
Freight railcar routing problem arising in
Russia

Ruslan Sadykov1 Alexander A. Lazarev2

Vitaliy Shiryaev3 Alexey Stratonnikov3

1
INRIA Bordeaux,
Talence, France

2
Institute of Control Sciences,

Moscow, Russia

3
JSC Freight One
Moscow, Russia

EURO 2013
Rome, Italy, July 2

1 / 23



Contents

Problem description

Solution approaches

Numerical results and conclusions

2 / 23



The freight car routing problem: overview

initial car distribution transportation demands

3 / 23



Specificity of freight rail transportation in Russia

I The fleet of freight railcars is owned by independent freight
companies

I Forming and scheduling or trains is done by the state
company

I It charges a cost for transferring cars and determines
(estimated) travel times

I Cost for the transfer of an empty car depends on the type of
previously loaded product

I Distances are large, and average freight train speed is low
(≈ 300 km/day): discretization in periods of 1 day is
reasonable

4 / 23



The freight car routing problem: input and output

Input

I Railroad network (stations)
I Initial locations of cars (sources)
I Transportation demands and associated profits
I Costs: transfer costs and standing (waiting) daily rates;

Output: operational plan

I A set of accepted demands and their execution dates
I Empty and loaded cars movements to meet the demands

(car routing)

Objective
Maximize the total net profit

5 / 23



Data: overview

I T — planning horizon (set of time periods);
I I — set of stations;
I C — set of car types;
I K — set of product types;
I Q — set of demands;
I S — set of sources (initial car locations);
I M — empty transfer cost function;
I D — empty transfer duration function;

6 / 23



Demands data
For each order q ∈ Q

I i1q , i2q ∈ I — origin and destination stations;
I kq ∈ K — product type
I Cq ⊆ C — set of car types, which can be used for this

demand
I nmax

q (nmin
q ) — maximum (minimum) number of cars,

needed to fulfill (partially) the demand
I rq ∈ T — release time of demand
I ∆q ∈ Z+ — maximum delay for starting the transportation
I ρqt — profit from delivery of one car with the product,

transportation of which started at period t , t ∈ [rq, rq + ∆q]

I dq ∈ Z+ — transportation time of the demand
I w1

q (w2
q ) — daily standing rate charged for one car waiting

before loading (after unloading) the product at origin
(destination) station

7 / 23



Sources and car types data

For each source s ∈ S
I ~is ∈ I — station where cars are located
I ~cs ∈ C — type of cars
I ~rs ∈ T — period, starting from which cars can be used
I ~ws — daily standing rate charged for cars
I ~ks ∈ K — type of the latest delivered product
I ~ns ∈ N — number of cars in the source

For each car type c ∈ C

I Qc — set of demands, which a car of type c can fulfill
I Sc — set of sources for car type c

8 / 23



Contents

Problem description

Solution approaches

Numerical results and conclusions

9 / 23



Commodity graph

Commodity c ∈ C represents the flow (movements) of cars of
type c.

Graph Gc = (Vc,Ac) for commodity c ∈ C:

· · ·

· · ·

· · ·

station 1

station 2

station 3

· · · · · · · · · · · ·

· · · · · · · · · · · ·
waiting arc

empty transfer arc

loaded transfer arc

time

10 / 23



Graph definition
I vertex vwk

cit — stay of cars of type c ∈ C at station i ∈ I at
daily waiting rate w at period t ∈ T , where k ∈ K is the
type of unloaded product. Flow balance is

b(vwk
cit ) =

{
~ns, ∃s ∈ Sc :~is = i ,~rs = t , ~ws = w , ~ks = k ,
0, otherwise.

I waiting arc awk
cit — waiting of cars of type c ∈ C from period

t ∈ T to t + 1 at station i ∈ I at daily rate w , k ∈ K is the
type of previously loaded product. Cost g(a) is w .

I empty transfer arc aw ′w ′′k
cijt — transfer of empty cars of type

c ∈ C waiting at station i ∈ I at daily rate w ′ to station j ∈ I
where they will wait at daily rate w ′′, such that the type of
latest unloaded product is k ∈ K , and transfer starts at
period t ∈ T . Cost is M(c, i , j , k).

I loaded transfer arc acqt — transportation of demand q ∈ Q
by cars of type c ∈ C starting at period
t ∈ T ∩ [rq, rq + ∆q]. Cost is −ρqt .

11 / 23



Multi-commodity flow formulation
Variables

I xa ∈ Z+ — flow size along arc a ∈ Ac , c ∈ C
I yq ∈ {0,1}— demand q ∈ Q is accepted or not

min
∑
c∈C

∑
a∈Ac

g(a)xa∑
c∈Cq

∑
a∈Acq

xa ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
a∈Acq

xa ≥ nmin
q yq ∀q ∈ Q

∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = b(v) ∀c ∈ C, v ∈ Vc

0 ≤ xa ∀c ∈ C,a ∈ Vc

0 ≤ yq ≤ 1 ∀q ∈ Q

We concentrate on solving its LP-relaxation
12 / 23



Path reformulation
I Ps — set of paths (car routes) from source s ∈ S

Variables
I λs ∈ Z+ — flow size along path p ∈ Ps, s ∈ S

min
∑
c∈C

∑
s∈Sc

∑
p∈Ps

gpath
p λp∑

c∈Cq

∑
s∈Sc

∑
p∈Ps: q∈Qpath

p

λa ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
s∈Sc

∑
p∈Ps: q∈Qpath

p

λa ≥ nmin
q yq ∀q ∈ Q

∑
p∈Ps

λp = ~ns ∀c ∈ C, s ∈ Sc

λp ∈ Z+ ∀c ∈ C, s ∈ Sc ,p ∈ Ps

yq ∈ {0,1} ∀q ∈ Q
13 / 23



Column generation for path reformulation

I Pricing problem decomposes into shortest path problems
for each source

I slow: number of sources are thousands
I To accelerate, for each commodity c ∈ C, we search for a

shortest path in-tree to the terminal vertex from all sources
in Sc

I drawback: some demands are severely “overcovered”, bad
convergence

I We developed iterative procedure which removes covered
demands and cars assigned to them, and the repeats
search for a shortest path in-tree

