Feasibility Pump Heuristics for Column Generation Approaches

Ruslan Sadykov² Pierre Pesneau^{1,2} Francois Vanderbeck^{1,2}

¹University Bordeaux I

²INRIA Bordeaux — Sud-Ouest

SEA 2012 Bordeaux, France, June 9, 2012

Outline

Generic Primal Heuristics

Generic Primal Heuristics for Branch-and-Price

Column Generation based Feasibility Pump heuristic

Numerical tests

Conclusion

Generic Primal Heuristics for MIPs

"good" feasible solutions using the tools of exact optimization

Generic Primal Heuristics for MIPs

"good" feasible solutions using the tools of exact optimization

- Truncating an exact method
- Building from the relaxation used for the exact approach
- Defining a target based on the relaxation
- Using dual information to price choices in greedy heuristics
- Exact approach used to explore a neighborhood

Generic Primal Heuristics for MIPs

"good" feasible solutions using the tools of exact optimization

- Truncating an exact method
- Building from the relaxation used for the exact approach
- Defining a target based on the relaxation
- Using dual information to price choices in greedy heuristics
- Exact approach used to explore a neighborhood

Examples: [Berthold'06]

- 1. Large Scale Neighborhood Search [Ahuja al'02]
- 2. Relaxation Induced Neighborhood Search [Dana al'05]
- 3. Local Branching [Fischetti al'03]
- 4. Feasibility Pump [Fischetti al'05]

$\min\{\sum_{j} c_{j} x_{j} : \sum_{j} a_{ij} x_{j} \ge b_{i} \forall i, \ l_{j} \le x_{j} \le u_{j} \forall j\}$

$$\min\{\sum_{j} c_{j} x_{j} : \sum_{j} a_{ij} x_{j} \ge b_{i} \forall i, \ l_{j} \le x_{j} \le u_{j} \forall j\}$$

Rounding: Iteratively select a var x_j and bound/fix it

- *least fractional:* $\operatorname{argmin}_{i} \{ \min\{x_{i} \lfloor x_{i} \rfloor, \lceil x_{i} \rceil x_{i} \} \}$
- guided search: $\operatorname{argmin}_{i}\{|x_{i} x_{i}^{\operatorname{inc}}|\}$

$$\min\{\sum_{j} c_{j} x_{j} : \sum_{j} a_{ij} x_{j} \ge b_{i} \forall i, \ l_{j} \le x_{j} \le u_{j} \forall j\}$$

Rounding: Iteratively select a var x_j and bound/fix it

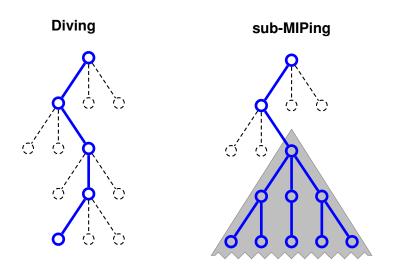
- *least fractional:* $\operatorname{argmin}_{i} \{ \min\{x_{i} \lfloor x_{i} \rfloor, \lceil x_{i} \rceil x_{i} \} \}$
- guided search: $\operatorname{argmin}_{i}\{|x_{i} x_{i}^{\operatorname{inc}}|\}$
- ► Diving: rounding + LP resolve + reiterate heuristic depth search in branch-and-bound tree branching rule ≠ that of exact branch-and-bound

$$\min\{\sum_{j} c_{j} x_{j} : \sum_{j} a_{ij} x_{j} \ge b_{i} \forall i, \ l_{j} \le x_{j} \le u_{j} \forall j\}$$

Rounding: Iteratively select a var x_i and bound/fix it

- *least fractional:* $\operatorname{argmin}_{i} \{ \min\{x_{i} \lfloor x_{i} \rfloor, \lceil x_{i} \rceil x_{i} \} \}$
- guided search: $\operatorname{argmin}_{i}\{|x_{i} x_{i}^{\operatorname{inc}}|\}$
- Diving: rounding + LP resolve + reiterate heuristic depth search in branch-and-bound tree branching rule ≠ that of exact branch-and-bound
- sub-MIPing: rounding/diving + MIP sol of the residual prob.

