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Abstract We present a survey of some recent results concerning the location and
the Weyl formula for the complex eigenvalues of two non self-adjoint operators. We
study the eigenvalues of the generator G of the contraction semigroup etG, t ≥ 0,
related to the wave equation in an unbounded domain Ω with dissipative boundary
conditions on ∂Ω . Also one examines the interior transmission eigenvalues (ITE)
in a bounded domain K obtaining a Weyl formula with remainder for the counting
function N(r) of complex (ITE). The analysis is based on a semi-classical approach.

1 Introduction

Let P(x,Dx) be a second order differential operator with C∞(K) real-valued coef-
ficients in a bounded domain K ⊂ Rd , d ≥ 2, with C∞ boundary ∂K. Consider a
boundary problem {

P(x,Dx)u = f in K,

B(x,Dx)u = g on ∂K,
(1.1)

where B(x,Dx) is a differential operator with order less or equal to 1 and the princi-
pal symbol P(x,ξ ) of P(x,Dx) satisfies p(x,ξ )≥ c0|ξ |2, c0 > 0. Assume that there
exists 0 < ϕ < π such that the problem{

(P(x,Dx)− z)u = f in K,

B(x,Dx)u = g on ∂K.
(1.2)

is parameter-elliptic for every z∈Γψ = {z : argz = ψ}, 0 < |ψ| ≤ ϕ. Then following
a classical result of Agranovich-Vishik [1] we can find a closed operator A with

Vesselin Petkov
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domain D(A) ⊂ H2(K) related to the problem (1.1). Moreover, for every closed
angle Q = {z∈C : α ≤ argz≤ β}⊂ {z∈C : |argz|< ϕ}which does not contain R+

there exists aQ > 0 such that the resolvent (A−z)−1 exists for z∈Q, |z| ≥ aQ and the
operator A has a discrete spectrum in C with eigenvalues with finite multiplicities.

Let {λ j}∞
j=1 be the eigenvalues of A ordered as follows

0≤ |λ1| ≤ ...≤ |λm| ≤ ....

In general A is not a self-adjoint operator and the analysis of the asymptotics of the
counting function

N(r) = #{|λ j| ≤ r} as r →+∞,

where every eigenvalues is counted with its multiplicity, is a difficult problem. In
particular, it is quite complicated to obtain a Weyl formula for N(r) with a remain-
der and many authors obtained results which yield only the leading term of the
asymptotics. On the other hand, even for parameter-elliptic boundary problems the
result in [1] says that in any domain 0 < ψ < |argz| < ϕ we can have only finite
number eigenvalues but we could have a bigger eigenvalues-free domains. To obtain
a better remainder in the Weyl formula for N(r) we must obtain a eigenvalues-free
region outside some parabolic neighborhood of the real axis.

On the other hand, in mathematical physics there are many problems which are
not parameter-elliptic. Therefore, the results of [1] cannot be applied and the analy-
sis of the eigenvalues-free regions must be studied by another approach.

For the spectrum of non self-adjoint operators we have three important problems:

(I) Prove the discreteness of the spectrum of A in some subset U ⊂ C,

(II) Find eigenvalues-free domains in C having the form

| Im z| ≥C±δ (|Re z|+1)δ± , ±Re z≥ 0, 0 < δ± < 1,

(III) Establish a Weyl asymptotic with remainder for the counting function

N(r) = crd +O(rd−κ), r → ∞, 0 < κ < 1.

In this survey we discuss mainly the problems (II) and (III) for two non self-
adjoint operators related to the scattering theory. The problem (I) is easer to deal
with and the analysis of (II) in many cases implies that A− z is a Fredholm operator
for z in a suitable region. We apply a new semi-classical approach for both prob-
lems (II) and (III). The analysis of (II) is reduced to the inversibility of a h-pseudo-
differential operator, while for the asymptotic of N(r) one exploits in a crucial way
the existence of parabolic neighborhood of the real axis containing the (ITE). The
purpose of this survey is to present the recent results in [21], [22], [14], [15], [13],
[6], where the above problems are investigated by the same approach. We expect that
our arguments can be applied to more general non self-adjoint operators covering
the case of parameter-elliptic boundary problems (1.2).
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2 Two spectral problems related to the scattering theory

I. Let K ⊂ Rd , d ≥ 2, be a bounded non-empty domain and let Ω = Rd \ K̄ be
connected. We suppose that the boundary Γ of Ω is C∞. Consider the boundary
problem 

utt −∆xu = 0 in R+
t ×Ω ,

∂ν u− γ(x)ut = 0 on R+
t ×Γ ,

u(0,x) = f1, ut(0,x) = f2

(2.1)

with initial data f = ( f1, f2) ∈H1(Ω)×L2(Ω) = H . Here ν(x) is the unit outward
normal to x ∈ Γ pointing into Ω and γ(x) ≥ 0 is a C∞ function on Γ . The solution
of (2.1) is given by

(u,ut) = V (t) f = etG f , t ≥ 0,

where V (t) is a contraction semi-group in H whose generator

G =
(0 1

∆ 0

)
has a domain D(G) which is the closure in the graph norm of functions ( f1, f2) ∈
C∞

(0)(R
n)×C∞

(0)(R
n) satisfying the boundary condition ∂ν f1 − γ f2 = 0 on Γ . The

spectrum of G in Re z < 0 is formed by isolated eigenvalues with finite multiplic-
ity (see [11] for d odd and [13] for d even), while the continuous spectrum of G
coincides with iR. Next, if G f = λ f with f = ( f1, f2) 6= 0, we get{

(∆ −λ 2) f1 = 0 in Ω ,

∂ν f1−λγ f1 = 0 on Γ .
(2.2)

Thus if Reλ < 0, f 6= 0, (u(t,x),ut(t,x)) = V (t) f = eλ t f (x), then u(t,x) is a
solution of (2.1) with exponentially decreasing global energy. Such solutions are
called asymptotically disappearing and they perturb the inverse scattering problems.
Recently it was proved (see [5]) that if we have a least one eigenvalue λ of G with
Reλ < 0, then the wave operators W± related to the problem (2.1) and the Cauchy
problem for the wave equation are not complete, that is RanW− 6= RanW+. Hence
we cannot define the scattering operator S related to (2.1) by S =W−1

+ ◦W−. We may
define S by another evolution operator. For problems associated to unitary groups,
the associated scattering operator S(z) : L2(Sd−1)→ L2(Sd−1) satisfies the equality

S−1(z) = S∗(z̄), z ∈ C,

provided that S(z) is invertible at z. This implies that S(z) is invertible for Im z >
0, since S(z) and S∗(z) are analytic for Im z < 0 (see [10] for more details). For
dissipative boundary problems the above relation is not true and S(z0) may have a
non trivial kernel for some z0, Im z0 > 0. In the case of odd dimensions d Lax and
Phillips [11] proved that iz0 is an eigenvalue of G. Consequently, the analysis of the
location of the eigenvalues of G is important for the inverse scattering problems.



