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Abstract

Using Bochner-Martinelli type residual currents we prove some
generalizations of Jacobi’s Residue Formula, which allow proper poly-
nomial maps to have ’common zeroes at infinity ’, in projective or
toric situations.

Résumé
Si D1, ...,Dn sont n diviseurs s’intersectant proprement sur une

variété analytique complexe compacte X de dimension n et si ω est
une forme méromorphe sur X de lieu polaire inclus dans l’union des
supports des Dj , il résulte d’un théorème de Griffiths que la somme
des résidus de Grothendieck de ω en tous les points de |D1|∩ . . .∩|Dn|
est nulle. Les formules de Bochner-Martinelli permettent d’étendre
ce résultat (dans les cadres projectif et torique) sous des hypothèses
d’intersection propre hors de la variété à l’infini. Des applications
géométriques (du type Cayley-Bacharach) ou algébriques (effectivité
de la division ou de l’identité de Bézout) illustrent les énoncés.

∗AMS classification number: 32A27, (32A25, 32C30).
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1 Introduction

One of the classical results in the one complex variable residue theory is the
following: for every polynomial map P : C → C, the total sum of residues
of the form Qdζ/P (where Q ∈ C[X]) at the zeroes of P equals the residue
at infinity of the rational function Q/P with the opposite sign.
Some multidimensional analogues of this statement are treated in the present
note. Consider a polynomial map

P = (P1, . . . , Pn) : Cn −→ Cn

and assume that Cn is imbedded into the complex projective space Pn. Let
hP1, . . . ,

h Pn be the homogenizations of the Pj, j = 1, . . . , n, that is the
homogeneous polynomials in n + 1 variables

hPj(X0, X1, . . . , Xn) = X
deg Pj

0 Pj(
X1

X0

, . . . ,
Xn

X0

) .

Let us impose the Jacobi condition, that is

The homogeneous parts of highest degree in Pj(X1, . . . , Xn), for

j = 1, . . . , n, do not have common zeroes in Cn \ (0, . . . , 0) (1.1)

Then, it is a classical result that goes back to Jacobi [19], that the set V (P ) :=
{P1 = . . . = Pn = 0} is finite, with cardinal number equal to deg P1 · · · deg Pn

and that for any Q ∈ C[X1, . . . , Xn], such that

deg Q ≤
n∑

j=1

deg(Pj)− n− 1,

one has

Res

[
Q(X1, · · · , Xn)dX

P1, · · · , Pn

]
=

∑

α∈V (P )

Resα[
Qdζ

P1 · · ·Pn

] = 0 . (1.2)

Here dX stands as usual for dX1 ∧ · · · ∧ dXn and the residue of the mero-
morphic form Qdζ

P1...Pn
at the isolated point α ∈ {P1 = . . . = Pn = 0} is defined
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as

Resα[
Qdζ

P1 . . . Pn

] =
1

(2πi)n

∫

|f1| = ε1

· · ·
|fn| = εn

ζ ∈ Uα

Q(ζ)dζ

P1(ζ) . . . Pn(ζ)
,

where Uα is any bounded domain in Cn such that {α} = Uα ∩ {P1 = · · · =
Pn = 0} and the orientation for the cycle {ζ ∈ Uα, |f1| = ε1, . . . , |fn| = εn}
is the one that respects the positivity of the differential form d arg(f1)∧· · ·∧
d arg(fn).

The result of Jacobi has a toric pendant which is due to A. Khovanskii [22].
Let Tn = (C∗)n and F1, . . . Fn be n Laurent polynomials in n variables

Fj(X1, . . . Xn) =
∑

αj∈Aj

cj,αj
X

αj1

1 . . . Xαjn
n , j = 1, . . . , n,

with cj,αj
6= 0 for any j ∈ {1, . . . , n}, any αj ∈ Aj (the Aj are the supports

of the Fj). Let ∆j be the Newton polyhedron of Fj, which is by definition
the closed convex hull of Aj in Rn. We now impose the Bernstein condition
[3], that is

For any ξ ∈ Rn \ (0, . . . , 0), the intersection with Tn of the set{
ζ;

∑
αj∈Aj

〈αj,ξ〉= min
η∈∆j

〈η,ξ〉

cj,αj
ζ

αj1

1 . . . ζαjn
n = 0, j = 1, . . . , n

}
is empty (1.3)

Under this hypothesis, D. Bernstein proved in [3] that the set V ∗(F ) :=
{F1 = . . . = Fn = 0} ∩ Tn is finite with cardinality equal n! times the
Minkowski mixed volume of ∆1, . . . , ∆n and A. Khovanskii [22] proved that
for any Laurent polynomial Q whose support lies in the relative interior of
the convex polyhedron ∆1 + · · ·+ ∆n , one has

Res

[
Q(X1, · · · , Xn)dX

F1, · · · , Fn

]

T

:=
∑

α∈V ∗(F )

Resα[
Q

F1 · · ·Fn

dζ

ζ1 . . . ζn

] = 0 (1.4)

(see also [15], corollary 4.8).
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We will see in section 2 how it is essential to interpret both geometri-
cally and analytically the conditions (1.1) imposed on (P1, . . . , Pn) in the
projective setting or the conditions (1.3) imposed on (F1, . . . , Fn) in the toric
setting.

In the first case (that is the projective one), the set of conditions (1.1) is
geometrically equivalent to the fact that the n Cartier divisorsD1, . . . ,Dn, de-
fined on Pn by the homogeneous polynomials hPj(X0, . . . , Xn), j = 1, . . . , n,
are such that their supports |Dj| satisfy

|D1| ∩ . . . ∩ |Dn| ⊂ Cn .

From the analytic point of view, this is equivalent to the following strong
properness condition on the polynomial map P = (P1, . . . , Pn) from Cn to
Cn: there are constants R > 0, c > 0, such that, for ‖ζ‖ ≥ R,

n∑

j=1

|Pj(ζ)|
(1 + ‖ζ‖2)

deg Pj
2

≥ c . (1.5)

In the toric case, given a smooth toric variety X associated to any fan
which is a simple refinement of the fan attached to the polyhedron ∆1 + . . .+
∆n, conditions (1.3) mean that the effective Cartier divisors

Dj = div(Fj) + E(∆j),

where E(∆j) is the T-Cartier divisor on X associated with the polyhedron
∆j (see [17]), are such that

|D1| ∩ . . . ∩ |Dn| ⊂ Tn .

The analytic interpretation of this is the following: there exist constants
R > 0, c > 0 such that, for ζ ∈ Cn such that ‖Re ζ‖ ≥ R,

n∑

j=1

|Fj(e
ζ1 , . . . , eζn)|

eH∆j
(Re ζ)

≥ c , (1.6)

where H∆j
denotes the support function of the convex polyhedron ∆j, that

is the function from Rn to R defined as

H∆j
(x) := sup

ξ∈∆j

〈x, ξ〉, x ∈ Rn .
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In [5, 6, 7], one used extensively the fact that an analogous version of
(1.2) could be stated whenever the polynomial map

P = (P1, . . . , Pn) : Cn 7→ Cn

was proper. We will prove in section 3 of this paper what appears to be the
sharpest version of such a result, namely

Theorem 1.1 Let P = (P1, . . . , Pn) be a polynomial map from Cn to Cn

such that there exist constants c > 0, R > 0, and rational numbers 0 < δj ≤
deg(Pj), j = 1, . . . , n, in order that, for ‖ζ‖ ≥ R,

n∑

j=1

|Pj(ζ)|
(1 + ‖ζ‖2)

δj
2

≥ c . (1.7)

Then, for any polynomial Q ∈ C[X1, . . . , Xn] which satisfies

deg Q ≤ δ1 + . . . + δn − n− 1,

one has

Res

[
Q(X1, · · · , Xn)dX

P1, · · · , Pn

]
= 0 . (1.8)

We will also prove in the same section the corresponding toric version, namely

Theorem 1.2 Let F = (F1, . . . , Fn) be a system of Laurent polynomials in n
variables, with respective Newton polyhedra ∆1, . . . , ∆n. Suppose there exist
constants c > 0, R > 0, and convex polyhedra δ1, . . . , δn with vertices in Qn,
with δj ⊂ ∆j, j = 1, . . . , n and dim(δ1 + . . . + δn) = n, which are such that,
for any ζ ∈ Cn with ‖Re ζ‖ ≥ R,

n∑

j=1

|Fj(e
ζ1 , . . . , eζn)|

eHδj
(Re ζ)

≥ c . (1.9)

Then, for any Laurent polynomial Q such that the support of Q lies in the
interior of the convex polyhedron δ1 + · · ·+ δn, one has

Res

[
Q(X1, · · · , Xn)dX

F1, · · · , Fn

]

T

= 0 . (1.10)
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The main tool to be used in the proofs of both theorems will be the
Bochner-Martinelli integral formula suitably adapted to each case.

