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Residue Calculus and Applications

By

Mohamed elkadi ∗ and Alain yger ∗∗

Abstract

We present a new algorithm in order to compute the multidimensional residue of

a polynomial map based on a perturbation argument and the Generalized Transfor-

mation Law. Then we use it for studying some fundamental problems in Computer

Aided Geometric Design.

§1. Introduction

Let F = (F1, . . . , Fn) be a polynomial map in the ring C[x] := C[x1, . . . , xn]

such that the algebraic affine variety {α ∈ Cn : F1(α) = · · · = Fn(α) = 0} is

non-empty and finite. The multidimensional residue of F , denoted by ResF ,

plays a central role in several areas of mathematics : Complex Analysis, Ana-

lytic Geometry, Algebraic Geometry, Computational Algebra, Complexity the-

ory (see [1, 4, 5, 17, 18, 15, 23, 3]) ; so the problem of finding efficient algorithms

for the computation of the residue is an important task. When the system of

polynomials F1, . . . , Fn have no common zeroes at infinity the computation of

ResF is easily reduced to the univariate case. In the general setting, resultants

[31], Gröbner bases [12], bezoutian matrices [20], can be used to compute the

multidimensional residue. But such methods are not fully satisfactory from a

computational point of view since the sizes of the intermediate data do not fit

with the bounds predicted in the arithmetic Bézout problem by [6, 25]. We
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present here a new and simple algorithm to compute effectively ResF . It is

inspired by the so-called Arnold’s perturbation method (see for example [2]).

The strategy is to reduce the computations to the case of a perturbed polyno-

mial map without common zeroes at infinity, and to deduce algebraic relations

between the components of this map and the coordinate functions x1, . . . , xn.

Then we use a generalized version of the Transformation Law proved in [6] to

obtain ResF (see subsection 2.2). A similar approach was already followed in

[20]. However here, instead of computing symbolic determinants, we rely on

constant coefficients of some Laurent series. The obtained algorithm is then

applied to solve important questions in CAGD (Computer Aided Geometric

Design), namely the Implicitization Problem, the determination of the Singular

locus and the Intersection Problem for rational hypersurfaces (see [29], [7], [11],

[13], [14], [16], [10]).

The paper is organized as follows. Section 2 recalls important facts about

multidimensional residue theory and shows that the global multidimensional

residue of a polynomial map F can be computed via a perturbed system

Φ(λ, u ; .) without zeroes at infinity, using the Generalized Transformation Law.

Section 3 studies problems in CAGD and solve them by the method developed

in section 2 for the computation of residues. At the end we give some examples

in order to illustrate our approach.

Here are some notations that will be used hereafter : K denotes an infinite

subfield of C, K[x] = K[x1, . . . , xn] is the ring of polynomials in the variables

x1, . . . , xn with coefficients in K, K(x) is its fraction field, K[x0, x] is the ring

K[x0, . . . , xn], and the dimension of a K-vector space E is denoted by dimK E ;

if m = (m1, . . . , mn) ∈ Nn, we set |m| = m1 + · · ·+mn and xm = xm1

1 . . . xmn
n ;

given G1, . . . , Gl ∈ K[x], Z(G1, . . . , Gl) will denote the affine algebraic variety

Z(G1, . . . , Gl) = {α ∈ Cn : G1(α) = · · · = Gl(α) = 0} ;

the Jacobian determinant of a polynomial map F = (F1, ..., Fn) will be denoted

as Jac(F ). The algebraic closure of a field L will be denoted by L.

§2. Multidimensional residue

We recall the definition and some fundamental properties of multidimen-

sional residue theory.

§2.1. Definitions and properties
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Let F1, . . . , Fn be elements in K[x] which generate an ideal I and define a

non-empty and finite algebraic subvariety Z = Z(F1, . . . , Fn) in Cn. For any

α ∈ Z and H ∈ K[x], the local residue resF,α(H) of H in α with respect to the

map F = (F1, . . . , Fn) : Kn → Kn is

resF,α(H) :=
1

(2iπ)n

∫

∂Vα

H(x)
∑n

j=1(−1)j−1Fj(x) dF[j] ∧ dx

(|F1(x)|2 + · · · + |Fn(x)|2)n

where Vα is an open neighborhood of α in Cn with a smooth real manifold

boundary of dimension 2n − 1 such that α is the only point in Z lying in Vα,

dx = dx1 ∧ . . . ∧ dxn and dF[j] = dF1 ∧ · · · ∧ dFj−1 ∧ dFj+1 ∧ · · · ∧ dFn. The

sign − denotes the complex conjugate of a complex number or the conjugate of

a complex function, and |Fi(x)| the modulus of the complex number Fi(x).

The (global) residue of H with respect to F is

ResF (H) :=
∑

α∈Z

resF,α(H) .

