime \prime}\right)$ such that $f_{t_{1}}^{\prime}<f_{t_{1}}^{\prime \prime}$ and $f_{t_{2}}^{\prime}>f_{t_{2}}^{\prime \prime}$.
Consequence
For fixed i^{*} and o^{*}, direct first states $\mathbf{S}^{\text {out }}\left(i^{*}, o^{*}, f\right)$ can be lexicographically ordered:

$$
\mathbf{S}^{\text {out }}\left(i^{*}, o^{*}, f^{\prime}\right) \prec \mathbf{S}^{\text {out }}\left(i^{*}, o^{*}, f^{\prime \prime}\right) \Leftrightarrow f_{t}^{\prime} \leq f_{t}^{\prime \prime}, \forall t .
$$

Theorem

The total number of the direct first states $\mathbf{S}^{\text {out }}$ is $O\left(q n^{3}\right)$ (same holds for $\mathbf{S}^{\text {inc }}$).

