
Division-Interpolation methods 1

Division-Interpolation methods and Nullstellensätze

Carlos A. Berenstein and Alain Yger

To Leon Ehrenpreis, friend and teacher

1. Introduction

The Fundamental Principle of Ehrenpreis asserts that any solution (in an
appropiate functional space, which we will assume, to simplify, is the space of C∞

functions in Rn) of a system of homogeneous linear partial differential equations
with constant coefficients in Rn, n ≥ 2, can be can be represented in terms of the
exponential polynomials solutions of the system [Ehr, Pal, Bjo]. Another way to
phrase the Fundamental Principle is to say that in certain spaces of entire functions
with restricted growth in Cn one has an explicit linear (and continuous) division
algorithm with remainder with respect to the ideal generated by the symbols of
these equations. Such an assertion, even the fact the exponential polynomial
solutions of the system are dense in the space of all solutions, fails for systems of
homogeneous convolution equations µ1 ∗ f = · · · = µm ∗ f = 0 [Gu]. Moreover,
there are few positive examples of transcendental nature where we know that the
Fundamental Principle (or just Spectral Synthesis) holds. Note that it is still
possible to state this principle by saying that in the Paley-Wiener algebra there is
an explicit linear and continuous division algorithm with remainder with respect
to the ideal generated by the Fourier transforms µ̂j of the convolution operators.
In particular, the ideal generated by these Fourier transforms should be closed.
By extension, we will say that a system of convolution equations

µ1 ∗ f = . . . = µm ∗ f = 0
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such that the spectrum {z ∈ Cn, µ̂j(z) = 0, j = 1, ..., m} is empty (the system is
inconsistent) satisfies the Fundamental Principle if and only if the ideal generated
by the µ̂j in the Paley-Wiener algebra is a non proper ideal; this is equivalent to
say that there exists an analytic Bézout (or deconvolution) identity

(1.1) δ =
m∑

j=1

νj ∗ µj ,

where the deconvolutors νj are distributions with compact support, or, which is
equivalent, a global Lojasiewicz type inequality

(1.2)
m∑

j=1

|µ̂j(z)| ≥ γ
e−C‖Im z‖

(1 + ‖z‖)N
, γ > 0, C ≥ 0, N ∈ N .

A natural class of systems of convolution equations to consider is that of sys-
tems of homogeneous linear difference-differential equations with constant coeffi-
cients and delays in a discrete subgroup Λ ⊂ Rn with rank p; when the equations
are just difference equations, such examples are of transcentental nature if the rank
of Λ is strictly bigger than n; otherwise, any value of p ≥ 1 leads to examples that
cannot be reduced to algebraic ones (for example, the simplest case is p = 1, which
has been extensively studied in [BY6]). In any case, if the µj are such difference-
differential equations, the µ̂j are exponential polynomials with frequencies in iΛ.
For n = 2 the Fundamental Principle for this kind of systems holds when there
are exactly one or two equations [BTY]. Within this class of systems, if n = 1, 2
and the number of equations is strictly bigger than n, or when n ≥ 3, there are
examples where the ideal generated by the µ̂j in the Paley-Wiener algebra is not
closed. If the corresponding spectrum is non-empty then the Fundamental Prin-
ciple fails. This is also true if we extend the concept of Fundamental Principle
to inconsistent systems as we did before. We do not know what happens for the
Spectral Synthesis. These examples are related to the transcendental nature of
Λ [BY1]. An interesting example for n = 1,m = 2, due to Ehrenpreis, occurs
when µ̂2(z) = d

dz µ̂1(z) and the two Fourier transforms have no common zeros. If
the ideal were closed, the zeros of µ̂1 have to be well-separated, that is, there are
constants c1, c2, d > 0 such that if z, z′ are two distinct zeros of µ̂1 then

(1.3) |z − z′| ≥ c1
exp(−c2|Im z|)

(1 + |z|)d
.