From the point of view of algebraic geometry such theorems are not clas-
sical in nature since the supports of the Cartier divisors D1, . . . ,Dn on Pn

corresponding to the hPj in the first case, or the supports of the divisors
Dj = div(Fj) + E(∆j) on a convenient smooth toric variety X in the second
case, do not intersect properly in Pn or in X (the intersection is assumed
to be proper in Cn or in Tn). Following the point of view developped by J.
Kollár in [24, 25], or by Lazarsfeld-Ein in [13], we will also present in section
3 a geometric interpretation of the conditions (1.7) (in the projective case)
and (1.9) (in the toric case). We will see that the Bochner-Martinelli repre-
sentation formula we use below fits with the construction of residue currents
in the non-complete intersection case, as proposed in [28]. A better under-
standing of our two theorems will then rely on the fact that, if f1, . . . , fn are
n holomorphic functions in some domain Ω of Cn, a crucial property of the
distribution Tf ∈ D′(Ω) whose action on a test function ϕ ∈ D(Ω) is defined
(see for example [28]) by

Tf (ϕ) := lim
ε7→0

1

εn

∫

|f1|2+...+|fn|2=ε

n∑

k=1

(−1)k−1f̄k

n∧
l=1
l6=k

∂fl ∧ ϕdζ,

is that it is annihilated, as a distribution, by any holomorphic function in Ω
which is locally in the integral closure of the ideal (f1, . . . , fn)n (this ideal
is contained in (f1, . . . , fn) by the classical result of Briançon-Skoda [4]).
Therefore, once the hypothesis will be settled in a natural geometric context,
our two theorems will appear to be in close relation with this Briançon-
Skoda theorem, which also plays a significant role in [25], [13], as a transition
tool between Lojasiewicz inequalities (or regular separation conditions) and
effective versions of the algebraic Nullstellensatz.

As a consequence, it will then be natural to present in section 4 some ap-
plications of our two theorems to effectivity questions related to the algebraic
Nullstellensatz in the projective case or the sparse Nullstellensatz in the toric
case, under some properness assumptions on the data in Cn or in Tn. Such
results will extend or sharpen some previous results in [6, 7, 16, 31]. We will
also suggest possible applications to some results of Cayley-Bacharach type
(see [14]), in the context of improper intersections on Pn or on a smooth
toric variety X .
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2 An analytic interpretation of Jacobi

or Bernstein conditions

Using the notation of the previous section we will state in analytic terms the
conditions (1.1) or (1.3). We begin with the

Proposition 2.1 Let P1, . . . , Pn be n polynomials in C[X1, X2, . . . , Xn]. The
following two assertions are equivalent
i) {ζ ∈ Cn+1, hP1 = . . . = hPn = ζ0 = 0} = {0}
ii) There exist strictly positive constants R, c such that, for any ζ ∈ Cn with
‖ζ‖ ≥ R,

n∑

j=1

|Pj(ζ)|
(1 + ‖ζ‖2)

deg Pj
2

≥ c . (2.1)

Proof. Writing (ii) in homogeneous coordinates, we get that, if (ζ0, . . . , ζn) ∈
Cn+1 is such that

|ζ1|+ . . . + |ζn| > R|ζ0| ,
one has

n∑

j=1

|hPj(ζ0, ζ1, . . . , ζn)| ≥ c(
n∑

j=1

(|ζ0|2 + . . . + |ζn|2)
deg Pj

2

In particular

n∑

j=1

|hPj(0, ζ1, . . . , ζn)| ≥ c(
n∑

j=1

(|ζ1|2 + . . . + |ζn|2)
deg Pj

2

This shows that (ii) implies (i).
Let now Pj(X) = pj(X) + qj(X), such that deg qj < deg pj, pj being an
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homogeneous polynomial with degree dj = deg(Pj) (the leading terms in
Pj). Condition (i) is equivalent to the fact that

{ζ ∈ Cn, p1(ζ) = . . . = pn(ζ) = 0} = {(0, . . . , 0)}.

Since p1, . . . pn are homogeneous with respective degrees d1, . . . , dn, there
exists c̃ > 0 such that, for any ζ ∈ (Cn)∗,

n∑

j=1

|pj(ζ)|
‖ζ‖dj

> c̃ .

Therefore, for any ζ ∈ (Cn)∗, one has

n∑

j=1

|Pj(ζ)|
‖ζ‖dj

≥
n∑

j=1

|pj(ζ)|
‖ζ‖dj

−
n∑

j=1

|qj(ζ)|
‖ζ‖dj

.

For ‖ζ‖ ≥ R, with R > 0 large enough, one has, since deg qj < dj, j =
1, . . . , n, that

n∑

j=1

|qj(ζ)|
‖ζ‖dj

<
c̃

2
.

Therefore, for ‖ζ‖ ≥ R, we have

n∑

j=1

|Pj(ζ)|
‖ζ‖dj

≥ c̃

2
.

The last inequality implies (ii) with some constant c = c(R). ♦

Note that, if P is a polynomial map from Cn to Cn, the fact that

lim
‖ζ‖7→+∞

‖P (ζ)‖ = +∞

(which means just that the map is a proper polynomial map in the topological
sense) does not imply the strong properness condition (2.1). For example, if
n = 2, the polynomial map (X1X2, (X1 + 1)(X2 + 1)) is proper, but does
not satisfy (2.1) since there are two common zeroes at infinity.
In order to weaken condition (2.1), we introduce the following concept:
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Definition 2.1 Let (P1, . . . , Pn) be a polynomial map from Cn to Cn and
(δ1, . . . , δn) be a set of strictly positive rational numbers with 0 < δj ≤ deg Pj

for any j. Then we say that (P1, . . . , Pn) is (δ1, . . . , δn)- proper if and only if
there exist c > 0, R > 0 such that, for any ζ ∈ Cn such that ‖ζ‖ ≥ R,

n∑

j=1

|Pj(ζ)|
(1 + ‖ζ‖2)

δj
2

≥ c . (2.2)

Example 2.1 When n = 2, the polynomial map (X1X2, (X1 + 1)(X2 + 1))
is (1, 1)-proper.

Remark 2.1 We may extend this notion to the case when the δj are rational
numbers with the sole conditions δj ≤ deg Pj. In this setting, a polynomial
map which is (δ1, . . . , δn)-proper is not necessarily proper in the topological
sense.

Let us now formulate the toric analogue of the Proposition 2.1.

Proposition 2.2 Let F1, . . . Fn be n Laurent polynomials with Newton poly-
hedra ∆1, . . . ∆n. The following two assertions are equivalent:
i) F1, . . . Fn satisfy the Bernstein conditions (1.3)
ii) There exist strictly positive constants R, c such that, for any ζ ∈ Cn, with
‖Re ζ‖ ≥ R,

n∑

j=1

|Fj(e
ζ1 , . . . , eζn)|

eH∆j
(Re ζ)

≥ c . (2.3)

Proof. We first prove that (i) implies (ii). Let us assume that (F1, . . . , Fn)
satisfy the Bernstein conditions (1.3). In order to prove (ii), it is enough
to show that one can find a conic open sector Su in Rn containing −u and
strictly positive constants Ru, cu, such that, for any ζ ∈ Cn with Re ζ ∈ Su

and ‖Re ζ‖ ≥ Ru, one has

m∑

j=1

|Fj(e
ζ1 , . . . , eζn)|

eH∆j
(Re ζ)

≥ cu . (2.4)

Then, if one can do so for each rational u, the existence of positive constants
R and c will follow from a compactness argument.
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Applying in the ζ-space a change of coordinates ζ ′ = Aζ, A ∈ GLn(Z), we
may assume that u = (1, 0, . . . , 0) = e1. Let us write, for j = 1, . . . , n,

Fj(e
ζ1 , . . . , eζn) = ekjζ1fj(e

ζ2 , . . . , eζn) + F̃j(e
ζ1 , . . . , eζn) , (2.5)

where the support of F̃j is included in {x1 > kj}. As noticed by Kazarnovskii
[20] (see also [27], section 2, from which we got our inspiration here), the fact
that Bernstein conditions (1.3) are satisfied for (F1, . . . , Fn) is equivalent to
the following fact: for any set of respective faces (γ1, . . . , γn) of the Newton
polyhedra ∆1, . . . , ∆n of F1, . . . , Fn, there exists ε(γ1, . . . , γn) > 0 such that,
for any (ζ1, . . . , ζn) ∈ Cn,

n∑

j=1

|F γj

j (eζ1 , . . . , eζn)|
eHγj (Re ζ1,...,Re ζn)

≥ ε(γ1, . . . , γn) ,

where, for each j = 1, . . . , n, F
γj

j denotes the part obtained from Fj by
keeping only monomials corresponding to points in γj and deleting all the
others. It is clear that whenever δj denotes the Newton polyhedron of fj

(considered as a Laurent polynomial in n − 1 variables with support in the
subspace e⊥1 of Rn), the convex sets δ̃j = δj+kje1, j = 1, . . . , n, are respective
faces of ∆1, . . . , ∆n. Therefore, one has, for some ε > 0, for (ζ1, . . . , ζn) ∈ Cn,

n∑

j=1

|ekjζ1fj(e
ζ2 , . . . , eζn)|

e
Hδ̃j

(Re ζ1,...,Re ζn)
≥ ε . (2.6)

Since the support of F̃j in (2.5) is included in {x1 > kj}, there exists ρ > 0,
such that, for any ζ = (ζ1, . . . , ζn) with Re ζ1 < 0 and |Re ζj| ≤ ρ|Re ζ1| for
j = 2, . . . , n, one has

Hδ̃j
(Re ζ) = H∆j

(Re ζ), j = 1, . . . , n . (2.7)