We may also define the residue in an algebraic way (see [28], [26]). Let us now

recall some important properties of this tool (for details see [1], [26], [3]) :

• if H is in the ideal I of K[x] generated by F1, ..., Fn, then ResF (H) = 0 ;

• if µα denotes the multiplicity of the root α ∈ Z, then

ResF

(

H Jac(F )
)

=
∑

α∈Z

µαH(α) ; (2.1)

in particular ResF

(

Jac(F )
)

= dimK

(

K[x]/I
)

;

• if all the points of Z are simple (in that case, the Jacobian of F does not

vanish on the variety Z), then

ResF (H) =
∑

α∈Z

H(α)

Jac(F )(α)
;

• (continuity principle) : let ǫ ∈ Cn be a vector of parameters and Fǫ =

(Fǫ,1, . . . , Fǫ,n) be a polynomial perturbation of F such that F0 = F ; in

a small neighborhood Vα of a root α of F , the polynomials Fǫ,1, . . . , Fǫ,n

have (for generic small values of ǫ) µα simple roots, and we have

resF,α(H) = lim
ǫ→0

∑

αǫ∈Z(Fǫ,1,...,Fǫ,n)∩Vα

resFǫ,αǫ
(H) ;
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• in the univariate case,

ResF (H) = constant coefficient of the Laurent series of
xH(x)

F (x)
. (2.2)

• in the multivariate case :

– if for each i = 1, . . . , n, Fi depends only on the variable xi, then

ResF (xm1

1 . . . xmn

n ) = ResF1
(xm1

1 ) . . . ResFn
(xmn

n ). (2.3)

– if for each i = 1, . . . , n, Fi(x) = λix
Di

i +Qi(x) with λi ∈ K∗ and deg Qi <

Di, then for H ∈ K[x], ResF (H) is the constant coefficient in the Laurent

following series (in fact Laurent polynomial)

H(x)
∏n

i=1 λix
Di−1
i

∑

{m∈Nn:|m|≤degH+n−D1−···−Dn}

(−1)|m|

∏n
i=1 Qmi

i (x)

(
∏n

i=1 λix
Di

i )mi

. (2.4)

The computation of multidimensional residues is much more difficult in general

than in the particular situations quoted above. However, we will show in the

following how to compute effectively ResF (H) for an arbitrary polynomial map

F = (F1, . . . , Fn) defining a non-empty and finite algebraic subvariety in Cn.

A powerful tool in multidimensional residue theory, that we will precisely

need to perform such computation, is the following generalization of the clas-

sical Transformation Law (see [6]).

Proposition 2.1. (Generalized Transformation Law) Let (F0, . . . , Fn)

and (G0, . . . , Gn) be two maps of K[x0, x] := K[x0, . . . , xn] which define finite

affine varieties in Cn+1; we assume that F0 = G0 and there exist an n-tuple

of integers m = (m1, . . . , mn) ∈ Nn and polynomials Ai,j ∈ K[x0, x], i, j =

1, . . . , n, such that

∀ i = 1, . . . , n , Fmi

0 Gi =
n
∑

j=1

Ai,jFj ;

then one has for every H ∈ K[x0, x],

Res(F0,...,Fn)(H) = Res
(G

|m|+1

0
,G1...,Gn)

(

H det(Ai,j)
)

.

If F0 = x0 and m1 = · · · = mn = 0, this Generalized Transformation Law

reduces to the classical one :
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Corollary 2.1. (Transformation Law [28], [1]) Let F = (F1, ..., Fn)

and G = (G1, . . . , Gn) be two polynomial maps in K[x] such that the subvariety

Z(F1, . . . , Fn) and Z(G1, . . . , Gn) are finite, and there are elements Ai,j ∈ K[x]

which satisfy

∀ i = 1, . . . , n , Gi =
n
∑

j=1

Ai,jFj ;

then one has for all H ∈ K[x], ResF (H) = ResG

(

H det(Ai,j)
)

.

§2.2. Residue calculus

When F = (F1, . . . , Fn) is proper as a polynomial map from Cn to Cn

(this means that for each i ∈ {1, . . . , n} there exist non-negative integer δi and

polynomials aij ∈ K[u1, . . . , un] such that

xδi

i + ai1(F1, . . . , Fn)xδi−1
i + · · · + aiδi

(F1, . . . , Fn) ≡ 0),

the computation of multidimensional residue with respect to F is a simple

consequence of these algebraic relations relating xi, F1, . . . , Fn, and the Trans-

formation Law. We now present a new algorithm which computes effectively

ResF without the properness assumption on the map F .

Let Di = deg Fi, i = 1, . . . , n, we introduce u = (u1, . . . , un) ∈ Cn and λ ∈

C that we view as parameters ; we consider the auxiliary system of polynomials

Φ(λ, u ; x) =
(

Φ1(λ, u; x), . . . , Φn(λ, u; x)
)

with

Φj(λ, u; x) := λx
Dj+1
j + Fj(x) − uj for j = 1, . . . , n .

We notice that for a polynomial H , thanks to formula (2.4), on get a rational

function ResΦ(λ,u;.)(H) ∈ K[ 1
λ , u1, . . . , un]. A strategy to determine the scalar

ResF (H) could be to follow this rational function when (λ, u) tends to (0, 0).

But this is not straightforward as shown by the following simple example :

n = 2, F1 = x1, F2 = x2, ResF (1) = 1, whereas ResΦ(λ,u;.)(1) ≡ 0. The problem

comes from the fact that the perturbation Φ(λ, u; .) introduces new zeroes which

disappear to infinity when the parameters (λ, u) tend to (0, 0). In other words,

the residue “blows-up”.

By Bézout’s theorem the number of points in the subvariety Zλ,u in Cn

defined by Φ1(λ, u ; x), . . . , Φn(λ, u ; x) is N = (D1 + 1).(D2 + 1) . . . (Dn + 1).