This separation condition is not satisfied in general, e.g.,

µ̂1(z) = sin z sin(αz),

where α is a Liouville number. There is also an example due to Selberg where the
frequencies are algebraic but the separation (1.3) is not satisfied because the co-
efficients of the exponentials are not algebraic [BY2]. Ehrenpreis has conjectured
that the separation condition is satisfied for the zeros of any exponential polyno-
mial with purely imaginary algebraic frequencies and algebraic coefficients. In this
setting, this conjecture appears as a particular case of the following: any system
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of linear difference-differential operators with frequencies in Q
n

and coefficients
in Q satisfies the Fundamental Principle. For example, to test the Ehrenpreis’s
Conjecture when

µ1(t) =
∑

p=(p0,...,pn−1)∈Zn

a(1)
p (D) ∗ δ(t− (p0 + p1ω1 + . . . + pn−1ωn−1)), t ∈ R

µ2(t) =
∑

p=(p0,...,pn−1)∈Zn

a(2)
p (D) ∗ δ(t− (p0 + p1ω1 + . . . + pn−1ωn−1)), t ∈ R,

where n is now the rank of the subgroup Λ generated by the Q-linearly independent
algebraic numbers 1, ω1, . . . , ωn−1, one could check if the system of n+1 equations
in Rn

(1.4)

∂f

∂z2
− ω1

∂f

∂z1
= 0, . . . ,

∂f

∂zn
− ωn−1

∂f

∂zn−1
= 0

∑

p0,...,pn−1∈Zn

a(1)
p (

∂

∂z1
)f(t1 − p0, ..., tn − pn−1) = 0

∑

p0,...,pn−1∈Zn

a(2)
p (

∂

∂z1
)f(t1 − p0, ..., tn − pn−1) = 0

satisfies the Fundamental Principle. We have a system of difference-differential
equations in n variables with delays in Zn. When µ1 is a difference operator then
the two last equations in (1.2) are difference equations with integral delays.
There are two ways to try to verify that the Fundamental Principle holds:

- One is to study the geometry of the connected components of the sets where
the µ̂j are simultaneously small, and then apply in such components Division-
Interpolation formulas that extend to the analytic setting classical formulas given
by Lagrange, Jacobi, Kronecker in the case of polynomials. Under natural hy-
potheses, there is an explicit division algorithm with remainder, found using co-
homology with bounds [BT]. The use of such a method is restricted to the case
where the µ̂j define a complete intersection variety. We will see in Section 2 how
these Division-Interpolation formulas are also essential to get explicit versions of
the algebraic Nullstellensatz. It is even possible to adapt the analytic formalism
to study systems of polynomial equations over a field of positive characteristic, a
local ring, or an integral domain.

-The other method is based on the use of weighted integral representation
formulas of the Bochner-Martinelli type; such formulas (see for example [BGVY]
or [BY6]) provide explicit formulations of the Briançon-Skoda theorem [BS], the
ideal being the ideal generated by the µ̂j in the space of entire functions in n
complex variables, and lead to division algorithms of the form

h(z) =
m∑

j=1

Tjh(z)µ̂j(z) + T0h(z)

with

(1.5) Tjh(z) =
∑

s

< hTjs(ζ), ωjs(ζ, z) > , j = 0, ...,m
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where the Tjs are currents (linear combinations of currents of the form Principal-
Value distribution times Residue current, in the sense of [CH]), the ωjs are smooth
forms in ζ that depend holomorphically of z and decrease (in ζ) at infinity in such
a way that the duality brackets

< hTjs(ζ), ωjs(ζ, z) >

are well defined when h is in the Paley-Wiener algebra and remain (as functions
of z) in this algebra. Moreover, in the complete intersection case, one has

T0h(z) =< h ∂
1

µ̂1(ζ)
∧ · · · ∧ ∂

1
µ̂m(ζ)

, ω0(ζ, z) >

where ∂ 1
µ̂1(ζ)∧· · ·∧∂ 1

µ̂m(ζ) is the residue current introduced by Coleff-Herrera [CH].
This current is known to be annihilated locally by the ideal generated by the µ̂j ,
so that (1.5), when it holds, provides a division algorithm with remainder. In
the general case, all currents T0s are locally annihilated by holomorphic functions
whose germs near any point z in Cn belong to the integral closure (in Oz) of the
min(n,m)-th power of the ideal generated by the germs at z of the µ̂j , j = 1, ..., m,
and by antiholomorphic functions that vanish on the set of common zeroes of the
µ̂j . Such currents are supported by this set and one can view also (1.5) in the
general case as a Division-Interpolation formula, even if it does not provide in any
obvious way a division algorithm with remainder. In any case, the difficulty that
arises when one wants to write such division formulas is to control the growth
at infinity of the distributions that appear as coefficients of the Tjs, j = 0, ..., m.
Such coefficients can be recovered from the study of the meromorphic multivariate
distribution-valued Gamma function

(1.6) (s1, ..., sm) 7→
[
ϕ 7→

∫

Cn

|µ̂1|2(s1−1) · · · |µ̂m|2(sm−1)ϕdζ ∧ dζ

]
.