On the other hand, if ρ is small enough, then there exists R > 0 such that
for any ζ ∈ Cn with Re ζ1 ≤ −R and |Re ζj| ≤ ρ|Re ζ1| for j = 2, . . . , n, one
has

n∑

j=1

|F̃j(e
ζ1 , . . . , eζn)|

e
Hδ̃j

(Re ζ1,...,Re ζn)
<

ε

2
. (2.8)
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From (2.6), (2.7) and (2.8), we get that for ζ in the conic sector

Su := {Re ζ1 < 0, |Re ζj| < ρ|Re ζ1|, j = 2, . . . , n} ,

the inequality (2.4) is valid for ‖Re ζ‖ ≥ R = Ru and cu = ε/2. This shows
that (ii) holds for the system (F1, . . . , Fn).
In order to prove the converse direction we will construct a globally defined
real analytic function that is not vanishing in X \T. This is done as follows:

For each j ∈ {1, . . . , n} choose n Laurent polynomials (G
(j)
1 , . . . , G(j)

n ) with

Newton polyhedron ∆j such that the system (G
(j)
1 , . . . , G(j)

n ) satisfies the
Bernstein conditions (1.3). It follows from the fact that (i) implies (ii) that,
for some convenient constants Cj ≥ cj > 0, Rj > 0, one has, for any ζ ∈ Cn

with ‖Re ζ‖ ≥ Rj,

cje
H∆j

(Re ζ) ≤
n∑

k=1

|G(j)
k (eζ1 , . . . , eζn)| ≤ Cje

H∆j
(Re ζ) .

Consider now on the torus Tn the real analytic function

ζ 7→ φ(ζ) :=
n∑

j=1

|Fj(ζ)|2
n∑

k=1
|G(j)

k (ζ)|2
.

Let X be any toric variety associated to a simple refinement of the fan which
corresponds to ∆1+. . .+∆n. The Laurent polynomials (G

(j)
1 , . . . , G(j)

n ) induce

effective Cartier divisors (D(j)
1 , . . . ,D(j)

n ) on X , namely

D(j)
k = div(G

(j)
k ) + E(∆j) , 1 ≤ j, k ≤ n,

where E(∆j) is the T-Cartier divisor on X corresponding to ∆j (it is well
defined, since X corresponds to a fan which is compatible with ∆j). The fact

that the system (G
(j)
1 , . . . , G(j)

n ) obeys the Bernstein conditions is equivalent
(see for example [17]) to

|D(j)
1 | ∩ . . . ∩ |D(j)

n | = Lj ⊂ Tn .

For homogeneity reasons, the function

ζ 7→ φ(ζ1, . . . , ζn)
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extends from Tn \ n⋃
j=1
Lj to a function φ̃ defined globally as a real analytic

function on X \ n⋃
j=1
Lj.

Now we are ready to complete the proof of the final step. Assume that
(F1, . . . , Fn) satisfies (ii). For |ζ1|+ . . . + |ζn|+ 1

|ζ1| + . . . + 1
|ζn| large enough,

we have, for some constants 0 < c̃ < C̃ < ∞,

c̃ ≤ |φ̃(ζ1, . . . , ζn)| = |φ(ζ1, . . . , ζn)| ≤ C̃ .

Therefore φ̃ does not vanish on X \ Tn, which implies that the effective
Cartier divisors Dj induced by the Fj on X by

Dj = div (Fj) + E(∆j)

are such that

|D1| ∩ . . . ∩ |Dn| ⊂ Tn .

This is equivalent to say that the Bernstein conditions are fullfilled for the
system (F1, . . . , Fn). ♦
In order to weaken the properness condition (2.2), we introduce the toric
analogue of Definition 2.1.

Definition 2.2 Let (F1, . . . , Fn) be a system of Laurent polynomials in n
variables, with Newton polyhedra ∆1, . . . , ∆n, and (δ1, . . . , δn) be a collection
of closed convex polyhedra with vertices in Qn, with δj ⊂ ∆j, j = 1, . . . , n.
Then, we say that (F1, . . . , Fn) is (δ1, . . . , δn)-proper if and only if there exist
c > 0, R > 0 such that, for any ζ ∈ Cn such that ‖Re ζ‖ ≥ R,

n∑

j=1

|Fj(e
ζ1 , . . . , eζn)|

eHδj
(Re ζ)

≥ c . (2.9)

Example 2.2 Let n = 2 and

F1 = X2
1X

2
2 + X2

1X
−2
2 + α1X1X2 + β1X1X

−1
2 + γ1X

2
2X

−2
1 + δ1X

−2
1 X−2

2

F2 = X2
1X

2
2 + X2

1X
−2
2 + α2X1X2 + β2X1X

−1
2 + γ2X

2
2X

−2
1 + δ2X

−2
1 X−2

2 ,

with the conditions

γ1(δ1 − δ2)− δ1(γ1 − γ2) 6= 0

(α1 − α2)
2 − (β1 − β2)

2 6= 0
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Then (F1, F2) is (δ, δ)-proper, where

δ = conv {(−2,−2), (2, 2), (1, 1), (1,−1)} .

In fact, it is enough to notice that (F1 − F2, F1) satisfy the Bernstein con-
ditions and have as respective Newton polyhedra δ and [−2, 2] × [−2, 2], so
that by Proposition 2.2, one has, for ‖(Re ζ1, Re ζ2)‖ ≥ R > 0,

|(F1 − F2)(e
ζ1 , eζ2)|

eHδ(Re ζ1,Re ζ2)
+

|F1(e
ζ1 , eζ2)|

eH[−2,2]2 (Re ζ1,Re ζ2)
≥ c ,

which implies, for such ζ,

|F1(e
ζ1 , eζ2)|

eHδ(Re ζ1,Re ζ2)
+
|F2(e

ζ1 , eζ2)|
eHδ(Re ζ1,Re ζ2)

≥ c

2
.

3 Proof of the Vanishing Theorems

3.1 The case of the projective space Pn

Our basic tool will be multidimensional residue theory through an approach
based on the use of Bochner-Martinelli integral representation formulas. Let
us recall here some well known facts.
Let P1, . . . , Pn be n polynomials in n variables defining a discrete (hence
finite) variety in Cn. It is shown in [28] that if α ∈ {P1 = . . . = Pn = 0}
and ϕ ∈ D(Cn) is such that ϕ ≡ 1 in a neighborhood of α and ϕ ≡ 0 in
a neighborhood of any point in {P1 = . . . = Pn = 0} \ {α}, then the local
residue at the point α is

Resα[
Qdζ

P1 . . . Pn

] =

= γn lim
ε7→0

1

εn

∫

‖P‖2=ε

Q
( n∑

k=1

(−1)k−1Pk

n∧
l=1
l6=k

∂Pl

)
∧ ϕdζ (3.1)

= γn lim
ε7→0

∫

‖P‖2=ε

Q
( n∑

k=1
(−1)k−1Pk

n∧
l=1
l6=k

∂Pl

)
∧ ϕdζ

‖P‖2n
, (3.2)
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where as usual ‖P‖2 = |P1|2 + . . . + |Pn|2 and γn = (−1)
n(n−1)

2 (n−1)!
(2πi)n . Using

Stokes ’s theorem and observing that the form

Q
( n∑

k=1
(−1)k−1Pk

n∧
l=1
l 6=k

∂Pl

)
∧ ϕdζ

‖P‖2n

is closed in a punctured neighborhood Uα \ {α}, we get from (3.2) that if Uα

is small enough and with piecewise smooth boundary,

Resα[
Qdζ

P1 . . . Pn

] = γn

∫

∂Uα

Q
( n∑

k=1
(−1)k−1Pk

n∧
l=1
l6=k

∂Pl

)
∧ dζ

‖P‖2n
.

Therefore, if U is any bounded open set with smooth boundary containing
in its interior the set V (P ) := {P1 = . . . = Pn = 0}, then the global residue
is the sum of the local residues, that is

Res

[
Q(X1, . . . , Xn)dX

P1, . . . , Pn

]
= γn

∫

∂U

Q
( n∑

k=1
(−1)k−1Pk

n∧
l=1
l6=k

∂Pl

)
∧ dζ

‖P‖2n
. (3.3)

We can rewrite (3.3) as follows: if

s0 = (
P1

‖P‖2
, . . . ,

Pn

‖P‖2
) = (s01, . . . , s0n),

then

Res

[
Q(X1, . . . , Xn)dX

P1, . . . , Pn

]
= γn

∫

∂U

Q(ζ)

(
n∑

k=1

(−1)k−1s0kds0,[k]

)
∧ dζ,

where ds0,[k] :=
∧

j 6=k
ds0j, k = 1, . . . , n.

An homotopy argument shows that one can replace the vector-function s0

above by any vector-function s, which is C1 in a neighborhood of the ∂U and
satisfies

< s(ζ), P (ζ) >=
n∑

k=1

sk(ζ)Pk(ζ) ≡ 1, ζ ∈ ∂U .