Heuristic search in branch-and-bound tree



Feasibility Pump heuristic

Target solution \tilde{x} is obtained by rounding LP solution x^{LP} to the closest integer solution. If \tilde{x} is not feasible, the problem is modified:

▶ 0 - 1 integer program

$$\min\left\{c\,x+\epsilon\Big(\sum_{j:\;\tilde{x}_j=0}x_j+\sum_{j:\;\tilde{x}_j=1}(1-x_j)\Big):A\,x\geq a,\;x\in[0,1]^n\right\}$$

► general integer program $(I_j \le x_j \le u_j)$

$$\begin{split} \min\Big\{c\,x + \epsilon\Big(\sum_{j:\tilde{x}_j=l_j}(x_j-l_j) + \sum_{j:\tilde{x}_j=u_j}(u_j-x_j) + \sum_{j:l_j<\tilde{x}_j< u_j}d_j\Big) : A\,x \geq a_j \\ d_j - \tilde{x}_j \leq x_j \leq d_j + \tilde{x}_j \;\forall j, \; x \in \mathbb{R}^n\Big\} \end{split}$$

The Branch-and-Price Approach

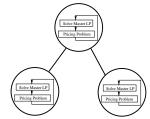
$$\begin{array}{rcrcrcrc} \min & c^1 x^1 & + & c^2 x^2 & + & \dots & + & c^K x^K \\ & D x^1 & + & D x^2 & + & \dots & + & D x^K & \geq d \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$$

The Branch-and-Price Approach

$$\begin{array}{rclrcl} \min & c^{1}x^{1} & + & c^{2}x^{2} & + & \dots & + & c^{K}x^{K} \\ & Dx^{1} & + & Dx^{2} & + & \dots & + & Dx^{K} & \geq d \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$$

Relax $Dx \ge d \Rightarrow$ decomposition: **subproblem** { $B \ x \ge b, x \in \mathbb{N}^n$ } and a **reformulation** solved by **Branch-and-Price**:

$$\begin{array}{lll} \min \sum_{g \in G} c x^g \ \lambda_g \\ \sum_{g \in G} D x^g \ \lambda_g & \geq & d \\ \sum_{g \in G} \lambda_g & = & \mathcal{K} \\ \lambda & \in & \mathbb{N}^{|\mathcal{G}|} \end{array}$$

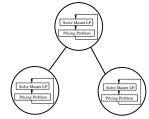


The Branch-and-Price Approach

$$\begin{array}{rclrcl} \min & c^{1}x^{1} & + & c^{2}x^{2} & + & \dots & + & c^{K}x^{K} \\ & Dx^{1} & + & Dx^{2} & + & \dots & + & Dx^{K} & \geq d \\ & Bx^{1} & & & & \geq b \\ & & & Bx^{2} & & & \geq b \\ & & & & \ddots & & & \geq \vdots \\ & & & & & & x^{K} & \in \mathbb{N}^{n} \\ & & & & & x^{1} & \in \mathbb{N}^{n}, & x^{2} & \in \mathbb{N}^{n}, & \dots & x^{K} & \in \mathbb{N}^{n}. \end{array}$$

Relax $Dx \ge d \Rightarrow$ decomposition: **subproblem** { $B \ x \ge b, x \in \mathbb{N}^n$ } and a **reformulation** solved by **Branch-and-Price**:

$$\min \sum_{g \in G} cx^g \lambda_g \\ \sum_{g \in G} Dx^g \lambda_g \ge d \\ \sum_{g \in G} \lambda_g = K \\ \lambda \in \mathbb{N}^{|G|} \\ y := \sum_k x^k = \sum_{g \in G} x^g \lambda_g$$



Heuristic paradigm in original space or the reformulation?

Heuristic paradigm in original space or the reformulation?

On master variables: λ (aggregated decisions)

- Cannot fix bounds (as in rounding)
- Cannot modify costs (as in feasibility pump)

Heuristic paradigm in original space or the reformulation?

On master variables: λ (aggregated decisions)

- Cannot fix bounds (as in rounding)
- Cannot modify costs (as in feasibility pump)

On original variables: x (disaggregated decisions)

- Cannot grasp individual SP var. after aggregation in the common case of identical SPs
- Cannot modify the SP structure required by the oracle

Heuristic paradigm in original space or the reformulation?

On master variables: λ (aggregated decisions)

- Cannot fix bounds (as in rounding)
- Cannot modify costs (as in feasibility pump)

On original variables: x (disaggregated decisions)

- Cannot grasp individual SP var. after aggregation in the common case of identical SPs
- Cannot modify the SP structure required by the oracle

Differences

- Acting on master \u03c0 variables results in a more macroscopic decision.
- Faster progress to an integer solution, but you can quickly "paint yourself in a corner"

Generic modifications of the master

- Setting a lower bound of a column: $\lambda_g \ge I_g$
- Decreasing cost c_g of a column λ_g

Generic modifications of the master

- Setting a lower bound of a column: $\lambda_g \ge I_g$
- Decreasing cost c_g of a column λ_g

In both cases, pricing oracle overestimates the reduced cost of column λ_q already included in the master.

