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Vehicle Routing Problem (VRP)
I One of the most widely investigated optimization problems.

I Google Scholar finds +8,000 works published in 2019
(>1000 contain both “vehicle” and “routing” in the title)

I Direct application in the real-world systems that distribute
goods and provide services
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Capacitated Vehicle Routing Problem (CVRP)
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Why do we care so much about CVRP?

First [Dantzig and Ramser, 1959] and the most basic VRP variant.

Common strategy in scientific research
I Study the simplest (bust still

representative!) case of a phenomenon
I Generalize the discoveries for more

complex cases
Drosophila
Melanogaster

Hundreds of VRP variants
Vehicle capacities, time windows, heterogeneous fleet, multiple
depots, split delivery, pickup and delivery, backhauling, optional
customer service, arc routing, alternative delivery options,
service levels, etc, etc
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Some history

I [Balinski and Quandt, 1964] set-partitioning formulation for
the CVRP

I [Laporte and Nobert, 1983] MIP formulation with edge
variables, rounded capacity cuts, and branch-and-bound

I [Desrochers et al., 1992] first branch-and-price
I [Lysgaard et al., 2004] best branch-and-cut algorithm
I [Fukasawa et al., 2006] robust branch-cut-and-price
I [Baldacci et al., 2008] enumeration technique
I [Jepsen et al., 2008] (non-robust) subset-row cuts
I [Baldacci et al., 2011] ng-route relaxation
I [Pecin et al., 2017] limited-memory technique
I [Sadykov et al., 2021] bucket graph based labeling algorithm
I [Poggi and Uchoa, 2014] [Costa et al., 2019] recent surveys
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Resource constrained paths to model feasible routes

I Complete directed graph G = (V 0,A), V 0 = {0} ∪ V .
I Capacity resource
I Resource consumption of arc a = (i , j) ∈ A is dj , d0 = 0.
I Accumulated resource consumption interval for v ∈ V 0 is

[0,Q].

A set of feasible routes is modelled by set P of paths in G from
node 0 to node 0 such that for each path p ∈ P
I each node v ∈ V is visited at most once.
I accumulated resource consumption for every node v

visited by p is within given intervals [0,Q].
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Path-based formulation
I Variable xa — arc a ∈ A is used in the solution or not
I Variable λp — path p ∈ P is used in the solution or not
I hp

a = 1 if and only if path p contains arc a, otherwise 0
I δ−(v) — set of arcs in A incoming to v ∈ V

Min
∑
a∈A

caxa

S.t.
∑

a∈δ−(v)

xa = 1, v ∈ V ,

Bx ≤ b,

xa =
∑
p∈P

hp
aλp, a ∈ A,

∑
p∈Pk

λp ≤ K ,

xa ∈ {0,1}, a ∈ A,
λp ∈ {0,1}, p ∈ P.
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Column and cut generation: illustration
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Bad news

I Vehicle routing problems in practice are never “pure”
CVRPs

I Designing and implementing a state-of-the-art BCP
algorithm for a particular problem takes several months for
an expert team

I One would like to have a generic algorithm that could be
easily customised to many variants.

I Some attempts in the literature: [Desaulniers et al., 1998]
[Baldacci and Mingozzi, 2009]
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Generic model
Instead of implementing the algorithm to solve the ERCSPP,
the user provides a graph-based model, i.e. for each graph it
gives an implicit description of feasible paths:
I Nodes, arcs, the source and the sink
I Resources
I Resource consumption for arcs
I Accumulated resource consumption for vertices

In addition, a MIP model is given for “non-resource-related”
constraints:
I Non-path variables, constraints, objective
I Mapping between variables and graph arcs (so that the

coefficients of path variables in constraints can be
determined)

I Optionally, separation algorithms for families of cutting
planes (over non-path variables)
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State-of-the-art Branch-Cut-and-Price for CVRP

I Stabilization techniques
I Primal heuristics
I Strong branching
I Bucket graph based labeling algorithm for the pricing
I Heuristic pricing
I Variable fixing by reduced costs
I (Dynamic) ng-route relaxation for the pricing
I Limited-memory rank-1 Chvátal-Gomory cuts
I Rounded capacity cuts
I Enumeration of elementary routes
I Ryan-and-Foster branching
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Generic model: collection of packing sets

Definition
A packing set is a subset of arcs (vertices) such that, in an
optimal solution of the problem, at most one arc (vertex) in the
subset appears at most once.

