On the exact solution of a large class of parallel machine scheduling problems

Teobaldo Bulhões ${ }^{2} \begin{gathered}\text { Ruslan Sadykov }{ }^{1} \\ \text { Anand Subramanian }{ }^{3}\end{gathered}$

Eduardo Uchoa²

3
Univ. Federal da Paraíba, Brazil

MISTA 2017
Kuala-Lumpur, December 7

Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results

The scheduling problem we want to solve

- Set M of unrelated machines
- n jobs, each job $j \in J=\{1, \ldots, n\}$ has
- processing time p_{j}^{k}, dependent on the machine
- release and due dates r_{j} and d_{j}
- earliness and tardiness unitary penalties α_{j} and β_{j}
- Given completion time C_{j} of job $j \in J$ in the schedule, its cost is

$$
\alpha_{j} E_{j}+\beta_{j} T_{j}=\alpha_{j} \cdot \max \left\{0, d_{j}-C_{j}\right\}+\beta_{j} \cdot \max \left\{0, C_{j}-d_{j}\right\}
$$

- There is a sequence-dependent setup time $s_{i, j}^{k}$ if job j is scheduled immediately after job i on machine k.
- The objective is to minimize the total earliness/tardiness cost.
- Problem's notation:

$$
R\left|r_{j}, s_{i j}^{k}\right| \sum_{j} \alpha_{j} E_{j}+\beta_{j} T_{j}
$$

Existing exact approaches in the literature for scheduling on parallel machines with sum criteria
$R\left|s_{i j}^{k}\right| \sum \alpha_{j} E_{j}+\beta_{j} T_{j}$ Only MIP formulations, up to 5 machines and 12 jobs.
$R \| \sum T_{j} \quad$ A branch-and-bound [Shim and Kim, 2007], up to 5 machines and 20 jobs.
$R \| \sum w_{j} T_{j}$ A branch-and-bound [Liaw et al., 2003], up to 4 machines and 18 jobs.
$Q\left|s_{i j}^{k}\right| \sum E_{j}+T_{j}$ A MIP and a Benders decomposition [Balakrishnan et al., 1999], up to 20 jobs.
$P\left|s_{f}\right| \sum T_{j}$ A branch-and-bound [Schaller, 2014], up to 3 machines and 14 jobs.
$P\left|r_{j}\right| \sum w_{j} T_{j}$ A branch-and-bound [Jouglet and Savourey, 2011], up to 5 machines and 20 jobs
$P \| \sum w_{j} T_{j}$ A Branch-Cut-and-Price [Pessoa et al., 2010], up to 4 machines and 100 jobs.
$P \| \sum w_{j} C_{j}$ A Branch-and-Price [Kowalczyk and Leus, 2016], up to 12 machines and 150 jobs

Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results

Set covering (master) formulation

- Ω_{k} - set of pseudo-schedules for machine $k \in M$
- a_{j}^{ω} — number of times that job j appears in pseudo-schedule ω.
- c_{ω} - cost of pseudo-schedule ω.
- Binary variable $\lambda_{k}^{\omega}=1$ if and only if pseudo-schedule ω is assigned to machine $k \in M$

$$
\begin{aligned}
\min \sum_{k \in M} \sum_{\omega \in \Omega_{u}} c_{\omega} \lambda_{s} & \\
\sum_{k \in M} \sum_{\omega \in \Omega_{u}} a_{j}^{\omega} \lambda_{\omega} & =1, \quad \forall j \in J \\
\sum_{\omega \in \Omega_{k}} \lambda_{\omega} & \leq 1, \quad \forall k \in M \\
\lambda_{\omega} & \in\{0,1\}, \quad \forall \omega \in \Omega_{k}, \forall k \in M .
\end{aligned}
$$

Pricing subproblem for machine $k \in M$

Extended graph G_{k}

Arc (i, j, t) - setup time between job i and j is started at time t, and job j is started at time $t+s_{i j}^{k}$
Variable $x_{i j}^{t}-\operatorname{arc}(i, j, t)$ in the solution or not