Generic modifications of the master

- Setting a lower bound of a column: $\lambda_g \ge I_g$
- Decreasing cost c_g of a column λ_g

In both cases, pricing oracle overestimates the reduced cost of column λ_q already included in the master.

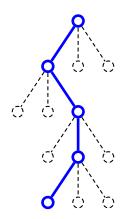
Preprocessing

- Lower bound setting is done by fixing a partial ("rounded-down") solution
- After that, the residual master problem is defined by preprocessing:
 - updating RHS of the master;
 - updating bounds for subproblem variables.

Pure Diving Heuristic

Depth-First Search

- select *least fractional* col: $\lambda_s \leftarrow [\bar{\lambda}_s]$
- update master and SP
- apply preprocessing

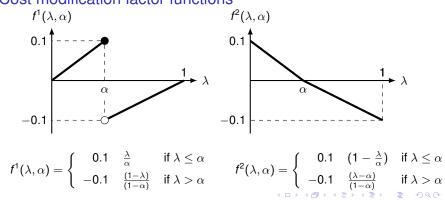


Generic Feasibility Pump algorithm I

- Solution $\tilde{\lambda}$ is defined by rounding the LP solution λ^{LP} .
- If $\tilde{\lambda}$ is feasible, stop. Otherwise, we use $\tilde{\lambda}$ as a target point.
- We decrease the cost of rounded-up columns and increase the cost of rounded-down ones (but not beyond the original cost).

Generic Feasibility Pump algorithm I

- Solution $\tilde{\lambda}$ is defined by rounding the LP solution λ^{LP} .
- If $\tilde{\lambda}$ is feasible, stop. Otherwise, we use $\tilde{\lambda}$ as a target point.
- We decrease the cost of rounded-up columns and increase the cost of rounded-down ones (but not beyond the original cost).



Cost modification factor functions

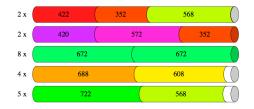
Embedding Feasibility Pump in a Diving heuristic

At iteration t, the modified master becomes

$$\min\Big\{\sum_{g\in G^t} c_g^t \lambda_g : \sum_{g\in G^t} (Ax^g) \lambda_g \geq a^t; \sum_{g\in G^t} \lambda_g = \mathcal{K}^t; \ \lambda_g \in \mathbb{N} \quad \forall g \in \mathbb{N} \mid g \in \mathbb{N$$

- Before defining target solution λ̃^t, the "rounded-down" integer part of λ^t_{LP} is fixed and removed: λ^t_g ← λ^t_g − ⌊λ^t_g⌋ (this way the residual master is close to a 0 − 1 problem).
- Cycling can occur if no columns are rounded up in λ^t. In this case, we decrease fractionality threshold parameter α (initially α ← 0.5).

Cutting Stock Problem



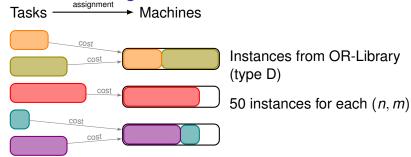
- $d_i \in [1, 50]$
- *W* = 10000

$$w_i \in [500, 2500]$$

50 instances for each n

n	function	found	opt	gap	time
50	Pure Div.	50/50	43/50	0.07	1.17
50	f ¹	50/50	45/50	0.05	6.14
50	f ²	50/50	41/50	0.09	4.82
100	Pure Div.	50/50	35/50	0.08	4.08
100	f ¹	50/50	43/50	0.04	23.93
100	f ²	50/50	40/50	0.05	17.98

Generalized Assignment



m	п	function	found	gap	time	
10	50	Pur Div.	34/50	1.00%	0.37	
10	50	f ¹	36/50	0.98%	1.81	
10	50	f ²	48/50	1.14%	0.81	
20	100	Pur Div.	35/50	0.65%	2.46	
20	100	f ¹	36/50	0.55%	14.56	
20	100	f ²	42/50	0.75%	< ∂ 5.92.	< ≣⇒

। 27/29

Conclusions

Summary

- Feasibility Pump heuristic can be extended to the column generation context
- The key is to restrict problem modifications to setting lower bound and cost reduction.
- Compared with the generic diving heuristic, feasibility pump heuristic produced more feasible primal solutions without loosing on the quality.

Conclusions

Summary

- Feasibility Pump heuristic can be extended to the column generation context
- The key is to restrict problem modifications to setting lower bound and cost reduction.
- Compared with the generic diving heuristic, feasibility pump heuristic produced more feasible primal solutions without loosing on the quality.

Future work

- Adaptation of diversification mechanisms for the Feasibility Pump heuristic
- Numerical tests on a larger scope of applications
- Compare Feasibility Pump heuristic on aggregated variables λ versus Feasibility Pump in the space of original variables x.