Timing Problem for Scheduling an Airbone Radar

Yann Hendel Ruslan Sadykov

LIX, Ecole Polytechnique, France

PMS'08, Istanbul April 29, 2008

→ Ξ →

Contents

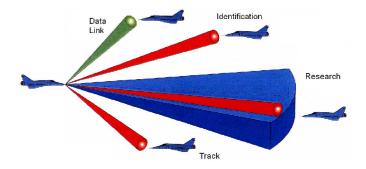
- Motivation
- Model
- 2 A local search algorithm
 - The timing subproblem
 - Speeding-up the local search

3 Results

- Numerical experiments
- Conclusions

Motivation Model

Scheduling an airbone radar



- Several cyclic jobs
- A modern radar
- We want the jobs frequency to be close to desired as much as possible

- < 同 > < 三 > < 三 >

Motivation Model

Model I

Due to [Winter, Baptiste, 07]

Data

- Time horizon $H = \{0, \dots, \frac{h}{n} 1\}$
- Set of jobs $N = \{1, \ldots, n\}$
- For each job $i \in N$:
 - Chain of operations $(O_{i0}, O_{i1}, \ldots, O_{i,n(i)})$
 - Starting time S_{i0} of operation O_{i0}
 - Processing time p_i of an operation
 - Desired time *I_i* between two operations
 - Penalty function $\delta_i(x) = \max\{\alpha_i(l_i x), \beta_i(x l_i)\}$

Variables

 S_{ij} — starting time of operation O_{ij} , $i \in N$, $j \in N(i)$

(日) (同) (日) (日)

Motivation Model

Model II

Objective function

Find a feasible schedule $\{S_{ij}\}_{i \in N, j \in N(i)}$ which minimizes the total penalty

$$F = \sum_{i \in N} \sum_{j \in N(i)} \delta_i (S_{ij} - S_{i,j-1})$$

(日) (同) (三) (三)

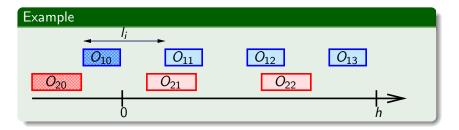
Motivation Model

Model II

Objective function

Find a feasible schedule $\{S_{ij}\}_{i \in N, j \in N(i)}$ which minimizes the total penalty

$$F = \sum_{i \in N} \sum_{j \in N(i)} \delta_i (S_{ij} - S_{i,j-1})$$



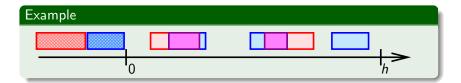
Motivation Model

Model II

Objective function

Find a feasible schedule $\{S_{ij}\}_{i \in N, j \in N(i)}$ which minimizes the total penalty

$$F = \sum_{i \in N} \sum_{j \in N(i)} \delta_i (S_{ij} - S_{i,j-1})$$



(日) (同) (三) (三)

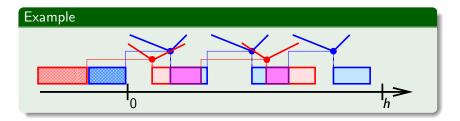
Motivation Model

Model II

Objective function

Eind a feasible schedule $\{S_{ij}\}_{i \in N, j \in N(i)}$ which minimizes the total penalty

$$\mathbf{F} = \sum_{i \in \mathbf{N}} \sum_{j \in \mathbf{N}(i)} \delta_i (S_{ij} - S_{i,j-1})$$



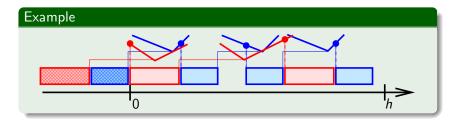
Motivation Model

Model II

Objective function

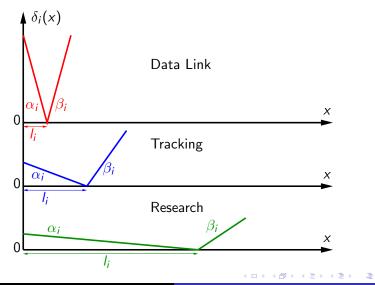
<u>Find</u> a feasible schedule $\{S_{ij}\}_{i \in N, j \in N(i)}$ which minimizes the total penalty

$$\mathbf{F} = \sum_{i \in \mathbf{N}} \sum_{j \in \mathbf{N}(i)} \delta_i (S_{ij} - S_{i,j-1})$$



