Freight railcar routing problem arising in Russia

Ruslan Sadykov ${ }^{1}$ Alexander A. Lazarev ${ }^{2}$
Vitaliy Shiryaev ${ }^{3}$ Alexey Stratonnikov ${ }^{3}$

EURO 2013
Rome, Italy, July 2

Contents

Problem description

Solution approaches

Numerical results and conclusions

The freight car routing problem: overview

initial car distribution
transportation demands

Specificity of freight rail transportation in Russia

- The fleet of freight railcars is owned by independent freight companies
- Forming and scheduling or trains is done by the state company
- It charges a cost for transferring cars and determines (estimated) travel times
- Cost for the transfer of an empty car depends on the type of previously loaded product
- Distances are large, and average freight train speed is low ($\approx 300 \mathrm{~km} /$ day): discretization in periods of 1 day is reasonable

The freight car routing problem: input and output

Input

- Railroad network (stations)
- Initial locations of cars (sources)
- Transportation demands and associated profits
- Costs: transfer costs and standing (waiting) daily rates;

Output: operational plan

- A set of accepted demands and their execution dates
- Empty and loaded cars movements to meet the demands (car routing)

Objective
Maximize the total net profit

Data: overview

- T - planning horizon (set of time periods);
- I - set of stations;
- C - set of car types;
- K - set of product types;
- Q - set of demands;
- S - set of sources (initial car locations);
- M - empty transfer cost function;
- D - empty transfer duration function;

Demands data

For each order $q \in Q$

- $i_{q}^{1}, i_{q}^{2} \in I$ - origin and destination stations;
- $k_{q} \in K$ - product type
- $C_{q} \subseteq C$ - set of car types, which can be used for this demand
- $n_{q}^{\max }\left(n_{q}^{\text {min }}\right)$ - maximum (minimum) number of cars, needed to fulfill (partially) the demand
- $r_{q} \in T$ - release time of demand
- $\Delta_{q} \in \mathbb{Z}_{+}$- maximum delay for starting the transportation
- $\rho_{q t}$ - profit from delivery of one car with the product, transportation of which started at period $t, t \in\left[r_{q}, r_{q}+\Delta_{q}\right]$
- $d_{q} \in \mathbb{Z}_{+}$- transportation time of the demand
- $w_{q}^{1}\left(w_{q}^{2}\right)$ - daily standing rate charged for one car waiting before loading (after unloading) the product at origin (destination) station

Sources and car types data

For each source $s \in S$

- $\vec{i}_{s} \in I$ - station where cars are located
- $\vec{c}_{s} \in C$ - type of cars
- $\vec{r}_{s} \in T$ - period, starting from which cars can be used
- \vec{w}_{s} - daily standing rate charged for cars
- $\vec{k}_{s} \in K$ - type of the latest delivered product
- $\vec{n}_{s} \in \mathbb{N}$ - number of cars in the source

For each car type $c \in C$

- Q_{c} - set of demands, which a car of type c can fulfill
- S_{c} - set of sources for car type c

Contents

Problem description

Solution approaches

Numerical results and conclusions

Commodity graph

Commodity $c \in C$ represents the flow (movements) of cars of type c.

Graph $G_{c}=\left(V_{c}, A_{c}\right)$ for commodity $c \in C$:

Graph definition

- vertex $v_{\text {cit }}^{w k}$ - stay of cars of type $c \in C$ at station $i \in I$ at daily waiting rate w at period $t \in T$, where $k \in K$ is the type of unloaded product. Flow balance is

$$
b\left(v_{c i t}^{w k}\right)= \begin{cases}\vec{n}_{s}, & \exists s \in S_{c}: \vec{i}_{s}=i, \vec{r}_{s}=t, \vec{w}_{s}=w, \vec{k}_{s}=k, \\ 0, & \text { otherwise }\end{cases}
$$

- waiting arc $a_{c i t}^{w k}$ — waiting of cars of type $c \in C$ from period $t \in T$ to $t+1$ at station $i \in I$ at daily rate $w, k \in K$ is the type of previously loaded product. Cost $g(a)$ is w.
- empty transfer arc $a_{c i j t}^{w^{\prime} w^{\prime \prime} k}$ — transfer of empty cars of type $c \in C$ waiting at station $i \in I$ at daily rate w^{\prime} to station $j \in I$ where they will wait at daily rate $w^{\prime \prime}$, such that the type of latest unloaded product is $k \in K$, and transfer starts at period $t \in T$. Cost is $M(c, i, j, k)$.
- loaded transfer arc $a_{c q t}$ - transportation of demand $q \in Q$ by cars of type $c \in C$ starting at period
$t \in T \cap\left[r_{q}, r_{q}+\Delta_{q}\right]$. Cost is $-\rho_{q t}$.