This function is a meromorphic function whose polar set is a union of hyperplanes

q1s1 + . . . + qmsm + q0 = 0, q1, ..., qm ∈ N, q0 ∈ Z.

The action of any distribution which appears as a coefficient of a current Tjs on
a test function equals a residue of this meromorphic Gamma function, respect
to some set of n polar divisors corresponding to hyperplanes with independent
directions. For example, to prove the Ehrenpreis Conjecture when

µ1(t) =
∑

p=(p0,...,pn−1)∈Zn

a(1)
p δ(t− (p0 + p1ω1 + . . . + pn−1ωn−1)) ,

where the a
(1)
p are algebraic numbers (that is for exponential sums instead of expo-

nential polynomials), it would be enough to study the meromorphic continuation
of a distribution-valued function of the form
(1.7)

(s1, ..., sn−1, t1, t2) 7→[
ϕ 7→

∫

Cn

( n−1∏

j=1

|ζj+1 − ωjζ1|2(sj−1)
)
|P1(e−iζ)|2(t1−1)|P2(e−iζ)|2(t2−1)ϕdζ ∧ dζ

]
,
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where the polynomials Pj ∈ Q[X0, ..., Xn−1] are given by

Pj(X0, ..., Xn−1) :=
∑

p

a(j)
p Xp0

0 · · ·Xpn−1
n−1 , j = 1, 2.

Though we still do not know how to handle this question, it seems important to
notice that the two functions Pl(e−iζ1 , ..., e−iζn), l = 1, 2, are periodic with periods
2πej , j = 1, ..., n, where the vectors ej form the canonical basis of Rn. On the
other hand, by Baker’s theorem [Ba], any linear combination

log α− ω log β + 2π(k1 + k2ω), α, β, ω ∈ Q \Q, k1, k2 ∈ Z

which is not zero satisfies

| log α− ω log β + 2π(k1 + k2ω)| ≥ γ(α, β, ω)(1 + |k1|+ |k2|)−C(α,β,ω) .

Therefore, it would be useful to have a semi-local resolution of singularities (in a
compact domain of the form max

j
|Re ζj | ≤ 2π, max

j
|Im ζj | ≤ T ) for the collection

of hypersurfaces

( n−1∏

j=1

(ζj+1 − ωjζ1 + 2π(kj+1 − ωjk1)
)
P1(e−iζ)P2(e−iζ) = 0 , k1, . . . , kn ∈ Zn

such that the centers of the balls at any step in the succesive blow-ups could be
chosen to have coordinates in log Q. It would seem that under these conditions
one could control the growth of the distributions that appear as residues of the
meromorphic function (1.7) with respect to polar divisors and, thus, prove the
Ehrenpreis Conjecture for sums of exponentials. For the moment, the only case
which is completely settled is the case where the rank of Λ is 2. There are also
results about the separation of zeros when Λ is generated by 1, ω, ω2, where ω is
a cubic irrational [BY2], [BY6].

The analytic Division-Interpolation methods mentioned above can be used
to prove effective versions of Hilbert’s Nullstellensatz over a field of characteristic
zero [BY8, BY9]. We will see in the next section that some of these analytic tools
have algebraic counterparts. For instance, the Lagrange-Kronecker interpolation
formula, the residue symbols, and the Lipman-Teissier theorem (which corresponds
to the Briançon-Skoda theorem) [LT], [LS]. In that section we will explain how they
can be used to prove effective Nullstellensätze over fields of arbitrary characteristic.

2. An arithmetic version of the algebraic Nullstellensatz

Let K be an algebraically closed field (of arbitrary characteristic) equipped
with an absolute value and P1, . . . , Pn be polynomials in K[x1, . . . , xn] of respective
degrees D1, . . . , Dn, defining a discrete, hence finite, algebraic variety in Kn. One
can see, as in [Ko], that there exist constants c > 0 and K ≥ 0 such that for any
x, |x| ≥ K one has

(2.1) max
1≤j≤n

|Pj(x)|
|x|Dj

≥ c|x|−D1···Dn .
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When the Pj have no common zero at infinity, one can replace D1 · · ·Dn by 0.
When the polynomial map is proper, that is, when K[x1, . . . , xn] is a K[P1, . . . , Pn]-
finitely generated module, one has an inequality of the form

