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Bin Packing With Time Lags Problem

Classic Bin Packing Problem

» Set of items to pack into bins.
» ltems have positive weight, and bins have capacity.
» Objective: Minimize number of bins used.

Bin Packing Problem with Time Lags

» Bins are assigned to time periods.
» Number of bins in each period is unbounded
» Pairs of items have precedence constraints with lags.



Precedence Constraints

» Precedences are represented by a directed graph
G = (I, A).

» Each arc (/,j) € Ahas alag l; € Z.

» Bins are assigned to time periods, and items are assigned
to the time period of the bin it belongs to.

» Each lag /j imposes the following constraint: The time
period that item j is assigned must be at least /; time
periods after the time period item i is assigned.

The graph is not necessarily An instance is infeasible if
acyclic. and only if there is a cycle of
positive length in the graph.




Motivation
Applications

» Performing a set of periodic tasks using rented capacitated

resources
li=—(d+e)

=d—¢ [ ]

| | | | | | | | | |
» Flexible periodic vehicle routing (generalisation)

Special cases
» Simple Assembly Line Balancing Problem of type 1
(l; = 0) [Becker and Scholl, 2006]
» Bin Packing with Precedences (/; = 1) [Pereira, 2016]

» Bin Packing with Generalized Precedences (/; > 0)
[Kramer et al., 2017]
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An IP formulation: variables and objective
Notation

v

The bin capacity W € Z+.

Aweight w, € Z*T, w; < W, foreachic V.
B={1,2,...,B} the set of potential bins in a period.
T =1{1,2,..., T} the set of time periods.

v

v

v

Variables

» Xjpr € {0,1} foreachie V,je B,t € T. Takes value 1 iff
item / is assigned to bin b of time period t.

» up € {0,1} foreach j € B,t € T. Takes value 1 iff bin b of
time period t is in use.

Objective

min > > ugy

beBteT



An IP formulation: constraints
Basic Structure

szibt:1 Viel,

beB teT
Xipt, Upt € {0,1} VielbeB teT.
Bin use and capacity
Z WiXipt < W Uy vbe B, teT.
iel
Precedence Constraints

/,'j—i-Zl‘-ZX,’thZt~Z)(jbt v(i,j) € A.

teT  beB teT  beB

Symmetry-breaking constraints
Up_1t = Upt Vte T,Vbe B\ {1}.



Suitable partitions

Suitable partition

Partition P of /is suitable if graph G}, = (I, AU A%,) has no
cycle of positive length, where A7, contains arcs (i, ) with [; =0
foralli,je P, PcP.

Proposition

Partition P induces a feasible solution if and only if
» P contains all items in /
» P is a suitable partition.
> > icpW; < Wioreach P e P.

Distance
dj — the total lag of the longest directed path from i to jin G.
If no path between i and j in G, dj; = —oo.

Sulfficient condition
Any partition P containing set B D {i,j}, d;j > 0, is non-suitable



Set partitioning formulation

v

B — set of all items set which can be put to the same bin
Variable \g, B € B, — whether set B is put to the same bin
1g()=1<ieB

N C B — set of non-suitable partitions

v

v

v

BeB

st. > 1p(i)As =1, Viel
BeB
Y X< P -1, YP €N,
BeP

AB€{071}7 VB e B.
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Characterising non-suitable partitions
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Characterising non-suitable partitions

» Partition P is non-suitable = there is a cycle of positive
length in graph G, = (I,AU A}).



Characterising

non-suitable partitions

- ~ - ~

» Partition P is non-suitable = there is a cycle of positive
length in graph G, = (I,AU A}).

» Let Cp C AU A}, be such acycle, and Fp = (Cp \ A) C A,
be the set of arcs in the cycle induced by the partition

» Then constraint Y Ag < |P| — 1 can be replaced by

BeP
> Y As<|Fp| -1
(i.j)eFp BeEB:

{ij}eB



Pricing problem

» w;, I € I,— dual values from the set partitioning constraints

» up, P € N, — dual values from the active “suitability”
constraints

Binary knapsack problem with hard and soft conflicts

max Y mzi+ Y > ppyj

i€l PeN (ij)eFp

s.t. Z w;zi < W,
iel
Z,'+Zj§1, Vi,jE/,d,'j>0,
zi+ 2z <1+yj, VP € N,VY(i,j) € Fp,
zi€{0,1}, Vi,jel
yi >0, VP € N,V(i,j) € Fp.

Solution is using a MIP solver.
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Separation of “non-suitability” constraints
Integer solution P
We search for a positive cycle in Gj, in O(|/|?) time.
Fractional solution (P, \)

1. We create valued directed graph G% = (l,AUA%):

Vi = 1- 23675:{/,/}63 Xg, (i,)) € As,
ToLo (i.j) € A

2. We search (by enumeration) in G‘;s for cycles C such that

{ > (ijec i >0,

>ijec Vi < 1.
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Other components of the Branch-Cut-and-Price

» Automatic dual price smoothing stabilization
[Pessoa et al., 2018]

» Ryan & Foster branching [Ryan and Foster, 1981]

» Multi-phase strong branching [Pecin et al., 2017]
» Strong diving heuristic with Limited Discrepancy Search
[Sadykov et al., 2018]
» 10 dives are performed
» 10 candidates are evaluated before each fixing
» Each time a set of items is fixed, we update the hard
conflicts
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Structure of test instances
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Dimension of test instances

1386 instances

>

Same flexibility (relative interval for the distance between
consecutive tasks)

Number of time periods € {20, 30,...,110,120}
Number of chains € {3,4,...,9}.

Average number of items per chain € {5,6,...,10}.
Average number of items per bin € {2,3,4}.

As a result, number of items € [15, 117] with ~ normal
distribution.
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Main experiment results

Solved to optimality within 3 hours

Method % Solved
BCP 69.5%
CPLEX 12.8 46.2%

On the set of instances solved by both methods,
BCP is 9 times faster on average
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Other experiment results (1)

Percentage of solved instance by number of chains

# of chains % BCP % CPLEX
100.0% 93.4%
98.0% 75.3%
83.8% 58.1%
65.2% 35.4%
55.1% 26.8%
43.4% 17.7%
40.9% 16.7%

oo~NOOO AW
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Other experiment results (1)

Percentage of solved instances by number of periods

# of periods % BCP % CPLEX

20 72% 67%
30 75% 63%
40 79% 67%
50 75% 53%
60 70% 48%
70 67% 41%
80 66% 34%
90 61% 33%
100 66% 37%
110 67% 35%

120 66% 31%
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Perspectives

Ongoing work

» Support of Chvatal-Gomory rank-1 cuts

» Custom branch-and-bound algorithm for the pricing
problem

» Tests on the instances of the special cases of the problem

Research directions
» Limit on the number of bins per period
» Makespan objective
» (Flexible) Periodic Vehicle Routing
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