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Bin Packing With Time Lags Problem

Classic Bin Packing Problem

I Set of items to pack into bins.
I Items have positive weight, and bins have capacity.
I Objective: Minimize number of bins used.

Bin Packing Problem with Time Lags

I Bins are assigned to time periods.
I Number of bins in each period is unbounded
I Pairs of items have precedence constraints with lags.
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Precedence Constraints
I Precedences are represented by a directed graph

G = (I,A).
I Each arc (i , j) ∈ A has a lag lij ∈ Z.
I Bins are assigned to time periods, and items are assigned

to the time period of the bin it belongs to.
I Each lag lij imposes the following constraint: The time

period that item j is assigned must be at least lij time
periods after the time period item i is assigned.

The graph is not necessarily
acyclic.
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and only if there is a cycle of
positive length in the graph.
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Motivation
Applications

I Performing a set of periodic tasks using rented capacitated
resources

i j[ ]lij = d − ε

lji = −(d + ε)

I Flexible periodic vehicle routing (generalisation)

Special cases

I Simple Assembly Line Balancing Problem of type 1
(lij = 0) [Becker and Scholl, 2006]

I Bin Packing with Precedences (lij = 1) [Pereira, 2016]
I Bin Packing with Generalized Precedences (lij ≥ 0)

[Kramer et al., 2017]
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An IP formulation: variables and objective
Notation

I The bin capacity W ∈ Z+.
I A weight wi ∈ Z+, wi ≤W , for each i ∈ V .
I B = {1,2, . . . ,B} the set of potential bins in a period.
I T = {1,2, . . . ,T} the set of time periods.

Variables
I xibt ∈ {0,1} for each i ∈ V , j ∈ B, t ∈ T . Takes value 1 iff

item i is assigned to bin b of time period t .
I ubt ∈ {0,1} for each j ∈ B, t ∈ T . Takes value 1 iff bin b of

time period t is in use.

Objective

min
∑
b∈B

∑
t∈T

ubt
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An IP formulation: constraints
Basic Structure∑

b∈B

∑
t∈T

xibt = 1 ∀i ∈ I,

xibt ,ubt ∈ {0,1} ∀i ∈ I,b ∈ B, t ∈ T .

Bin use and capacity∑
i∈I

wixibt ≤W ubt ∀b ∈ B, t ∈ T .

Precedence Constraints
lij +

∑
t∈T

t ·
∑
b∈B

xibt ≤
∑
t∈T

t ·
∑
b∈B

xjbt ∀(i , j) ∈ A.

Symmetry-breaking constraints

ub−1,t ≥ ubt ∀t ∈ T , ∀b ∈ B \ {1}.
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Suitable partitions
Suitable partition
Partition P of I is suitable if graph G′P = (I,A ∪ A′P) has no
cycle of positive length, where A′P contains arcs (i , j) with lij = 0
for all i , j ∈ P, P ∈ P.

Proposition
Partition P induces a feasible solution if and only if

I P contains all items in I
I P is a suitable partition.
I
∑

i∈P wi ≤W for each P ∈ P.

Distance
dij — the total lag of the longest directed path from i to j in G.
If no path between i and j in G, dij = −∞.

Sufficient condition
Any partition P containing set B ⊇ {i , j}, dij > 0, is non-suitable
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Set partitioning formulation

I B — set of all items set which can be put to the same bin
I Variable λB, B ∈ B, — whether set B is put to the same bin
I 1B(i) = 1⇔ i ∈ B
I N⊂ B — set of non-suitable partitions

min
∑
B∈B

λB

s.t.
∑
B∈B

1B(i)λB = 1, ∀i ∈ I,∑
B∈P

λB ≤ |P| − 1, ∀P ∈ N ,

λB ∈ {0,1}, ∀B ∈ B.
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Characterising non-suitable partitions
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I Partition P is non-suitable⇒ there is a cycle of positive
length in graph G′P = (I,A ∪ A′P).