(2.2) max
1≤j≤n

|Pj(x)|
|x|δj

≥ c, |x| ≥ K,

where 0 < δj ≤ Dj , 1 ≤ j ≤ n. The inequality (2.1) can be checked easily when
one considers the homogeneous polynomials Pj , j = 1, . . . , n and the functions
p1(x), . . . , pn(x) which correspond to the functions Pj(x) expressed in affine co-
ordinates near some point of the hyperplane x0 = 0. Let π : Z 7→ Cn be the
normalized blow-up of the ideal generated by the pj . It follows from Bézout’s the-
orem that at least one pj ◦ π vanishes to an order strictly smaller than D1 . . . Dn

along each component of the exceptional divisor of the normalized blow-up ([Ko,
Te1]). In fact, as it was pointed to us by M. Hickel, a careful analysis of the proof
in [Ko] shows that (2.1) can be improved in some cases, the exponent D1 · · ·Dn

can be reduced to a value ∆ expressible in terms of the invariants introduced in
[Te2].

Assume that Q belongs to the ideal I generated by the Pj and let Q be the
homogenization of Q. It follows from (2.1) that the product QxD1···Dn

0 , considered
as a formal power series in K[[x0, . . . , xn]], is in the integral closure I of the ideal I
generated in K[[x0, . . . , xn]] by the Pj . One knows now from the Lipman-Teissier
theorem that

Il ⊆ Il ⊆ I,

where l ≤ n is the minimal number of elements in I which generate a reduction
of this homogeneous ideal. Therefore, we have xlD1···Dn

0 Ql ∈ I. If now we go back
to the affine coordinates, we obtain that

(2.3) Ql =
n∑

k=1

AkPk, deg AkPk ≤ l(deg Q + D1 · · ·Dn) .

Whenever we can replace D1 . . . Dn by ∆ < D1 · · ·Dn in (2.1), we obtain

Ql =
n∑

k=1

AkPk, deg AkPk ≤ l(deg Q + ∆) .

The product l∆ is certainly bounded by nD1 · · ·Dn, which is not a very sharp
bound in general. If Q belongs to the radical of the ideal and ν is the maximum
of the Noether exponents at all the common zeros of the Pj , one has

(2.4) Qνl =
n∑

k=1

AkPk, deg AkPk ≤ l(ν deg Q + ∆) .

On the other hand, using a totally different method, based on cohomology
with supports, which bypasses the use of the Lojasiewicz inequality (2.1), Kollár
(also in [Ko]) was able to prove that if Q is in the radical of the ideal I, then, one
has

Qe =
n∑

k=1

AkPk, max(e,deg(AkPk)) ≤
n∏

j=1

max(Dj , 3) .
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Such a result holds for ideals generated by an arbitrary number m of generators by
replacing n by min{m,n} and taking the degrees in decreasing order. Note that
νl ≤ νn depends only on the geometric information in the affine space, while the
exponent e is estimated in terms of the decomposition of the homogeneous ideal
I.

Such results give only degree bounds for the algebraic Nullstellensatz. In order
to deal with these problems from the arithmetic point of view (for example when
the polynomials are in A[x1, . . . , xn], where A is a factorial regular integral domain
equipped with a logarithmic size such as Z or Fp[τ1, . . . , τq], or a regular local ring
equipped with a valuation), it is essential to solve explicitly the identities (2.3) or
(2.4), and, more generally, the Bézout problem: given m polynomials P1, . . . Pm

in A[x1, . . . , xn] without common zeroes in K
n
, where K is the fraction field of

the domain A, find explicitly a ∈ A, A1, . . . , Am ∈ A[x1, . . . , xn], with good
degree and size estimates (in terms of the degree and size estimates of the data
Pj , j = 1, . . . , m) such that

(2.5) a =
m∑

k=1

AkPk .

When A = Z and the logarithmic size is the Mahler measure

h(P ) =
1

(2π)n

∫

[0,2π]n
log |P (eiθ1 , . . . , eiθn)|dθ1 . . . dθn ,

the optimal result one could hope (in view of the arithmetic Bézout theorem that
comes from multidimensional Arakelov theory [BGS]) would be that (2.5) holds
with the additional estimates

(2.6) h(a) = log |a| ≤ κ(n)hDn+1 and
{

deg(AkPk) ≤ κ(n)Dn

h(Ak) ≤ κ(n)Dn(h + log m + D)

where D (resp. h) denotes the maximum of the degrees (resp. sizes) of the data Pj ,
j = 1, . . . , m. In fact, the Division-Interpolation formulas (introduced originally
to solve the type of problems we mentioned in the introduction) give a possibility
to solve explicitly the algebraic Nullstellensatz (though the estimates we get still
fail to fit exactly with the ideal ones (2.6)). The key tool to do that, by analogy
with our previous analytic work [BGVY], is to develop an operational multivariate
Residue Calculus. Let us recall here the main points.