Fix i ∈ {1, . . . , n}. Denote by α
(i)
1 (λ, u), . . . , α

(i)
N (λ, u) the ith coordinates

of the N points of Zλ,u. Using formulae (2.1) and (2.4), we observe that for
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k ∈ {1, ..., N}, the Newton sum

S
(i)
k (λ, u) =

N
∑

j=1

(

α
(i)
j (λ, u)

)k
∈ K(λ)[u] ,

appears as the constant coefficient of the Laurent polynomial

xk
i Jac

(

Φ(λ, u; x)
)

λnxD1

1 . . . xDn
n

∑

m∈Nn:|m|≤k

(−1)|m|
n
∏

i=1

(

Fi(x) − ui

λxDi+1
i

)mi

. (2.5)

By means of the Newton formulae, for k = 1, . . . , N,

k σ
(i)
k = −S

(i)
k − S

(i)
k−1σ

(i)
1 − · · · − S

(i)
1 σ

(i)
k−1 , (2.6)

one can compute easily, from the S
(i)
k (λ, u), k = 1, ..., N , the elementary sym-

metric functions σ
(i)
k (λ, u), k = 1, ..., N , of the set {α

(i)
1 (λ, u), . . . , α

(i)
N (λ, u)}.

Therefore one get explicitly the univariate polynomial in xi :

N
∏

k=1

(

xi − α
(i)
k (λ, u)

)

= xN
i + σ

(i)
1 (λ, u)xN−1

i + · · · + σ
(i)
N (λ, u)

=
Ni(λ, u, xi)

Di(λ)
, (2.7)

where Ni ∈ K[λ, u, xi] and Di(λ) ∈ K[λ] are relatively prime. By definition of

the algebraic variety Zλ,u, the polynomial Ni satisfies the algebraic relation

Ni

(

λ, λxD1+1
1 + F1(x), . . . , λxDn+1

n + Fn(x), xi

)

≡ 0 (2.8)

in K[λ, x1, . . . , xn]. As ui = xDi+1
i + Fi − Φi, for i = 1, . . . , n, we deduce from

(2.8) the existence of polynomials Ai,j such that

Ni(λ, u1, . . . , un, xi) =

n
∑

j=1

Φj(λ, u; x)Ai,j(λ, u, x
)

. (2.9)

We choose a vector α = (α0, . . . , αn) ∈ Kn+1 and we set λ = α0x0, u1 =

α1x0, . . . , un = αnx0. This amounts to specify a controlled line in the space of

parameters (λ, u).

Let mi be the valuation of Ni(λ, u, xi) as a polynomial in λ and u. Then

there exist two unique polynomials Ri ∈ K[xi] and Si ∈ K[x0, xi] such that

Ni(αx0, xi) = xmi

0

(

Ri(α; xi) − x0Si(α; x0, xi)
)

. (2.10)

So to each map F = (F1, . . . , Fn), one can associate three families of polyno-

mials Ri(α; xi), Si(α; x0, xi), i = 1, . . . , n, and Ai,j(λ, u, x), i, j = 1, . . . , n.
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Theorem 2.1. Let F = (F1, . . . , Fn) be a polynomial map such that the

algebraic affine variety Z(F1, . . . , Fn) is non-empty and finite. We assume that

for α ∈ Kn+1, the polynomial R1(α; x1) . . . Rn(α; xn) 6= 0. For each k ∈ Nn,

we set Sk = Sk1

1 .Sk2

2 . . . Skn
n , and Rk+1 = (Rk1+1

1 , . . . , Rkn+1
n ). Then for every

H ∈ K[x], we have

ResF (H) =
∑

k∈Nn:|k|≤|m|

Res
(x

|m|−|k|+1

0
,Rk+1)

(

HSk det(Bij)
)

,

with Bij = Ai,j(αx0, x) ∈ K[x0, x], i, j = 1, . . . , n.

Proof. If G = (x0, F1 + x0(α0x
D1+1
1 − α1), . . . , Fn + x0(α0x

Dn+1
n − αn)

)

,

and F̃ = (x0, F1, . . . , Fn), we have G = T F̃ with

T =













1 0 . . . . . . 0

α0x
D1+1
1 − α1 1 0 . . . 0

...
. . .

. . .
...

α0x
Dn+1
n − αn 0 . . . . . . 1













.

As det(T ) = 1, it follows from the Transformation Law that for H ∈ K[x],

ResF̃ (H) = ResG(H).

Now, if the points of the subvariety Z(F1, . . . , Fn) are simple, it is easy

to check that ResF̃ (H) = ResF (H) ; moreover the continuity principle implies

that ResF̃ (H) = ResF (H) even if some of the common roots of F1, . . . , Fn are

not simple. Consequently ResF (H) = ResG(H).

