A compact MIP formulation for single machine scheduling to minimize a piecewise linear objective function

Philippe Baptiste Ruslan Sadykov

LIX, Ecole Polytechnique, France

Optimeo'08

The problem PWL (I)

Data

→ ∢ ≞ →

The problem PWL (I)

Data

Constraints

- the machine can process only one job at a time,
- preemtion is not allowed,

 e_3

d:

伺 ト く ヨ ト く ヨ

The problem PWL (II)

Objective

 $\forall j \in N$, the cost function $F_j(C_j)$ is linear in each interval :

if $e_{u-1} < C_j \leq e_u$ then

$$F_j(C_j) = f_j^u + w_j^u \cdot (C_j - e_{u-1}).$$

A > < > > < >

The problem PWL (II)

Objective

 $\forall j \in N$, the cost function $F_j(C_j)$ is linear in each interval :

if $e_{u-1} < C_j \leq e_u$ then

$$F_j(C_j) = \frac{f_j^u}{f_j^u} + w_j^u \cdot (C_j - e_{u-1}).$$

We minimize the total cost :

$$\sum_{j\in N} F_j(C_j)$$

🗇 🕨 🖌 🖻 🕨 🖌 🚍 🕨

3

All classical non-preemptive scheduling problems can be formulated as the problem PWL, for example :

All classical non-preemptive scheduling problems can be formulated as the problem PWL, for example :

Earliness-tardiness scheduling

All classical non-preemptive scheduling problems can be formulated as the problem PWL, for example :

Earliness-tardiness scheduling

All classical non-preemptive scheduling problems can be formulated as the problem PWL, for example :

All classical non-preemptive scheduling problems can be formulated as the problem PWL, for example :

Data is integer \rightarrow Time-indexed formulation [Sousa, Wolsey, 92] $X_{jt} \in \{0, 1\}, X_{jt} = 1$ iff job j is started at time moment t

$$\begin{array}{ll} \min & \sum\limits_{t=0}^{T} F_j(t+p_j) X_{jt} \\ s.t. & \sum\limits_{t=r_j}^{\overline{d}_j-p_j} X_{jt} = 1, \quad j \in N, \\ & \sum\limits_{j \in \mathcal{N}} \sum\limits_{s=t-p_j+1}^{t} X_{js} \leq 1, \quad t \in [0,T), \end{array}$$

Data is integer \rightarrow Time-indexed formulation [Sousa, Wolsey, 92] $X_{jt} \in \{0, 1\}, X_{jt} = 1$ iff job j is started at time moment t

Interval decomposition

The cost functions are linear in an interval.

• = • < =</p>

Interval decomposition

The cost functions are linear in an interval.

Property. If all jobs in a set Q are started and completed in the same interval $[e_{u-1}, e_u]$, it is optimal to process them according to the Smith rule :

Variables

 $X_j^u, Y_j^u \in \{0, 1\}$ — whether job *j* is started (completed) before e_u W_u — length of the idle time in I_u F_i^u — difference between the completion time and the border of I_u

Variables

 $X_j^u, Y_j^u \in \{0, 1\}$ — whether job *j* is started (completed) before e_u W_u — length of the idle time in I_u F_i^u — difference between the completion time and the border of I_u

Variables constraints

$$\begin{array}{ll} \forall u \in M, \ \forall j \in N, & Y_j^{u-1} \leq Y_j^u, \ X_j^{u-1} \leq X_j^u, \ Y_j^u \leq X_j^u \\ \forall u \in M, \ \forall j \in NS_u, & X_j^{u-1} \leq Y_j^u \\ \forall u \in M, \ \forall j \in NB_u, & Y_j^u \leq X_j^{u-1} \\ \forall j \in N, \ r_j = e_u, & X_j^u = 0 \\ \forall j \in N, \ \overline{d}_j = e_u, & Y_j^u = 1 \end{array}$$

Variables

 $X_j^u, Y_j^u \in \{0, 1\}$ — whether job *j* is started (completed) before e_u W_u — length of the idle time in I_u F_j^u — difference between the completion time and the border of I_u

Knapsack constraints

$$\forall u \in M, \qquad \sum_{j \in N} p_j Y_j^u + \sum_{v=1}^u W_v \le e_u$$
$$\forall u \in M, \qquad \sum_{j \in N} p_j X_j^u + \sum_{v=1}^u W_v \ge e_u$$

🗇 🕨 🖌 🖻 🕨 🖌 🚍 🕨

Variables

🗇 🕨 🖌 🖻 🕨 🖌 🗐 🕨

Variables

 $X_j^u, Y_j^u \in \{0, 1\}$ — whether job *j* is started (completed) before e_u W_u — length of the idle time in I_u F_j^u — difference between the completion time and the border of I_u NS_u, NB_u — set of "small" jobs and "big" jobs for I_u

Additional constraints II

$$\forall u \in M, \ \forall j \in NS_u, \qquad \sum$$

$$\sum_{i \in NB_u} (X_i^{u-1} - Y_i^u) + Y_j^u - X_j^{u-1} \le 1$$

Variables

 $X_j^u, Y_j^u \in \{0, 1\}$ — whether job *j* is started (completed) before e_u W_u — length of the idle time in I_u F_i^u — difference between the completion time and the border of I_u

Theorem

Vector (X, Y, W) satisfies the constraints presented \Leftrightarrow the corresponding schedule is feasible