$J=\{1,2,3\}, T=8, p_{1}=4, p_{2}=1, p_{3}=3, s_{i j}=1, \forall i, j \in J$
Pseudo-schedules 0-2-3-2-0 and 0-2-1-0 are shown

Pricing subproblem: dynamic programming

Given dual solution π of the restricted master problem, the pricing subproblem is

$$
\min _{\omega \in \Omega_{k}} \bar{c}_{\omega}=c_{\omega}-\sum_{j \in J} a_{j}^{\omega} \pi_{j}=\sum_{\substack{i, j \in J, i \neq j \\ t \in T}}\left(c_{j}^{t+s_{i j}+p_{j}}-\pi_{j}\right) \cdot x_{i j}^{t}
$$

i.e. the shortest path problem in the extended graph.

Dynamic program
Shortest path problem in an acyclic graph can be solved by a dynamic program with states:
$S(j, t)$ - best partial schedule with the last job j completing at time t

Fixing of arc variables by reduced costs

- $Z_{R M}$ - optimal value of the current restricted master.
- $Z_{\text {sub }}^{k}$ - minimum reduced cost for machine $k \in M$.
- Lagrangian lower bound: $Z_{R M}+\sum_{k \in M} Z_{s u b}^{k}$.
- $Z_{\text {inc }}$ - value of the best known integer solution.
- $Z_{\text {sub }}^{k}(a)$ - current minimum reduced cost of a path containing arc $a \in G_{k}$.
- Arc a can be removed (it cannot take part of any improving solution) if

$$
Z_{\text {sub }}^{k}(a)+\sum_{k^{\prime} \in M \backslash\{k\}} Z_{\text {sub }}^{k^{\prime}}+Z_{R M} \geq Z_{\text {inc }}
$$

- A good heuristic is very important!

Computing $Z_{\text {sub }}^{k}(a)$ [Ibaraki and Nakamura, 1994]

How to compute the shortest path passing through arc $a=(i, j, t) \in G_{k}$?

1. $F(i, t)$ - the value of the shortest path from s to node (i, t)
2. $B\left(k, t+s_{i j}^{k}+p_{j}^{k}\right)$ - the value of the shortest path from d to node $\left(j, t+s_{i j}^{k}+p_{j}^{k}\right)$
3. $Z_{\text {sub }}^{k}(a=(i, j, k))=F(i, t)+B\left(j, t+s_{i j}^{k}+p_{j}^{k}\right)+\bar{c}_{j}^{t+s_{i j}^{k}+p_{j}^{k}}$.

國 Ibaraki, T. and Nakamura, Y. (1994).
A dynamic programming method for single machine scheduling.
European Journal of Operational Research, 76(1):72-82.

Dual price smoothing stabilization

- $\bar{\pi}$ - current dual solution of the restricted master
- π^{*} - dual solution giving the best Lagrangian bound so far
- We solve the pricing problem using the dual vector

$$
\pi^{\prime}=(1-\alpha) \cdot \bar{\pi}+\alpha \cdot \pi^{*}
$$

where $\alpha \in[0,1)$.

- Parameter α is automatically adjusted in each column generation iteration using the sub-gradient of the Lagrangian function at π^{\prime} [Pessoa et al., 2017].

R Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2017).
Automation and combination of linear-programming based stabilization techniques in column generation.
INFORMS Journal on Computing, (Forthcoming).

Branching

- Branching on aggregated arc variables

$$
\sum_{0 \leq t \leq T} x_{i j}^{t k} \in\{0,1\}
$$

i.e. job i immediately precedes job j on machine k or not

- Multi-phase strong branching is used
- Branching history is kept is used through pseudo-costs

Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results

Subset-Row Cuts (SRCs) [Jepsen et al., 2008]

Given $\mathcal{C} \subseteq J$ and a multiplier ρ, the (\mathcal{C}, ρ)-Subset Row Cut is:

$$
\sum_{k \in M} \sum_{\omega \in \Omega_{k}}\left\lfloor\rho \sum_{i \in \mathcal{C}} a_{j}^{\omega}\right\rfloor \lambda_{\omega} \leq\lfloor\rho|\mathcal{C}|\rfloor
$$

Special case of Chvátal-Gomory rank-1 cuts obtained by rounding of $|\mathcal{C}|$ set-packing constraints in the master

Here we use only 1 -row and 3 -row cuts with $\rho=\frac{1}{2}$.
We separate them by enumeration.
\square Mads Jepsen and Bjorn Petersen and Simon Spoorendonk and David Pisinger (2008).
Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows.
Operations Research, 56(2):497-511.