I Let CP ⊆ A ∪ A′P be such a cycle, and FP = (CP \ A) ⊆ A′P
be the set of arcs in the cycle induced by the partition

I Then constraint
∑

B∈P
λB ≤ |P| − 1 can be replaced by∑

(i,j)∈FP

∑
B∈B:
{i,j}∈B

λB ≤ |FP | − 1
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Pricing problem
I πi , i ∈ I, — dual values from the set partitioning constraints
I µP , P ∈ N̄ , — dual values from the active “suitability”

constraints

Binary knapsack problem with hard and soft conflicts

max
∑
i∈I

πizi +
∑
P∈N̄

∑
(i,j)∈FP

µPyij

s.t.
∑
i∈I

wizi ≤W ,

zi + zj ≤ 1, ∀i , j ∈ I,dij > 0,
zi + zj ≤ 1 + yij , ∀P ∈ N̄ ,∀(i , j) ∈ FP ,
zi ∈ {0,1}, ∀i , j ∈ I.
yij ≥ 0, ∀P ∈ N̄ ,∀(i , j) ∈ FP .

Solution is using a MIP solver.
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Separation of “non-suitability” constraints

Integer solution P
We search for a positive cycle in G′P in O(|I|2) time.

Fractional solution (P̄ , λ̄)

1. We create valued directed graph Ḡ′P̄ = (I,A ∪ A′P̄):

vij =

{
1−

∑
B∈P̄:{i,j}∈B λ̄B, (i , j) ∈ A′P̄ ,

0, (i , j) ∈ A.

2. We search (by enumeration) in Ḡ′P̄ for cycles C such that{ ∑
(i,j)∈C lij > 0,∑
(i,j)∈C vij < 1.

11 / 18



Other components of the Branch-Cut-and-Price

I Automatic dual price smoothing stabilization
[Pessoa et al., 2018]

I Ryan & Foster branching [Ryan and Foster, 1981]
I Multi-phase strong branching [Pecin et al., 2017]
I Strong diving heuristic with Limited Discrepancy Search

[Sadykov et al., 2018]
I 10 dives are performed
I 10 candidates are evaluated before each fixing
I Each time a set of items is fixed, we update the hard

conflicts

12 / 18



Structure of test instances
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Dimension of test instances

1386 instances
I Same flexibility (relative interval for the distance between

consecutive tasks)
I Number of time periods ∈ {20,30, . . . ,110,120}
I Number of chains ∈ {3,4, . . . ,9}.
I Average number of items per chain ∈ {5,6, . . . ,10}.
I Average number of items per bin ∈ {2,3,4}.
I As a result, number of items ∈ [15,117] with ≈ normal

distribution.
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Main experiment results

Solved to optimality within 3 hours

Method % Solved
BCP 69.5%
CPLEX 12.8 46.2%

On the set of instances solved by both methods,
BCP is 9 times faster on average
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Other experiment results (1)

Percentage of solved instance by number of chains

# of chains % BCP % CPLEX
3 100.0% 93.4%
4 98.0% 75.3%
5 83.8% 58.1%
6 65.2% 35.4%
7 55.1% 26.8%
8 43.4% 17.7%
9 40.9% 16.7%
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Other experiment results (1)

Percentage of solved instances by number of periods

# of periods % BCP % CPLEX
20 72% 67%
30 75% 63%
40 79% 67%
50 75% 53%
60 70% 48%
70 67% 41%
80 66% 34%
90 61% 33%
100 66% 37%
110 67% 35%
120 66% 31%

17 / 18



Perspectives

Ongoing work

I Support of Chvátal-Gomory rank-1 cuts
I Custom branch-and-bound algorithm for the pricing

problem
I Tests on the instances of the special cases of the problem

Research directions
I Limit on the number of bins per period
I Makespan objective
I (Flexible) Periodic Vehicle Routing
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