I Definition of packing sets is a part of modeling
I Packing sets generalize customers in CVRP

I Generalization examples:
I Heterogeneous Fleet: customer copies for each vehicle

type
I Multiple time windows: customer copies for each time

window
I Alternative delivery locations: all delivery locations for each

client
I Arc routing: two possible directions for a required edge
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Generic BCP solver

Generic Branch-Cut-and-Price (BCP) state-of-the-art solver for
Vehicle Routing Problems (VRPs) [Pessoa et al., 2020].

vrpsolver.math.u-bordeaux.fr

I Pre-compiled C++ code distributed in a docker image

I Open-source Julia-JuMP interface

I Demos for several VRPs and non-VRPs are available

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2020).
A generic exact solver for vehicle routing and related problems.
Mathematical Programming, 183:483–523.
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VRPSolver Julia-JuMP interface
using VRPSolver, JuMP
function build_model(data::DataCVRP)

A = arcs(data) # set of arcs of the input graph G’
n = nb_customers(data)
V = [i for i in 1:n] # set of customers of the input graph G’
V0 = [i for i in 0:n] # set of vertices of the graphs G’ and G
Q = veh_capacity(data)

cvrp = VrpModel()
@variable(cvrp.formulation, x[a in A], Int)
@objective(cvrp.formulation, Min, sum(c(data,a) * x[a] for a in A))
@constraint(cvrp.formulation, setpart[i in V], sum(x[a] for a in inc(data, i)) == 1.0)

function build_graph() # Build the model directed graph G=(V,A)
v_source = v_sink = 0
G = VrpGraph(cvrp, V0, v_source, v_sink, (0, n))
cap_res_id = add_resource(G, main = true)
for i in V

set_resource_bounds(G, i, cap_res_id, 0, Q)
end
for (i,j) in A

arc_id = add_arc(G, i, j, x[(i,j)])
set_arc_consumption(G, arc_id, cap_res_id, d(data, j))

end
return G

end

G = build_graph()
add_graph(cvrp, G)
set_vertex_packing_sets(cvrp, [[(G,i)] for i in V])
define_packing_sets_distance_matrix(cvrp, [[distance(data, (i, j)) for j in V] for i in V])
add_capacity_cut_separator(cvrp, [ ( [(G,i)], d(data, i) ) for i in V], Q)
set_branching_priority(cvrp, "x", 1)
return (cvrp, x)
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C++ interface through BaPCod

I User guide is available [Sadykov and Vanderbeck, 2021]
I BaPCod source code is available
I VRPSolver extension requires a precompiled RCSP library.
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State-of-the-art performance for many problems
I Capacitated Vehicle Routing Problem (CVRP)
I CVRP with Time Windows
I Heterogeneous Fleet CVRP
I Multi-depot CVRP
I Pickup-and-Delivery Problem with Time Windows
I CVRP with Backhauls
I Multi-Trip Vehicle Routing Problem with Time Windows
I (Capacitated) Team Orienteering Problem
I Capacitated Profitable Tour Problem
I Vehicle Routing Problem With Service Levels
I Generalized Assignment Problem
I Vector Packing Problem
I (Variable Size) Bin Packing Problem
I Capacitated Arc Routing Problem
I Robust CVRP with Demand Uncertainty
I Location-Routing Problem
I Two-Echelon Vehicle Routing Problem
I Black-and-White Travelling Salesman Problem
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World record for the CVRP exact solving

Figure: Optimal solution for X-n865-k95 (solved in 10 days)
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Robust counterpart of the CVRP

Demands are uncertain:

Each customer i ∈ V \ {0}
has a mean demand d̄i and a
demand deviation d̂i .

Example
I K = 2, C = 16
I d̄i = 2, d̂i = 1
I d̄i = 4, d̂i = 2
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Partition-constrained uncertainty
b1 = 4 b2 = 2

d∗(r) = 4 + 2 +10 + 2 = 18 > C

Set D of demand vectors.

Each route must be robust to
all demand scenarios of D.

[Gounaris et al., 2013]:
D = Dpart =

{
d ∈ Rn

+

∣∣
di = d i + ξi , i ∈ V 0,∑

i∈Vk
ξi ≤ bk , k = 1, . . . , s,

0 ≤ ξ ≤ d̂
}

.

