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Scheduling parallel jobs

Classic scheduling
A classic job can be executed on at most one processor
(machine) at the same time.

Parallel scheduling
A parallel job can be executed on more than one processor at
the same time.

δj — upper bound on the number of processors that may be
used by job j .
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Applications

I Parallel computer applications
I Reliable computing
I Bandwidth allocation
I Manufacturing

I Printed Circuit Boards
I Textile
I ...
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Types of parallel jobs

Uniprocessor
(with preemption)

Uniprocessor
(no preemption)

Power-of-two

Multiprocessor

MoldableMalleable

5 / 22



Cost of parallelism

The processing time pj of job j depends on the number of
machines assigned to it:

I pj(q) = pj(1)/q (j is work preserving, no parallelism cost)
I pj(q) > pj(1)/q (parallelism costs)

I pj (q) = f (q) (particular continuous function)
I pj (q) is an arbitrary discrete function of q.
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The problem
I m identical machines
I n malleable jobs
I ∀j , pj(q) — processing time function
I ∀j , δj — parallelization limit
I ∀j , wj — weight
I Objective function: min

∑
j wjCj

α|β|γ notation

P | var , δj |
∑

wjCj

Complexity status

NP-hard (generalisation of P | pmtn |
∑

wjCj )
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Ascending property

A schedule satisfies the ascending property if, for every job j ,
the number of processors j is executed on do not decrease
over time (until j is fully completed).

Example of schedule satisfying the ascending property

M1

M2

M3

M4
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The result

Dominance
I For the work preserving case
I and some other (more practical !) processing time

functions,

the class of schedules satisfying the ascending property is
dominant, i.e. there always exists an optimal schedule which
satisfies the ascending property.

Impact

I Search space reduction for enumeration algorithms.
I Complexity reduction for approximation algorithms.
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“Fractional” case

Easy to prove if jobs can use a fractional number of machines:

Mk−1

Mk

↓

Mk−1

Mk

Not so easy to prove for the natural (“integer”) case.
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Scheme of the proof

Definitions
A piece of job is a non-preemptive part of this job processed on
some machine.
A piece of job j is early if it completed strictly before Cj .

Proof scheme
I Consider an optimal schedule.
I If it does not contain early pieces, it satisfies the ascending

property (we are done).
I Otherwise, it is possible to transform it without increasing

its cost to another schedule in which the number of early
pieces or the total number of pieces is strictly decreased.
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Transformation of the schedule with early pieces

I Let piece q of job a be the early piece with the maximum
completion time (all pieces completed after Cq

a are not
early).

I Let schedule π(ε) be the schedule in which the starting
time of every piece u of job j is changed by ∆ε(Su

j )

according to the change of the completion time of the
preceding piece, and its completion time — by ∆ε(Cu

j ),
where

I ∆ε(Ca
q ) = ε,

I if Cu
j > Ca

q , then ∆ε(Cu
j ) =

∑
k∈K (j) ∆ε(Sk

j )[−ε]if j=a

|K (j)|
,

where K (j) — set of non-early pieces of job j (the change
of starting times of pieces in K (j) is distributed equally
among the changes of completion times of these pieces),

I otherwise ∆ε(Cu
j ) = 0.
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Example of the transformation

M1

M2

M3

M4

M5 a
b

c
a

d
e

f

h

g π(0)

↓

M1

M2

M3

M4

M5
b

c

a

d

e

f

h

g π(−4)
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Transformation analysis

I ∆ε(Cj) is a linear function of ε as long as non-early pieces
remain non-early ( 0 > ε2 ≤ ε ≤ ε1 > 0).

I Schedule π(ε) remains feasible as long as the lengths of
all pieces remain non-negative ( 0 > ε4 ≤ ε ≤ ε3 > 0).

I Schedule π(ε) remains feasible as long as, for all pieces
u, v of a same job j , if u precedes v in π(0), u still precedes
v , meaning that the number of simultaneously processed
pieces of j does not exceed δj ( 0 > ε6 ≤ ε ≤ ε5 > 0).

I As schedule π(0) is optimal, the function
∑

j wj∆ε(Cj) = 0
for ε such that

0 > ε = max{ε2, ε4, ε6} ≤ ε ≤ min{ε1, ε3, ε5} = ε > 0,

and all schedules π(ε), ε ≤ ε ≤ ε, are optimal.
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Transformation analysis (2)

Consider schedule π(ε), ε = max{ε2, ε4, ε6}.
I ε = ε2 ⇒ some early piece becomes non-early.
I ε = ε4 ⇒ the length of some piece becomes zero (a piece

disappears).
I ε = ε6 ⇒ Cu

j = Sv
j and we can combine two pieces into

one.

Mk

Ml

↓

Ml

Mk

I End of proof.
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The case in which parallelism costs

The results also holds for the case when, for each job j ,

1
p(q)

− 1
p(q − 1)

≥ 1
p(q + 1)

− 1
p(q)

≥ 0, (1)

meaning that the processing speed of job j
1. increases when j is passed from q machines to q + 1,
2. and does not increase more when j is passed from q

machines to q + 1 than when it is passed from q − 1
machines to q.

Idea of the proof

I The same idea of the proof as in the work preserving case.
I The difference is that ∆ε(Cj) is not a linear function of ε

any more, but a concave function.
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The case in which parallelism costs (2)
Note that the case (1) “covers” the case in which

0 ≤ q · p(q)− (q − 1) · p(q − 1) ≤ (q + 1) · p(q + 1)− q · p(q),

meaning that the surface of job j
1. increases when j uses an additional machine,
2. and does not increases less when j is passed from q

machines to q + 1 than when it is passed from q − 1
machines to q.

Example

t0 1 2 3 4 5 6 7 8 9 10

surface = 10
surface = 12

surface = 15
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Open problem

Hendel and Kubiak (2008) proposed a polynomial algorithm for
the problem

P2 | var ,pj(q) = pj/q, δj |
∑

Cj .

The problem

P | var ,pj(q) = pj/q, δj |
∑

Cj

remains open, even for the case with 3 machines.

22 / 22


	Introduction
	

	The result
	

	Proof for the work preserving case
	

	On the generalisation
	

	Open problem
	