Multi-commodity flow formulation

Variables

- $x_{a} \in \mathbb{Z}_{+}$- flow size along arc $a \in A_{c}, c \in C$
- $y_{q} \in\{0,1\}$ - demand $q \in Q$ is accepted or not

$$
\begin{array}{cl}
\min \sum_{c \in C} \sum_{a \in A_{c}} g(a) x_{a} & \\
\sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \leq n_{q}^{\max } y_{q} & \forall q \in Q \\
\sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \geq n_{q}^{\min } y_{q} & \forall q \in Q \\
\sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=b(v) & \forall c \in C, v \in V_{c} \\
0 \leq x_{a} & \forall c \in C, a \in V_{c} \\
0 \leq y_{q} \leq 1 & \forall q \in Q
\end{array}
$$

We concentrate on solving its LP-relaxation

Path reformulation

- P_{s} - set of paths (car routes) from source $s \in S$

Variables

- $\lambda_{s} \in \mathbb{Z}_{+}$— flow size along path $p \in P_{s}, s \in S$

$$
\begin{aligned}
& \min \sum_{c \in C} \sum_{s \in S_{c}} \sum_{p \in P_{s}} g_{p}^{\text {path }} \lambda_{p} \\
& \quad \sum_{c \in C_{q}} \sum_{s \in S_{c}} \sum_{p \in P_{s}:} \lambda_{a \in Q_{p}^{\text {path }}} \leq n_{q}^{\max } y_{q} \quad \forall q \in Q
\end{aligned}
$$

$$
\sum_{c \in C_{q}} \sum_{s \in S_{c}} \sum_{p \in P_{s}:} \lambda_{a} \geq n_{q}^{\min } y_{q} \quad \forall q \in Q
$$

$$
\begin{aligned}
\sum_{p \in P_{s}} \lambda_{p}=\vec{n}_{s} & \forall c \in C, s \in S_{c} \\
\lambda_{p} \in \mathbb{Z}_{+} & \forall c \in C, s \in S_{c}, p \in P_{s} \\
y_{q} \in\{0,1\} & \forall q \in Q
\end{aligned}
$$

Column generation for path reformulation

- Pricing problem decomposes into shortest path problems for each source
- slow: number of sources are thousands
- To accelerate, for each commodity $c \in C$, we search for a shortest path in-tree to the terminal vertex from all sources in S_{C}
- drawback: some demands are severely "overcovered", bad convergence
- We developed iterative procedure which removes covered demands and cars assigned to them, and the repeats search for a shortest path in-tree

Iterative pricing procedure for commodity $c \in C$

foreach demand $q \in Q_{c}$ do uncvCars $_{q} \leftarrow n_{q}^{\text {max }}$;
foreach source $s \in S_{c}$ do rmCars $_{s} \leftarrow \vec{n}_{s}$;
iter $\leftarrow 0$;
repeat
Find an in-tree to the terminal from sources $s \in S_{c}, r m$ Cars $_{s}>0$; Sort paths p in this tree by non-decreasing of their reduced cost; foreach path p in this order do

$$
\text { if } \bar{g}_{p}<0 \text { and } \text { uncvCars }_{q}>0, \forall q \in Q_{p}^{\text {path }} \text {, then }
$$

Add variable λ_{p} to the restricted master;
$s \leftarrow$ the source of p;
rmCars $_{s} \leftarrow$ rmCars $_{s}-\min \left\{\right.$ rmCars $_{s}$, uncvCars $\left._{q}\right\}$; uncvCars $_{q} \leftarrow$ uncovCars $_{q}-\min \left\{\right.$ rmCars $_{s}$, uncvCars $\left._{q}\right\} ;$
iter \leftarrow iter +1 ;
until uncvCars $_{q}>0, \forall q \in Q_{C}$, or $r m C a r s s>0, \forall s \in S_{c}$, or iter $=$ n.bPricIter;