4 Vesselin Petkov

The eigenvalues of G are symmetric with respect to the real axis, so it is sufficient
to examine the location of the eigenvalues whose imaginary part is nonnegative. A.
Majda [12] proved that if supx∈Γ γ(x) < 1, then the eigenvalues of G lie in the region

E1 = {z ∈ C : |Re z| ≤C1(| Im z|3/4 +1), Re z < 0},

while if supx∈Γ γ(x)≥ 1, the eigenvalues of G lie in E1∪E2, where

E2 = {z ∈ C : | Im z| ≤C2(|Re z|1/2 +1), Re z < 0}.

The case γ(x) = 1, ∀x ∈ Γ , is special since as it was mentioned by Majda [12]
for some obstacles there are no eigenvalues of G. On the other hand, to our best
knowledge we did not found a proof of this result in the literature. In the Appendix
in [13], the case when K = B3 = {x ∈ R3 : |x| ≤ 1} is ball and γ > 0 is a constant
has been examined and it was proved that if γ = 1, there are no eigenvalues of G.
On the other hand, for γ = const > 1 all eigenvalues of G are real and for 0 < γ < 1
there are no real eigenvalues.

We will improve the above result of Majda and one examines two cases:

(A) : 0 < γ(x) < 1, ∀x ∈ Γ .

(B) : γ(x) > 1, ∀x ∈ Γ .

II. We discuss another important spectral problem for inverse scattering leading
to non self-adjoint operator. For simplicity we assume that d is odd. The inhomo-
geneous medium in K is characterized by a smooth function n(x) > 0 in K̄, called
contrast. The scattering problem is related to an incident wave ui which satisfies the
equation (∆ + k2)ui = 0 in Rd and the total wave u = ui +us satisfies the transmis-
sion problem 

∆u+ k2u = 0 in Rd \ K̄,

∆u+ k2n(x)u = 0 in K,

u+ = u− onΓ ,(
∂u
∂ν

)+
=

(
∂u
∂ν

)−
onΓ ,

, (2.3)

where f±(x) = limε→0 f (x±εν(x)) for x ∈ Γ . Here k > 0 and the outgoing scatter-
ing wave us satisfies the outgoing Sommerfeld radiation condition

lim
r→+∞

r(1−d)/2
(

∂us

∂ r
− ikus

)
= 0

uniformly with respect to θ = x/r ∈ Sd−1, r = |x|.
If the incident wave has the form ui = eik〈x,ω〉, ω ∈ Sd−1, then

us(rθ ,k) = eikrr−(d−1)/2
(

a(k,θ ,ω)+O(
1
r
)
)
, r →+∞.
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The function a(k,θ ,ω) is called scattering amplitude and the far-field operator
F(k) : L2(Sd−1)−→ L2(Sd−1) has the form

(F(k) f )(θ) =
∫

Sd−1
a(k,θ ,ω) f (ω)dω.

Notice also that the scattering operator has the representation

S(k) = I +
( ik

2π

)(d−1)/2
F(k).

The inverse scattering problem of the reconstruction of K based on the linear
sampling method of Colton and Kress (see [3] ) breaks down for frequencies k such
that F(k) has a non trivial kernel or co-kernel. Assume that for some k ∈ R+ the
kernel of F(k) is not trivial and let F(k) f = 0, f 6= 0. We may consider an incident
Herglotz wave

ui(x) =
∫

Sd−1
eik〈x,ω〉 f (ω)dω.

Then one obtains a scattering wave us = O( 1
r2 ) since the leading term∫

Sd−1
a(k,θ ,ω) f (ω)dω = 0

vanishes. On the other hand, (∆ +k2)us = 0 in Rd \K̄, so the Rellich theorem implies
us = 0 in Rd \ K̄. Therefore the functions u = ui|K 6= 0 and w = (ui + us)|K satisfy
the following problem 

∆u+ k2u = 0 in K,

∆w+ k2n(x)w = 0 in K,

u = w, ∂ν u = ∂ν w onΓ

(2.4)

and λ = k2 is called interior transmission eigenvalue (ITE). The inverse statement
in general is not true and we may have complex (ITE).

We consider a more general setting. For d ≥ 2, a complex number λ ∈ C\{0},
is called interior transmission eigenvalue (ITE) if the following problem has a non-
trivial solution (u1,u2) 6= 0:

(∇c1(x)∇+λn1(x))u1 = 0 in K,

(∇c2(x)∇+λn2(x))u2 = 0 in K,

u1 = u2, c1∂ν u1 = c2∂ν u2 onΓ ,

(2.5)

where c j(x),n j(x) ∈C∞(K), j = 1,2 are strictly positive real-valued functions. For
the analysis of (ITE) one imposes the condition

d(x) = c1(x)n1(x)− c2(x)n2(x) 6= 0, ∀x ∈ Γ . (2.6)
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Partial cases: 1) isotropic case: c1(x) = c2(x), ∀x ∈Γ , n1(x) = 1,n2(x) 6= 1, ∀x ∈Γ .
2) anisotropic case: c1(x) 6= c2(x), ∀x ∈ Γ .