As a consequence of the Generalized Transformation Law, formulae (2.9)

and (2.10) and Φj(αx0; x) = Fj + x0(α0x
Dj+1
j − αj), we have

ResG(H) = Res
(x

|m|+1

0
,R−x0S)

(

H det(Bi,j)
)

,

where R − x0S = (R1 − x0S1, . . . , Rn − x0Sn) . Using the following trivial

identities, for i = 1, . . . , n,

R
|m|+1
i = (x0Si)

|m|+1 + (Ri − x0Si)

|m|
∑

ki=0

(x0Si)
kiR

|m|−ki

i ,

the Transformation Law applied to (x
|m|+1
0 , R− x0S) and (x

|m|+1
0 , R|m|+1), we

get

ResF (H) = Res
(x

|m|+1

0
,R|m|+1)

(

H det(Bij)
∑

k

x
|k|
0 SkR

|m|−k1

1 . . . R|m|−kn

n

)

=
∑

|k|≤|m|

Res
(x

|m|−|k|+1

0
,Rk+1)

(

HSk det(Bij)
)

.
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Note that the expression of ResF (H) given in the previous result can be

computed using formulae (2.2) and (2.3). Thus the computation of the multi-

dimensional residue is reduced to the univariate case via this theorem.

Remark 2.1. We recall that a sequence of polynomials F1, . . . , Fn in

K[x] is quasi-regular if the Koszul complex over K[x] associated to this sequence

is exact except possibly in degree 0. If I is the ideal generated by F1, . . . , Fn,

this is equivalent to the following : for every d ∈ N, and ak ∈ K[x], if
∑

k=(k1,...,kn)∈Nn:|k|=d

akP k1

1 . . . P kn

n ∈ Id+1,

then the elements ak are in I (see [27]).

We can write for i = 1, . . . , n, the identities (2.8) as
∑

δ=(δ0,...,δn)

∆i,δ(xi)λ
δ0 (λxD1+1

1 + F1(x)
)δ1

. . . (λxDn+1
n + Fn(x)

)δn
= 0.

Since the map
(

λ, λxD1+1
1 + F1(x), . . . , λxDn+1

n + Fn(x)
)

is quasi-regular (be-

cause this sequence define a finite subvariety in Cn+1), the univariate polyno-

mials ∆i,δ(xi) with the smallest |δ| = δ0 + · · ·+ δn are contained in the ideal of

K[λ, x1, . . . , xn] generated by λ, λxD1+1
1 +F1(x), . . . , λxDn+1

n +Fn(x). So these

univariate polynomials vanish on the common roots of F1, . . . , Fn. In this way

we can determine the algebraic affine variety Z(F1, . . . , Fn) by solving these

univariate polynomials.

We recall that if a polynomial F =
∑

α cαxα ∈ Z[x1, . . . , xn], the (naive)

height of F is h(F ) = maxα(log |cα|), and that the height of a
b ∈ Q with

gcd(a, b) = 1 is max(log |a|, log |b|). Now if the coefficients of F1, . . . , Fn, H

are integers of maximal height h, using the previous method of computation

of residue we can express ResF (H) as a rational function of height bounded

essentially by Dnh, where D = max(deg F1, . . . , deg Fn, deg H).

Remark 2.2. In order to reduce the size of integers N (used to con-

struct the polynomial Ni(λ, u, xi) in (2.7)
)

and |m| in theorem 2.1, we can

perturb the original polynomial map F in a more subtle way using a gener-

alization of the formula (2.4). It was already noticed in [1] that, if for each

i = 1, . . . , n, Φi(x) = λix
Di

i +
∑i−1

j=1 xjΦij(x) + Qi(x) with λi ∈ K∗, Φij is

a homogeneous polynomial of degree Di − 1 and deg Qi < Di, then for any

H ∈ K[x], ResΦ(H) is the constant coefficient in the Laurent polynomial

H(x)
∏n

i=1 λix
Di−1
i

∑

m

(−1)|m|

∏n
i=1

(

Φi(x) − λix
Di

i

)mi

(
∏n

i=1 λix
Di

i )mi

. (2.11)
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This remark will be used in examples 1, 2 and 3.

Theorem 2.1 gives rise to the following algorithm :

Algorithm 2.1. (computation of the residue of a polynomial map)

inputs : a map F = (F1, . . . , Fn) in K[x] such that the affine subvariety

Z(F1, . . . , Fn) is non-empty and finite ; a polynomial H ∈ K[x].

• Step 1 : let λ ∈ C and u = (u1, . . . , un) ∈ Cn be parameters ; set

Φ(λ, u ; x) =
(

Φ1(λ, u ; x), . . . , Φn(λ, u ; x)
)

where Φi(λ, u ; x) = λxdeg Fi+1
i + Fi(x) − ui, i = 1, . . . , n, (taking into

account remark 2.2, if there exist a homogeneous polynomial Fij of degree

deg Fi − 1 and a polynomial Qi of degree at most deg Fi − 1 such that Fi =
∑i−1

j=1 xjFij +Qi, we set Φi(λ, u ; x) = λxdeg Fi

i +Fi(x)−ui) ; determine for

each i = 1, ..., n, and for each j = 1, ..., N = deg Φ1 · · ·deg Φn, the constant

coefficient S
(i)
j (λ, u) in the Laurent polynomial given by the formula (2.5)

(or (2.11)).

• Step 2 : use Newton formulae (2.6) to compute the jth elementary sym-

metric functions σ
(i)
j (λ, u) ∈ K(λ)[u], j = 1, . . . , N , i = 1, ..., n, and to

obtain the univariate polynomials Ni(λ, u, xi) ∈ K[λ, u, xi], i = 1, ..., n,

given by (2.7).

• Step 3 : choose a random α = (α0, . . . , αn) ∈ Cn+1 ; express each poly-

nomial Ni(αx0, xi) as

Ni(αx0, xi) = xmi

0

(

Ri(α; xi) − x0Si(α; x0, xi)
)

=
n
∑

j=1

Φj(αx0; x) Ai,j

(

αx0, x
)

.