Motivation Model

Examples of penalty functions



Yann Hendel, Ruslan Sadykov Timing problem for scheduling an airbone radar

Relations with other problems

• Generalization of the just-in-time scheduling problem $1 \mid \mid \sum E_j + T_j$ (hence NP-complete [Garey, Tarjan, Wilfong, 88])

• The cyclic version of the problem is a generalization of

- the non-preemptive scheduling for Distance-Constrained Task System [Han, Lin, 92]
- the Periodic Maintenance Problem [Wei, Liu, 83]

・ 同 ト ・ 三 ト ・ 三

Relations with other problems

- Generalization of the just-in-time scheduling problem $1 \mid \mid \sum E_j + T_j$ (hence NP-complete [Garey, Tarjan, Wilfong, 88])
- The cyclic version of the problem is a generalization of
 - the non-preemptive scheduling for Distance-Constrained Task System [Han, Lin, 92]
 - the Periodic Maintenance Problem [Wei, Liu, 83]

🗇 🕨 🖌 🖻 🕨 🖌 🗐 🕨

The timing subproblem Speeding-up the local search

The local search : why and how?

Practical requirement

We need to give a solution in 1 second !

- Local search seems to be the best we can do
- Neighborhoods are determined by sequences of jobs
- The timing subproblem : given a sequence of jobs, find a schedule which minimizes the total penalty
 - the key problem for local search algorithms
 - not trivial in a just-in-time environment

The timing subproblem Speeding-up the local search

The local search : why and how?

Practical requirement

We need to give a solution in 1 second !

• Local search seems to be the best we can do

- Neighborhoods are determined by sequences of jobs
- The timing subproblem : given a sequence of jobs, find a schedule which minimizes the total penalty
 - the key problem for local search algorithms
 - not trivial in a just-in-time environment

The timing subproblem Speeding-up the local search

The local search : why and how?

Practical requirement

We need to give a solution in 1 second !

- Local search seems to be the best we can do
- Neighborhoods are determined by sequences of jobs
- The timing subproblem : given a sequence of jobs, find a schedule which minimizes the total penalty
 - the key problem for local search algorithms
 - not trivial in a just-in-time environment

The timing subproblem Speeding-up the local search

The local search : why and how?

Practical requirement

We need to give a solution in 1 second !

- Local search seems to be the best we can do
- Neighborhoods are determined by sequences of jobs
- The timing subproblem : given a sequence of jobs, find a schedule which minimizes the total penalty
 - the key problem for local search algorithms
 - not trivial in a just-in-time environment

(人間) トイヨト イヨト

LP Formulation

- Data :
 - A sequence of operations $K = \{1, \dots, k\}$
 - b(j) the "reference" operation for operation j
 - d_j desired distance between operations j and b(j)

• Variables :

- S_j the starting time of operation j
- E_j , T_j the earliness and tardiness of operation j

(日) (同) (三) (三)

LP Formulation

- Data :
 - A sequence of operations $K = \{1, \dots, k\}$
 - b(j) the "reference" operation for operation j
 - d_j desired distance between operations j and b(j)
- Variables :
 - S_j the starting time of operation j
 - E_j, T_j the earliness and tardiness of operation j

- 4 同 6 4 日 6 4 日 6

LP Formulation

- Data :
 - A sequence of operations $K = \{1, \dots, k\}$
 - b(j) the "reference" operation for operation j
 - d_j desired distance between operations j and b(j)
- Variables :
 - S_j the starting time of operation j
 - E_j , T_j the earliness and tardiness of operation j

- 4 同 6 4 日 6 4 日 6

- 4 同 6 4 日 6 4 日 6

LP Formulation

- Data :
 - A sequence of operations $K = \{1, \dots, k\}$
 - b(j) the "reference" operation for operation j
 - d_j desired distance between operations j and b(j)