14



Then the global residue is given by the generalized Bochner-Martinelli for-
mula

Res

[
Q(X1 . . . , Xn)dX

P1, . . . , Pn

]
= γn

∫

∂U

Q

(
n∑

k=1

(−1)k−1skds[k]

)
∧ dζ . (3.4)

Before proceeding any further we point out that it is enough to prove The-
orem 1.1 for the case when δj, j = 1, . . . , n, are strictly positive integers. In
order to do so, it is enough to use the compatibility of the residue calculus
with the change of basis (see for example [26], section 2, prop. 2.3), which
asserts that, for any N ∈ N∗,

Res
[

Q(X)dX
P1(X), . . . , Pn(X)

]
=

= Res
[

Q(XN
1 , . . . , XN

n )(X1 · · ·Xn)N−1dX
P1(X

N
1 , . . . , XN

n ), . . . , Pn(XN
1 , . . . , XN

n )

]
. (3.5)

Let N be a common denominator for the rational numbers δj, j = 1, . . . , n;
then the polynomials

P̃j(X) = Pj(X
N
1 , . . . , XN

n ) , j = 1, . . . , n,

have respective degrees N deg Pj, j = 1, . . . , n, and satisfy (2.2) with δ̃j =
Nδj ∈ N∗. If we assume that our result holds when the δj are integers, we
get that the residue symbol (3.5) is zero when

N deg Q + n(N − 1) ≤ N(δ1 + · · ·+ δn)− n− 1 ,

that is

deg Q ≤ δ1 + · · ·+ δn − n− 1

N

Therefore, we have (1.8) whenever

deg Q ≤ δ1 + · · ·+ δn − n− 1

as we want. We will assume from now on that δj ∈ N∗ for any j ∈ {1, . . . , n}.
The next lemma introduces the Bochner-Martinelli residual currents into the
computation of the global residue.
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Lemma 3.1 Let P = (P1, . . . , Pn) be a polynomial map from Cn to Cn

defining a discrete (hence finite ) zero variety V (P ) in Cn. Assume also that
R > 0 is sufficiently large so that V (P ) = {P1 = . . . = Pn = 0} ⊂ B(0, R).
For Dj := deg Pj pick an integer M large enough, so that

δk + M −Dk > 0, ∀k ∈ {1, . . . , n} .

Then, if sδ,M
0 is the vector function defined on Cn as

sδ,M
0 (ζ) :=

( P1(ζ)

(1 + ‖ζ‖2)δ1+M
, . . . ,

Pn(ζ)

(1 + ‖ζ‖2)δn+M

)

and

‖P (ζ)‖2
δ,M :=

n∑

j=1

|Pj(ζ)|2
(1 + ‖ζ‖2)M+δj

,

one has, for any Q ∈ C[X1, ..., Xn],

Res

[
Q(X)dX
P1, . . . , Pn

]
= γn




∫

‖ζ‖=R

‖P‖2(λ−n)
δ,M Q

( n∑

k=1

(−1)k−1sδ,M
0k dsδ,M

0,[k]

)
∧ dζ




λ=0

.(3.6)

Proof: Let us define the vector function s = sδ,M in Cn \ V (P ) as follows

sδ,M(ζ) =
1

‖P (ζ)‖2
δ,M

( P1(ζ)

(1 + ‖ζ‖2)δ1+M
, . . . ,

Pn(ζ)

(1 + ‖ζ‖2)δn+M

)
.

Formula (3.4) implies that

Res

[
Q(X)dX
P1, . . . , Pn

]
=

= γn

∫

‖ζ‖=R

Q
( n∑

k=1

(−1)k−1sδ,M
k dsδ,M

[k]

)
∧ dζ =

= γn

∫

‖ζ‖=R

‖P‖−2n
δ,M Q

( n∑

k=1

(−1)k−1sδ,M
0k dsδ,M

0,[k]

)
∧ dζ =

= γn




∫

‖ζ‖=R

‖P‖2(λ−n)
δ,M Q

( n∑

k=1

(−1)k−1sδ,M
0k dsδ,M

0,[k]

)
∧ dζ




λ=0
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The last equality completes the proof of the lemma. ♦
Next, we introduce the common zeroes at infinity of the polynomial map
(P1, . . . , Pn) into the description of the action of the Bochner-Martinelli resid-
ual current as it is given by (3.6).
For λ fixed with Re λ >> 1, let us express in homogeneous coordinates
ζ̃ := (ζ0, . . . , ζn) the differential form

‖P‖2(λ−n)
δ,M Q

( n∑

k=1

(−1)k−1sδ,M
0k dsδ,M

0,[k]

)
∧ dζ .

This leads to a differential (n, n− 1) form in Pn (depending on the complex
parameter λ), which will be denoted as Θδ,M

P,Q,λ. This form is

Θδ,M
P,Q,λ(ζ̃) = (

‖P‖δ,M

‖ζ̃‖|δ|+M
)2(λ−n)ζ

nM+|δ|−n−1
0 Q(ζ̃)×

×
(

n∑

k=1

(−1)k−1 ζ
δk+M−Dk

0 Pk

‖ζ̃‖2(δ[k]+M)

k∧
l=1
l6=k

∂


ζ

δl+M−Dl

0 Pl

‖ζ̃‖2(δ[l]+M)




)
∧ Ω , (3.7)

where |δ| = δ1 + · · ·+ δn, δ[j] = |δ| − δj for j = 1, . . . , n, Ω is the Euler form,
and

‖P(ζ̃)‖2
δ,M :=

n∑

j=1

|Pj|2|ζ0|2(δj−Dj+M)‖ζ̃‖2δ[j] ,

P1, . . . ,Pn,Q, being the respective homogeneizations of P1, . . . , Pn, Q; the
norm ‖ζ̃‖ is the Euclidean norm in Cn+1.
Since

∂

[
‖P‖2(λ−n)

δ,M Q
( n∑

k=1

(−1)k−1sδ,M
0k dsδ,M

0,[k]

)
∧ dζ

]
= nλ‖P‖2(λ−n)

δ,M Q
( n∧

k=1

∂sδ,M
0k

)
∧dζ ,

we have, if the action of the ∂ operator is now considered on the projective
differential forms (expressed in homogeneous coordinates),

∂Θδ,M
P,Q,λ =

= nλ
(‖P(ζ̃)‖δ,M

‖ζ̃‖|δ|+M

)2(λ−n)
ζ−deg Q−n−1
0 Q(ζ̃)Aδ,M

P,Q(
ζ1

ζ0

, . . . ,
ζn

ζ0

) ∧ Ω(ζ̃) ,

(3.8)
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where

Aδ,M
P,Q :=

n∧

k=1

∂sδ,M
0k .

Since

sδ,M
0k (

ζ1

ζ0

, . . . ,
ζn

ζ0

) = |ζ0|2(δk+M)Pk(ζ̃)ζ0
−Dk

‖ζ̃‖2(δk+M)
,

one has

Aδ,M
P,Q(

ζ1

ζ0

, . . . ,
ζn

ζ0

) = ζ
nM+|δ|
0

n∧

k=1

∂


ζ

δk+M−Dk

0 Pk

‖ζ̃‖2(M+δk)


 .

This shows (as a consequence of Atiyah’s theorem [1]) that the map

λ 7→ Θδ,M
P,Q,λ

can be considered as a meromorphic map with values in the space of (n, n−1)
currents in Pn(C).

At this stage we are ready for the

Proof of the Theorem 1.1.

Take R > 0 as in the Lemma 3.1 and consider the complement in Pn(C)
of B(0, R) as a 2n-chain Σ in Pn (with smooth boundary). One has, for
Re λ >> 1, using Stokes’s theorem

∫

∂Σ
Θδ,M

P,Q,λ =
∫

Σ
∂[Θδ,M

P,Q,λ] .

Therefore, one can rewrite (3.6) as

Res

[
Q(X)dX
P1, . . . , Pn

]
= −γn

[∫

∂Σ
Θδ,M

P,Q,λ

]

λ=0
= −γn

[∫

Σ
∂

(
Θδ,M

P,Q,λ

)]

λ=0
(3.9)

(the total sum of residues in Cn equals the opposite of the “residue” at
infinity). This identity essentially reduces the proof of the Theorem 1.1 to
the computation of an integral describing the “residue” at infinity.
In order to carry out the computation of this integral (and to prove that it
vanishes in the situation we are dealing with), we first express the integrant it
involves in homogeneous coordinates; then we localize the problem and look
at the analytic continuation up to the origin of the meromorphic function

λ 7→
∫

Σ
ϕ∂

(
Θδ,M

P,Q,λ

)
, (3.10)
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when ϕ is an element in D(Pn(C)) with support contained in a neighborhood
V of some point x at infinity in Pn(C) (these are the only interesting points,
since if the support of ϕ does not intersect the hyperplane at infinity, then
(3.10) is an entire function which vanishes at λ = 0). We may suppose that
the local coordinates in V are ξ := ( ζ0

ζ1
, . . . , ζn

ζ1
) (for example). Let

fj(ζ) =
Pj(ζ̃)ζ

δj+M−Dj

0

ζ
M+δj

1

, j = 1, . . . , n,

expressed in the local coordinates ξ. Let us introduce a resolution of singu-
larities (X , π) for the hypersurface {f1 · · · fn = 0} over V (shrinking V about
the point x if necessary). Then, in a local chart ω on X with coordinates w
centered at the origin, all functions π∗(fj) are, up to invertible holomorphic
functions, monomials in w; that is

π∗(fj)(w) = uj(w)w
θj1

1 · · ·wθjn
n , θjk ∈ N, uj invertible in ω .