Check that R1(α; x1) . . . Rn(α; xn) 6= 0, if not try another choice of α.

• Step 4 : use formulae (2.3) and (2.2) to compute the expression

∑

|k|≤|m|

Res
(x

|m|−|k|+1

0
,Rk+1)

(

HSk det
(

Aij(αx0, x)
)

)

of ResF(H) given by theorem 2.1.

output : ResF (H) ∈ K.



10 Mohamed ELKADI and Alain YGER

Let F = (F1, . . . , Fn) be a polynomial map such that the affine variety

Z(F1, . . . , Fn) is finite. For every i = 1, . . . , n, there exist polynomials aij in

K[u1, . . . , un] and a positive integer δi such that

Pi(u0, . . . , un) =

δi
∑

j=0

aij(u1, . . . , un) uδi−j
0

satisfies the algebraic identity Pi(xi, F1, . . . , Fn) ≡ 0. When the n elements

a10, . . . , an0 are non-vanishing constants, the map F is proper.

Now if for each i = 1, . . . , n, there exists j in {0, . . . , δi−1} with aij(0) 6= 0,

then we deduce from this identity that an univariate non-constant polynomial

in xi belongs to the ideal generated by F1, . . . , Fn. In this case, we can compute

the residue with respect to F using only the Transformation Law. But if there

exists i0 ∈ {1, . . . , n} with aij(0) = 0 for every j = 0, . . . , δi − 1 as in the

following example, this strategy for the computation of ResF fails.

Example 1. We consider in K[x1, x2, x3] the elements

f1 = x1 , f2 = x2 + x1x
2
2x3 , f3 = x3 + x1x2x

2
3.

The irreducible algebraic relations between f1, f2, f2 and the coordinate func-

tions x1, x2, x3 are

P1 = u0 − u1 , P2 = u1u3u
3
0 + u2u0 − u2

2 , P3 = u1u2u
3
0 + u3u0.

Our algorithm can be viewed as an extension of the previous method to

compute the residue with respect to any polynomial map (which defines a finite

affine variety). The key point is the use of the Generalized Transformation Law.

For shortness we will illustrate the algorithm 2.1 on a simple example

for which the computation of residue can be done directly. We consider in

K[x1, x2], F = (F1, F2) = (x1, x1x
2
2 + x2). The map F is not proper because

the irreducible algebraic relation between x2, F1, F2 is u2
0u1 + u0 − u2.

Using remark 2.2, Φ1 = λx1 − u1, and Φ2 = λx3
2 + x1x

2
2 + x2 − u2. We

have N = 3, S
(1)
1 = 3

λu1, S
(1)
2 = 3

λ2 u2
1, S

(1)
3 = 3

λ3 u3
1, S

(2)
1 = − 1

λ2 u1,

S
(2)
2 = − 2

λ + 1
λ4 u2

1, S
(2)
3 = 3

λu2 + 3
λ3 u1 −

1
λ6 u3

1. Then we obtain

N1(λ, u1, u2, x1) = λx1 − u1 = Φ1,

N2(λ, u1, u2, x2) = λ2x3
2 + x2

2u1 + λx2 − λu2 = −x2
2Φ1 + λΦ2,

and det(Ai,j) = λ. We deduce that for a generic vector (α0, α1, α2) ∈ K3,

N1(α0x0, α1x0, α2x0, x1) = x0(α0x1 − α1),

N2(α0x0, α1x0, α2x0, x2) = x0

(

(α2
0x

3
2 − α0α2)x0 + α1x

2
2 + α0x2

)

.
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So the polynomials R1 = α0x1 − α1, R2 = α1x
2
2 + α0x2, S1 = 0, S2 = −α2

0x
3
2 +

α0α2, and the integers m1 = 1, m2 = 1. Finally for every H,

ResF (H) =
∑

(k1,k2):k1+k2≤2

Res
(x

3−k1−k2
0

,R
k1+1

1
,R

k2+1

2
)
(α0x0HSk1

1 Sk2

2 ).

Remark 2.3. Computations in Step 3 and Step 4 of the previous

algorithm may be performed for a random α even if nothing is assumed with

respect to the geometry of the zero set Z(F1, ..., Fn). If two distinct generic

values of α ∈ Cn+1 lead to distinct results in Step 4, then Z(F1, ..., Fn) is

non-finite ; so the residue calculus described in this subsection allows also to

decide whether F1, ..., Fn define a finite subvariety in Cn or not.

§3. Applications in CAGD

The residue calculus developed above can be used in order to study some

important problems in CAGD. In this field, hypersurfaces (essentially curves

and surfaces) are often given parametrically. But some basic operations, such

as the determination of the singular locus and the intersection problem are

better treated via an implicit equation.

§3.1. Implicitization problem

A rational hypersurface (H) in the affine space Kn+1 can be represented

by a parametric representation


























x0 =
f0(s1, . . . , sn)

d0(s1, . . . , sn)
...

xn =
fn(s1, . . . , sn)

dn(s1, . . . , sn)

(3.1)

where f0, . . . , fn, d0, . . . , dn are polynomials in the variables s1, . . . , sn, with

coefficients in the subfield K of C, or by an implicit equation (i.e. an element Q

in K[x0, . . . , xn] of minimal degree satisfying Q(α) = 0 for all α in (H)
)

. These

two representations are important for different reasons. For instance, the first

one is useful to draw (H) and the second one to decide whether a point is in

the given hypersurface or not.

