Bin Packing Problem with Generalized Time Lags: A Branch-Cut-and-Price Approach

> François Clautiaux^{2,1} **Ruslan Sadykov**^{1,2} Orlando Rivera-Letelier^{3,2}

Inria Bordeaux, France 2

1

Université Bordeaux, France Universidad Adolfo Ibáñez, Chili

Université **BORDEAUX**

ROADEF 2019 Le Havre, France, February 21

Bin Packing With Time Lags Problem

Classic Bin Packing Problem

- Set of items to pack into bins.
- Items have positive weight, and bins have capacity.
- Objective: Minimize number of bins used.

Bin Packing Problem with Time Lags

- Bins are assigned to time periods.
- Number of bins in each period is unbounded
- Pairs of items have precedence constraints with lags.

Precedence Constraints

- Precedences are represented by a directed graph G = (I, A).
- Each arc $(i,j) \in A$ has a lag $I_{ij} \in \mathbb{Z}$.
- Bins are assigned to time periods, and items are assigned to the time period of the bin it belongs to.
- Each lag *I_{ij}* imposes the following constraint: The time period that item *j* is assigned must be at least *I_{ij}* time periods after the time period item *i* is assigned.

The graph is not necessarily acyclic.

An instance is infeasible if and only if there is a cycle of positive length in the graph.

Motivation

Applications

 Performing a set of periodic tasks using rented capacitated resources

$$l_{ji} = -(d + \epsilon)$$

$$i = d - \epsilon \quad [j]$$

Flexible periodic vehicle routing (generalisation)

Special cases

- Simple Assembly Line Balancing Problem of type 1 (*I_{ij}* = 0) [Becker and Scholl, 2006]
- ▶ Bin Packing with Precedences (*I*_{ij} = 1) [Pereira, 2016]
- ► Bin Packing with Generalized Precedences (*l_{ij}* ≥ 0) [Kramer et al., 2017]

An IP formulation: variables and objective Notation

- The bin capacity $W \in \mathbb{Z}^+$.
- A weight $w_i \in \mathbb{Z}^+$, $w_i \leq W$, for each $i \in V$.
- $\mathcal{B} = \{1, 2, \dots, B\}$ the set of potential bins in a period.
- $T = \{1, 2, \dots, T\}$ the set of time periods.

Variables

- *x_{ibt}* ∈ {0,1} for each *i* ∈ *V*, *j* ∈ B, *t* ∈ T. Takes value 1 iff item *i* is assigned to bin *b* of time period *t*.
- *u*_{bt} ∈ {0, 1} for each *j* ∈ B, *t* ∈ T. Takes value 1 iff bin *b* of time period *t* is in use.

Objective

min
$$\sum_{b\in\mathcal{B}}\sum_{t\in\mathcal{T}}u_{bt}$$

An IP formulation: constraints Basic Structure

$$\sum_{b \in \mathcal{B}} \sum_{t \in \mathcal{T}} x_{ibt} = 1 \qquad \forall i \in I,$$

$$x_{ibt}, u_{bt} \in \{0, 1\} \qquad \forall i \in I, b \in \mathcal{B}, t \in \mathcal{T}.$$

Bin use and capacity

$$\sum_{i\in I} w_i x_{ibt} \leq W \ u_{bt}$$

$$\forall b \in \mathcal{B}, t \in \mathcal{T}.$$

Precedence Constraints

$$I_{ij} + \sum_{t \in \mathcal{T}} t \cdot \sum_{b \in \mathcal{B}} x_{ibt} \leq \sum_{t \in \mathcal{T}} t \cdot \sum_{b \in \mathcal{B}} x_{jbt} \qquad \forall (i,j) \in \mathcal{A}.$$

Symmetry-breaking constraints

 $u_{b-1,t} \ge u_{bt}$ $\forall t \in \mathcal{T}, \forall b \in \mathcal{B} \setminus \{1\}.$

Suitable partitions

Suitable partition

Partition \mathcal{P} of I is suitable if graph $G'_{\mathcal{P}} = (I, A \cup A'_{\mathcal{P}})$ has no cycle of positive length, where $A'_{\mathcal{P}}$ contains arcs (i, j) with $I_{ij} = 0$ for all $i, j \in P, P \in \mathcal{P}$.

