On the exact solution of a large class of parallel machine scheduling problems

Teobaldo Bulhões²

Ruslan Sadykov¹ Anand Subramanian³

2

Eduardo Uchoa²

¹ Inria Bordeaux and Univ. Bordeaux, France

BORDEAUX

Univ. Federal Fluminense, Brazil

Univ. Federal da Paraíba, Brazil

3

MISTA 2017 Kuala-Lumpur, December 7

Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results

The scheduling problem we want to solve

- Set M of unrelated machines
- *n* jobs, each job $j \in J = \{1, \ldots, n\}$ has
 - processing time p_i^k , dependent on the machine
 - release and due dates r_i and d_i
 - earliness and tardiness unitary penalties α_i and β_i
- ► Given completion time C_j of job j ∈ J in the schedule, its cost is

 $\alpha_j E_j + \beta_j T_j = \alpha_j \cdot \max\{0, d_j - C_j\} + \beta_j \cdot \max\{0, C_j - d_j\}$

- There is a sequence-dependent setup time s^k_{i,j} if job j is scheduled immediately after job i on machine k.
- The objective is to minimize the total earliness/tardiness cost.
- Problem's notation:

$$\boldsymbol{R}|\boldsymbol{r}_{j},\boldsymbol{s}_{ij}^{k}|\sum_{j}\alpha_{j}\boldsymbol{E}_{j}+\beta_{j}\boldsymbol{T}_{j}$$

Existing exact approaches in the literature for scheduling on parallel machines with sum criteria

- $R \mid s_{ij}^k \mid \sum \alpha_j E_j + \beta_j T_j$ Only MIP formulations, up to 5 machines and 12 jobs.
- $R \parallel \sum T_j$ A branch-and-bound [Shim and Kim, 2007], up to 5 machines and 20 jobs.
- $R \mid \sum w_j T_j$ A branch-and-bound [Liaw et al., 2003], up to 4 machines and 18 jobs.
- $Q \mid s_{ij}^k \mid \sum E_j + T_j$ A MIP and a Benders decomposition [Balakrishnan et al., 1999], up to 20 jobs.
- $P \mid s_f \mid \sum T_j$ A branch-and-bound [Schaller, 2014], up to 3 machines and 14 jobs.
- $P \mid r_j \mid \sum w_j T_j$ A branch-and-bound [Jouglet and Savourey, 2011], up to 5 machines and 20 jobs
- $P \mid \sum w_j T_j$ A Branch-Cut-and-Price [Pessoa et al., 2010], up to 4 machines and 100 jobs.
- $P \mid \sum w_j C_j$ A Branch-and-Price [Kowalczyk and Leus, 2016], up to 12 machines and 150 jobs

Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results

Set covering (master) formulation

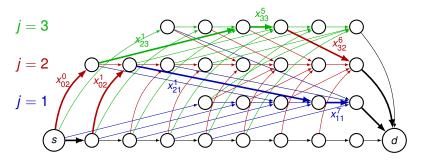
- Ω_k set of pseudo-schedules for machine $k \in M$
- *a*^ω_j number of times that job *j* appears in pseudo-schedule ω.
- c_{ω} cost of pseudo-schedule ω .
- Binary variable λ^ω_k = 1 if and only if pseudo-schedule ω is assigned to machine k ∈ M

$$\begin{split} \min \sum_{k \in M} \sum_{\omega \in \Omega_{u}} c_{\omega} \lambda_{s} \\ \sum_{k \in M} \sum_{\omega \in \Omega_{u}} a_{j}^{\omega} \lambda_{\omega} &= 1, \quad \forall j \in J, \\ \sum_{\omega \in \Omega_{k}} \lambda_{\omega} &\leq 1, \quad \forall k \in M, \\ \lambda_{\omega} &\in \{0, 1\}, \quad \forall \omega \in \Omega_{k}, \forall k \in M. \end{split}$$

Pricing subproblem for machine $k \in M$ Extended graph G_k

Arc (i, j, t) — setup time between job *i* and *j* is started at time *t*, and job *j* is started at time $t + s_{ii}^{k}$