Here we are interested to the problem of converting a parametric repre-

sentation into an implicit one. Classically the solution of this question is given

by elimination theory through essentially two classes of tools : resultants and
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Gröbner bases. On one side, techniques based on resultants (given by matrices)

may produce extraneous terms along with the implicit equation ; and expand-

ing such an implicit equation (or a multiple of it) in the monomial basis is time

consuming. Moreover resultants identically vanish when base-points (that is,

common roots of f0, . . . , fn, d0, . . . , dn) are present. On the other side, methods

based on Gröbner bases computations are fairly expensive in practice and also

unstable.

Other techniques exist (for example, based on residual resultants [8], mov-

ing surfaces [30], [9], approximation complexes [10]). These methods are only

valid under restrictive geometric hypotheses on the zero-locus of base-points

(assumed to be known) which are hard to verify. In [24] the theory of multi-

variate residues is used to implicitize surfaces of a very special type (i.e. the

equations of the surface have no common zeroes at infinity) ; such results were

recently extended in [22] to general surfaces using bezoutian matrices. We

pursue these last approaches for the implicitization problem of a rational hy-

persurface (H) thanks to the presented algorithm in subsection 2.2 for the com-

putation of the multidimensional residue. Our method works in the presence

of base-points and no geometric assumption on the zero-locus of base-points is

needed ; compared to the method proposed in [22], its advantage lies in the

fact that instead of computing huge symbolic determinants, one has to use only

some specific coefficients in Laurent developments.

Let us consider the following n + 1 polynomials in the polynomial ring

(K[x0, x])[s] := (K[x0, . . . , xn])[s1, . . . , sn] extracted from the parametrization

(3.1) :










F0(s) = x0 d0(s) − f0(s)
...

Fn(s) = xn dn(s) − fn(s) ;

let Z := Z(F1, . . . , Fn) = {α ∈ K(x)
n

; F1(α) = · · · = Fn(α) = 0}, and

d := d0 . . . dn. We write Z as Z = Z1 ∪ Z2, where

Z1 := Z ∩ Z(d) = {α ∈ K(x)
n

; F1(α) = · · · = Fn(α) = d(α) = 0}

and Z2 := Z\Z1. Let also denote by F the map (F1, ..., Fn). Using the identity

(2.1) and the multidimensional residue calculus presented in subsection 2.2, we

can test whether Z2 is finite or not. In order to do that, let sn+1 be a new

variable and Fn+1(s, sn+1) := sn+1d(s) − 1 ; if we denote by W the zero set

defined by F1, ..., Fn+1 in K(x)
n+1

, then it is clear that

W = {
(

α, 1/d(α)
)

∈ K(x)
n+1

; α ∈ Z2} . (3.2)
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Moreover the multiplicity of α as a common root of F1, . . . , Fn equals the mul-

tiplicity of (α, 1/d(α)) as an element in W ; so, provided Z2 is finite, counting

multiplicities, the number of points in Z2 is equal to
∑

α∈Z2

resF,α

(

Jac(F )
)

= Res(F,Fn+1)

(

Jac(F, Fn+1)
)

,

where (F, Fn+1) = (F1, . . . , Fn, Fn+1). This shows that the computation of

Res(F,Fn+1)

(

Jac(F, Fn+1)
)

(which should be a rational function in x, actually a

constant), conducted as in subsection 2.2 for x generic, provides a test to check

whether Z2 is finite or not.

We will assume from now on that Z2 is finite, and contains δ points

(counted with multiplicities).

Let P (x0, x) be the following nonzero element

P (x0, x) =
∏

α∈Z2

F0(α) =
(

∏

α∈Z2

d0(α)
)

(

∏

α∈Z2

(

x0 −
f0(α)

d0(α)

)

)

=
(

∏

α∈Z2

d0(α)
)(

xδ
0 + σ1(x)xδ−1

0 + · · · + σδ(x)
)

(3.3)

where σk(x) ∈ K(x), k = 1, ..., δ, is the kth elementary symmetric function of

the set
{

f0(α)/d0(α) ; α ∈ Z2

}

.

The following lemma allows to compute the power sums

Sk(x) =
∑

α∈Z2

(

f0(α)

d0(α)

)k

, k = 1, ..., δ.

Lemma 3.1. For every k ∈ {1, ..., δ}, we have

Sk(x) = Res(F,Fn+1)

(

Jac(F, Fn+1)
(

sn+1d1 . . . dnf0

)k)
.

Proof. From (3.2) and the equality (2.1), it follows that

Sk(x) =
∑

(

α,1/d(α)
)

∈W

( 1

d(α)
d1(α) . . . dn(α)f0(α)

)k

= Res(F,Fn+1)

(

Jac(F, Fn+1)(sn+1d1 . . . dnf0)
k
)

.

The coefficients σk(x), k = 1, ..., δ, in the polynomial P (x0, x) (see for-

mula (3.3)
)

can be computed from Newton sums Sk(x) ∈ K(x) using Newton

identities (2.6).
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We recall that the squarefree part of a polynomial Q(x0, . . . , xn) is obtained

by computing
Q

gcd(Q, ∂Q
∂x0

, . . . , ∂Q
∂xn

)
.