Proposition

Partition $\ensuremath{\mathcal{P}}$ induces a feasible solution if and only if

- \mathcal{P} contains all items in I
- \mathcal{P} is a suitable partition.

•
$$\sum_{i \in P} w_i \leq W$$
 for each $P \in \mathcal{P}$.

Distance

 d_{ij} — the total lag of the longest directed path from *i* to *j* in *G*. If no path between *i* and *j* in G, $d_{ij} = -\infty$.

Sufficient condition

Any partition \mathcal{P} containing set $B \supseteq \{i, j\}, d_{ij} > 0$, is non-suitable

Set partitioning formulation

- B set of all items set which can be put to the same bin
- ▶ Variable λ_B , $B \in B$, whether set B is put to the same bin

•
$$\mathbb{1}_B(i) = 1 \Leftrightarrow i \in B$$

• $\mathcal{N} \subset \mathcal{B}$ — set of non-suitable partitions

$$\begin{array}{ll} \min \ \sum_{B \in \mathcal{B}} \lambda_B \\ \text{s.t.} \ \sum_{B \in \mathcal{B}} \mathbbm{1}_B(i) \lambda_B = 1, \\ & \sum_{B \in \mathcal{P}} \lambda_B \leq |\mathcal{P}| - 1, \\ & \lambda_B \in \{0, 1\}, \end{array} \quad \forall B \in \mathcal{B}. \end{array}$$

Characterising non-suitable partitions

Characterising non-suitable partitions

► Partition P is non-suitable ⇒ there is a cycle of positive length in graph G'_P = (I, A ∪ A'_P).

Characterising non-suitable partitions

- ► Partition P is non-suitable ⇒ there is a cycle of positive length in graph G'_P = (I, A ∪ A'_P).
- Let C_P ⊆ A ∪ A'_P be such a cycle, and F_P = (C_P \ A) ⊆ A'_P be the set of arcs in the cycle induced by the partition
- ▶ Then constraint $\sum_{B \in \mathcal{P}} \lambda_B \le |\mathcal{P}| 1$ can be replaced by

$$\sum_{\substack{(i,j)\in \mathcal{F}_{\mathcal{P}}}}\sum_{\substack{\mathcal{B}\in\mathcal{B}:\\\{i,j\}\in \mathcal{B}}}\lambda_{\mathcal{B}}\leq |\mathcal{F}_{\mathcal{P}}|-1$$

Pricing problem

r

- ▶ π_i , $i \in I$, dual values from the set partitioning constraints
- ▶ $\mu_{\mathcal{P}}, \mathcal{P} \in \overline{\mathcal{N}},$ dual values from the active "suitability" constraints

Binary knapsack problem with hard and soft conflicts

$$\begin{array}{ll} \max \ \sum_{i \in I} \pi_i z_i + \sum_{\mathcal{P} \in \bar{\mathcal{N}}} \sum_{(i,j) \in F_{\mathcal{P}}} \mu_{\mathcal{P}} y_{ij} \\ \text{s.t.} \ \sum_{i \in I} w_i z_i \leq W, \\ z_i + z_j \leq 1, & \forall i, j \in I, d_{ij} > 0, \\ z_i + z_j \leq 1 + y_{ij}, & \forall \mathcal{P} \in \bar{\mathcal{N}}, \forall (i,j) \in F_{\mathcal{P}}, \\ z_i \in \{0, 1\}, & \forall i, j \in I. \\ y_{ij} \geq 0, & \forall \mathcal{P} \in \bar{\mathcal{N}}, \forall (i,j) \in F_{\mathcal{P}}. \end{array}$$

Solution is using a MIP solver.

Separation of "non-suitability" constraints

Integer solution \mathcal{P}

We search for a positive cycle in $G'_{\mathcal{P}}$ in $O(|I|^2)$ time.