The local residue symbol, in the local ring nO, is defined by

Res
[

r0dr1 ∧ · · · ∧ drn

f1, . . . , fn

]
= lim

ε 7→0
γn

∫

‖ζ‖=ε

r0

( n∑
k=1

(−1)k−1fk

n∧
l=1
l6=k

dfl

) ∧
n∧

k=1

drk

(|f1|2 + · · ·+ |fn|2)n
,

whenever r0, . . . , rn, f1, . . . , fn are elements in nO such that (f1, ..., fn) defines a
regular sequence and γn = (−1)

n(n−1)
2 (n − 1)!/(2iπ)n. It appears as a particular
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realization of a much more general algebraic concept. WhenR is a commutative A-
algebra, and f1, . . . , fn is a quasi-regular sequence in R such that the quotient P =
R/(f1, . . . , fn) is a finitely generated projective A-module, the residue symbols

Res
[

r0dr1 ∧ · · · ∧ drn

fq1+1
1 , . . . , fqn+1

n

]
, r0, . . . , rn ∈ R, q1, . . . , qn ∈ N,

can be defined as traces of particular operators in HomA(P,P). We refer to
Lipman [L], chapter 3, for a presentation of this theory. The advantage of Lipman’s
approach (compared to the other algebraic approaches proposed for example by
Scheja-Storch [ScS], Kunz [Ku1], see also [ElM1] for an overview of the subject) is
that the theory is developped over an A-commutative algebra instead of a K-vector
field, which makes it more attractive (even if we do not use its whole strenght here)
if one thinks about division or interpolation problems from the arithmetic point
of view.

The main tools that make Residue Calculus useful when solving effectivity
problems are the diverse variants of the Transformation Law: when f1, . . . , fn

and g1, . . . , gn are two quasi-regular sequences in R such that the quotients rings
R/(f1, . . . , fn) and R/(g1, . . . , gn) are finitely generated projective A-modules and

gj =
n∑

k=1

ajkfk, j = 1, . . . , n,

then, for any r0, . . . , rn ∈ R,

(2.7) Res
[

r0dr1 ∧ · · · ∧ drn

f1, . . . , fn

]
= Res

[
r0 det[ajk]dr1 ∧ · · · ∧ drn

g1, . . . , gn

]
.

A variant of this classical law (which can be found in [BY9]) is the following:
suppose that f0, . . . , fn and g1, . . . , gn are 2n + 1 elements in R such that the
two sequences (f0, f1, . . . , fn) and (f0, g1, . . . , gn) are quasi-regular and the quo-
tients R/(f0, f1, . . . , fn) and R/(f0, g1, . . . , gn) are finitely generated projective
A-modules. Then, if there are positive integers s1, . . . , sn and elements ajk ∈ R
such that

f
sj

0 gj =
n∑

k=1

ajkfk, j = 1, . . . , n,

one has, for any q0 ∈ N, for any r0, r1, . . . , rn+1 ∈ R,

(2.8) Res




r0dr1 ∧ · · · ∧ drn+1

fq0+1
0 , f1, . . . , fn


 = Res




r0 det[ajk]dr1 ∧ · · · ∧ drn+1

fq0+s1+...+sn+1
0 , g1, . . . , gn


 .

Among the diverse integral formulas that could provide at the same time division
and interpolation in the analytic context, one of the most tractable from the
algebraic point of view is the Cauchy-Weil’s formula. If (f1, . . . , fn) is a regular
sequence in nO, and gjk, 1 ≤ j, k ≤ n are elements in 2nO such that

fj(z)− fj(ζ) =
n∑

k=1

gjk(z, ζ)(zk − ζk), j = 1, . . . , n,
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that is

1⊗ fj − fj ⊗ 1 =
n∑

k=1

gjk(1⊗ ζk − ζk ⊗ 1), j = 1, . . . , n,

then, for any h in nO, the following identity, between h and the convergent power
series below, holds:
(2.9)

h(z) =
∑

q=(q1,...,qn)∈Nn

Res




h det[gjk(·, z)] dζ1 ∧ · · · ∧ dζn

fq1+1
1 , . . . , fqn+1

n


 fq1

1 (z) · · · fqn
n (z) .