3 Dirichlet-to-Neumann map

The analysis of the eigenvalues-free domains is based on a semi-classical analysis.
Let 0 < h� 1 and let P(h) =−h2∆ . Introduce the sets

Z1 = {z ∈ C : Re z = 1,h1/2−ε ≤ Im z≤ 1, 0 < ε � 1},

Z2 = {z ∈ C : Re z =−1, | Im z| ≤ 1},

Z3 = {z ∈ C : |Re z| ≤ 1, Im z = 1}.

and consider for z ∈ Z1∪Z2∪Z3 the semi-classical problem{
(P(h)− z)u = 0 in Ω , u ∈ H2(Ω),
u = f onΓ ,

(3.1)

We need to introduce some h-pseudo-differential operators on a manifold with
boundary V . We say that a(x,ξ ;h) ∈ Sk,m

δ
(V ) if the following conditions are satis-

fied:
(i) for |ξ | ≥ L� 1 we have

|∂ α
x ∂

γ

ξ
a(x,ξ ;h)| ≤Cα,γ,L(1+ |ξ |)m−|γ|, ∀α,∀γ.

(ii) for |ξ | ≤ L we have

|∂ α
x ∂

γ

ξ
a(x,ξ ;h)| ≤Cα,γ,Lh−k−δ (|α|+|γ|), ∀α,∀γ.

For a ∈ Sk,m
δ

(V ), consider the operator(
Oph(a) f

)
(x) = (2πh)−d+1

∫ ∫
ei〈x−y,ξ 〉/ha(x,ξ ;h) f (y)dydξ .

We have a calculus for the h-pseudo-differential operators with symbols in Sk,m
δ

if
0 < δ < 1/2. In particular, if a ∈ S0,1

δ
, b ∈ S0,−1

δ
, one gets

‖Oph(a)Oph(b)−Oph(ab)‖L2 ≤Ch1−2δ .

We refer to [7] and [21] for the calculus of h-pseudo-differential operators.

Let Dν = −i∂ν , and let γ0 denote the trace on Γ . It is important to construct
a semi-classical parametrix for the problem (3.1) in Z1 ∪ Z2 ∪ Z3 and to find an
approximation for the (exterior) semi-classical Dirichlet-to-Neumann map defined
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by
Next(z,h) : Hs

h(Γ ) 3 f −→ γ0hDν u ∈ Hs−1
h (Γ ). (3.2)

Here for s∈R, Hs
h(Γ ) is the semi-classical Sobolev space with norm ‖〈hD〉su‖L2(Γ ).

Vodev [21] constructed a semi-classical parametrix ũ where the equation in (3.1) is
satisfied for x ∈ K. In fact the construction in [21] is made in a very small neigh-
borhood of the boundary Γ and the local parametrix is a Fourier integral operator
with complex phase function. By using the resolvent (−h2∆D−z)−1 of the Dirichlet
Laplacian in Ω , one may modify the proof in [21] to obtain a parametrix in Ω (see
[13] for more details).

To describe the local parametrix, consider normal geodesic coordinates (x1,x′)
in a neighborhood of a fixed point x0 ∈ Γ , where x1 = dist (x,Γ ). Then locally
the boundary Γ is given by x1 = 0. Let ψ(x′) ∈ C∞

0 (Γ ) be a cut-off function with
support in a small neighborhood of x0 ∈ Γ and ψ(x′) = 1 in another neighborhood
of x0. Then − h2

c(x)∇c(x)∇− z n(x)
c(x) in these coordinates has the form

P(z,h) = h2D2
x1

+ r(x,hDx′)+q(x,hDx)+h2q̃(x)− zm(x).

with

Dx1 =−i∂x1 , Dx′ =−i∂x′ , m(x) =
n(x)
c(x)

, r(x,ξ ′) = 〈R(x)ξ ′,ξ ′〉, q(x,ξ ) = 〈q(x),ξ 〉.

Here R(x) is a symmetric (d− 1)× (d− 1) matrix with smooth real-valued enters
and r(0,x′,ξ ′) = r0(x′,ξ ′) is the principal symbol of the Laplace-Beltrami operator
−∆Γ on Γ . Let

ρ =
√

z m(x)− r0(x′,ξ ′) ∈C∞(T ∗(Γ ))

be the root of the equation ρ2 + r0(x′,ξ ′)− zm(x) = 0 with Imρ > 0. Let φ(σ) ∈
C∞(R) be cut-off function such that φ(σ) = 1 for |σ | ≤ 1, φ(σ) = 0 for |σ | ≥ 2. In
[21] for small δ1 > 0 and for x close to the boundary it was constructed a parametrix

ũψ(x) = (2πh)−d+1 ∫ ∫
e

i
h ϕ(x,y′,ξ ′,z)

φ

(
x1
δ1

)
×φ

(
x1

δ1ρ1

)
a(x,ξ ′,z;h) f (y′)dy′dξ ′,

ũψ |x1=0 = ψ f ,

(3.3)

where 0 < δ1 < 1 is small enough and ρ1 = 1 if z ∈ Z2∪Z3, ρ1 = |ρ|3 if z ∈ Z1. The
phase ϕ(x,y′,ξ ′,z) is complex-valued and we have

ϕ|x1=0 =−〈x′− y′,ξ ′〉, ∂x1ϕ|x1=0 = ρ, Imϕ ≥ x1 Imρ/2,

while a
∣∣
x1=0 = ψ(x′). Next, a = ∑

N−1
k=0 ∑

N−1
j=0 xk

1h jak, j(x′,ξ ′,z),

ϕ =−〈x′− y′,ξ ′〉+
N−1

∑
k=1

xk
1ϕk(x′,ξ ′,z), ϕ1 = ρ,



8 Vesselin Petkov

N � 1 being a large integer. The phase ϕ and the amplitude a are determined so that

e−
iϕ
h P(z,h)e

iϕ
h a = xN

1 AN(x,ξ ′,z;h)+hNBN(x,ξ ′,z;h),

where AN , BN are smooth functions and their behavior for |ξ ′| → ∞ is related to
negative powers of |ρ|. For example,

|∂ k
x1

∂
α

x′ ∂
β

ξ ′AN(φ(δ0r0(x′,ξ ′))| ≤Ck,α,β |ρ|2−3N−3k−2|α|−2|β |.

Moreover, for x1 > 0 the parametrix ũψ has a decay O
(

e−x1
| Imz|
2|ρ|h

)
and for x1 ≥

|ρ|3/δ we get an estimate O
(

e−C |ρ|2| Imz|
h

)
.

