
Solving a scheduling problem at cross
docking terminals

Ruslan Sadykov

Bordeaux — Sud-Ouest

EURO XXIV
Lisbon, July 12, 2010

1 / 22

Contents

Introduction

The problem

The algorithm

Numerical experiments

Appendix

2 / 22

Cross docking

I Product of several types should be delivered from several
production/distribution points to several costumers.

I The cross docking terminal serves to reallocate goods
according to their destinations (costumers) in order to
reduce the transportation costs.

3 / 22

Cross-docking scheduling problem

Results Packing, Planning, and Scheduling
Scheduling: R.Sadykov

• On Scheduling a Single Machine to Minimize a Piecewise
Linear Objective Function : A Compact MIP Formulation
(joint paper with Ph. Baptiste [BS09])

• Dominant class of schedules for an NP-hard problem of
scheduling malleable parallel tasks ([S09]).

• A polynomial dynamic programming algorithm for a basic
cross-docking scheduling problem (working paper).

cross-docking platform

shipping
area

receiving
area

Storage area

no cost
a cost

LogoINRIA 15 / 39I If a product unit goes to the storage, a cost should be paid.
I An incoming (outgoing) truck leaves the door only if it is

fully unloaded (loaded)
I We need to schedule the sequences of incoming and

outgoing trucks and obtain a product transfer policy which
minimizes the cost.

4 / 22

Negative result

The problem is NP-hard in the strong sense even if
I There is only one receiving door and one shipping door.
I Incoming trucks supply products of at most 2 types.
I Outgoing trucks demand products of one type.
I Storage costs are unitary.
I Storage capacity is unlimited.

Exact methods
I Yu and Egbelu (2008)
I Boysen, Fliender, and Scholl (2010)

5 / 22

Contents

Introduction

The problem

The algorithm

Numerical experiments

Appendix

6 / 22

Cross docking scheduling problem: notations

I n incoming trucks, m outgoing trucks (m = n for simplicity)
I T different products types
I An incoming truck Ii supplies ait units of product type t
I An outgoing truck Oo demands bot units of product type t
I Each outgoing truck demands products of at most q types
I The cost of storing one unit of product type t is ct

I The volume of a unit of product type t is dt

I Storage capacity is D.

7 / 22

Cross docking scheduling problem: special case

I There is only one receiving door and one shipping door.
I The sequences of incoming and outgoing trucks are fixed:

I1 I2 I3 I4 . . . In

O1 O2 . . . On−1 On

I1 I2 I3 I4 InO1 O2 On−1 On. . .

I We need to find
I an aggregate sequence of truck arrivals/departures,
I a product transfer policy,

which minimize the storage cost (maximizes the weighted
number of product units transferred directly).

I Introduced by Maknoon, Baptiste, and Kone (2009) (q = 1).

8 / 22

A dominance rule

Observation
There exists an optimal policy in which, each time trucks Ik and
Oj are at the doors, for each t , Ik transfers directly to Oj as
many products of type t as possible.

Consequence

I We call a policy complying with the observation direct first.
I For each departure sequence of trucks, there is exactly

one direct first policy.

9 / 22

Contents

Introduction

The problem

The algorithm

Numerical experiments

Appendix

10 / 22

Dynamic programming states: first group

Sout(i ,o, f) — departure sequence is

. . . ,Oo−1, Ii , . . .

f = {ft}t∈To , 0 ≤ ft ≤ min{ait ,bot},
ft — number of products of type t transferred from Ii to Oo

cross-docking platform

shipping
area

receiving
area

Storage area

Oo

Ii

Ii+1

f = {ft}t∈To

11 / 22

Dynamic programming states: second group

Sinc(i ,o, f) — departure sequence is

. . . , Ii−1,Oo, . . .

f = {ft}t∈To , 0 ≤ ft ≤ min{ait ,bot},
ft — number of products of type t transferred from Ii to Oo

cross-docking platform

shipping
area

receiving
area

Storage area

Ii

Oo

Oo+1

f

12 / 22

The underlying graph for the dynamic programming
outgoing trucks

in
co

m
in

g
tr

uc
ks

1 2 3 4 5 6 · · · n

1

2

3

4

5

6

...

n

...
...