Note that this is not the usual formulation of the Cauchy-Weil’s formula as an
integral representation formula, as it was extensively used in the semilocal context
in [BT], that is

(2.10) h(z) =
1

(2iπ)n

∫

Γf (ε)

h(ζ) det[gjk(z, ζ)] dζ1 ∧ · · · ∧ dζn
n∏

k=1

(fk(ζ)− fk(z))
, z ∈

◦
∆f (ε)

where Γf (ε) (for ‖ε‖ small and outside a negligible set) is the Shilov boundary
(conveniently oriented) of the connected analytic polyedrum ∆f (ε) = {|f1(ζ)| ≤
ε1, . . . , |fn(ζ)| ≤ εn} that contains the origin (here we take representatives for the
germs fj). We deduce (2.9) from (2.10) just expanding the integral kernel as a
geometric power series. When expressed as (2.9), the Cauchy-Weil’s formula has an
algebraic counterpart. For a complete presentation of it, as well as for applications,
we refer to [BoH2]. The algebraic version of the Cauchy-Weil formula is related
to a generalization of the Transformation Law that was originally proposed by
Kytmanov and later generalized to the algebraic setting [BY8,BY9,BoH1].

Proposition 2.1. Let f = (f1, . . . , fn) and g = (g1, . . . , gn) be two quasiregular
sequences in R, such that the quotients R/(f) and R/(g) are finitely generated
projective A-modules and

gj =
n∑

k=1

ajkfk, j = 1, . . . , n,

where the coefficients ajk are in R. Then, for any r0, r1, . . . , rn ∈ R, any q ∈ Nn,
we have

Res


 r0

n∧
j=1

drj

fq+1


 =

∑
|q;j |=qj
1≤j≤n

n∏

i=1

(
µi

qi;

)
Res


 r0 det[ajk]

∏
1≤i,j≤n

(aij)qi,j

n∧
j=1

drj

gµ1+1
1 , . . . , gµn+1

n


 ,

where we have introduced the following notations for the vector q = (q1, . . . , qn)
and the matrix of indices qi,j ∈ N

q+1 = (q1+1, . . . , qn+1), q;j = (q1,j , . . . , qn,j), qi; = (qi,1, . . . , qi,n), µi = |qi;|
and (

µi

qi;

)
=

µi!
qi,1! · · · qi,n!

.
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For our purpose, we will need here only a particular case of such an extension
of the Cauchy-Weil’s formula. Suppose that A is a Noetherian commutative ring
and that P1, . . . , Pn are elements in R = A[x1, . . . , xn] such that (P1, . . . , Pn) is
quasi-regular, R/(P1, . . . , Pn) is a projective A-module and the polynomial ring
A[x1, . . . , xn] is a finetely generated A[P1, . . . , Pn] module. Then, if the gjk in
R⊗A R are defined as

1⊗ Pj − Pj ⊗ 1 =
n∑

k=1

gjk(1⊗ xk − xk ⊗ 1),

then, for any Q ∈ R, the Weil’s formula truncates and one has a polynomial
identity in R
(2.11)

Q(y) =
∑

q=∈Nn

|q|≤N(deg Q)

Res




Q(x) det[gjk(x, y)] dx1 ∧ · · · ∧ dxn

P q1+1
1 (x), . . . , P qn+1

n (x)


 P q1

1 (y) · · ·P qn
n (y) ,

where |q| = q1+· · ·+qn and N(deg Q) is an integer depending as an affine function
on the degree of Q.

We will focuse on the interpretation of (2.11) in the case where A is a commu-
tative field K, which is algebraically closed and equipped with an absolute value
| · |. In this case, the fact that K[x1, . . . , xn] is a finitely generated module over
K[P1, . . . , Pn] is equivalent to the existence of constants K ≥ 0, 0 < δj ≤ deg Pj ,
j = 1, . . . , n, such that

max
1≤j≤n

|Pj(x)|
|x|δj

≥ c, |x| ≥ K ,

(in other words (P1, . . . , Pn) is a proper map with a multi-valued Lojasiewicz
exponent (δ1, . . . , δn)). This multi-variate exponent is crucial since it controls the
function N that appears in formula (2.11).

The easiest case is the case when δj = deg Pj , j = 1, . . . , n. In such a case, the
homogeneous polynomials P1, . . .Pn obtained from the Pj define a quasi-regular
sequence in K[x0, . . . , xn] and it follows from the Hilbert’s Nullstellensatz that
there exist homogeneous polynomials Rj(x0, xj), 1 ≤ j ≤ n, distinguished in xj ,
and homogeneous polynomials Rjk such that

(2.13) Rj(x0, xj) =
n∑

k=1

Rjk(x0, . . . , xn)Pk(x0, . . . , xn), j = 1, . . . , n,

with
degRjkPk = degRj , 1 ≤ j, k ≤ n .