14 / 23



Iterative pricing procedure for commodity c ∈ C

foreach demand q ∈ Qc do uncvCarsq ← nmax
q ;

foreach source s ∈ Sc do rmCarss ← ~ns;
iter ← 0;
repeat

Find an in-tree to the terminal from sources s ∈ Sc , rmCarss > 0;
Sort paths p in this tree by non-decreasing of their reduced cost;
foreach path p in this order do

if ḡp < 0 and uncvCarsq > 0, ∀q ∈ Qpath
p , then

Add variable λp to the restricted master;
s ← the source of p;
rmCarss ← rmCarss −min{rmCarss,uncvCarsq};
uncvCarsq ← uncovCarsq −min{rmCarss,uncvCarsq};

iter ← iter + 1;
until uncvCarsq > 0, ∀q ∈ Qc , or rmCarss > 0, ∀s ∈ Sc , or
iter =nbPricIter;

15 / 23



Flow enumeration reformulation
I Fc — set of fixed flows for commodity c ∈ C

Variables
I ωf ∈ {0,1}— commodity c is routed accordity to flow

f ∈ Fc or not

min
∑
c∈C

∑
f∈Fs

gflow
f ωf∑

c∈Cq

∑
f∈Fc

∑
a∈Acq

faωf ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
f∈Fc

∑
a∈Acq

faωf ≥ nmin
q yq ∀q ∈ Q

∑
f∈Fc

ωf = 1 ∀c ∈ C

ωp ∈ {0,1} ∀c ∈ C, f ∈ Fc

yq ∈ {0,1} ∀q ∈ Q
16 / 23



Approach CGEF

I Pricing problem decomposes into minimum cost flow
problem for each commodity

I slow: very bad convergence
I “Column generation for extended formulations” (CGEF)

approach: we disaggregate the pricing problem solution
into arc flow variables, which are added to the master.

I The master then becomes the multi-commodity flow
formulation with restricter number of arc flow variables, i.e.
“improving” variables are generated dynamically

Proposition
If an arc flow variable x has a negative reduced cost, there
exists a pricing problem solution in which x > 0.
(consequence of the theorem in [S. and Vanderbeck, 13])

17 / 23



Contents

Problem description

Solution approaches

Numerical results and conclusions

18 / 23



Tested approaches
I DIRECT: solution of the multi-commodity flow formulation

by the Clp LP solver
I Problem specific solver source code modifications
I Problem specific preprocessing is applied (not public)
I Tested inside the company

I COLGEN: solution of the path reformulation by column
generation (BaPCod library and Cplex LP solver)

I Initialization of the master by “doing nothing” routes
I Stabilization by dual prices smoothing
I Restricted master clean-up

I COLGENEF: “dynamic” solution of multi-commodity flow
formulation by the CGEF approach (BaPCod library,
Lemon min-cost flow solver and Cplex LP solver)

I Initialization of the master by all waiting arcs
I Only trivial preprocessing is applied

19 / 23



First test set of real-life instances

Instance name x3 x3double 5k0711q
Number of stations 371 371 1’900
Number of demands 1’684 3’368 7’424
Number of car types 17 17 1
Number of cars 1’013 1’013 15’008
Number of sources 791 791 11’215
Time horizon, days 37 74 35
Number of vertices, thousands 62 152 22
Number of arcs, thousands 794 2’846 1’843
Solution time for DIRECT 20s 1h34m 55s
Solution time for COLGEN 22s 7m53s 8m59s
Solution time for COLGENEF 3m55s >2h 43s

20 / 23



Real-life instances with larger planning horizon
1’025 stations, up to 6’800 demands, 11 car types, 12’651 cars,
and 8’232 sources.
Up to ≈ 300 thousands nodes and 10 millions arcs.

80 100 120 140 160 180
0

20

40

60

80

planning horizon length, days

so
lu

tio
n

tim
e,

m
in

ut
es

DIRECT

COLGEN

COLGENEF

Horizon DIRECT COLGENEF
80 5m24s 1m52s
90 7m05s 1m47s

100 9m42s 2m19s
110 13m38s 3m11s
120 17m19s 3m57s
130 25m52s 5m03s
140 35m08s 5m25s
150 44m58s 7m02s
160 57m11s 8m19s
170 1h13m58s 10m53s
180 1h26m46s 12m16s

Convergence of COLGENEF in less than 15 iterations.
About 3% of arc flow variables at the last iteration.

21 / 23



Conclusions

I Three approaches tested for a freight car routing problem
on real-life instances

I Approach COLGEN is the best for instances with small
number of sources

I Problem-specific preprocessing is important: good results
for DIRECT

I Approach COLGENEF is the best for large instances
I Combination of COLGENEF and problem-specific

preprocessing would allow to increase discretization and
improve solutions quality

22 / 23



Perspectives

Some practical considerations are not taken into account:
I Progressive standing daily rates
I Special stations for long-time stay (with lower rates)
I Compatibility between two consecutive types of loaded

products.
I Penalties for refused demands
I Groups of cars are transferred faster and for lower unitary

costs.

23 / 23


	Problem description
	Solution approaches
	Numerical results and conclusions