Consider the (interior) semi-classical Dirichlet-to-Neumann map Nint(z,h) f =
γ0∂ν u, related to the problem{

(− h2

n(x)∇c(x)∇− z)u = 0 in K,

u = f onΓ ,
(3.4)

where n(x) > 0, c(x) > 0 are C∞ functions on Γ . Then we have the following

Proposition 1 ([21]). Given 0 < ε � 1, there exists 0 < h0(ε) � 1 such that for
z ∈ Z1 and 0 < h≤ h0(ε) we have

‖Nint(z,h) f −Oph(ρ +hb) f‖H1
s (Γ ) ≤

Ch√
| Imz|

‖ f‖L2(Γ ), (3.5)

where b ∈ S0,0
0 (Γ ) does not depend on z,h and the function n(x). Moreover, for

z ∈ Z2∪Z3 the above estimate holds with | Imz| replaced by 1.

With some modifications of the proof the same result remains true for unbounded
domains Rd \ K̄ and obtain the estimate (3.5) for the semi-classical Dirichlet-to-
Neumann operator Next(z,h) related to the problem (3.1) with n(x) = c(x) = 1. (see
[13]).

4 Location of the eigenvalues of G

Let u = (u1,u2) 6= 0 be an eigenfunction of G with eigenvalue λ , Reλ < 0, and let
f = u1|Γ . Then from (2.2) we deduce (−∆ +λ 2)u1 = 0 and ∂ν u1−λγu1 = 0 on Γ .
Setting

λ =
i
√

z
h

, 0 < h� 1,

for z ∈ Z1∪Z2∪Z3, one obtains the problem
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(−h2∆ − z)u1 = 0 in Ω ,

Next(z,h) f −√zγ f = 0 onΓ .

Consider the case (A) and notice that there exists ε0 > 0 such tat

0 < ε0 ≤ γ(x)≤ 1− ε0, ∀x ∈ Γ .

We will discuss the case z ∈ Z1, the case z ∈ Z2 ∪Z3 is more simple. According to
Proposition 1 for Next(z,h), for z ∈ Z1, 1≥ Imz≥ hδ , δ = 1/2− ε, we have

‖Oph(ρ) f − γ
√

z f‖L2(Γ ) ≤C
h√
| Im z|

‖ f‖L2(Γ ), (4.1)

while for z ∈ Z2 ∪Z3 the above estimate holds with | Im z| replaced by 1. Consider
the symbol

c(x′,ξ ′,z) = ρ(x′,ξ ′,z)− γ
√

z =
(1− γ2)z− r0(x′,ξ ′)

ρ(x′,ξ ′,z)+ γ
√

z
.

We will show that c(x′,ξ ′,z) is elliptic in a suitable class.
Clearly, c is elliptic for |ξ ′| large enough. So it remains to examine the behavior

of c for |ξ ′| ≤C0 and for these values of ξ ′ we have |ρ + γ
√

z| ≤C1. Introduce the
set

F = {(x′,ξ ′) : |1− r0(x′,ξ ′)| ≤
ε2

0
2
}.

Then Re
(
(1− γ2)z− r0

)
= 1− r0− γ2 ≤− ε2

0
2 . If (x′,ξ ′) /∈F , we get

Im
(
(1− γ

2)z− r0

)
= (1− γ

2) Imz≥ (1− γ
2)hδ ≥ ε1hδ , ε1 > 0.

Consequently, the symbol c is elliptic and

Im(ρ + γ
√

z) = Imρ + γ Im
√

z≥Chδ .

Thus, for bounded |ξ ′| we have |c| ≥ C3hδ ,C3 > 0, while for large |ξ ′| we have
|c| ∼ |ξ ′|. Introduce the function

χ(x′,ξ ′) = φ(δ0r0(x′,ξ ′)), 0 < δ0 ≤ 1/2

and define M1 := Z1× supp χ, M2 := (Z1× supp (1−χ))∪ ((Z2∪Z3)×T ∗Γ ). Set
〈ξ ′〉= (1+ |ξ ′|)1/2. It is easy to see that for (z,x′,ξ ′) ∈M1, Im z 6= 0, we have∣∣∂ α

x′ ∂
β

ξ ′ρ
∣∣≤Cα,β | Im z|1/2−|α|−|β |, |α|+ |β | ≥ 1, (4.2)

|ρ| ≤C, while for (z,x′,ξ ′) ∈M2 we have



10 Vesselin Petkov∣∣∂ α

x′ ∂
β

ξ ′ρ
∣∣≤Cα,β 〈ξ ′〉1−|β |. (4.3)

Thus, we conclude that c =(ρ−γ
√

z)∈ S0,1
δ

. A similar analysis shows that | Im z|c−1 ∈
S0,−1

δ
, while for z ∈ Z2∪Z3 we get c−1 ∈ S0,−1

δ
. Therefore

‖Oph(c
−1)g‖L2(Γ ) ≤C| Im z|−1‖g‖L2(Γ )

and we deduce

‖Oph(c
−1)Oph(c) f‖L2(Γ ) ≤C1

h
| Im z|3/2 ‖ f‖L2(Γ ).

A more fine analysis (see [13]) shows that

‖Oph(c
−1)Oph(c) f − f‖L2(Γ ) ≤C2

h
| Imz|2

‖ f‖L2(Γ ).

Consequently, one concludes that

‖ f‖L2(Γ ) ≤C3

(
h1−2δ +h1− 3

2 δ

)
‖ f‖L2(Γ ). (4.4)

Since δ = 1/2− ε, 0 < ε � 1, from (4.4) it follows f = 0 for 0 < h ≤ h0(ε) small
enough. Since −h2∆ with Dirichlet boundary conditions does not have eigenvalues
in {z ∈C : Re z < 0}, one gets u1 = 0. Going back to the eigenvalues and using the
scaling, one obtains that in the case (A) the eigenvalues of G lie in the region

Λε = {z ∈ C : |Re z| ≤Cε(| Im z|
1
2 +ε +1), Re z < 0}.

In the case (B) the above analysis works only for z ∈ Z1 ∪Z3. Indeed for z ∈ Z1
we have

Re((1− γ
2)− r0)≤ (1− γ

2) <−η0 < 0

and again c ∈ S0,1
δ

,c−1 ∈ S0,−1
δ

. Thus for z ∈ Z1∪Z3 we obtain that the eigenvalues

λ = i
√

z
h must lie in Λε . For z ∈ Z2 the argument, exploited in the case (A), breaks

down since for Re z =−1, Im z = 0 the symbol

1+ r0(x′,ξ ′)− γ(x′)

is not elliptic and it may vanish for some (x′0,ξ
′
0).