Theorem 3.1. Under the assumption that the affine algebraic variety

Z2 is finite and contains δ (multiplicities being taken into account), an implicit

equation of the rational hypersurface (3.1) is given by the squarefree part of the

numerator of the rational function

E(x0, x) = xδ
0 + σ1(x)xδ−1

0 + · · · + σδ(x) ∈ K(x)[x0].

Proof. The elementary symmetric functions σ1, ..., σδ of { f0(α)
d0(α) ; α ∈ Z2}

are elements in K(x) that one can express in the reduced form σk = Nk

Dk
, k =

1, ..., δ. Let us choose a point x in the open subset U := {x ∈ Kn; D1 . . . Dδ(x) 6=

0}. For any α such that xidi(α) − fi(α) = 0, i = 0, ..., n, and d(α) 6= 0, one has

E(x0, x) = 0, which means that the numerator of E vanishes at every point

(x0, x) in the parametrized hypersurface (H) ; conversely, if the numerator of E

vanishes at the point (x0, ..., xn) ∈ Kn+1 with (x1, ..., xn) ∈ U , it implies that

there exists α ∈ Kn such that xidi(α) − fi(α) = 0, i = 0, ..., n, and d(α) 6= 0,

which means that (x0, x) lies in (H). From this, it follows that the squarefree

part of the numerator of E gives (up to a scalar) the implicit equation of (H).

Algorithm 3.1. (implicitization of a rational hypersurface)

input : an affine hypersurface in Kn+1 given by (3.1).

• Step 1 : Set for i = 1, . . . , n, Fi(s) = xidi(s) − fi(s) ∈ (K[x])[s] and

Fn+1(s, sn+1) = sn+1d0(s) . . . dn(s)− 1 ∈ K[s, sn+1] ; let F = (F1, ..., Fn) ;

through the residue computation of Res(F,Fn+1)

(

Jac(F, Fn+1)
)

performed

using algorithm 2.1, decide whether F1, ..., Fn+1 define a finite algebraic

variety.

• Step 2 : If the test in Step 1 is positive, for x generic let

δ := Res(F,Fn+1)

(

Jac(F, Fn+1)
)

∈ N.

For k = 1, ..., δ, compute the Newton sums

Sk(x) := Res(F,Fn+1)

(

Jac(F, Fn+1)(sn+1d1 . . . dnf0)
k
)

using again algorithm 2.1.
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• Step 3 : use Newton formulae (2.6) to compute elementary symmetric

functions σ1(x), . . . , σδ(x) of the set { f0(α)
d0(α) ; α ∈ Z2}.

• Step 4 : determine the squarefree part Q(x0, . . . , xn) of the numerator of

the rational function xδ
0 + σ1(x)xδ−1

0 + · · · + σδ(x) ∈ K(x)[x0].

output: the implicit equation Q(x0, . . . , xn) of the rational hypersurface given

by the parametrization (3.1).

Remark 3.1. Changing the order of x0, . . . , xn in the parametric repre-

sentation of (H), one may assume that deg(F0) = max(deg(Fj), j = 0, . . . , n),

thus we get the smallest integers N and δ possible.

If one denominator di in the parametric representation of (H) is constant

(for instance d0 = 1) it is not necessary to add the variable sn+1 to compute

Sk(x) for k = 1, . . . , δ : in this case, we take Z2 = Z, then σ1(x), . . . , σδ(x) are

the elementary symmetric functions of the set {f0(α); α ∈ Z} and

Sk(x) =
∑

α∈Z

f0
k(α) = Res(F1,...,Fn)

(

Jac(F1, ..., Fn)f0
k
)

, k = 1, ..., δ .

Example 2. We will illustrate our method in order to find the implicit

equation of the parametrized surface

x =
t2(s + 1)

s
, y =

st(s + 1)

s
, z =

t(s + 1)

s
. (3.4)

This example is taken from [9] ; it is simple but interesting because the moving

surface method fails for it (for more details see [9]).

Here, instead of x0, x1, x2 (resp. s1, s2, s3) we use x, y, z (resp. s, t, v).

The polynomials

F0(s, t) =−t2s − t2 + xs

F1(s, t) =−s2t − st + ys

F2(s, t) =−ts − t + zs

F3(s, t) = vs − 1.

To find the implicit equation of this surface we use algorithm 3.1. So we need

to compute Newton sums Sk(y, z) by means of algorithm 2.1. Using remark

2.2, we introduce the perturbed system

Φ1(λ, u, s, t) = λt4 + F1 − u1

Φ2(λ, u, s, t) = λs2 + F2 − u2

Φ3(λ, u, s, t, v) = λv2 + F3 − u3.
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The polynomials

A1(s, u1, u2, u3) =N1(0, u1, u2, u3, s) = −s2z + u2s + ys − u1,

A2(t, u1, u2, u3) =N2(0, u1, u2, u3, t) = −t2y − t2z − t2u2 − t2u1

+zty − ztu2 + 2u1zt− tu2y − tu2
2 + u2yz − z2u1,

A3(v, u1, u2, u3) =N3(0, u1, u2, u3, v)

= zu2
3 − u3yv − u3u2v + 2u3z + v2u1 − yv − u2v + z,

satisfy the following algebraic relations

A1(s, F1, F2) = 0 , A2(t, F1, F2) = 0 , A3(v, F1, F2, F3) = 0.