Note that

π∗
[ζ0

ζ1

]
(w) = u0(w)wθ01

1 · · ·wθ0n
n , θ0k ∈ N, u0 invertible in ω ,

since δj + M −Dj > 0 for at least one j (in fact for any j). However this is
not enough. Using the ideas of A. Varchenko [30] and A. Khovanskii [23], we
introduce, above each such local chart ω, a toroidal manifold X̃ and a proper
holomorphic map π̃ : X̃ 7→ ω (wich is locally a biholomorphism between
X̃ \ π̃∗{w1 · · ·wn = 0} and ω \ {w1 · · ·wn = 0}), such that, on each local
chart ω̃ on X̃ (with local coordinates (t1, . . . , tn)), one has

π̃∗π∗(fj)(t1, . . . , tn) = ũj(t)t
θ̃j1

1 · · · tθ̃jn
n = ũj(t)m̃j(t)

and one of the m̃j, j = 1, . . . , n, let say m̃, divides m̃1, . . . m̃n. Namely, the

manifold X̃ is the smooth toric variety attached to a simple refinement of
the fan associated with the Newton polyhedron

Γ+(θ1, . . . , θn) :=
n⋃

j=1

[
θj + Nn

]
.

It arises from glueing together copies (UJ , πJ) of Cn (in correspondence with
the n-dimensional cones of the fan, πJ being a monoidal transform attached
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to the skeleton of the cone), according to the glueing of the cones along
their edges. The 1-dimensional edges of these cones are determined as the
normal directions to the (n − 1)-dimensional faces of the Newton polyhe-
dron Γ+(θ1, . . . , θn), plus a minimal system of additional directions rational
directions in [0,∞[n (which are just necessary for the fan to be simple).

We now come to the crucial point where we use the hypothesis (1.7), which

tells us that, for R|ζ0| ≤ (|ζ1|2 + · · ·+ |ζn|2) 1
2 , one has

|ζ0|M‖ζ̃‖|δ| ≤ c
n∑

j=1

|Pj(ζ̃)||ζ0|M+δj−Dj‖ζ̃‖δ[j] ≤ cn‖P‖δ,M .

This implies that, if

π̃∗π∗
[ζ0

ζ1

]
(t) = ũ0(t)t

θ̃01
1 · · · tθ̃0n

n , ũ0 invertible in ω̃ ,

the distinguished monomial m̃ divides m̃M
0 , where m̃0 := tθ̃01

1 · · · tθ̃0n
n , in ω̃.

Let ϕ̃ be a test function on X with support in the local chart ω. As can be
easily seen , one can write in ω̃,

π̃∗
[
ϕ̃

[
π∗

(
ϕAP,Q

(ζ1

ζ0

, . . . ,
ζn

ζ0

))]]
(t) =

m̃
nM+|δ|
0

m̃n

(
∂m̃

m̃
∧ σ1(t) + τ1(t)

)
,

where σ1 and τ1 (depending on ϕ and ϕ̃) are smooth differential forms with
respective type (n, n− 1) and (n, n). It follows then from (3.8) that

π̃∗[ϕ̃[π∗(ϕ∂Θδ,M
P,Q,λ)]](t) = λ|m̃|2λ|ξ|2λ m̃

nM+|δ|−deg Q−n−1
0

m̃n

(
∂m̃

m̃
∧ σ2(t) + τ2(t)

)

where σ2 and τ2 (depending on ϕ and ϕ̃) are smooth differential forms with
respective type (n, n− 1) and (n, n) and ξ is a real analytic strictly positive
function in ω̃. Since |δ| − deg Q − n − 1 ≥ 0 and m̃n divides m̃nM

0 , we get
immediately that for any test function ρ with support in ω̃,

[∫
ρ(t)π̃∗[ϕ̃[π∗(∂Θδ,M

P,Q,λ)](t)
]

λ=0
= 0 .

Then, the conclusion (1.8) follows from the formula (3.9) and our localization
and normalized blowing-up process. ♦
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Remark 3.1 The fact that δj > 0 does not play any role in the proof. There-
fore, Theorem 1.1 remains valid when (P1, . . . , Pn) is (δ1, . . . , δn)-proper,
where the δj are rational numbers such that δj ≤ Dj for any j = 1, . . . , n
(see Remark 2.1); of course, the conclusion of the theorem is interesting only
in the case when δ1 + · · ·+ δn ≥ n + 1.

3.2 The toric case

We begin with a review of some preliminary material taken from [9, 10, 11,
12, 17].
A complete toric variety X of dimension n is determined by a complete fan
F in an n-dimensional real vector space ΛR, where Λ is a lattice; for the
sake of simplicity, we will always assume Λ = Zn and ΛR = Rn. Taking a
suitable refinement of the fan, we may assume that this toric variety X is
also smooth.

We denote as Λ∗ ' Zn the dual lattice. The primitive generators of the
one dimensinal cones in F are denoted by η1, . . . , ηs. Each of these vectors
ηi, i = 1, . . . , s, is in correspondence with a torus-invariant irreducible Weil
divisor Xi on X . The (n−1)-Chow group An−1(X ) on X is generated by the
classes [Xi], i = 1, . . . , s, and induces a grading on the polynomial algebra
S = C[x1, . . . , xs], namely

deg(xα1
1 · · · xαs

s ) :=
[
α1X1 + · · ·+ αsXs

]
∈ An−1(X ) .

Note that the sequence

0 → Λ∗ τ→ Zs → An−1(X ) → 0 ,

where τ(m) = (〈m, η1〉, . . . , 〈m, ηs〉) ∈ Zs is exact since any monomial x〈m,η〉 :=

x
〈m,η1〉
1 . . . x〈m,ηs〉

s , m ∈ Λ∗, has degree zero. If (e∗1, . . . , e
∗
n) is the canonical ba-

sis of Λ∗ and I is an ordered subset of {1, ..., s} with cardinal |I| = n, let
say I = {i1, . . . , in}, 1 ≤ i1 < · · · < in ≤ s, we denote as

dxI :=
n∧

l=1

dxil , x̂I :=
s∏

k=1
k/∈I

xk, det[ηI ] := det[〈e∗k, ηil〉]1≤k,l≤n .

The toric Euler form on X is the differential form Ω (expressed in homoge-
neous coordinates x1, . . . , xs)

Ω(x) := ±1
∑

|I|=n

det[ηI ]x̂IdxI .
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We now consider a system (F1, ..., Fn) of Laurent polynomials with respective
polyhedra ∆1,...,∆n, and a collection (δ1, ..., δn) of rational polyhedra such
that δj ⊂ ∆j for any j ∈ {1, . . . , n}, δ1 + · · · + δn is n-dimensional and the
hypothesis (1.9) are fulfilled.

Before proceeding any further, by using the same change of basis (namely
replace Xj by XN

j for a convenient choice of N ∈ N∗) as we did in (3.5), we
can reduce ourselves to the situation where all polyhedra δ1,...,δn have their
vertices in the lattice Λ = Zn (originally these vertices were assumed to be
in Qn, therefore it is enough to take for N a common denominator of all
coordinates of such points).

We fix a polyhedron ∆ with dimension n and vertices in Λ, which contains
the origin as an interior point and is such that, for any j ∈ {1, . . . , n}, the
Minkowski sum ∆ + δj contains ∆j. We let

∆̃ := [∆ + δ1 + · · ·+ δn] + ∆1 + · · ·+ ∆n

We consider as the fan F a simple refinement of the fan F(∆̃) which cor-
responds to this polyhedron ∆̃ (see [17]); X will be from now on the toric
variety attached to F . It is compatible with ∆, δj + ∆ and ∆j for any j.
For any j = 1, . . . , n, we take n + 1 Laurent polynomials, with convex poly-
hedron ∆ + δj, namely G

(j)
0 , . . . , G(j)

n , which do not vanish simultaneously

in Tn and are such that the system (G
(j)
1 , . . . , G(j)

n ) satisfies the Bernstein
conditions (1.3) (when considered as a system of Laurent polynomials with
Newton polyhedron ∆+δj). Since the fan F is compatible with ∆+δj, these

Laurent polynomials induce Cartier divisors D(j)
0 , . . . ,D(j)

n on X such that

|D(j)
0 | ∩ . . . ∩ |D(j)

n | = ∅ .

In particular, the function

‖G(j)‖2 :=
n∑

k=0

|G(j)
k |2

does not vanish on the torus Tn. Let, for ζ ∈ Tn,

‖F (ζ)‖2
δ,∆ :=

n∑

j=1

|Fj(ζ)|2
‖G(j)(ζ)‖2

,
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sδ,∆
0 (ζ) :=

(
F1(ζ)

‖G(1)(ζ)‖2
, . . . ,

Fn(ζ)

‖G(n)(ζ)‖2

)
,

and, for ζ ∈ Tn \ V ∗(F ),

sδ,∆(ζ) :=
sδ,∆
0 (ζ)

‖F (ζ)‖2
δ,∆

.

Let ε = min{‖ζ − ζ ′‖; ζ 6= ζ ′, ζ, ζ ′ ∈ V ∗(F )} and

U :=
⋃

α∈V ∗(F )

B[α,

min
α∈V ∗(F )

(ε, d(α,Cn \Tn))

2
] ,

where d is the Euclidean distance in Cn.