Example of a violated 3-row cut

value $=0.5$

value $=0.5$

value $=0.5$

- $\mathcal{C}=\{1,2,3\}$
- coefficient of these three columns in the cut is 1
- $l h s=1.5, r h s=1$, violation is 0.5 .

Impact on the pricing problem

Given dual value $\nu_{\gamma}<0$ for each active subset row cut $\gamma \in \Gamma$, defined for subset C_{γ} of jobs, modified reduced cost of pseudo-schedule $\omega \in \Omega_{k}$ is :

$$
\bar{c}_{\omega}=\sum_{i, j \in J, t \in T}\left(c_{j}^{t+s_{i j}+p_{j}}-\pi_{j}\right) \cdot x_{i j}^{t}-\sum_{\gamma \in \Gamma}\left\lfloor\frac{1}{2} \cdot \sum_{\substack{j \in C_{\eta}, i \in J, i \neq j, t \in T}} x_{i j}^{t}\right\rfloor \cdot \nu_{\gamma}
$$

An additional binary value for each cut $\gamma \in \Gamma$ in dynamic programming states: $S\left(j, t, \ldots, \theta_{\gamma}, \ldots\right)$, where θ_{γ} is the parity of the number of appearances of jobs in $\mathcal{C}_{\gamma}(=0 / 1$ if pair/odd)

Instead of the dynamic program, we use a labeling algorithm with labels $L=\left(\bar{c}^{L}, j^{L}, t^{L},\left\{\theta_{\gamma}^{L}\right\}_{\gamma \in \Gamma}\right)$ and the dominance rule

$$
j^{L}=j^{L^{\prime}}, \quad t^{L}=t^{L^{\prime}}, \quad \bar{c}^{L}-\sum_{\gamma \in \Gamma: \theta_{\gamma}^{L}>\theta_{\gamma}^{L^{\prime}}} \nu_{\gamma} \leq \bar{c}^{L^{\prime}}
$$

The labeling algorithm

$t=0$	1	2	3	4	5
5			\square	L	
4		\square	\square	\square	
3		\square	\square	\square	
2					
1					
$\text { = } 0$		\square	\square	L	\square

The labeling algorithm

The labeling algorithm

The labeling algorithm

The labeling algorithm

Limited memory cuts [Pecin et al., 2017]

- For each active cut $\gamma \in \Gamma$, define a memory \mathcal{M}_{γ} : set of jobs which "remember" value $\theta_{\gamma}=1$.
- If $j^{L} \notin \mathcal{M}_{\gamma}$, then $\theta_{\gamma}^{L} \leftarrow 0$.
- Much less values $\theta_{\gamma}^{L}=1 \Rightarrow$ stronger domination
- Memory \mathcal{M}_{γ} of a cut $\gamma \in \Gamma$ is calculated during separation as the smallest memory which does not decrease the cut violation of the current fractional solution
- Limited memory cuts are weaker than full memory cuts, however the labeling algorithm is much faster

T
Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017).
Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation, 9(1):61-100.

Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results

Results for $R\left|r_{j}, s_{i j}^{k}\right| \sum \alpha_{j} E_{j}+\beta_{j} T_{j}$, small setup times

 Initial heuristic and instances by [Kramer and Subramanian, 2017]| Size | | With cuts | | | | | | BKS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | m | \#Solved | $\begin{gathered} \text { Root } \\ \text { Gap (\%) } \end{gathered}$ | Gap | Root Time | Total | \#Nodes | Improv. (\%) | \#New |
| 40 | 2 | 60/60 | 0.01 | 0.00 | 4 m | 4 m | 1.1 | 0.12 | 22 |
| | 2 | 60/60 | 0.32 | 0.00 | 23 m | 28 m | 3.5 | 0.33 | 46 |
| 60 | 3 | 60/60 | 0.86 | 0.00 | 16 m | 35m | 10.6 | 0.48 | 47 |
| 80 | 2 | 60/60 | 0.23 | 0.00 | 1h12m | 1h37m | 5.7 | 0.14 | 41 |
| 80 | 4 | 48/60 | 1.69 | 0.52 | 37 m | 4h33m | 92.0 | 0.26 | 50 |

Size							
Without cuts							
n	m	\#Solved	Root Gap (\%)	Gap (\%)	Root Time	Total Time	\#Nodes
40	2	$60 / 60$	1.72	0.00	3 m	6 m	44.8
60	2	$59 / 60$	1.99	0.05	13 m	1 h 55 m	412.8
60	3	$60 / 60$	2.23	0.00	10 m	1 h 13 m	361.5

國 Kramer, A. and Subramanian, A. (2017).
A unified heuristic and an annotated bibliography for a large class of earliness-tardiness scheduling problems.
Journal of Scheduling, accepted.

Results for $R\left|r_{j}, s_{i j}^{k}\right| \sum \alpha_{j} E_{j}+\beta_{j} T_{j}$, larger setup times

 Initial heuristic and instances by [Kramer and Subramanian, 2017]| Size | | With cuts | | | | | | BKS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | m | \#Solved | Root Gap (\%) | Gap
 (\%) | Root
 Time | Total
 Time | \#Nodes | Improv. (\%) | \#New |
| 40 | 2 | 60/60 | 0.43 | 0.00 | 13m | 16 m | 2.8 | 0.76 | 46 |
| 60 | 2 | 58/60 | 2.22 | 0.06 | 48m | 2h56m | 23.2 | 1.34 | 58 |
| 60 | 3 | 45/60 | 4.29 | 1.21 | 29m | 5h45m | 85.8 | 1.56 | 55 |
| 80 | 2 | 28/60 | 2.89 | 1.32 | 1h59m | 9h49m | 48.8 | 0.80 | 54 |
| 80 | 4 | 10/60 | 5.17 | 3.91 | 1h18m | 10h58m | 120.4 | 0.39 | 27 |

Size			Without cuts				
n	m	\#Solved	Root Gap (\%)	Gap (\%)	Root Time	Total Time	\#Nodes
40	2	60/60	4.08	0.00	5 m	24m	172.6
60	2	43/60	4.71	1.21	23m	7h06m	1246.2
60	3	37/60	5.99	2.14	18m	7h05m	1702.3

T- Kramer, A. and Subramanian, A. (2017).
A unified heuristic and an annotated bibliography for a large class of earliness-tardiness scheduling problems.
Journal of Scheduling, accepted.

Results for $R \| \sum \alpha_{j} E_{j}+\beta_{j} T_{j}$

Size	Our Branch-Cut-and-Price						BKS		[Şen and Bülbül, 2015]		
$n \quad m$	Solv.	$\begin{aligned} & \text { Root } \\ & \text { Gap(\%) } \end{aligned}$	Gap (\%)	Root Time	Total Time	Nod. num.	Impr. (\%)	New	Solv.	$\begin{aligned} & \text { Gap } \\ & (\%) \end{aligned}$	Time
402	60/60	0.04	0.00	2 m	5 m	3.4	0.00	0	26/60	0.16	1 m
602	60/60	0.04	0.00	9 m	12 m	3.3	0.00	1	7/60	0.89	2 m
603	60/60	0.05	0.00	6 m	7 m	2.9	0.01	5	7/60	0.82	2 m
802	59/60	0.02	0.00	28m	40 m	5.4	0.00	3	2/60	0.90	2 m
804	60/60	0.11	0.00	15 m	16 m	3.9	0.07	15	0/60	4.54	4 m
903	60/60	0.05	0.00	29m	34 m	4.7	0.03	20	1/60	2.52	3 m
1005	59/60	0.20	0.02	31 m	57 m	26.7	0.10	27	0/60	8.83	5 m
1203	56/60	0.16	0.04	1h54m	3 h 00 m	16.7	0.07	22	0/60	4.12	3 m
1204	58/60	0.23	0.01	1h24m	2h12m	17.7	0.17	31	0/60	6.98	4 m