Variable x_{ii}^t — arc (i, j, t) in the solution or not



 $J = \{1, 2, 3\}, \ T = 8 \ , \ p_1 = 4, \ p_2 = 1, \ p_3 = 3, \ s_{ij} = 1, orall i, j \in J$

Pseudo-schedules 0-2-3-2-0 and 0-2-1-0 are shown

Pricing subproblem: dynamic programming

Given dual solution π of the restricted master problem, the pricing subproblem is

$$\min_{\omega \in \Omega_k} ar{m{c}}_\omega = m{c}_\omega - \sum_{j \in J} m{a}_j^\omega \pi_j = \sum_{\substack{i,j \in J, \ i \neq j \ t \in \mathcal{T}}} \left(m{c}_j^{t+m{s}_{ij}+m{p}_j} - \pi_j
ight) \cdot m{x}_{ij}^t$$

i.e. the shortest path problem in the extended graph.

Dynamic program

Shortest path problem in an acyclic graph can be solved by a dynamic program with states:

S(j, t) — best partial schedule with the last job *j* completing at time *t*

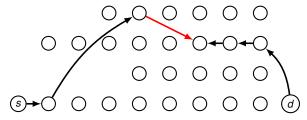
Fixing of arc variables by reduced costs

- \blacktriangleright Z_{RM} optimal value of the current restricted master.
- ► Z_{sub}^k minimum reduced cost for machine $k \in M$.
- Lagrangian lower bound: $Z_{RM} + \sum_{k \in M} Z_{sub}^k$.
- Z_{inc} value of the best known integer solution.
- ► $Z_{sub}^k(a)$ current minimum reduced cost of a path containing arc $a \in G_k$.
- Arc a can be removed (it cannot take part of any improving solution) if

$$Z^k_{sub}(a) + \sum_{k' \in \mathcal{M} \setminus \{k\}} Z^{k'}_{sub} + Z_{\mathcal{R}\mathcal{M}} \geq Z_{inc}.$$

A good heuristic is very important!

Computing $Z_{sub}^{k}(a)$ [Ibaraki and Nakamura, 1994] How to compute the shortest path passing through arc $a = (i, j, t) \in G_k$?



F(i, t) — the value of the shortest path from s to node (i, t)
 B(k, t + s^k_{ij} + p^k_j) — the value of the shortest path from d to node (j, t + s^k_{ij} + p^k_j)

3.
$$Z_{sub}^{k}(a = (i, j, k)) = F(i, t) + B(j, t + s_{ij}^{k} + p_{j}^{k}) + \overline{c}_{j}^{t + s_{ij}^{n} + p_{j}^{k}}$$

A dynamic programming method for single machine scheduling. European Journal of Operational Research, 76(1):72 – 82.

Ibaraki, T. and Nakamura, Y. (1994).

Dual price smoothing stabilization

- $\overline{\pi}$ current dual solution of the restricted master
- π^* dual solution giving the best Lagrangian bound so far
- We solve the pricing problem using the dual vector

$$\pi' = (1 - \alpha) \cdot \overline{\pi} + \alpha \cdot \pi^*,$$

where $\alpha \in [0, 1)$.

Parameter α is automatically adjusted in each column generation iteration using the sub-gradient of the Lagrangian function at π' [Pessoa et al., 2017].

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2017).

INFORMS Journal on Computing, (Forthcoming).

Automation and combination of linear-programming based stabilization techniques in column generation.

Branching

Branching on aggregated arc variables

$$\sum_{0\leq t\leq T} x_{ij}^{tk} \in \{0,1\},$$

i.e. job *i* immediately precedes job *j* on machine *k* or not

- Multi-phase strong branching is used
- Branching history is kept is used through pseudo-costs

Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results

Subset-Row Cuts (SRCs) [Jepsen et al., 2008]

Given $C \subseteq J$ and a multiplier ρ , the (C, ρ) -Subset Row Cut is:

$$\sum_{k \in M} \sum_{\omega \in \Omega_k} \left[\rho \sum_{i \in \mathcal{C}} \mathbf{a}_j^{\omega} \right] \lambda_{\omega} \leq \lfloor \rho |\mathcal{C}| \rfloor$$

Special case of **Chvátal-Gomory rank-1 cuts** obtained by rounding of |C| set-packing constraints in the master

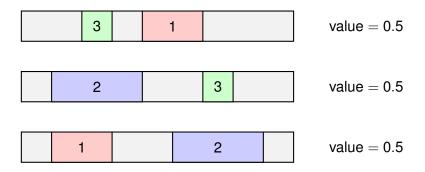
Here we use only 1-row and 3-row cuts with $\rho = \frac{1}{2}$. We separate them by enumeration.

Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows.

Operations Research, 56(2):497–511.

Mads Jepsen and Bjorn Petersen and Simon Spoorendonk and David Pisinger (2008).

Example of a violated 3-row cut



•
$$C = \{1, 2, 3\}$$

- coefficient of these three columns in the cut is 1
- ▶ *lhs* = 1.5, *rhs* = 1, violation is 0.5.

Impact on the pricing problem

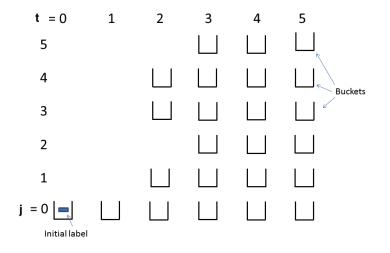
Given dual value $\nu_{\gamma} < 0$ for each active subset row cut $\gamma \in \Gamma$, defined for subset C_{γ} of jobs, modified reduced cost of pseudo-schedule $\omega \in \Omega_k$ is :

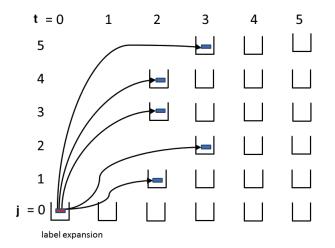
$$\bar{\boldsymbol{c}}_{\omega} = \sum_{i,j\in J, t\in T} \left(\boldsymbol{c}_{j}^{t+\boldsymbol{s}_{ij}+\boldsymbol{p}_{j}} - \pi_{j} \right) \cdot \boldsymbol{x}_{ij}^{t} - \sum_{\gamma\in\Gamma} \left[\begin{array}{c} \frac{1}{2} \cdot \sum_{\substack{j\in C_{\eta}, i\in J, \\ i\neq j, t\in T}} \boldsymbol{x}_{ij}^{t} \right] \cdot \nu_{\gamma}$$

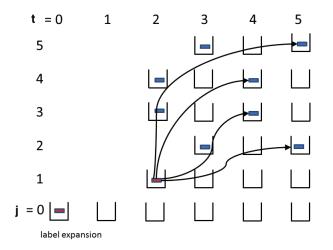
An additional binary value for each cut $\gamma \in \Gamma$ in dynamic programming states: $S(j, t, ..., \theta_{\gamma}, ...)$, where θ_{γ} is the parity of the number of appearances of jobs in C_{γ} (= 0/1 if pair/odd)

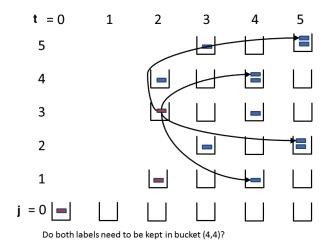
Instead of the dynamic program, we use a labeling algorithm with labels $L = (\bar{c}^L, j^L, t^L, \{\theta_{\gamma}^L\}_{\gamma \in \Gamma})$ and the dominance rule

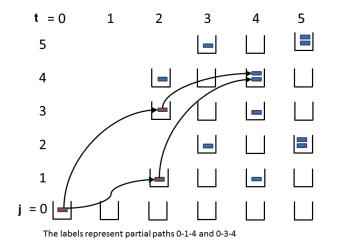
$$j^L = j^{L'}, \quad t^L = t^{L'}, \quad ar{c}^L - \sum_{\gamma \in \Gamma: \ heta_\gamma^L > heta_\gamma^{L'}}
u_\gamma \leq ar{c}^{L'}$$











Limited memory cuts [Pecin et al., 2017]

- For each active cut γ ∈ Γ, define a memory M_γ: set of jobs which "remember" value θ_γ = 1.
- If $j^L \notin \mathcal{M}_{\gamma}$, then $\theta_{\gamma}^L \leftarrow 0$.
- Much less values $\theta_{\gamma}^{L} = 1 \Rightarrow$ stronger domination
- Memory M_γ of a cut γ ∈ Γ is calculated during separation as the smallest memory which does not decrease the cut violation of the current fractional solution
- Limited memory cuts are weaker than full memory cuts, however the labeling algorithm is much faster

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017). Improved branch-cut-and-price for capacitated vehicle routing. *Mathematical Programming Computation*, 9(1):61–100.

Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results

Results for $R | r_j, s_{ij}^k | \sum \alpha_j E_j + \beta_j T_j$, small setup times

Initial heuristic and instances by [Kramer and Subramanian, 2017]

Size			BKS						
n	т	#Solved	Root Gap (%)	Gap (%)	Root Time		#Nodes	Improv. (%)	#New
40	2	60/60	0.01	0.00	4m	ı 4m	1.1	0.12	22
60	2	60/60	0.32	0.00	23m	ı 28m	3.5	0.33	46
60	3	60/60	0.86	0.00	16m	ı 35m	10.6	0.48	47
80	2	60/60	0.23	0.00	1h12m	1h37m	5.7	0.14	41
80	4	48/60	1.69	0.52	37m	4h33m	92.0	0.26	50
Si	Size Without cuts								
n	т	#Solved	Root	Gap	Root	Total	#Nodes		
11		#001/60	Gap (%)	(%)	Time	Time	#110063		
40	2	60/60	1.72	0.00	3m	6m	44.8		
60	2	59/60	1.99	0.05	13m	1h55m	412.8		
60	3	60/60	2.23	0.00	10m	1h13m	361.5		

Kramer, A. and Subramanian, A. (2017).

A unified heuristic and an annotated bibliography for a large class of earliness-tardiness scheduling problems.

Journal of Scheduling, accepted.

Results for $R | r_j, s_{ij}^k | \sum \alpha_j E_j + \beta_j T_j$, larger setup times

Initial heuristic and instances by [Kramer and Subramanian, 2017]

Size			BKS						
n	т	#Solved	Root Gap (%)	Gap (%)	Root Time		#INODES	Improv. (%)	#New
40	2	60/60	0.43	0.00	13m	ı 16	m 2.8	0.76	46
60	2	58/60	2.22	0.06	48m	2h56	m 23.2	1.34	58
60	3	45/60	4.29	1.21	29m	1 5h45	m 85.8	1.56	55
80	2	28/60	2.89	1.32	1h59m	9h49	m 48.8	0.80	54
80	4	10/60	5.17	3.91	1h18m	10h58	m 120.4	0.39	27
Siz	Size Without cuts								
n	т	#Solved	Root	Gap	Root	Total	#Nodes		
			Gap (%)	(%)	Time	Time	#NOUE3		
40	2	60/60	4.08	0.00	5m	24m	172.6		
60	2	43/60	4.71	1.21	23m	7h06m	1246.2		
60	3	37/60	5.99	2.14	18m	7h05m	1702.3		

Kramer, A. and Subramanian, A. (2017).

A unified heuristic and an annotated bibliography for a large class of earliness-tardiness scheduling problems.

Journal of Scheduling, accepted.

Results for $\boldsymbol{R} \mid \mid \sum \alpha_j \boldsymbol{E}_j + \beta_j \boldsymbol{T}_j$

Size		Our Branch-Cut-and-Price							BKS		[Şen and Bülbül, 2015]		
n	т	Solv.	Root	Gap	Root	Total	Nod.	Impr.	New	Solv.	Gap	Time	
			Gap(%)	(%)	Time	Time	num.	(%)			(%)	11110	
40	2	60/60	0.04	0.00	2m	5m	3.4	0.00	0	26/60	0.16	1m	
60	2	60/60	0.04	0.00	9m	12m	3.3	0.00	1	7/60	0.89	2m	
60	3	60/60	0.05	0.00	6m	7m	2.9	0.01	5	7/60	0.82	2m	
80	2	59/60	0.02	0.00	28m	40m	5.4	0.00	3	2/60	0.90	2m	
80	4	60/60	0.11	0.00	15m	16m	3.9	0.07	15	0/60	4.54	4m	
90	3	60/60	0.05	0.00	29m	34m	4.7	0.03	20	1/60	2.52	3m	
100	5	59/60	0.20	0.02	31m	57m	26.7	0.10	27	0/60	8.83	5m	
120	3	56/60	0.16	0.04	1h54m	3h00m	16.7	0.07	22	0/60	4.12	3m	
120	4	58/60	0.23	0.01	1h24m	2h12m	17.7	0.17	31	0/60	6.98	4m	

With subset row cuts, root gap is 6 times smaller (40 and 60 jobs instances).