Let z = −1 + i Im z ∈ Z2. For such z we have an better approximation T (z,h) of
the operator Next(z,h) (see [21], [13]) for which we have

‖Next(z,h) f −T (z,h) f‖H1(Γ ) ≤CNh−sd+N‖ f‖L2(Γ ), ∀N ∈ N, (4.5)

with sd > 0 depending only on the dimension d. Therefore, if f is related to the trace
of an eigenfunction of G, from the equality Next(z,h) f − γ

√
z f = 0 on Γ we obtain
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|Re (T (z,h) f − γ
√

z f , f )L2(Γ )| ≤CNh−sd+N‖ f‖L2(Γ ).

Next, by applying Taylor formula, we write

Re
(
(T (z,h)− γ

√
z) f , f

)
L2(Γ )

= Re
(
(T (−1,h)− iγ) f , f

)
L2(Γ )

− Im z Im
([

∂T
∂ z

(zt ,h)− γ
1

2
√

zt

]
f , f

)
L2(Γ )

(4.6)

with zt =−1+ it Im z∈ Z2, 0 < t < 1. We may replace in (4.6) the operator ∂T
∂ z (zt ,h)

by the operator Oph(
dρ

dz (zt ,h)) modulo O(h)‖ f‖2
L2(Γ ) term and a sharp analysis

shows that

Im
((

Oph(
dρ

dz
(zt ,h))− γ

1
2
√

zt

)
f , f

)
L2(L2(Γ ))

≥ α0‖ f‖2
L2(Γ ), α0 > 0.

We refer to [13] for the details of this argument. Combining (4.5) and (4.6), one
estimates | Imz| and for small h and every N ∈ N, we obtain that the eigenvalues
λ = i

√
z

h of G with z ∈ Z2 must lie in the region

RN = {z ∈ C : | Im z| ≤CN(|Re z|+1)−N , Re z < 0}.

Finally, we have the following

Theorem 1 ([13]). In the case (A) for every ε, 0 < ε � 1, the eigenvalues of G
lie in the region Λε . In the case (B) for every ε, 0 < ε � 1, and every N ∈ N the
eigenvalues of G lie in the region Λε ∪RN .

For strictly convex obstacles K we have a more precise result concerning the
operator Nout(z,h) based on the construction of a semi-classical parametrix for the
problem (3.1) when Rez = 1 and h1/2−ε ≥ Imz≥ h2/3 (see [22], [13]) or 0 < Imz≤
h2/3 (see [20]). This makes possible to improve the above result in the case (B) and
to obtain the following

Theorem 2 ([13]). In the case (B) for every N ∈ N outside the region RN we have
only finite number eigenvalues of the generator G.

Moreover, we have the following

Proposition 2 ([5]). Assume that d is odd. Then the operator G has no a sequence
of eigenvalues λ j, Reλ j < 0 such that lim j→∞ λ j = iz0, z0 ∈ R.

It is world noting that the Dirichlet-to-Neumann map can be used to establish
the discreetness of the spectrum of G in {z ∈ C : Re z < 0}. We follow below the
argument of [13]. For Re λ < 0 introduce the map

N (λ ) : Hs(Γ ) 3 f −→ ∂ν u|Γ ∈ Hs−1(Γ ),

where u is the solution of the problem
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(∆ −λ 2)u = 0 in Ω , u ∈ H2(Ω),
u = f onΓ .

(4.7)

It is well known that N (λ ) is a meromorphic function in C for d odd and in the
logarithmic covering of C for d even and the poles of N (λ ) in C\{0} coincide with
the resonances of the Dirichlet problem for the Laplacian (see for instance, [20]).
On the other hand, u∈H2(Ω) implies that u is λ−incoming in the sense of Lax and
Phillips (see Chapter IV in [10]). Notice that the definition of outgoing/incoming
solutions in [20] is different from that in [10] and the resonances in [20] lie in
Im z < 0, while in [10] they are in the half-plan Im z > 0. Consequently, N (λ ) is
analytic for Re λ < 0. The same is true for the Neumann problem for the ∆ −λ 2,
hence N −1(λ ) is also analytic for Re λ < 0 and the poles of N −1(λ ) are the
resonances of the Neumann problem ([19]). Therefore, the boundary condition in
(2.2) may be written as follows

N (λ )
(

I−λN −1(λ )γ
)

f1 = 0, Re λ < 0, x ∈ Γ .

The operator N (λ ) : L2(Γ ) −→ H1(Γ ) is compact and Theorem 1 guarantees
that there are points λ0, Re λ0 < 0, for which (I − λ0N

−1(λ0)γ) is invertible.
Applying the analytic Fredholm theorem, we conclude that the spectrum of G in
{z ∈ C : Re λ < 0} is formed by isolated eigenvalues with finite multiplicities.

We finish this section by a trace formula involving the operator

C(λ ) := N (λ )−λγ = N (λ )
(

I−λN −1(λ )γ
)
,

which is an analytic operator-valued function in {z ∈ C : Re z < 0}, while C(λ )−1

is meromorphic in the same domain. We wish to find a formula for the trace

tr
1

2πi

∫
δ

(λ −G)−1dλ , (4.8)

where ω ⊂ {Re z < 0} has as a boundary the curve δ and (G−λ )−1 is analytic on
δ . We know that (G−λ )−1 is meromorphic in ω and if λ0 is a pole of (G−λ )−1,
then the multiplicity of the eigenvalue λ0 of G is given by

mult (λ0) = rank
1

2πi

∫
|λ−λ0|=ε0

(λ −G)−1dλ ,

with ε0 > 0 small enough. Therefore, (4.8) is equal to the number of the eigenvalues
of G in ω contented with their multiplicities.

Let (u,w) = (G−λ )−1( f ,g). Then w = λu+ f and setting q = u|Γ , one gets

u = RD(λ )(g+λ f )+K(λ )q.
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Here RD(λ ) = (∆D−λ 2)−1 is the resolvent of the operator ∆D with Dirichlet bound-
ary conditions and K(λ ) satisfies{

(∆ −λ 2)K(λ ) = 0 in Ω ,

K(λ ) = Id onΓ .