Example
I K = 2, C = 16
I d̄i = 2, d̂i = 1
I d̄i = 4, d̂i = 2
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Cardinality-constrained uncertainty

Γ = 2 Set D of demand vectors.

Each route must be robust to
all demand scenarios of D.

[Bertsimas and Sim, 2003]:
D = Dcard =

{
d ∈ Rn

+

∣∣
di = d i + ηi d̂i , i ∈ V 0,∑

i∈V 0 ηi ≤ Γ, 0 ≤ η ≤ 1
}

.

Example
I K = 2, C = 16
I d̄i = 2, d̂i = 1
I d̄i = 4, d̂i = 2
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Knapsack-constrained uncertainty

Generalizes Dpart and Dcard :
D = Dknap =

{
d ∈ Rn

+

∣∣
di = d i + ηi d̂i , i ∈ V 0,∑
i∈Vk

wiηi ≤ bk , k = 1, . . . , s,

0 ≤ η ≤ 1}.

For Dpart :
I wi = d̂i , for all i ∈ V 0

For Dcard :
I s = 1, b1 = Γ

I wi = 1, for all i ∈ V 0
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Main result
Pknap — set of robustly feasible elementary routes (paths).

Pknap =

p ∈ P0

∣∣∣∣∣∣
∑
i∈V0

hp
i di ≤ Q, ∀d ∈ Dknap

 .

New theorem (that extends known results for Dcard ):

Pknap =
⋃
θ∈Θ̃

Pθ,

where

Pθ =

p ∈ P0

∣∣∣∣∣∣
∑
i∈V0

hp
i dθi ≤ C − b>θ

 .

and Θ̃ is a discrete (small) vector set ⊂ Rs
+.

|Θ̃| = 2s for Dpart , and |Θ̃| = d(n − Γ)/2e+ 1 for Dcard .
27 / 43



Heterogeneous Fleet Vehicle Routing Problem
(HFVRP)

I Undirected graph G′ = (V ,E), V = {0, . . . ,n}, 0 is the
depot, V0 = {1, . . . ,n} are the customers; positive
demands dk

i , i ∈ V0, k ∈ K ; set of vehicle types K ; edge
costs ck

e , e ∈ E , k ∈ K ; vehicle type capacity Qk , k ∈ K .
I Find a minimum cost set of routes, each route associated

to a vehicle type, visiting all customers and such that the
sum of the demands of the customers in a route does not
exceed its vehicle type capacity.

Reduction of the robust CVRP to a HFVRP
K = Θ̃, Qk = C − b>θ(k), dk

i = dθi , ∀k ∈ K , i ∈ V0, ck
e = ce,

∀k ∈ K ,e ∈ E .
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VRPSolver Model for Heterogeneous Fleet Vehicle
Routing Problem (HFVRP)

Graphs Gk

Gk = (V k ,Ak ), V k = {vk
0 , . . . , v

k
n }, vk

source = vk
sink = vk

0 , k ∈ K
Ak = {(vk

i , v
k
j ), (vk

j , v
k
i ) : {i , j} ∈ E}

qk
a,1 = dk

j , a = (vk
i , v

k
j ) ∈ Ak , k ∈ K (define dk

0 = 0);
lvk

i ,1
= 0,uvk

i ,1
= Qk , vk

i ∈ V k , k ∈ K .

Formulation
Integer variables xk

e , e ∈ E , k ∈ K .

Min
∑

k∈K
∑

e∈E ck
e xk

e

S.t.
∑

k∈K
∑

e∈δ(i) xk
e = 2, i ∈ V0;

M(xk
e ) = {(vk

i , v
k
j ), (vk

j , v
k
i )}, e = {i , j} ∈ E , k ∈ K .

Packing sets defined on vertices: BV = ∪i∈V+{{vk
i : k ∈ K}}
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VRPSolver Model for the HFVRP : illustration

Integer variables xk
e , e ∈ E , k ∈ K - how many times edge e is

used in a route of a type k vehicle.
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Additional results for the robust CVRP

Our paper [Pessoa et al., 2021]

I Reduction from the robust CVRP to a deterministic HFVRP
(already presented)

I Pre-processing to reduce |Θ̃| (sufficient conditions for
Pθ = ∅ which can be verified in polynomial time)

I A new families of cutting planes, expressed over arc
variables x , which is provably stronger than those
proposed by [Gounaris et al., 2013].