In 30 minutes, CPLEX solved 49/60 inst. with 40 jobs, 36/120 inst. with 60 jobs, 3/120 inst. with 80 jobs, 2/60 inst. with 90 jobs.

Şen, H. and Bülbül, K. (2015).

A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines. *INFORMS Journal on Computing*, 27(1):135–150.

Final remarks

- First use of non-robust cuts (modifying the structure of the pricing problem) for scheduling problems
- Significant computational improvement over the existing exact approaches for the problem
 - scales up to 4 machines and 80 jobs for "generic" instances with setup times
 - solves 532/540 instances without setup times with up to 4 machines and 120 jobs
- Need more testing on "less generic" instances
- Ways to improve results:
 - A better heuristic for generic instances is needed!
 - First convergence is very slow
 - More balanced branching
 - Separation for rank-1 cuts with 4 and more rows
 - Enumeration [Baldacci et al., 2008]
 - Avoid discretisation [loachim et al., 1998]

References I

Balakrishnan, N., Kanet, J. J., and Sridharan, V. (1999).

Early/tardy scheduling with sequence dependent setups on uniform parallel machines.

Computers and Operations Research, 26(2):127 – 141.

- Baldacci, R., Christofides, N., and Mingozzi, A. (2008).

An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts.

Mathematical Programming, 115:351–385.

Şen, H. and Bülbül, K. (2015).

A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines.

INFORMS Journal on Computing, 27(1):135–150.

Ibaraki, T. and Nakamura, Y. (1994).

A dynamic programming method for single machine scheduling.

European Journal of Operational Research, 76(1):72 – 82.

References II

loachim, I., Gélinas, S., Soumis, F., and Desrosiers, J. (1998).

A dynamic programming algorithm for the shortest path problem with time windows and linear node costs.

Networks, 31(3):193–204.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008).

Subset-row inequalities applied to the vehicle-routing problem with time windows.

Operations Research, 56(2):497–511.

Jouglet, A. and Savourey, D. (2011).

Dominance rules for the parallel machine total weighted tardiness scheduling problem with release dates.

Computers and Operations Research, 38(9):1259 – 1266.

Kowalczyk, D. and Leus, R. (2016).

A branch-and-price algorithm for parallel machine scheduling using zdds and generic branching.

Technical Report KBI-1631, Faculty of Economics and Business, KU Leuven.

References III

Kramer, A. and Subramanian, A. (2017).

A unified heuristic and an annotated bibliography for a large class of earliness-tardiness scheduling problems.

Journal of Scheduling, accepted.

- Liaw, C.-F., Lin, Y.-K., Cheng, C.-Y., and Chen, M. (2003).

Scheduling unrelated parallel machines to minimize total weighted tardiness.

Computers and Operations Research, 30(12):1777 – 1789.

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017). Improved branch-cut-and-price for capacitated vehicle routing. *Mathematical Programming Computation*, 9(1):61–100.

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2017). Automation and combination of linear-programming based stabilization techniques in column generation.

INFORMS Journal on Computing, (Forthcoming).

References IV

Pessoa, A., Uchoa, E., de Aragão, M. P., and Rodrigues, R. (2010).

Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems.

Mathematical Programming Computation, 2:259–290.

Schaller, J. E. (2014).

Minimizing total tardiness for scheduling identical parallel machines with family setups.

Computers and Industrial Engineering, 72:274 – 281.

Shim, S.-O. and Kim, Y.-D. (2007).

Minimizing total tardiness in an unrelated parallel-machine scheduling problem.

Journal of the Operational Research Society, 58(3):346–354.