The boundary condition on Γ yields

∂ν [RD(λ )(g+λ f )+K(λ )q]− γλ [RD(λ )(g+λ f )+K(λ )q]− γ f = 0, x ∈ Γ

and the term γλ [RD(λ )(g+λ f ) vanishes. Since N (λ ) = ∂ν K(λ )|Γ is the Dirichlet-
to-Neumann map, assuming that C−1(λ ) is invertible, we deduce

q = C−1(λ )
(
[∂ν RD(λ )(g+λ f )]− γ f

)
.

Therefore
u =

[
λRD(λ )+K(λ )C−1(λ )λ∂ν RD(λ )− γ

]
f +Xg,

w = Y f +
[
λRD(λ )+λK(λ )C−1(λ )∂ν RD(λ )

]
g,

where the operators X and Y are not important for the calculus of the trace. Thus we
are going to study the integral

tr
∫

δ

(
2λK(λ )C−1(λ )∂ν RD(λ )−C−1(λ )γ

)
dλ .

For the first term we apply the cyclicity of the trace and the fact that

∂N

∂λ
(λ ) = ∂ν

∂K
∂λ

(λ ) = 2λ∂ν RD(λ )K(λ ).

Finally, we obtain the following

Proposition 3 ([13]). Let δ ⊂ {z ∈ C : Re λ < 0} be a closed positively oriented
curve and let ω be the domain bounded by δ . Assume that C−1(λ ) is meromorphic
in ω without poles on δ . Then

tr
1

2πi

∫
δ

(λ −G)−1dλ = tr
1

2πi

∫
δ

C−1(λ )
∂C
∂λ

(λ )dλ . (4.9)

The idea to write the right-hand side of (4.9) as the trace of an integral involving
the product of a meromorphic function T−1(λ ) and its derivative dT

dλ
(λ ) going back

to [19], [4] (see also Proposition 3 in the next section). We expect that in the case
(B) Proposition 3 combined with the techniques in [19] will imply a Weyl formula
for the eigenvalues of G lying in RN .

We conjecture that for N large enough and γ(x) > 1, ∀x ∈ Γ , the counting func-
tion

N(r) = #{λ j ∈ σp(G) : |λ j| ≤ r, λ j ∈RN}



14 Vesselin Petkov

has the asymptotic

N(r) = (2π)−d+1
ωd−1

(∫
Γ

(γ2(y′)−1)(d−1)/2dy′
)

rd−1

+Oγ(rd−2), r ≥ r0(γ), (4.10)

where ωd−1 = vol {x ∈ Rd−1 : |x| ≤ 1}. For strictly convex obstacles and γ(x) > 1
this will imply a Weyl asymptotics of all eigenvalues of G. Notice that for ball B3
we have the following

Proposition 4 ([13]). For γ ≡ const > 1 and K = B3 all eigenvalues λ j of G are real
and they lie in the interval (−∞,− 1

γ−1 ]. Moreover, there is an infinite number of real
eigenvalues of G.

Hence in this case we must study the asymptotic of N(r) for r ≥ − 1
γ−1 = r0(γ).

Moreover, following the analysis in [13], we may prove that (4.10) holds for K = B3
and constant γ .

By a similar argument we may study the eigenvalues of the generator G of the
contraction semigroup associated to Maxwell’s equations with dissipative boundary
conditions

∂tE = curlB, ∂tB =−curlE in R+
t ×Ω ,

Etan− γ(x)(ν(x)∧Btan) = 0 on R+
t ×Γ ,

E(0,x) = e0(x), B(0,x) = b0(x).

(4.11)

The solution of the problem (4.11) is given by a contraction semigroup

(E,B) = V (t) f = etGb f , t ≥ 0,

where the generator Gb has domain D(Gb) that is the closure in the graph norm of
functions u = (v,w) ∈ (C∞

(0)(R
3))3× (C∞

(0)(R
3))3 satisfying the boundary condition

vtan− γ(ν ∧wtan) = 0 on Γ . Here utan = u−〈u,ν〉ν . For Maxwell’s equations for
0 < γ(x) < 1 and γ(x) > 1 we have the same location of eigenvalues of Gb. This loca-
tion has been examined in [6] by a semi-classical analysis of a h-pseudo-differential
system on the boundary Γ . We have the following

Theorem 3 ([6]). Assume that for all x∈Γ , γ(x) 6= 1. Then for every 0 < ε � 1 and
every N ∈N there are constants Cε > 0 and CN > 0 such that the eigenvalues of Gb
lie in the region Λε ∪RN , where

Λε = {z ∈ C : |Rez| ≤Cε(| Imz|1/2+ε +1), Rez < 0},

RN = {z ∈ C : | Imz| ≤CN(|Rez|+1)−N , Rez < 0}.

It is interesting to notice that for Maxwell’s equation if γ(x) ≡ 1, ∀x ∈ Γ , and
K = B3 is the unit ball in R3, then Gb has no eigenvalues (see [6] for other results
concerning the case γ = const and B3).
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5 Location and Weyl formula for the (ITE)

To examine the location of the (ITE), set λ = z
h2 , z ∈ Z1 ∪ Z2 ∪ Z3. If λ is an

(ITE) with eigenfunction (u,w), consider u|Γ = w|Γ = f . Introduce the Dirichlet-
to-Neumann operators N j = N j(z,h), j = 1,2 related to

P j(z,h) =− h2

n j(x)
∇c j(x)∇− z

c j(x)
n j(x)

, j = 1,2.

The boundary condition in the problem (2.5) implies

c1N1(z,h) f − c2N2(z,h) f = 0.

As in the Section 3, one introduces normal geodesic coordinates (x1,x′) and define

ρ j =

√
z

n j(x)
c j(x′)

− r0(x′,ξ ′), j = 1,2

with Im ρ j > 0. Applying Proposition 1 for the operators N j(x,h), we deduce

‖c1Oph(ρ1) f − c2Oph(ρ2) f‖L2(Γ ) ≤
Ch√
| Im z|

‖ f‖L2(Γ ).