Fractional solution $(\bar{\mathcal{P}}, \bar{\lambda})$

1. We create valued directed graph $\bar{G}'_{\bar{\mathcal{P}}} = (I, A \cup A'_{\bar{\mathcal{P}}})$:

$$\mathbf{v}_{ij} = \begin{cases} 1 - \sum_{B \in \bar{\mathcal{P}}: \{i,j\} \in B} \bar{\lambda}_B, & (i,j) \in \mathcal{A}'_{\bar{\mathcal{P}}}, \\ 0, & (i,j) \in \mathcal{A}. \end{cases}$$

2. We search (by enumeration) in $\bar{G}'_{\bar{\mathcal{D}}}$ for cycles *C* such that

$$\begin{cases} \sum_{(i,j)\in C} I_{ij} > \mathbf{0}, \\ \sum_{(i,j)\in C} \mathbf{v}_{ij} < \mathbf{1}. \end{cases}$$

Other components of the Branch-Cut-and-Price

- Automatic dual price smoothing stabilization [Pessoa et al., 2018]
- Ryan & Foster branching [Ryan and Foster, 1981]
- Multi-phase strong branching [Pecin et al., 2017]
- Strong diving heuristic with Limited Discrepancy Search [Sadykov et al., 2018]
 - 10 dives are performed
 - 10 candidates are evaluated before each fixing
 - Each time a set of items is fixed, we update the hard conflicts

Structure of test instances

Dimension of test instances

1386 instances

- Same flexibility (relative interval for the distance between consecutive tasks)
- Number of time periods $\in \{20, 30, \dots, 110, 120\}$
- Number of chains $\in \{3, 4, \dots, 9\}$.
- Average number of items per chain $\in \{5, 6, \dots, 10\}$.
- Average number of items per bin $\in \{2, 3, 4\}$.
- ► As a result, number of items ∈ [15, 117] with ≈ normal distribution.

Main experiment results

Solved to optimality within 3 hours

Method	% Solved
BCP	69.5%
CPLEX 12.8	46.2%

On the set of instances solved by both methods, BCP is 9 times faster on average Other experiment results (1)

Percentage of solved instance by number of chains

# of chains	% BCP	% CPLEX
3	100.0%	93.4%
4	98.0%	75.3%
5	83.8%	58.1%
6	65.2%	35.4%
7	55.1%	26.8%
8	43.4%	17.7%
9	40.9%	16.7%

Other experiment results (1)

Percentage of solved instances by number of periods

# of periods	% BCP	% CPLEX
20	72%	67%
30	75%	63%
40	79%	67%
50	75%	53%
60	70%	48%
70	67%	41%
80	66%	34%
90	61%	33%
100	66%	37%
110	67%	35%
120	66%	31%

Perspectives

Ongoing work

- Support of Chvátal-Gomory rank-1 cuts
- Custom branch-and-bound algorithm for the pricing problem
- Tests on the instances of the special cases of the problem

Research directions

- Limit on the number of bins per period
- Makespan objective
- (Flexible) Periodic Vehicle Routing

References I

Becker, C. and Scholl, A. (2006).

A survey on problems and methods in generalized assembly line balancing.

European Journal of Operational Research, 168(3):694 – 715.

- Kramer, R., Dell'Amico, M., and Iori, M. (2017).

A batching-move iterated local search algorithm for the bin packing problem with generalized precedence constraints.

International Journal of Production Research, 55(21):6288–6304.

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017). Improved branch-cut-and-price for capacitated vehicle routing. *Mathematical Programming Computation*, 9(1):61–100.

Pereira, J. (2016).

Procedures for the bin packing problem with precedence constraints. *European Journal of Operational Research*, 250(3):794 – 806.

References II


```
Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2018).
```

Automation and combination of linear-programming based stabilization techniques in column generation.

INFORMS Journal on Computing, 30(2):339–360.

Ryan, D. M. and Foster, B. A. (1981).

An integer programming approach to scheduling.

In Wren, A., editor, *Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling*, pages 269 – 280. North-Holland, Amsterdam.

Sadykov, R., Vanderbeck, F., Pessoa, A., Tahiri, I., and Uchoa, E. (2018).

Primal heuristics for branch-and-price: the assets of diving methods.

INFORMS Journal on Computing, (Forthcoming).