With subset row cuts, root gap is 6 times smaller (40 and 60 jobs instances).
In 30 minutes, CPLEX solved 49/60 inst. with 40 jobs, 36/120 inst. with 60 jobs, $3 / 120$ inst. with 80 jobs, $2 / 60$ inst. with 90 jobs.

Şen, H. and Bülbül, K. (2015).
A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines. INFORMS Journal on Computing, 27(1):135-150.

Final remarks

- First use of non-robust cuts (modifying the structure of the pricing problem) for scheduling problems
- Significant computational improvement over the existing exact approaches for the problem
- scales up to 4 machines and 80 jobs for "generic" instances with setup times
- solves 532/540 instances without setup times with up to 4 machines and 120 jobs
- Need more testing on "less generic" instances
- Ways to improve results:
- A better heuristic for generic instances is needed!
- First convergence is very slow
- More balanced branching
- Separation for rank-1 cuts with 4 and more rows
- Enumeration [Baldacci et al., 2008]
- Avoid discretisation [loachim et al., 1998]

References I

围 Balakrishnan, N., Kanet, J. J., and Sridharan, V. (1999).
Early/tardy scheduling with sequence dependent setups on uniform parallel machines.
Computers and Operations Research, 26(2):127-141.
R Baldacci, R., Christofides, N., and Mingozzi, A. (2008).
An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts.
Mathematical Programming, 115:351-385.
Şen, H. and Bülbül, K. (2015).
A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines.
INFORMS Journal on Computing, 27(1):135-150.
E
Ibaraki, T. and Nakamura, Y. (1994).
A dynamic programming method for single machine scheduling.
European Journal of Operational Research, 76(1):72-82.

References II

Ioachim，I．，Gélinas，S．，Soumis，F．，and Desrosiers，J．（1998）．
A dynamic programming algorithm for the shortest path problem with time windows and linear node costs．
Networks，31（3）：193－204．
囦 Jepsen，M．，Petersen，B．，Spoorendonk，S．，and Pisinger，D．（2008）．
Subset－row inequalities applied to the vehicle－routing problem with time windows．
Operations Research，56（2）：497－511．
围 Jouglet，A．and Savourey，D．（2011）．
Dominance rules for the parallel machine total weighted tardiness scheduling problem with release dates．
Computers and Operations Research，38（9）：1259－1266．
國 Kowalczyk，D．and Leus，R．（2016）．
A branch－and－price algorithm for parallel machine scheduling using zdds and generic branching．
Technical Report KBI－1631，Faculty of Economics and Business，KU Leuven．

References III

Kramer, A. and Subramanian, A. (2017).
A unified heuristic and an annotated bibliography for a large class of earliness-tardiness scheduling problems.
Journal of Scheduling, accepted.
國 Liaw, C.-F., Lin, Y.-K., Cheng, C.-Y., and Chen, M. (2003).
Scheduling unrelated parallel machines to minimize total weighted tardiness.
Computers and Operations Research, 30(12):1777-1789.
囯 Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017).
Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation, 9(1):61-100.
Ressoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2017).
Automation and combination of linear-programming based stabilization techniques in column generation.
INFORMS Journal on Computing, (Forthcoming).

References IV

星
Pessoa, A., Uchoa, E., de Aragão, M. P., and Rodrigues, R. (2010). Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems.
Mathematical Programming Computation, 2:259-290.
Schaller, J. E. (2014).
Minimizing total tardiness for scheduling identical parallel machines with family setups.
Computers and Industrial Engineering, 72:274-281.Shim, S.-O. and Kim, Y.-D. (2007).
Minimizing total tardiness in an unrelated parallel-machine scheduling problem.
Journal of the Operational Research Society, 58(3):346-354.