Thus, we have

Rj(1, xj) = Rj(xj) =
n∑

k=1

Rjk(1, x)Pk(x) =
n∑

k=1

Ajk(x)Pk(x),
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with
deg(AjkPk) ≤ deg Rj , 1 ≤ j, k ≤ n .

It follows from the Transformation Law and from the Residue Calculus in one
variable that

(2.14) deg Q ≤
n∑

j=1

(qj + 1)Dj − n− 1 =⇒ Res
[

Qdx1 ∧ · · · ∧ dxn

P q1+1
1 , . . . , P qn+1

n

]
= 0 .

This classical result goes back to Jacobi [J] in the complex case and has been
extended in the above algebraic context in [KK] (with a different proof). This
vanishing Jacobi formula has many applications in projective geometry (Cayley-
Bacharach theorems, inversion of the Abel transform) and we refer for example
to [G, EGH, Ku2] for a presentation of some of them. A toric version of Jacobi’s
vanishing theorem has been obtained by Khovanskii [Kho].

Suppose now that P1, . . . , Pn is a proper map that satisfies (2.2) and the δk are
integers; let Dk = deg Pk, k = 1, . . . , n. Suppose that R1(x1), . . . Rn(xn), with ho-
mogeneisations R1(x0, x1), . . .Rn(x0, xn), are in the ideal generated by P1, . . . , Pn

in K[x1, . . . , xn] (there are still such polynomials because of the Hilbert’s Nullstel-
lensatz). One can replace condition (2.13) by the following: for any M such that
M ≥ deg Pj − δj , j = 1, . . . , n, one has

xM
0 Rj(x0, xj) ∈ (xM+δ1−D1

0 P1, . . . , x
M+δn−Dn
0 Pn),

where the integral closure is taken in the ring K[[x0, . . . , xn]]. If one uses the
theorem of Lipman-Teissier [LS, LT], one obtains, for any λ ∈ N∗,

(xM
0 Rj(x0, xj))λ+n ∈ (xM+δ1−D1

0 P1, . . . , x
M+δn−Dn
0 Pn)λ+1 .

Therefore, one can write, for any such λ,

Rj(xj)λ+n =
∑

l=(l1,...,ln)
l1+···+ln=λ+1

U
(λ)
jl (x)P l1

1 (x) · · ·P ln
n (x), j = 1, . . . , n,

with

deg U
(λ)
jl ≤ (n−1)M +(λ+n) deg Rj−

n∑

k=1

δklk, l ∈ Nn, |l| = λ+1, j = 1, . . . , n .

For example, if we assume that all Dj = D, all δj = δ (then one takes M = D−δ),
we obtain that for any multiindex q = (q1, . . . , qn) ∈ Nn,

Rj(xj)|q|+n =
n∑

k=1

A
(q)
jk P qk+1

k

with
deg A

(q)
jk P qk+1

k ≤ (|q|+ n)(D − δ + deg Rj) , 1 ≤ j, k ≤ n .
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If follows again from the Transformation Law and from Residue Calculus in one
variable that, for any Q ∈ K[x1, . . . , xn],
(2.15)

deg Q + (|q|+ n)((n− 1)D − nδ)) ≤ −n− 1 =⇒ Res
[

Qdx1 ∧ · · · ∧ dxn

P q1+1
1 , . . . , P qn+1

n

]
= 0 .

This shows that if 1 − 1
n < δ

D ≤ 1, one can express the function N in (2.11) in
terms of the Lojasiewicz exponent δ. In fact, one may conjecture that one has the
following version of Jacobi’s vanishing theorem

(2.16) deg Q ≤
n∑

j=1

(qj + 1) δj − n− 1 =⇒ Res
[

Qdx1 ∧ · · · ∧ dxn

P q1+1
1 , . . . , P qn+1

n

]
= 0 .

Here again, the validity of the result in the complex case may give some insight
into the validity of the above conjecture.

Proposition 2.2. Let P1, . . . , Pn, n polynomials in C[x1, . . . , xn] such that there
exists δ1, . . . , δn, with 0 < δj ≤ deg Pj , K ≥ 0, c > 0, such that

‖x‖ ≥ K =⇒ max
1≤j≤n

|Pj(x)|
|x|δj

≥ c, .

