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Cross docking

E
ol

» Product of several types should be delivered from several
production/distribution points to several costumers.

» The cross docking terminal serves to reallocate goods
according to their destinations (costumers) in order to
reduce the transportation costs.
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Cross-docking scheduling problem

receiving shipping
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» If a product unit goes to the storage, a cost should be paid.
» An incoming (outgoing) truck leaves the door only if it is
fully unloaded (loaded)

» We need to schedule the sequences of incoming and
outgoing trucks and obtain a product transfer policy which

minimizes the cost.

no cost




Negative result

The problem is NP-hard in the strong sense even if

v

There is only one receiving door and one shipping door.
Incoming trucks supply products of at most 2 types.
Outgoing trucks demand products of one type.

Storage costs are unitary.

Storage capacity is unlimited.

v

v

v

v

Exact methods

» Yu and Egbelu (2008)
» Boysen, Fliender, and Scholl (2010)



Contents

The problem

6/22



Cross docking scheduling problem: notations

v

n incoming trucks, m outgoing trucks (m = n for simplicity)
T different products types

An incoming truck I; supplies aj; units of product type t

An outgoing truck O, demands b,; units of product type t
Each outgoing truck demands products of at most q types
The cost of storing one unit of product type t is ¢;

The volume of a unit of product type t is d;

Storage capacity is D.
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Cross docking scheduling problem: special case

v

There is only one receiving door and one shipping door.

v
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» We need to find

» an aggregate sequence of truck arrivals/departures,
» a product transfer policy,

which minimize the storage cost (maximizes the weighted
number of product units transferred directly).

» Introduced by Maknoon, Baptiste, and Kone (2009) (g = 1).

The sequences of incoming and outgoing trucks are fixed:



A dominance rule

Observation

There exists an optimal policy in which, each time trucks I, and
O, are at the doors, for each t, I transfers directly to O; as
many products of type t as possible.

Consequence

» We call a policy complying with the observation direct first.

» For each departure sequence of trucks, there is exactly
one direct first policy.
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Dynamic programming states: first group
SoY(j o, f) — departure sequence is
'700717|I‘7"'

f=A{fi}ter,, 0 <1y <min{ay,bot},

f — number of products of type t transferred from I; to O,

|i+1 % cross-docking platform

\ receiving {ff}feTo shippin % 0
[
/| area area
l; @ Storage area
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Dynamic programming states: second group
S¢(i, o, f) — departure sequence is
...,I,‘,‘],Oo,...

f=A{fi}ter,, 0 <1y <min{ay,bot},

f — number of products of type t transferred from I; to O,

cross-docking platform @ Oo+1
I @ receiving f shipping /
I

area area 4
Storage area % 0,

N
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The underlying graph for the dynamic programming
outgoing trucks

incoming trucks
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Number of the dynamic programming states

» In a state S(J, o, f), for every type t,
0< ft < min{a,-t,bot}.

» Then, the overall number of states is a pseudo-polynomial
of n and an exponential of q:

n n
1S1=>" > II (min{ar, bor} +1) = O(n? - ABY),
i=1 0=1 t:by;>0
where AB = max; o min{aj, bot}.
» But the number of direct first states (which correspond to a
direct first policy) is polynomial.
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Complexity of the dynamic programming algorithm

Theorem
The total number of the direct first states Souis O(qn®)
(same holds for §"°).

» Complexity of checking whether a state S(i, o, f) has been
already visited is O(qglog(qn?)) = p.

» Complexity of making all moves from a state S(/, o, f) is
O(n(g + p)) = O(nglog n).

Theorem
The complexity of the dynamic programming algorithm is

O(g®n*(q +log n))

15/22



Contents

Numerical experiments

16/22



Test instances

Parameters

n = 100,200,400, 800
g=1,2,4,8

| T [=10q

ai € U[1,1000]

¢ € U[1,10]

storage capacity is unlimited

v

v

v

v

v

v

Number of instances
10 instances generated for each pair (n, q)
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Numerical results

| S | — number of the created states, in thousands

RT — average running time, in seconds

g=1 qg=2 g=4 qg=2=8

n S| RT |S | RT |S | RT S| RT
100 13 0.01 18 0.02 24 0.03 36 0.06
200 77 0.13 107 0.19 168 0.40 286 0.92
400 365 1.37 533 2.09 877 4.22 | 1'549 10.05
800 | 1’626 15.97 | 2444 22.53 | 4175 41.56 | 7477 93.52

When n doubles, running time is 11.3 times larger on average.

When g doubles, running time is 1.9 times larger on average.
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Conclusions and perspectives

Conclusion

» We presented a polynomial dynamic programming
algorithm for the problem.

» Note that the complexity question was open
(even for g =1).

Perspectives

» Linear Programming formulation?
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Number of different values for f;

» Value f; is canonical in a state S(/, o, f) if
f: € {0, min{ay, bot} }-

» From any state S°“(i, o, f), we can pass to at most one
direct first state S"°(/’, o, '), i’ > i, with a non-canonical
value f;.

» From any state S$(i, o, f), we can pass to at most one
direct first state S°“(i, 0", f"), o’ > o, with a non-canonical
value f;.

» Therefore, any state with a canonical value f; “generates”
at most 2n direct first states with non-canonical values f;.

» Then, the number of different values for f; in all direct first
states is O(n®).
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Number of the direct first DP states

Lemma
For fixed i* and o*, there are no two direct first states
Sout(j* o* f') and So‘”( o*,f") such that f{ < f/ and f|, > f/.

Consequence

For fixed i* and o*, direct first states S°!!(i*, o*, f) can be
lexicographically ordered:

SU(j*, 0%, ') < S%(i*, 0%, ") & | < fI' V.

Theorem
The total number of the direct first states $°“ is O(qn®)
(same holds for §°).
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