• Variables :

- S_j the starting time of operation j
- \vec{E}_j, T_j the earliness and tardiness of operation j

$$\max -\sum_{j \in K} \alpha_{j} E_{j} - \sum_{j \in K} \beta_{j} T_{j}$$

s.t.
$$\begin{cases} -S_{j} + S_{j-1} & \leq -p_{j-1}, \quad j \in K, \quad (F_{j-1 \to j}) \\ -S_{j} + S_{b(j)} - E_{j} & \leq -d_{j}, \quad j \in K, \quad (F_{j \to b(j)}) \\ -S_{b(j)} + S_{j} - T_{j} & \leq d_{j}, \quad j \in K, \quad (F_{b(j) \to j}) \\ T_{j} \geq 0, \quad E_{j} \geq 0, \quad j \in K. \end{cases}$$

Dual (MinCostFlow) Formulation

- Data :
 - A sequence of operations $K = \{1, \dots, k\}$
 - b(j) the "reference" operation for operation j
 - d_j desired distance between operations j and b(j)
- Variables :
 - $F_{i \rightarrow j}$ the flow from operation *i* to operation *j*

$$\min \sum_{j \in K} d_j F_{b(j) \to j} - \sum_{j \in K} d_j F_{j \to b(j)} - \sum_{j \in K} p_j F_{j \to j-1} \\ \begin{cases} \sum_{i \in \{j+1, b(j)\}} F_{j \to i} - \sum_{i \in \{j-1\} \cup \{i': b(i') = j\}} F_{i \to j} = 0, \quad j \in K \cup \{0\}, \\ 0 \le F_{j \to j-1}, & j \in K, \\ 0 \le F_{j \to b(j)} \le \alpha_j, & j \in K, \\ 0 \le F_{b(j) \to j} \le \beta_j, & j \in K. \end{cases}$$

(日) (同) (三) (三)

The timing subproblem Speeding-up the local search

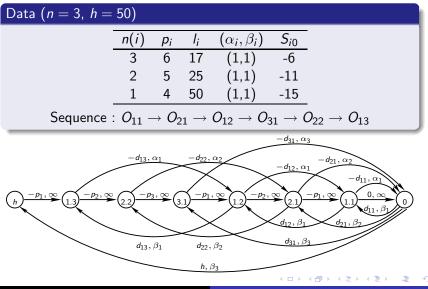
Example

Data (n = 3, h = 50)

<ロ> <同> <同> < 回> < 回>

The timing subproblem Speeding-up the local search

Example

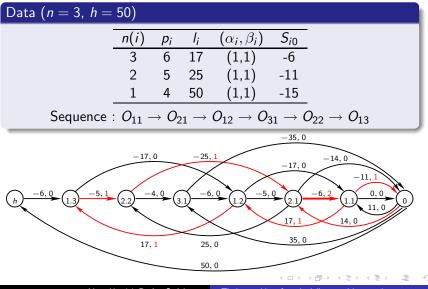


Yann Hendel, Ruslan Sadykov

Timing problem for scheduling an airbone radar

The timing subproblem Speeding-up the local search

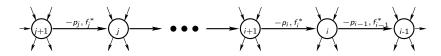
Example



Yann Hendel, Ruslan Sadykov Timing problem for scheduling an airbone radar

The timing subproblem Speeding-up the local search

Detecting worse sequences in a neighborhood

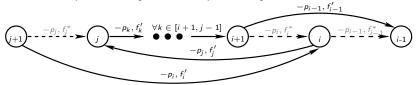


(日) (同) (三) (三)

The timing subproblem Speeding-up the local search

Detecting worse sequences in a neighborhood

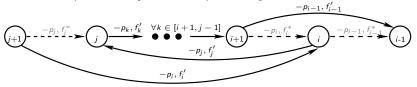
We insert operation i just after operation j