Flow enumeration reformulation

- F_{c} - set of fixed flows for commodity $c \in C$

Variables

- $\omega_{f} \in\{0,1\}$ - commodity c is routed accordity to flow $f \in F_{c}$ or not

$$
\begin{aligned}
& \min \sum_{c \in C} \sum_{f \in F_{s}} g_{f}^{f l o w} \omega_{f} \\
& \sum_{c \in C_{q}} \sum_{f \in F_{c}} \sum_{a \in A_{c q}} f_{a} \omega_{f} \leq n_{q}^{\max } y_{q} \forall q \in Q \\
& \sum_{c \in C_{q}} \sum_{f \in F_{c}} \sum_{a \in A_{c q}} f_{a} \omega_{f} \geq n_{q}^{\min } y_{q} \forall q \in Q \\
& \sum_{f \in F_{c}} \omega_{f}=1 \forall c \in C \\
& \omega_{p} \in\{0,1\} \forall c \in C, f \in F_{c} \\
& y_{q} \in\{0,1\} \forall q \in Q
\end{aligned}
$$

Approach CGEF

- Pricing problem decomposes into minimum cost flow problem for each commodity
- slow: very bad convergence
- "Column generation for extended formulations" (CGEF) approach: we disaggregate the pricing problem solution into arc flow variables, which are added to the master.
- The master then becomes the multi-commodity flow formulation with restricter number of arc flow variables, i.e. "improving" variables are generated dynamically

Proposition

If an arc flow variable x has a negative reduced cost, there exists a pricing problem solution in which $x>0$. (consequence of the theorem in [S. and Vanderbeck, 13])

Contents

Problem description

Solution approaches

Numerical results and conclusions

Tested approaches

- DIRECT: solution of the multi-commodity flow formulation by the C/p LP solver
- Problem specific solver source code modifications
- Problem specific preprocessing is applied (not public)
- Tested inside the company
- ColGen: solution of the path reformulation by column generation (BaPCod library and Cplex LP solver)
- Initialization of the master by "doing nothing" routes
- Stabilization by dual prices smoothing
- Restricted master clean-up
- ColGenEF: "dynamic" solution of multi-commodity flow formulation by the CGEF approach (BaPCod library, Lemon min-cost flow solver and Cplex LP solver)
- Initialization of the master by all waiting arcs
- Only trivial preprocessing is applied

First test set of real-life instances

Instance name	x3	x3double	5 k 0711 q
Number of stations	371	371	$1^{\prime} 900$
Number of demands	$1^{\prime} 684$	$3 ' 368$	$7^{\prime} 424$
Number of car types	17	17	1
Number of cars	$1^{\prime} 013$	$1^{\prime} 013$	$15^{\prime} 008$
Number of sources	791	791	$11^{\prime} 215$
Time horizon, days	37	74	35
Number of vertices, thousands	62	152	22
Number of arcs, thousands	794	$2{ }^{\prime} 846$	1 1'843
Solution time for DIRECT	20 s	$1 \mathrm{h34m}$	55 s
Solution time for COLGEN	22 s	7 m 53 s	8 m 59 s
Solution time for CoLGENEF	3 m 55 s	$>2 \mathrm{~h}$	43 s

Real-life instances with larger planning horizon

1'025 stations, up to 6'800 demands, 11 car types, 12'651 cars, and 8 '232 sources.
Up to ≈ 300 thousands nodes and 10 millions arcs.

Convergence of ColGenEF in less than 15 iterations. About 3\% of arc flow variables at the last iteration.

Conclusions

- Three approaches tested for a freight car routing problem on real-life instances
- Approach ColGen is the best for instances with small number of sources
- Problem-specific preprocessing is important: good results for Direct
- Approach ColGenEF is the best for large instances
- Combination of ColGenEF and problem-specific preprocessing would allow to increase discretization and improve solutions quality

Perspectives

Some practical considerations are not taken into account:

- Progressive standing daily rates
- Special stations for long-time stay (with lower rates)
- Compatibility between two consecutive types of loaded products.
- Penalties for refused demands
- Groups of cars are transferred faster and for lower unitary costs.