At this point, we notice that the representations (3.3) and (3.4) of the
Bochner-Martinelli type that we gave to express the total sum of residues
respect to a n-valued polynomial map from Cn to Cn remain valid when
polynomials are replaced by Laurent polynomials Fj, j = 1, ..., n, and total
sum of residues involves only residues at poles in the torus Tn, provided the
Fj, j = 1, ..., n, define a discrete (hence finite) zero set in Tn. Therefore,
we may state the exact analog of lemma 3.1 (the proof is a repetition of the
proof of this previous lemma):

Lemma 3.2 Let F = (F1, . . . , Fn) be a system of Laurent polynomials in n
variables, with respective Newton polyhedra ∆1, . . . , ∆n and polyhedra δ1, ...,
δn, ∆ as above. Then, for any β ∈ Z, one has

Res

[
Xβ1

1 · · ·Xβn
n dX

F1, · · · , Fn

]

T

=

= γn

[
∫

∂U
‖F‖2(λ−n)

δ,∆ ζβ
( n∑

k=1
(−1)k−1sδ,∆

0k dsδ,∆
0,[k]

)
∧ dζ1

ζ1
∧ · · · ∧ dζn

ζn

]

λ=0

.(3.11)

We now adapt the construction (and study) of the meromorphic map

λ 7→ Θδ,M
P,Q,λ

that was proposed in (3.7). Such a meromorphic map will be defined in this
new situation as follows: for λ fixed with Re λ >> 1, let

Θδ,∆
F,β,λ := ‖F‖2(λ−n)

δ,∆ ζβ
( n∑

k=1
(−1)k−1sδ,∆

0k dsδ,∆
0,[k]

)
∧ dζ (3.12)
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(obtained from the integrant in (3.11) exactly as (3.7) was obtained from the
integrant in (3.6)).
As we did previously (in the projective situation), we express it in homoge-
neous coordinates (x1, . . . , xs) related to the toric variety X . The coordinates
ζj, j = 1, . . . , n, in the torus are expressed in homogeneous coordinates as

ζj =
s∏

i=1

x
ηij

i := x〈e
∗
j ,η〉 , j = 1, . . . , n, (3.13)

where, for any i = 1, . . . , s, ηij, j = 1, . . . , n, are the coordinates of the
primitive vector ηi in the canonical basis (e1, . . . , en) of Λ ' Zn. We will also
define, for any i ∈ {1, ..., s} and any j ∈ {1, ..., n}

µij := −min
ξ∈∆j

〈ξ, ηi〉
νij := − min

ξ∈δj+∆
〈ξ, ηi〉 . (3.14)

Since the situation is a little bit more involved than it was in the projective
case, we will state the result of this homogenization process (applied to the
differential form (3.12) and its ∂ with respect to the ζ coordinates) as a
lemma.

Lemma 3.3 The differential (n, n − 1)-form in (3.12) can be expressed in
homogeneous coordinates as

Θδ,∆
F,β,λ(x) = ‖F(x)‖2(λ−n)

δ,∆

s∏

i=1

x

〈β,ηi〉−1+
n∑

j=1

νij

i ×

×
(

n∑

k=1

(−1)k−1

[
(

s∏
i=1

xνik−µik
i )Fj(x)

]

‖G(k)(x)‖2

n∧
l=1
l6=k

∂




( s∏
i=1

xνil−µil
i

)
Fl(x)

‖G(l)(x)‖2




)
∧ Ω(x).

(3.15)

The differential form ∂ζΘ
δ,∆
F,β,λ can be expressed as

∂Θδ,∆
F,β,λ(x) =

= nλ‖F(x)‖2(λ−n)
δ,∆

(
s∏

i=1

x

<β,ηi>−1+
n∑

j=1

νij

i

)
n∧

k=1

∂




( s∏
i=1

xνik−µik
i

)
Fk(x)

‖G(k)(x)‖2


 ∧ Ω(x).

(3.16)
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This means that the differential forms on X which are such defined in homo-
geneous coordinates restrict respectively to the torus as the differential forms
Θδ,∆

F,β,λ(ζ) and its ∂ in ζ.

Proof: Consider the X -homogenizations of F1, . . . , Fn, that is

Fj(x1, . . . , xs) :=

(
s∏

i=1

x
µij

i

)
Fj(x

〈e∗1,η〉, . . . , x〈e
∗
n,η〉) ,

and the X -homogenizations of the G
(j)
k , j = 1, . . . , n, k = 0, . . . , n, namely

G(j)
k (x1, . . . , xs) :=

(
s∏

i=1

x
νij

i

)
G

(j)
k (x〈e

∗
1,η〉, . . . , x〈e

∗
n,η〉) .

We will also denote

‖G(j)(x1, . . . , xs)‖2 :=
n∑

k=0

|G(j)
k (x)|2, j = 1, . . . , n .

The function
ζ 7→ ‖F (ζ)‖2

δ,∆

on the torus will be extended as the function on X which is defined in ho-
mogeneous coordinates as

‖F(x)‖2
δ,∆ :=

n∑

j=1

∣∣∣∣∣
s∏

i=1

x
νij−µij

i

∣∣∣∣∣
2 |Fj(x)|2
‖G(j)(x)‖2

.

On the other hand, one has, for k = 1, . . . , n,

sδ,∆
0k (x〈e

∗
1,η〉, . . . , x〈e

∗
n,η〉) =

∣∣∣∣∣
s∏

i=1

xνik
i

∣∣∣∣∣
2

(
s∏

i=1
x−µik

i

)
Fk(x)

‖G(k)(x)‖2
,

while the differential form
(

s∏

i=1

x
〈β,ηi〉
i

)
Ω(x)

x1 . . . xs

on X restricts to the torus as ζβ dζ1
ζ1
∧ . . . ∧ dζn

ζn
(see the proof of Proposition

9.5 in [2]). When we report these expressions in (3.12), we obtain the desired
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relations (3.15); the same kind of argument holds for (3.16). ♦.

The next lemma will be crucial in order to study in local charts about any
point in X \ Tn (under the “properness” assumption (1.9) for the Fj) the
Laurent development (as current-valued maps) of

λ 7→ Θδ,∆
F,β,λ , λ 7→ ∂ζ [Θ

δ,∆
F,β,λ] ,

when such maps are expressed in homogeneous coordinates.

Lemma 3.4 Let F = (F1, . . . , Fn) be a system of Laurent polynomials in n
variables, with respective Newton polyhedra ∆1, . . . , ∆n. Suppose there exist
constants c > 0, R > 0, and convex polyhedra δ1, . . . , δn with vertices in Zn,
with δj ⊂ ∆j, j = 1, . . . , n and dim(δ1 + . . . + δn) = n, which are such that
the hypothesis (1.9) is fullfiled. Let ∆ be any polyedron with dimension n,
vertices in Zn, such that ∆j ⊂ ∆ + δj for any j = 1, ..., n and F be a fan
which is compatible with ∆, δj + ∆, ∆j for any j = 1, ..., n. Let η1, ..., ηs be
the primitive generators of the one dimensional cones in the fan F . Then, for
any β in Zn which lies in the interior of the convex polyhedron δ1 + · · ·+ δn,
the integers νi,j defined in (3.14) are such that for any i ∈ {1, ..., s}, for any
j ∈ {1, ..., n}

〈β, ηi〉 − 1 +
n∑

j=1

νij ≥ 0 . (3.17)

Remark 3.2 Notice that the integers µi,j, i = 1, ..., s, j = 1, ..., n, also
defined in (3.14) satisfy automatically

νi,j − µi,j ≥ 0 , ∀i ∈ {1, ..., s} , ∀j ∈ {1, ..., n} (3.18)

since ∆j is contained in δj + ∆ for any j = 1, ..., n.

Proof of Lemme 3.4: This lemma comes from a re-interpretation of our
hypothesis (1.9). Since the system of polynomials G

(j)
k , k = 1, ..., n, satisfies

the Bernstein hypothesis (1.3), it follows (see the argument used in the proof
of Proposition 2.2) that there exist strictly positive constants cj, Cj, such
that

∀ζ ∈ Cn , cje
H∆+δj

(Re ζ) ≤ ‖G(j)(eζ1 , . . . , eζn)‖ ≤ Cje
H∆+δj

(Re ζ) (3.19)
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One has also, for any ζ ∈ Cn such that ‖Re ζ‖ ≥ R,

n∑

j=1

|Fj(e
ζ1 , . . . , eζn)|

eHδj
(Re ζ)

≥ c > 0 . (3.20)

Note furthermore that Hδj+∆ = Hδj
+ H∆. We also introduce n + 1 Laurent

polynomials H0, . . . , Hn, with Newton polyhedron ∆, which do not vanish
simultaneously in Tn and are such that the system (H1, . . . , Hn) satisfies the
Bernstein hypothesis (1.3) when considered as a system of Laurent polyno-
mials with Newton polyhedron ∆, that is such that

c0 eH∆(Re ζ) ≤ ‖H(eζ1 , . . . , eζn)‖ ≤ C0 eH∆(Re ζ), ζ ∈ Cn (3.21)

for some strictly positive constants c0, C0 (where ‖H‖2 := |H0|2+· · ·+|Hn|2).
It follows from (3.19), (3.20) and (3.21) that for any ζ ∈ Tn such that

|ζ1|+ · · ·+ |ζn|+ 1

|ζ1| + · · ·+ 1

|ζn|
is large enough, one has

n∑

j=1

|Fj(ζ)|
‖G(j)(ζ)‖ ≥

c̃

‖H(ζ)‖ (3.22)

for some c̃ > 0. If we express the ζj in terms of homogeneous coordinates on
the toric variety X as in (3.13), we may rewrite (3.22) as

∣∣∣
s∏

i=1

x
−min

ξ∈∆
〈ξ,ηi〉

i

∣∣∣ ≤ 1

c̃

1

|H(x)|

(
n∑

j=1

∣∣∣
s∏

i=1

x
νij−µij

i

∣∣∣ |Fj(x)|
‖G(j)(x)‖

)
, (3.23)

where ‖H(x)‖ :=
n∑

k=0
|Hj(x)‖, theHj being defined as the X -homogenizations

of the Hj, namely

Hj(x1, . . . , xs) :=

(
s∏

i=1

x
−min

ξ∈∆
〈ξ,ηi〉

i

)
Hj(x

〈e∗1,η〉, . . . , x〈e
∗
n,η〉) .