I An iterated local search algorithm to find initial feasible
solutions

Pessoa, A., Poss, M., Sadykov, R., and Vanderbeck, F. (2021).
Branch-and-cut-and-price for the robust capacitated vehicle routing problem with
knapsack uncertainty.
Operations Research, 69(3):739–754.
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Computational results for Dpart (30-150 clients)
Comparison with the state-of-the-art algorithm

Inst. # VRPSolver [Gounaris et al., 2016]
class in. #n. t. #opt. gap t. #opt.

A 26 1.00 2.91 26 1.97% 3440.31 12
B 23 1.05 5.98 23 1.39% 250.96 13
E 11 1.00 11.40 11 2.19% 573.01 5
F 3 5.37 833.42 2 1.10% 55.76 2
M 3 3.33 153.51 3 2.70% 86700.00 1
P 24 1.00 1.48 24 2.09% 976.36 10

all 90 1.11 4.75 89 1.87% 981.90 43

Effect of pre-processing (reduction of |Θ̃|)
Inst. class #in. Initial |Θ̃| Reduced |Θ̃| %red. # of |Θ̃| = 1

A 26 7.1 2.7 83.4% 7
B 23 7.2 3.9 75.8% 0
E 11 7.3 3.6 77.3% 4
F 3 5.0 5.0 68.8% 0
M 3 9.7 1.3 91.7% 2
P 24 7.3 4.3 73.2% 9

all 90 7.2 3.6 77.8% 22
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A property of modern BCP algorithms for the CVRP

If a good upper bound is known on the optimal solution value,
instances with small and moderate size can now be rapidly
solved to optimality.
I Instances with 50 clients→ ≈ 1 second
I Instances with 100 clients→ ≈ 1 minute
I Instances with 150 clients→ several minutes

Idea to use this property
If an instance is large, we can decompose it into sub-instances
of smaller size, and solve them (optimally or sub-optimally) to
try to improve the current solution.

Partial OPtimization Metaheuristic Under Special Intensification
Conditions [Taillard and Voss, 2002]
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An overview of our POPMUSIC matheuristic
[Queiroga et al., 2021]

1. Obtain a (good) initial solution using a known heuristic
2. Fix initial target dimension
3. For every “seed” client, construct and solve a restricted

instance using a metric:
I add to the restricted instance closest routes in the current

solution while the target dimension is not exceeded
I if the restricted instance has not yet been solved, solve it
I if an improved solution for the restricted instance is

obtained, update the current “global” solution

4. Increase the target dimension and go to Step 3

Queiroga, E., Sadykov, R., and Uchoa, E. (2021).
A POPMUSIC matheuristic for the capacitated vehicle routing problem.
Computers & Operations Research, 136:105475.
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Our POPMUSIC matheuristic : illustration

(a) Initial solution and a constructed
subproblem. Seed client is marked in
black.

(b) Improved solution after finding a
better subsolution

Figure: Constructing and solving a subproblem. Depot is the yellow
square, and customers are circles with diameter proportional to its
demand.
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Computational comparison with [Vidal et al., 2012]

[Vidal et al., 2012] is probably the most known heuristic for
classic VRP problems (>500 citations on Google Scholar)
Instances with 300–1000 clients.
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Computational comparison with [Vidal et al., 2012]
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Computational comparison with [Vidal, 2020]

[Vidal, 2020] is an improved version of [Vidal et al., 2012]
heuristic, with specialised implementation for the CVRP
(https://github.com/vidalt/HGS-CVRP)
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Computational results for the CVRP with backhauls

Comparison with [Subramanian and Queiroga, 2020].

40 / 43



Computational results for the HFVRP

Comparison with [Subramanian et al., 2012].
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Conclusions and perspectives

I Generic Branch-Cut-and-Price solver combines an
outstanding performance for exact solution of many VRPs
with a (relative) ease of use

I Exact deterministic solver may be useful for problems with
uncertainty and as a base for (mat)heuristics

I The solver is an excellent tool (much better than MIP
solvers) for estimating the “real” quality of VRP heuristics

I It can be used for testing new families of robust cutting
planes within a state-of-the-art BCP algorithm

I We are working now on extending modelling capabilities of
VRPSolver
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