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The problem PWL (I)

Data

1 machine, m intervals
Iu = [eu−1, eu], u ∈ M ;
for each job j ∈ N = {1, . . . , n}

rj - release date,

pj - processing time,

d̄j - deadline,

such that {rj , d̄j}j∈M ⊆ {eu}u∈M .

e0 e1 e2 e3

rj d̄jpj

t0
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Constraints

the machine can process only one job at a time,

preemtion is not allowed,
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The problem PWL (II)

Objective

∀j ∈ N, the cost function Fj(Cj )
is linear in each interval :

if eu−1 < Cj ≤ eu then

Fj(Cj ) = f u
j + wu

j · (Cj − eu−1).

e0 e1 e2 e3

rj d̄jpj

t0
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The problem PWL (II)

Objective

∀j ∈ N, the cost function Fj(Cj )
is linear in each interval :

if eu−1 < Cj ≤ eu then

Fj(Cj ) = f u
j + wu

j · (Cj − eu−1).

We minimize the total cost :

∑

j∈N

Fj(Cj )

.

e0 e1 e2 e3

rj d̄j

t0

F1(C1)

F2(C2)

F3(C3)
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Generality of the problem PWL

All classical non-preemptive scheduling problems can be formulated
as the problem PWL, for example :
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Time-indexed formulation

Data is integer → Time-indexed formulation [Sousa, Wolsey, 92]

Xjt ∈ {0, 1}, Xjt = 1 iff job j is started at time moment t

min
T∑

t=0

Fj(t + pj)Xjt

s.t.

d j−pj∑

t=rj

Xjt = 1, j ∈ N,

∑

j∈N

t∑

s=t−pj+1

Xjs ≤ 1, t ∈ [0,T ),
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t∑

s=t−pj+1

Xjs ≤ 1, t ∈ [0,T ),
tt0

pj
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Interval decomposition

The cost functions are linear in an interval.
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Interval decomposition

The cost functions are linear in an interval.

Property. If all jobs in a set Q are started and completed in the
same interval [eu−1, eu ], it is optimal to process them according to
the Smith rule :

i → j if
wu

i

pi

>
wu

j

pj

.

Idle time between jobs
with positive and
negative weights wu

j
t

eueu−1 Q
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Interval-indexed formulation

Variables

X u
j ,Y u

j ∈ {0, 1} — whether job j is started (completed) before eu

Wu — length of the idle time in Iu
F u

j — difference between the completion time and the border of Iu
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Interval-indexed formulation

Variables

X u
j ,Y u

j ∈ {0, 1} — whether job j is started (completed) before eu

Wu — length of the idle time in Iu
F u

j — difference between the completion time and the border of Iu

Variables constraints

∀u ∈ M, ∀j ∈ N, Y u−1
j ≤ Y u

j , X u−1
j ≤ X u

j , Y u
j ≤ X u

j

∀u ∈ M, ∀j ∈ NSu, X u−1
j ≤ Y u

j

∀u ∈ M, ∀j ∈ NBu, Y u
j ≤ X u−1

j

∀j ∈ N, rj = eu, X u
j = 0

∀j ∈ N, d̄j = eu, Y u
j = 1
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Interval-indexed formulation

Variables

X u
j ,Y u

j ∈ {0, 1} — whether job j is started (completed) before eu

Wu — length of the idle time in Iu
F u

j — difference between the completion time and the border of Iu

Knapsack constraints

∀u ∈ M,
∑

j∈N

pjY
u
j +

u∑

v=1

Wv ≤ eu

∀u ∈ M,
∑

j∈N

pjX
u
j +

u∑

v=1

Wv ≥ eu
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Interval-indexed formulation

Variables

X u
j ,Y u

j ∈ {0, 1} — whether job j is started (completed) before eu

Wu — length of the idle time in Iu
F u

j — difference between the completion time and the border of Iu

Additional constraints I

∀u ∈ M,
∑

i∈N

(X u
i − Y u

i ) ≤ 1

eu
t
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Interval-indexed formulation