The fact that δ1 + · · ·+ δn is n-dimensional and that β lies in the interior of
this polyhedron implies that for i = 1, . . . , s, one has

〈β, ηi〉 − 1− min
ξ∈δ1+...+δn

〈ξ, ηi〉 = − min
ξ∈δ1+...+δn

〈ξ − β, ηi〉 − 1 ≥ 0
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and hence

〈β, ηi〉 − 1 +
n∑

j=1

νij = 〈β, ηi〉 − 1−
n∑

j=1

min
ξ∈∆+δj

〈ξ, ηi〉

= 〈β, ηi〉 − 1−
n∑

j=1

min
ξ∈∆

ξj∈δj

(〈ξ + ξj, ηi〉

≥ −n min
ξ∈∆

〈ξ, ηi〉 ≥ 0,

since ∆ contains the origin. This proves the inequalities (3.17). ♦
At this point we may translate (in the spirit of [13]) in more geometric terms
the statement in lemma 3.4.

Proposition 3.1 Let F1, ..., Fn, ∆1, ..., ∆n, ∆ and F as in lemma 3.4, such
that the toric variety X (F) is an n-dimensional complex manifold. Let
E(∆), E(∆ + δ1), ..., E(∆ + δn), be the T -Cartier divisors corresponding to
∆, ∆ + δ1,..., ∆ + δn and

D̃j := div (Fj) + E(∆ + δj) , j = 1, ..., n .

Let x be a point in X (F) \ Tn which lies in the intersection of the supports
of the D̃j, j = 1, ..., n and [Ex] be the exceptional divisor in the normalized
blow-up π : Nx 7→ Vx along the ideal sheaf generated in OVx by global sections
f̃x1, ..., f̃xn for the divisors D̃j in some neighborhood Vx of x. Then, if fx is
a global section for E(∆) in Vx, one has

[π∗fx] ≥ [Ex] , (3.24)

that is the order of vanishing of π∗fx on each irreducible component of [Ex]
exceeds the multiplicity of this component in the decomposition of [Ex].

Proof: It follows immediately from (3.23), such an inequality being extended
from Tn to Vx, which is possible since Tn is dense in X ). Let

[Ex] =
∑

l

rxlExl ,

the Exl being the irreducible components and the rxl the associated multi-
plicities. Lifting (3.23) to the normalized blow-up Nx, one can see that the
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order of vanishing ρxl of π∗fx along any Exl is such that ρxl ≥ rxl for any l,
which is equivalent to the statement (3.24). ♦.

Proof of Theorem 1.2. The proof of Theorem 1.2 follows exactly the
same lines as the proof of our previous result Theorem 1.1. We consider the
complement of U in X as a 2n-chain Σ in X , and we deduce from lemma 3.2
and from the definition of Θδ,∆

F,β,λ that

Res

[
Xβ1

1 · · ·Xβn
n dX

F1, . . . , Fn

]

T

= −γn

[∫
∂Σ Θδ,∆

F,β,λ

]
λ=0

= −γn

[∫
Σ ∂

(
Θδ,∆

F,β,λ

)]
λ=0

,

(3.25)

the notation [ ]λ=0 meaning that one takes the meromorphic continuation,
and later on, the value at λ = 0. In order to prove the vanishing of the
residue symbol, it is enough to show that if x is any point in X \Tn, Vx an
arbitrary small neighborhood of x in X , and ϕ ∈ D(Vx), then the function

λ 7→
∫

Vx

ϕ∂
(
Θδ,∆

F,β,λ

)
(3.26)

can be continued as a meromorphic function of λ which has no pole at λ = 0
and vanishes at λ = 0. In order to do that, we repeat the argument in the
proof of Theorem 1.1 and use a resolution of singularities Y π→ Vx, followed

by toroidal resolutions Ỹω
π̃ω→ ω over each local chart ω on Y , such that in

local coordinates (t1, . . . , tn) on a local chart $ in some Ỹω, one has

π̃∗ωπ∗f̃xj = ũj(t)t
θ̃j1

1 · · · tθ̃jn
n = ũj(t)m̃j(t),

and some of the m̃j, say m̃, divides m̃1, . . . , m̃n. For the same reasons that
lead to (3.24) from the properness condition (1.9) when one was using a

normalized blow up instead of the tower of resolutions Ỹω
π̃ω→ ω

π→ Vx, one
can see that the properness condition implies that m̃ divides π̃∗ωπ∗fx in the
local chart $. Therefore, it follows from lemme 3.3 (formula (3.16)) and
lemma 3.4 (inequalities (3.17) and (3.18)) that for any test function ϕ̃ on Y
with support in ω, one can write in $,

π̃∗ω[ϕ̃[π∗(ϕ∂Θδ,M
F,β,λ)]](t) = λ|m̃|2λ|ξ|2λ

(
∂m̃

m̃
∧ σ(t) + τ(t)

)
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where σ and τ (depending on ϕ and ϕ̃) are smooth differential forms with
respective type (n, n− 1) and (n, n) and ξ is a real analytic strictly positive
function in $. Therefore,

λ 7→ π̃∗ω[ϕ̃[π∗(ϕ∂Θδ,M
F,β,λ)]](t)

can be continued as a distribution valued meromorphic map on $, which has
no pole at λ = 0 and vanishes at this point. Since the meromorphic function
(3.26) is expressed as a sum of functions of the form

λ
∫

$
ψ̃π̃∗ω[ϕ̃[π∗(∂Θδ,M

F,β,λ)]](t) [π∗ωπϕ](t) ,

the vanishing of the residue symbol (3.26) follows. This concludes the proof
of our Theorem 1.2. ♦

4 Some applications of Vanishing Theorems

for global sums of Residues.

The generalized Jacobi Theorems 1.1, 1.2 derived above have as a direct con-
sequence the following nonstandard formulations of Cayley-Bacharach type
theorems in the spirit of [18].

Theorem 4.1 Given a (δ1, . . . , δn)-proper polynomial mapping P : Cn →
Cn with only simple zeroes Z = {α1, . . . , αm} and an algebraic hypersurface
Y ⊂ Cn of degree at most δ1 + · · · + δn − n − 1, then if Y contains all but
one points αj, it necessarily also contains the last one.

Proof. Suppose Y = {Q = 0} and that the degree of Q is at most δ1 + · · ·+
δn − n− 1. Recall that

Resα

[
Q(ζ1, · · · , ζn)dζ

P1, · · · , Pn

]
=

Q(α)

JP (α)
,

where JP (α) is the value of the Jacobian of the (δ1 . . . , δn)-proper mapping
P at the simple common zero α. The hypothesis on the degree of the hyper-
surface implies (if one uses Theorem 1.1) that

Res

[
Q(X1, · · · , Xn)dX

P1, · · · , Pn

]
= 0 .
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Therefore, if Q vanishes at all points in Z but one, it vanishes in fact at any
point in Z. ♦
Example 4.1. Let P = (P1, P2, P3) be the polynomial map from C3 to C3

defined as

P1(X) = X1X2X3

P2(X) = (X3
1 + 1)(X3

2 + 1)(X3
3 + 1)

P3(X) = (X3
1 − 1)(X3

2 − 1)(X3
3 − 1)

Such a map is (1, 3, 3)-proper; the 54 common zeroes of (P1, P2, P3) are all
simple. Since δ1 + δ2 + δ3 − 4 = 3, any cubic (such as {X3

1 + X3
2 + X3

3 = 0})
which passes through all but one the common zeroes αj contains necessarily
the remaining one.

We may also state a toric version of a Cayley-Bacharach theorem. We begin
with the following

Definition 4.1 A (δ1, . . . , δn)-proper system F = (F1, . . . , Fn) of Laurent
polynomials is called fully (δ1, . . . , δn)-proper if dim (δ1 + · · ·+ δn) = n.