We deduce from this that the univariate polynomials

R1(s) = A1(s, 0, 0, 0) = −s2z + ys ,

R2(t) = A2(t, 0, 0, 0) = −t2y − t2z + zty ,

R3(v) = A3(v, 0, 0, 0) = −yv + z ,

belong to the ideal of (K[y, z])[s, t, v] generated by F1, F2, F3. So by the Trans-

formation Law, formulae (2.3) and (2.2), the degree

δ = Res(F1,F2,F3)

(

Jac(F1, F2, F3)
)

= 1,

and the power sum

S1 = Res(F1,F2,F3)

(

Jac(F1, F2, F3)vst2(s + 1)
)

= −
yz2

(y + z)
.

The implicit equation of the parametrized surface (3.4) is −yz2 + xz + yx.

Example 3. We will compute the implicit equation of a surface of bide-

gree (1, 2) studied in [19] :

x = (s − 2)(t − 3)2 , y = st2 , z = (s − 1)(t − 1)2. (3.5)

We have

F1(s, t) =−st2 + y

F2(s, t) =−st2 + 2st − s + t2 − 2t + 1 + z.

Using again remark 2.2, we introduce the auxiliary system

Φ1(λ, u, s, t) = λs4 − st2 + y − u2

Φ2(λ, u, s, t) = λt3 − st2 + 2st − s + t2 − 2t + 1 + z − u3.
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We use the same notations as in the previous example. In this case, the uni-

variate polynomials

R1(s) = s4 + (−2 − 2y − 2z)s3 + (z2 + 2z + 1 + y2 − 2zy + 4y)s2

+ (2zy − 2y2 − 2y)s + y2,

R2(t) = t4 − 2t3 + (1 + z − y)t2 + 2yt− y.

We deduce from the fact that the elements R1(s) and R2(t) belong to the

ideal generated by F1 and F2, and the Transformation Law that the degree

δ = Res(F1,F2)

(

Jac(F1, F2)
)

of the implicit equation that we are looking for

and Newton sums Si = Res(F1,F2)

(

Jac(F1, F2)(s−2)i(t−3)2i
)

, i = 1, 2, 3, 4, are

equal to

δ = 4,

S1 =−34 + 6y + 22z,

S2 = 34y2 − 516z + 170z2 + 290 − 20y + 424zy,

S3 =−1038y2 − 5334z2 − 2482 + 9696yz2 − 894y + 1474z3 + 4332zy2

−10242zy + 8214z + 126y3,

S4 = 21314 + 114572z2 + 181488z2y2 + 158144zy + 13154z4 − 148776zy2

+23628y2 + 32240zy3 + 163232z3y − 109832z − 338776yz2 + 514y4

+24440y − 56072z3 − 3592y3.

By means of Newton formulae, we obtain the implicit equation of the surface

(3.5) which is the following equation of degree 4 :

5184 + 2448x− 6336y − 3492zx− 1960xy + 433x2 − 1074yzx + 2512y2

−5760zy − 80zx2y − 3492yz2 − 194yx2 − 352y3 + 16y4 − 194zy2x+

1960zy2 + 433z2y2 − 136zy3 + 320xy2 + x2y2 + 24xy3 − 612z3y+

490z2xy − 6x3y + 1944z3 + 34x3 − 490zx2 + 1440z2x + x4 + 157x2z2

−22x3z + 324z4 − 396xz3 + 324z2 − 7776z.

§3.2. Singular locus

A singular point of the hypersurface given by the parametrization (3.1) is

a common root of Q and its partial derivatives ∂Q
∂x0

, . . . , ∂Q
∂xn

, where Q is the

implicit equation of this hypersurface.
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For example the singular locus of the surface given in example 3 can be

obtained by the substitution of the parametric representation of the surface

in the partial derivatives of the implicit equation, and the computation of the

great common divisor of three polynomials in two variables s and t. The result

is the following implicit curve in the space of parameters s and t surface :

784t2 − 580st2 + 96s2t2 − 1344t + 1896st− 672s2t + 576 − 1740s + 1176s2.

§3.3. Intersection problem

Let (H1) and (H2) be two hypersurfaces in Cn+1 given parametrically. We

want to find the intersection of these hypersurfaces. It is easy to obtain it if

we implicitize one hypersurface, say (H1), and we substitute the parametric

representation of (H2) in the implicit equation of (H1).

For instance we can compute the intersection of the two surfaces in exam-

ples 2 and 3. The resulting curve in the space of parameters of the surface (3.5)

is the following :

18 + 2t4 − 16t3 − 85st2 + 9s2 + 33s2t2 − 22s2t3 + 14s2t4 + 4st5 − st6 −

8s2t5 + 2s2t6 − s3t2 + 4s3t3 − 6s3t4 + 4s3t5 − s3t6 + 72st + 40st3 −

11st4 − 24s2t − 27s− 48t + 44t2 = 0.

§4. Conclusion

Other problems in Computer Aided Geometric Design such as the con-

struction of offsets of a given surface, drafts of a surface, . . . could be solved

thanks to the residue calculus developed in section 2. This method could be

also used to solve some problems in Effective Algebraic Geometry (see [21]).

Acknowledgment: The first author was supported by the european project
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