Below we discuss only the case c1(x) = c2(x) ≡ 1, ∀x ∈ Γ . Then we have a better
estimate

‖Oph(ρ1) f −Oph(ρ2) f‖H1
h (Γ ) ≤

Ch√
| Im z|

‖ f‖L2(Γ ) (5.1)

and we must invert the operator Oph(ρ1)−Oph(ρ2). Writing

ρ1−ρ1 =
z(n1(x′)−n2(x′))

ρ1 +ρ2
,

it is easy to see that ρ1 − ρ2 is elliptic and (ρ1 − ρ2)−1 ∈ S0,−1
δ

for z ∈ Z1, while
(ρ1−ρ2)−1 ∈ S0,−1 for z ∈ Z2∪Z3. For δ = 1/2−ε < 1/2 we may use the calculus
of h-pseudo-differential operators and (5.1) implies, as in Section 4, f = 0. The
latter yields u = w = 0. Returning to the eigenvalues λ = z

h2 , we get that the (ITE)
lie in the domain Λ+ defined below. The analysis of the general case when c j(x) are
not equal to 1 is more complicated and we refer to [21] for the details. Thus we have
the following

Theorem 4 ([21]). Assume (2.6) fulfilled together with the condition

c1(x) = c2(x), ∂ν c1(x) = ∂ν c2(x), ∀x ∈ Γ .

Then for every 0 < ε � 1 the (ITE) lie the region
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Λ+,ε := {z ∈ C : Re λ ≥ 0, | Im λ | ≤Cε(Re λ +1)3/4+ε}

and there are only a finite number (ITE) with Re λ < 0. If c1(x) 6= c2(x),∀x ∈ Γ ,
the (ITE) lie in

Λ
′
+,ε := {z ∈ C : Re λ ≥ 0, | Im λ | ≤Cε(Re λ +1)4/5+ε}.

If (c1(x)−c2(x))d(x) > 0, ∀x ∈Γ , we have only a finite number (ITE) with Re λ <
0. Moreover, if we assume that (c1(x)− c2(x))d(x) < 0, ∀x ∈ Γ , then for Re λ ≥ 0
the (ITE) are in Λ+, while for Re λ < 0 and every N ≥ 1 there exists CN > 0 such
that (ITE) lie in

RN = {λ ∈ C : | Im λ | ≤CN(|Re λ |+1)−N , Re λ ≤ 0}.

A weaker result in a partial case n1(x) ≡ 1,n2(x) > 1 in K with eigenvalues-free
region

{z ∈ C : Re λ ≥ 0, | Im λ | ≥C(Re λ +1)24/25}

has been obtained in [8].
For strictly convex obstacles one may construct a parametrix for the problem

(3.4) and Rez = 1, h1/2−ε ≥ Imz ≥ h1−ε by using more complicated construction
and exploiting the properties of the Airy function Ai(z) (see [22] for more details).
This leads to the following improvement of Theorem 4.

Theorem 5 ([22]). Assume K strictly convex, the condition (2.6) satisfied and
c1(x) = c2(x),∂ν c1(x) = ∂ν c2(x), x ∈ Γ . Then for every ε > 0 the (ITE) lie in the
region

M+,ε := {z ∈ C : Re λ ≥ 0, | Im λ | ≤Cε(Re λ +1)1/2+ε}

and there are only a finite number (ITE) with Re λ < 0.

This results is almost optimal, since for the unit ball in Rd we have the following

Theorem 6 ([15]). Let K = {x ∈ Rd : |x| ≤ 1}, d ≥ 2. Suppose that the functions
c j, n j, j = 1,2, are constants everywhere in K, c1 = c2, and the condition (2.6) is
satisfied. Then, there are no (ITE) in the region M+,0

The case d = 1 and K = {x ∈R : |x| ≤ 1} has been previously examined in [18] and
[16].

Now we pass to the Weyl formula for the counting function N(r) of the (ITE)
and introduce the coefficients

τ j =
ωd

(2π)d

∫
K

(n j(x)
c j(x)

)d/2
dx, j = 1,2,

where ωd is the volume of the unit ball in Rd .
In the anisotropic case c1(x) = 1,n1(x) = 1,c2(x) 6= 1,c2(x)n2(x) 6= 1,∀x ∈ K̄,

the asymptotics
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N(r)∼ (τ1 + τ2)rd , r →+∞. (5.2)

has been obtained by Lakshatanov and Vainberg [9] under some additional assump-
tions which guarantee that the boundary problem is parameter-elliptic.

By the results of Agranovich and Vishik [1] for the closed operator A related to
(2.5) outside every angle Dα = {z ∈ C : |argz| ≤ α}, we have only a finite number
of (ITE) and the following estimate holds

‖(z−A )−1‖ ≤Cα |z|−1, z /∈ Dα , |z| � 1.

The authors applied directly a result of Boimanov-Kostjuchenko [2] leading to (5.2).

The isotropic case c1(x) = c2(x) = 1, ∀x ∈ K̄, n1(x) = 1, n2(x) 6= 1, ∀x ∈ Γ , is
more difficult since the corresponding operator A has domain

D(A ) = {(u,w) ∈ L2(K)×L2(K) : ∆u ∈ L2(K), ∆v ∈ L2(K),

u−w = 0,∂ν(u−w) = 0 on Γ }.

Thus D(A) is not included in H2(K), and the problem is not parameter-elliptic. In
this case Robbiano [17] obtained (5.2) by establishing the asymptotics

∑
j

1
|λ j|p + t

= αt−1+ d
2p +o(t−1+ d

2p ), t →+∞.

where p∈N is sufficiently large. An application of the Tauberian theorem of Hardy-
Littlewood yields the result. By this argument one obtains a very week estimate
for the remainder which can be estimated by the principal term divided by a log-
arithmic factor. To get better results, it is important to take into account parabolic
eigenvalues-free regions and to apply different techniques which are not based on
Tauberian theorems.