🗇 🕨 🖌 🖻 🕨 🖌 🗐 🕨

Variables

 $X_j^u, Y_j^u \in \{0, 1\}$ — whether job *j* is started (completed) before e_u W_u — length of the idle time in I_u F_j^u — difference between the completion time and the border of I_u

Objective

A compact MIP formulation for single machine scheduling

Variables

 $X_j^u, Y_j^u \in \{0, 1\}$ — whether job *j* is started (completed) before e_u W_u — length of the idle time in I_u F_j^u — difference between the completion time and the border of I_u NS_u, NB_u — set of "small" jobs and "big" jobs for I_u

Objective

$$\min \sum_{j \in N} \sum_{u \in M} |w_j^u| F_j^u + \sum_{j \in N} \sum_{u \in M} \min_{t \in I_u} \{F_j(t)\} \cdot (Y_j^u - Y_j^{u-1})$$

$$\forall u \in M, \ \forall j \in N, \quad F_j^u \ge \alpha X + \beta Y + \gamma W$$

🗇 🕨 🖌 🖻 🕨 🖌 🗐 🕨

• <u>Redundant constraintes</u>. Example : $p_j \le e_u - e_v : C_j \le e_v \Rightarrow C_j \le e_u (Y_j^u \ge X_j^u)$

Appropriate partition of the time horizon Known order of jobs completed but not necessarily started in the same interval.

🗗 🕨 🗶 🗐 🖉 🖉

Redundant constraintes.

 $\mathsf{Example} : p_j \leq e_u - e_v : C_j \leq e_v \Rightarrow C_j \leq e_u \ (Y^u_j \geq X^u_j)$

• Appropriate partition of the time horizon Known order of jobs completed but not necessarily started in the same interval.

Numerical experiments

Cplex 10.0, standard settings and only standard cuts, 1000 seconds time limit

- Minimizing total weighted earliness and tardiness with release dates $(1 | r_j | \alpha_j E_j + \beta_j T_j)$ some 15 jobs instances could not be solved (all are solved if number of intervals is small).
- Minimizing total weighted earliness and tardiness

 (1 || α_jE_j + β_jT_j) all 15 jobs instances are solved (majority of 20 jobs instances are not solved).
- Minimizing total weighted tardiness (1 || w_jT_j) all 20 jobs instances are solved (some 30 jobs instances are not solved). Here we need only Y and F variables.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Minimizing total weighted earliness and tardiness with release dates $(1 | r_j | \alpha_j E_j + \beta_j T_j)$ some 15 jobs instances could not be solved (all are solved if number of intervals is small).
- Minimizing total weighted earliness and tardiness

 (1 || α_jE_j + β_jT_j) all 15 jobs instances are solved (majority of 20 jobs instances are not solved).
- Minimizing total weighted tardiness (1 || w_jT_j) all 20 jobs instances are solved (some 30 jobs instances are not solved). Here we need only Y and F variables.

< 同 > < 三 > < 三 >

- Minimizing total weighted earliness and tardiness with release dates $(1 | r_j | \alpha_j E_j + \beta_j T_j)$ some 15 jobs instances could not be solved (all are solved if number of intervals is small).
- Minimizing total weighted earliness and tardiness

 (1 || α_jE_j + β_jT_j) all 15 jobs instances are solved (majority of 20 jobs instances are not solved).
- Minimizing total weighted tardiness (1 || w_jT_j) all 20 jobs instances are solved (some 30 jobs instances are not solved). Here we need only Y and F variables.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Minimizing total weighted earliness and tardiness with release dates $(1 | r_j | \alpha_j E_j + \beta_j T_j)$ some 15 jobs instances could not be solved (all are solved if number of intervals is small).
- Minimizing total weighted earliness and tardiness

 (1 || α_jE_j + β_jT_j) all 15 jobs instances are solved (majority of 20 jobs instances are not solved).
- Minimizing total weighted tardiness (1 || w_jT_j) all 20 jobs instances are solved (some 30 jobs instances are not solved). Here we need only Y and F variables.

- Minimizing total weighted earliness and tardiness with release dates $(1 | r_j | \alpha_j E_j + \beta_j T_j)$ some 15 jobs instances could not be solved (all are solved if number of intervals is small).
- Minimizing total weighted earliness and tardiness

 (1 || α_jE_j + β_jT_j) all 15 jobs instances are solved (majority of 20 jobs instances are not solved).
- Minimizing total weighted tardiness (1 || w_jT_j) all 20 jobs instances are solved (some 30 jobs instances are not solved). Here we need only Y and F variables.

Similar performance with the Time-indexed formulation

- A new compact MIP formulation for a general machine scheduling problem (size is $O(nm) \times O(nm)$)
- More efficient in practical situations (few different release/due dates)
- 4 open practical instances from ILOG [Le Pape, Robert, 07] has been solved (up to 25 jobs)
- (--) Applicable to small instances only

伺 と く ヨ と く ヨ と

- A new compact MIP formulation for a general machine scheduling problem (size is $O(nm) \times O(nm)$)
- More efficient in practical situations (few different release/due dates)
- 4 open practical instances from ILOG [Le Pape, Robert, 07] has been solved (up to 25 jobs)
- (--) Applicable to small instances only

伺 と く ヨ と く ヨ と