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

(1, 1)

(4, 1)
(4, 3)

(5, 3)
(5, 5)

(n, 6)
(n,m)

I1
I2
I3
O1

O2

I4
O3

O4

I5
I6
...

In−1

O6
...
In
On

13 / 22

Number of the dynamic programming states

I In a state S(i ,o, f), for every type t ,

0 ≤ ft ≤ min{ait ,bot}.

I Then, the overall number of states is a pseudo-polynomial
of n and an exponential of q:

| S |=
n∑

i=1

n∑
o=1

∏
t :bot>0

(
min{ait ,bot}+ 1

)
= O(n2 · ABq),

where AB = maxi,o,t min{ait ,bot}.
I But the number of direct first states (which correspond to a

direct first policy) is polynomial.

14 / 22

Complexity of the dynamic programming algorithm

Theorem
The total number of the direct first states Sout is O(qn3)
(same holds for Sinc).

I Complexity of checking whether a state S(i ,o, f) has been
already visited is O

(
q log(qn2)

)
= ρ.

I Complexity of making all moves from a state S(i ,o, f) is
O
(
n(q + ρ)

)
= O(nq log n).

Theorem
The complexity of the dynamic programming algorithm is

O
(
q2n4(q + log n)

)

15 / 22

Contents

Introduction

The problem

The algorithm

Numerical experiments

Appendix

16 / 22

Test instances

Parameters
I n = 100,200,400,800
I q = 1,2,4,8
I | T |= 10q
I ait ∈ U[1,1000]
I ct ∈ U[1,10]
I storage capacity is unlimited

Number of instances
10 instances generated for each pair (n,q)

17 / 22

Numerical results

| S |— number of the created states, in thousands

RT — average running time, in seconds

q = 1 q = 2 q = 4 q = 8
n | S | RT | S | RT | S | RT | S | RT

100 13 0.01 18 0.02 24 0.03 36 0.06
200 77 0.13 107 0.19 168 0.40 286 0.92
400 365 1.37 533 2.09 877 4.22 1’549 10.05
800 1’626 15.97 2’444 22.53 4’175 41.56 7’477 93.52

When n doubles, running time is 11.3 times larger on average.

When q doubles, running time is 1.9 times larger on average.

18 / 22

Conclusions and perspectives

Conclusion
I We presented a polynomial dynamic programming

algorithm for the problem.
I Note that the complexity question was open

(even for q = 1).

Perspectives

I Linear Programming formulation?

19 / 22

Contents

Introduction

The problem

The algorithm

Numerical experiments

Appendix

20 / 22

Number of different values for ft

I Value ft is canonical in a state S(i ,o, f) if

ft ∈
{

0,min{ait ,bot}
}
.

I From any state Sout(i ,o, f), we can pass to at most one
direct first state Sinc(i ′,o, f ′), i ′ > i , with a non-canonical
value ft .

I From any state Sinc(i ,o, f), we can pass to at most one
direct first state Sout(i ,o′′, f ′′), o′′ > o, with a non-canonical
value ft .

I Therefore, any state with a canonical value ft “generates”
at most 2n direct first states with non-canonical values ft .

I Then, the number of different values for ft in all direct first
states is O(n3).

21 / 22

Number of the direct first DP states

Lemma
For fixed i∗ and o∗, there are no two direct first states
Sout(i∗,o∗, f ′) and Sout(i∗,o∗, f ′′) such that f ′t1 < f ′′t1 and f ′t2 > f ′′t2 .

Consequence
For fixed i∗ and o∗, direct first states Sout(i∗,o∗, f) can be
lexicographically ordered:

Sout(i∗,o∗, f ′) ≺ Sout(i∗,o∗, f ′′)⇔ f ′t ≤ f ′′t , ∀t .

Theorem
The total number of the direct first states Sout is O(qn3)
(same holds for Sinc).

22 / 22

	Introduction
	

	The problem
	

	The algorithm
	

	Numerical experiments
	

	Appendix
	