Variables

X u
j ,Y u

j ∈ {0, 1} — whether job j is started (completed) before eu

Wu — length of the idle time in Iu
F u

j — difference between the completion time and the border of Iu
NSu,NBu — set of “small” jobs and “big” jobs for Iu

Additional constraints II

∀u ∈ M, ∀j ∈ NSu,
∑

i∈NBu

(X u−1
i − Y u

i ) + Y u
j − X u−1

j ≤ 1

eueu−1
t
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Interval-indexed formulation

Variables

X u
j ,Y u

j ∈ {0, 1} — whether job j is started (completed) before eu

Wu — length of the idle time in Iu
F u

j — difference between the completion time and the border of Iu

Theorem

Vector (X ,Y ,W ) satisfies the constraints presented

⇔ the corresponding schedule is feasible
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Interval-indexed formulation

Variables

X u
j ,Y u

j ∈ {0, 1} — whether job j is started (completed) before eu

Wu — length of the idle time in Iu
F u

j — difference between the completion time and the border of Iu

Objective

min
∑

j∈N

∑

u∈M

| wu
j | F u

j +
∑

j∈N

∑

u∈M

min
t∈Iu

{Fj(t)} · (Y
u
j − Y u−1

j )

t

eueu−1

F u
1 F u

2

min
t∈Iu

F1(t)

min
t∈Iu

F2(t)

Iu

Wu
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Interval-indexed formulation

Variables

X u
j ,Y u

j ∈ {0, 1} — whether job j is started (completed) before eu

Wu — length of the idle time in Iu
F u

j — difference between the completion time and the border of Iu
NSu,NBu — set of “small” jobs and “big” jobs for Iu

Objective

min
∑

j∈N

∑

u∈M

| wu
j | F u

j +
∑

j∈N

∑

u∈M

min
t∈Iu

{Fj(t)} · (Y
u
j − Y u−1

j )

∀u ∈ M, ∀j ∈ N, F u
j ≥ αX + βY + γW
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Tightening interval-indexed formulation

Redundant constraintes.
Example : pj ≤ eu − ev : Cj ≤ ev ⇒ Cj ≤ eu (Y u

j ≥ X u
j )

Appropriate partition of the time horizon
Known order of jobs completed but not necessarily started in
the same interval.
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Numerical experiments

Cplex 10.0, standard settings and only standard cuts,
1000 seconds time limit

Minimizing total weighted earliness and tardiness with

release dates (1 | rj | αjEj + βjTj) — some 15 jobs instances
could not be solved (all are solved if number of intervals is
small).

Minimizing total weighted earliness and tardiness

(1 || αjEj + βjTj) — all 15 jobs instances are solved (majority
of 20 jobs instances are not solved).

Minimizing total weighted tardiness (1 || wjTj) — all 20
jobs instances are solved (some 30 jobs instances are not
solved). Here we need only Y and F variables.
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Numerical experiments

Cplex 10.0, standard settings and only standard cuts,
1000 seconds time limit

Minimizing total weighted earliness and tardiness with

release dates (1 | rj | αjEj + βjTj) — some 15 jobs instances
could not be solved (all are solved if number of intervals is
small).

Minimizing total weighted earliness and tardiness

(1 || αjEj + βjTj) — all 15 jobs instances are solved (majority
of 20 jobs instances are not solved).

Minimizing total weighted tardiness (1 || wjTj) — all 20
jobs instances are solved (some 30 jobs instances are not
solved). Here we need only Y and F variables.

Similar performance with the Time-indexed formulation
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Conclusions

A new compact MIP formulation for a general machine
scheduling problem (size is O(nm) × O(nm))

More efficient in practical situations
(few different release/due dates)

4 open practical instances from ILOG [Le Pape, Robert, 07]
has been solved (up to 25 jobs)

(—) Applicable to small instances only
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