Theorem 4.2 Consider a fully (δ1, . . . , δn)-proper system of Laurent poly-
nomials F = (F1, . . . , Fn) with only simple zeroes α1, . . . , αm in Tn, and
a Laurent polynomial Q, whose Newton polyhedron lies in the interior of
δ1 + · · · + δn. Then if the hypersurface {Q = 0} contains all but one points
αj it necessarily also contains the last one.

Proof. The proof is a direct application of the Theorem 1.2, exactly as our
previous result follows from Theorem 1.1. ♦
Example 4.2. Let F1, F2 as in example 2.2. We have noticed (see example
2.2) that (F1 − F2, F1) satisfies the Bernstein hypothesis (1.3). Therefore,
in this case, the number of common zeroes of F1, F2 in the torus equals two
times the mixed volume of [−2, 2]2 and δ, where

δ := {conv{(−2, 2), (2, 2), (1, 1), (1,−1)} ,

that is 28. If Q is a Laurent polynomial with support in the interior of
[−2, 2] + δ, such that {ζ ∈ T2; Q(ζ) = 0} contains 27 points among the
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common zeroes of F1, F2 in the torus, it contains necessarily the remaining
one.

Example 4.3. We will choose here an example which is slightly more elab-
orate than example 2.2 (in fact, in example 2.2, (F1 − F2, F1) satisfies the
Bernstein condition (1.3), which leads back immediately to the situation
where Khovanskii’s result (1.4) applies). Let F1, F2 be the pair of Laurent
polynomials in two variables, of the form

Fj(X,Y ) = λj(X
2
1X

2
2 + X2

1X
−2
2 ) + αjX1X2 + βjX1X

−1
2 +

+γjX
−1
1 X2 + δjX

−1
1 X−1

2 + (X−2
1 X2

2 + X−2
1 X−2

2 )

where αj, βj, γj, δj, λj, j = 1, 2, are generic complex coefficients. One can

check easily (F1, F2) is (δ̃, δ̃) proper, where δ̃ is now the polyedron defined as

δ̃ = conv {(−1, 1), (0, 4/3), (1, 1), (1,−1), (0,−4/3), (−1,−1)} .

The number of common zeroes α of F1 and F2 in T2 equals now 24 (note
that, comparing to example 2.2, 4 among the 28 common zeroes disappear
“at infinity” in this new situation). Moreover, one has

δ̃ + δ̃ = conv {(−2,−2) , (−2, 2) , (0, 8/3) , (2, 2) , (2,−2) , (0,−8/3)} ,

so that the interior of δ̃ + δ̃ contains [−1, 1]× [−2, 2]. Therefore, any sextic

{Q(X1, X2) = 0 ; Q ∈ C[X1, X2] , Supp Q ⊂ [0, 2]× [0, 4]}

which passes through 23 among the common zeroes α also contains the re-
maining one.

Finally we can state an application of Theorem 1.1 (resp. Theorem 1.2)
to some effective version of division problems with respect to proper quasi-
regular maps. In the first case, this version is the key ingredient for a general
explicit formulation to the algebraic Nullstellensatz [5, 6]; we do not know
yet if the same holds in the toric case for the Newton Nullstellensatz.

Proposition 4.1 Let P := (P1, ..., Pn) be a (δ1, . . . , δn)- proper polynomial
map from Cn to Cn, where δj > 0 for any j; suppose that deg Pj = Dj, j =
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1, . . . , n. Let Qjk, j, k = 1, . . . , n be polynomials in (X1, . . . , Xn, Y1, . . . , Yn)
such that deg Qjk ≤ Dj − 1, j = 1, . . . , n, and

Pj(Y )− Pj(X) =
n∑

k=1

Qjk(X,Y )(Yk −Xk) .

Let
det

[
Qjk(X,Y )

]
1≤j,k≤n

=
∑

α,β∈Nn

|α|+|β|≤D1+···+Dn−n

γα,βXαY β .

Then for any polynomial Q with degree D, one has the following identity

Q(Y ) =

=
∑

α,β∈Nn

|α|+|β|≤D1+···+Dn−n

∑
µ∈Nn

〈µ+1,δ〉≤|α|+D+n

γα,β Res
[

Q(X)XαdX
P µ1+1

1 , ..., P µn+1
n

]
Y βP (Y )µ ,

(4.1)

where we used the standard notations: ζm = ζm1
1 . . . ζmn

n for ζ ∈ Cn and
m ∈ Nn, 〈m1,m2〉 = m11m21 + . . .+m1nm2n for m1,m2 ∈ Nn, 1 = (1, . . . , 1)
(n times).

Proof. The proof follows from the Cauchy-Weil integral representation for-
mula, exactly as in [5]; the analytic expansion of the Cauchy kernel that
appears in this formula truncates thanks to Theorem 1.1. ♦
Corollary 4.1 Let P := (P1, ..., Pn) be a (δ1, . . . , δn)- proper polynomial map
from Cn to Cn, where δj > 0 for any j; let Q be in the ideal I(P1, . . . , Pn);
then, one can write a division formula for Q respect to the ideal I(P1, . . . , Pn)
as

Q(Y ) =
∑

µ∈(Nn)∗, ν∈Nn

|ν|≤D1+···+Dn−n
〈µ+1,δ〉+|ν|≤D1+...+Dn+degQ

γ̃µ,νY
νP (Y )µ . (4.2)

Note that if δj = Dj (that is the Pj do not have common zeroes at infinity),
formula (4.2) becomes

Q(Y ) =
∑

µ∈(Nn)∗, ν∈Nn

〈µ,D〉+|ν|≤degQ

γ̃µ,νY
νP (Y )µ ,
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which is not a surprise since the homogenization Q of Q lies (in this case) in
the homogeneous ideal generated by P1, . . . ,Pn.

In the toric case, we need first a definition, that we recall from [8], p. 454.

Definition 4.2 Let ∆ be a closed convex polyhedron in Rn; ∆ is called a
good polyhedron if and only if

∀x ∈ ∆ , {y ∈ Rn; |yk| ≤ |xk|, xkyk ≥ 0, k = 1, . . . , n} ⊂ ∆ .

We can now state the toric pendant of Proposition 4.1.

Proposition 4.2 Let δ1,. . . , δn be n convex rational polyhedra in Rn with di-
mension n which contain the origin as an interior point; let F := (F1, . . . , Fn)
be a system of Laurent polynomials with good Newton polyhedra ∆1, . . . , ∆n,
such that δj ⊂ ∆j for any j and F is (δ1, . . . , δn)-proper. Then one can find
Laurent polynomials Gjk, j, k = 1, . . . , n, in (X1, . . . , Xn, Y1, . . . , Yn), such
that

det
[
Gjk(X, Y )

]
1≤j,k≤n

=
∑

α,β∈Zn

α+β∈∆1+···+∆n

γα,βXαY β

and

Fj(Y )− Fj(X) =
n∑

k=1

Gjk(X, Y )(Yk −Xk), X, Y ∈ Tn, j = 1, . . . , n .

Moreover, for any Laurent polynomial G with convex polyhedron ∆, one has
the following algebraic identity

G(Y ) =

∑
α,β∈Zn∩(∆1+···+∆n)

α+β∈∆1+···+∆n

∑
µ∈Nn

∆+α+16⊂int(〈µ+1,δ〉)

γα,β Res
[

G(X)Xα+1dX
F µ1+1

1 , ..., F µn+1
n

]

T

Y βF (Y )µ ,

(4.3)

where 〈m, δ〉 := m1δ1 + . . . + mnδn for any m ∈ Nn.

Proof. For the construction of the Gjk under the hypothesis that all ∆j are
good, we refer to [8]. The fact that one can get the algebraic identity (4.3) is
based on the use of Cauchy-Weil formula, as in the proof of Proposition 4.1;
for more details see [32], section 2. The development of the Cauchy kernel as
a geometric progression truncates (as claimed in (4.3)) if one applies Theorem
1.2. ♦
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Corollary 4.2 Let (F1, . . . , Fn) be a (δ1, . . . , δn)-proper system of Laurent
polynomials; suppose that all δj are n dimensional and contain the origin
as an interior point; denote as ∆j the smallest good polyhedron containing
the support of Fj, j = 1, . . . , n. Then, whenever G is a Laurent polynomial
with Newton polyhedron ∆ that lies in the ideal generated by F1, . . . , Fn in
C[X1, . . . , Xn, X−1

1 , . . . , X−1
n ], one can write a division formula for G respect

to (F1, . . . , Fn) as

G(Y ) =
∑

µ∈(Nn)∗, ν∈Zn∩(∆1+···+∆n)
∆+∆1+···+∆n 6⊂ int 〈µ+1,δ〉+β−1

γ̃µ,νY
νF (Y )µ
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d’exponentielles, Ark. Math. 36 (1998), 131–162.

[28] M. Passare, A. Tsikh, A. Yger, Residue currents of the Bochner-
Martinelli type, to appear in Publicaciones Math. (2000).

[29] A. Tsikh, Multidimensional Residues and Their Applications, Transl. of
AMS 103, 1992.

[30] A. Varchenko, Newton Polyhedra and estimation of oscillating integrals,
Funct. Anal. Appl. 10 (1976), 175–196.

[31] A. Yger, Lectures at Croce di Magara, June 1998, notes, avalaible on
the site www.math.u-bordeaux.fr/∼ yger

[32] A. Yger, Résidus, courants résiduels et courants de Green, in Géométrie
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