Theorem 7 ([14]). Under the condition (2.6), assume that there are no (ITE) in the
region

{λ ∈ C : | Imλ | ≥C(|Reλ |+1)1− κ
2 }, C > 0,0 < κ ≤ 1. (5.3)

Then for every 0 < ε � 1 we have the asymptotics

N(r) = (τ1 + τ2)rd +Oε(rd−κ+ε), r →+∞. (5.4)

• According to Theorem 4, for arbitrary obstacles and c1(x) = c2(x), ∂ν c1(x) =
∂ν c2(x),∀x ∈ Γ , we can take κ = 1

2 − ε and we obtain a remainder Oε(rd−1/2+ε).
• Taking into account Theorem 5, for strictly convex obstacles we choose κ =

1− ε, ∀ε . Consequently, we have in this case a remainder Oε(rd−1+ε).
• The optimal result should be to have a eigenvalues-free region with κ = 1 as it

was proved in [15], [18], [16] for the case when K is a ball and the functions c j,n j
are constants. However, even with κ = 1, to obtain an optimal remainder O(rd−1)
some extra work is needed and this is an interesting open problem.
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The proof of Theorem 7 is long and technical. After a semi-classical scaling, the
idea is to reduce the analysis of N(r) to the trace of an integral involving the product
of a meromorphic function T−1(λ ) and its derivative dT

dλ
(λ ) similar to Proposition

3. Set Z = {z∈C; 1
2 ≤ |Re z| ≤ 3, | Im z| ≤ 1} and consider for z∈ Z and 0 < h� 1

the operator
hT (z/h2) := c1N1(z,h)− c2N2(z,h),

where the DN-maps N j(z,h) are defined in the beginning of this section.
Let G( j)

D , j = 1,2, be the Dirichlet self-adjoint realization of the operator L j :=
−n−1

j ∇c j∇ in the space H j = L2(K,n j(x)dx). Set H = H1⊕H2 and let R(λ ) be the
resolvent of the transmission boundary problem. We omit in the notation j = 1,2
and consider the operators

N (z,h)Oph(1−χ) f = ˜N (z,h) f − γ0Dν(h2GD− z)−1 c
n

Oph(p) f ,

F(z,h) = N (z,h)− ˜N (z,h) = N (z,h)Oph(χ)− γ0Dν(h2GD− z)−1 c
n

Oph(p),

where χ(x′,ξ ′) = Φ(δ0r0(x′,ξ ′)) with Φ(σ) = 1 for |σ | ≤ 1 and Φ(σ) = 0 for
|σ | ≥ 2, while 0 < δ0 � 1 is small enough. Here ˜N (z,h) is the parametrix of the
DN operator N (z,h)Oph(1−χ) in the domain where r0(x′,ξ ′) > 1

δ0
and p is some

symbol having behavior O(hN) with all its derivatives. The number N will be taken
large enough and it depends only on the parametrix construction.

The operator F(z,h) is meromorphic with values in the space of trace class oper-
ators and we denote by µ j(F(z,h)) its characteristic eigenvalues.

Lemma 1. If z/h2 does not belong to spec GD, then for every integer 0 ≤ m ≤ N/4
we have

µ j(F(z,h))≤ C
δ (z,h)

(
h j1/(d−1)

)−2m
, ∀ j ∈ N,

where δ (z,h) := min{1,dist {z,spec h2GD}} > 0 and C > 0 depends on m and N
but is independent of z,h, j.

Let
T (λ ) := γ0c1Dν K1(λ )− γ0c2Dν K2(λ ),

where K j(λ ) f = u, and u is the solution of the problem{(
L j−λ

)
u = 0 in K,

u = f onΓ .
.

Proposition 5. Assume that T (λ )−1 is a meromorphic function with residues of fi-
nite rank. Let δ ⊂ C be a simple closed positively oriented curve which avoids the
eigenvalues of G( j)

D , j = 1,2, as well as the poles of T (λ )−1. Then we have the
identity
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−trH (2πi)−1
∫

δ

R(λ )dλ =
2

∑
j=1

trH j (2πi)−1
∫

δ

(λ −G( j)
D )−1dλ

−trL2(Γ ) (2πi)−1
∫

δ

T (λ )−1 dT (λ )
dλ

dλ . (5.5)

Let us mention that if R(λ ) is an operator-valued meromorphic function with
residues of finite rank, the multiplicity of a pole λk ∈ C of R(λ ) is defined by

mult (λk) =−rank (2πi)−1
∫
|λ−λk|=ε

R(λ )dλ , 0 < ε � 1.

On the other hand, the rank of the operator above is equal to the trace of this operator
and on the left-hand side of (5.5) we have the sum of the mutiplicities of the (ITE)
lying in the domain ωδ ⊂ C bounded by δ . Clearly, the terms with (λ −G( j)

D )−1

yield the sum of eigenvalues of G( j)
D in ωδ counted with their multiplicities.

It is possible to construct invertible, bounded operator E(z,h) : Hs
h(Γ )→Hs+1

h (Γ )
with bounded inverse E(z,h)−1 : Hs

h(Γ )→ Hs−1
h (Γ ), ∀s ∈ R, so that

hT (z/h2) = E−1(z,h)(I +K (z,h)),

(hT (z/h2))−1 = (I +K (z,h))−1E(z,h)

with a trace class operator

K (z,h) = E(z,h)(c1F1(z,h)− c2F2(z,h))+L (z,h).

Moreover, the operators E(z,h),E−1(z,h), are holomorphic with respect to z in Z
while K (z,h) is meromorphic operator-valued function in this region. Then

tr
∫

δ

T−1(z/h2)
d
dz

T (z/h2)dz = tr
∫

δ

(I +K (z,h))−1 d
dz

K (z,h)dz.

Set gh(z) := det(I +K (z,h)) and denote by Mδ (h) the number of the poles {λk} of
R(λ ) such that h2λk are in ωδ . Similarly, we denote by M( j)

δ
(h) the number of the

eigenvalues νk of G( j)
D such that h2νk ∈ ωδ . Then using the well-known formula

tr
[
(I +K (x,h))−1 ∂K (z,h)

∂ z

]
=

∂

∂ z
logdet(I +K (z,h)),

we get from (5.5) the following

Lemma 2. Let δ ⊂ Z be closed positively oriented curve which avoid the eigenval-
ues of h2G( j)

D , j = 1,2 as well as the poles of T (z/h2)−1. Then we have

Mδ (h) = M(1)
δ

(h)+M(2)
δ

(h)+
1

2πi

∫
δ

d
dz

loggh(z)dz. (5.6)



20 Vesselin Petkov

The leading term in (5.4) is obtained from the M(1)
δ

(h)+M(2)
δ

(h) after a scaling.
The crucial point is to examine the asymptotic of the integral involving loggh(z).
The details of this analysis are given in [14].
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