The timing subproblem Speeding-up the local search

Detecting worse sequences in a neighborhood

We insert operation i just after operation j



New flow f' is feasible if

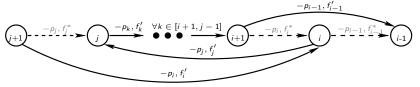
• $f'_i = f^*_j$ • $f'_j = f^*_j - f^*_i + f^*_{i-1} \ge 0$ • $f'_{i-1} = f^*_{i-1}$ • $f'_k = f^*_k + f^*_{i-1} - f^*_i \ge 0, \forall k \in [i+1, j-1]$

- 4 同 ト 4 ヨ ト 4 ヨ ト

The timing subproblem Speeding-up the local search

Detecting worse sequences in a neighborhood

We insert operation i just after operation j



New flow f' is feasible if

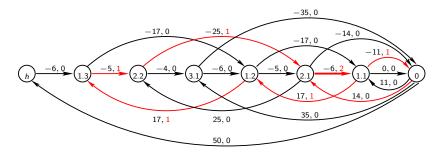
• $f'_i = f^*_j$ • $f'_j = f^*_j - f^*_i + f^*_{i-1} \ge 0$ • $f'_{i-1} = f^*_{i-1}$ • $f'_k = f^*_k + f^*_{i-1} - f^*_i \ge 0, \forall k \in [i+1, j-1]$

if
$$f_i^*\left(p_j + p_i + \sum_{k=i+1}^{j-1} p_k\right) \le f_j^* p_i + f_{i-1}^*\left(p_j + \sum_{k=i+1}^{j-1} p_k\right)$$

then $\operatorname{cost}(f') \leq \operatorname{cost}(f^*)$ (insertion will not give a better solution)

The timing subproblem Speeding-up the local search

Example (continued)



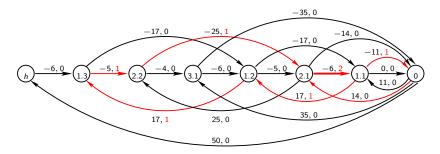
• 12 insertions are possible in total,

• 9 of them will not allow us to improve the current solution

(日) (同) (日) (日)

The timing subproblem Speeding-up the local search

Example (continued)



• 12 insertions are possible in total,

• 9 of them will not allow us to improve the current solution

(日) (同) (日) (日)

Introduction A local search algorithm **Results**

Preliminary numerical experiments

- "Best fit" local search with the Insertion neighborhood
- Instances designed together with radars specialists
- MinCostFlow solver : MCFZIB
 (~20 times faster than the Cplex LP solver)
- We devised exact algorithms for the problem [Baptiste, S., 08]

< 同 > < 三 > < 三 >

Introduction A local search algorithm **Results**

Preliminary numerical experiments

- "Best fit" local search with the Insertion neighborhood
- Instances designed together with radars specialists
- MinCostFlow solver : MCFZIB
 (~20 times faster than the Cplex LP solver)
- We devised exact algorithms for the problem [Baptiste, S., 08]

・ 同 ト ・ 三 ト ・ 三

Introduction A local search algorithm **Results**

Preliminary numerical experiments

- "Best fit" local search with the Insertion neighborhood
- Instances designed together with radars specialists
- MinCostFlow solver : MCFZIB
 - (\approx 20 times faster than the Cplex LP solver)
- We devised exact algorithms for the problem [Baptiste, S., 08]

n	$\sum n(i)$	Load	Gap	Time	# of timings	Reduction
9	57	67%	0%	0.02s	15	99%
14	62	70%	0%	0.04s	66	93%
	83	99%	0.6%	0.42s	756	95%
15	91	85%	38.9%	4.16s	6260	75%
	93	90%	>100%	4.80s	6820	75%
18	72	85%	1.4%	0.25s	702	83%
	74	91%	1.3%	0.55s	1341	76%
	76	97%	1.1%	0.63s	1430	84%

Timing problem for scheduling an airbone radar

A > < > > < >

Conclusions

- A real-life problem
- Relatively fast way to solve the timing subproblem
- A way to speed-up the local search withour loss of its quality
- Good results for a majority of practical instances
- Work in progress to improve results

- < 同 > < 三 > < 三 >