Then, one has, for any polynomial Q ∈ C[x1, . . . , xn],

deg Q ≤
n∑

j=1

(qj + 1) δj − n− 1 =⇒ Res
[

Qdx1 ∧ · · · ∧ dxn

P q1+1
1 , . . . , P qn+1

n

]
= 0 .

Sketch of proof. It is enough to prove the statement when q = 0. Moreover,
using changes of basis of the form x1 = yM

1 , . . . , xn = yM
n and the compatibility of

Residue Calculus with change of basis [L], one can assume that the δj are integers.
The key idea is just to choose M as before and to set

sj(ζ) =
1

(1 + ‖ζ‖)M+δj
Pj , j = 1, . . . , n .

We also define

‖P‖2δ =
n∑

k=1

|Pk|2
(1 + ‖ζ‖2)δk+M

.

Using the Bochner-Martinelli formulas, for R sufficiently big one has

(2.17) Res
[

Qdx
P

]
= γn

[∫

‖ζ‖=R

‖P‖2(λ−n)
δ Q(

n∑

k=1

(−1)k−1skds[k]) ∧ dζ

]

λ=0

,

where the right-hand side can be understood as the value at λ = 0 of an entire
function of λ. We now express the differential form

‖P‖2(λ−n)
δ Q(

n∑

k=1

(−1)k−1skds[k]) ∧ dζ
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in homogeneous coordinates. We denote this homogeneous form ΩQ(λ; ζ̃), where
ζ̃ = (ζ0, . . . , ζn), and we rewrite (2.17) as

(2.18) Res
[

Qdx
P

]
= −γn

[∫

Σ

∂ΩQ(λ; ζ̃)
]

λ=0

,

where Σ is the complement (in Pn) of a finite union of balls centered at the
common zeroes (in the affine space) of the polynomials Pj , 1 ≤ j ≤ n. We now
compute the meromorphic continuation of the right hand side of (2.18) using a
resolution of singularities for the hypersurface ζ0P1 · · · Pn = 0 near any point ξ
of Pn on the hyperplane at infinity ζ0 = 0, and then a normalization. A careful
study of all terms show that when deg Q ≤ δ1 + . . . + δn−n− 1, or more precisely
when nM + δ1 + . . . + δn − n− 1− deg Q ≥ nM , one has

[∫

Σ

∂Ω(λ; ζ̃)
]

λ=0

= 0 .

This is due to the fact that ζ
nM+|δ|−n−1
0 appears in the numerator of ∂ΩQ(λ; ζ̃)

while the currents involved in ∂ΩQ(0; ζ̃) are annihilated by holomorphic functions
that lie in the n-th power of the integral closure of the ideal generated by the
ζ

M+δj−Dj

0 Pj in Oξ; from (2.2) we conclude that the germ at ξ of ζM
0 is in this

integral closure, therefore the germ at ξ of ζnM
0 annihilates the currents involved

in ΩQ(0; ζ̃). As one can see, such a proof is directly inspired from the analytic
techniques we introduced to study problems related to the Fundamental Principle.
♦

Coming back to the algebraic setting, we have already at our disposal the fol-
lowing very useful proposition, which is a different version of the classical Division-
Interpolation formula of Kronecker

Proposition 2.3. Let P1, . . . , Pn be n polynomials with degree D in K[x1, . . . , xn]
such that

|x| ≥ K =⇒ max
1≤j≤n

|Pj(x)|
‖x‖δ

≥ c > 0

for some integer δ in ]0, D]. Suppose that 1− 1
n(n+1) < δ

D ≤ 1. Suppose that

1⊗ Pj − Pj ⊗ 1 =
n∑

k=1

gjk(1⊗ xk − xk ⊗ 1) , j = 1, . . . , n .

Then one has

(2.19) 1 = Res
[

det[gjk(x, y)]dx1 ∧ · · · ∧ dxn

P1(x), . . . , Pn(x)

]
.

Proof. We already know that

deg Q + (|q|+ n)((n− 1)D − nδ) ≤ −n− 1 =⇒ Res
[

Qdx1 ∧ · · · ∧ dxn

P q1+1
1 , . . . , P qn+1

n

]
= 0 .
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We just need to check that the inequality

n(D − 1) + (n + 1)((n− 1)D − nδ) ≤ −n− 1

is satisfied. This means

nD + (n + 1)((n− 1)D − nδ) < 0 ,

that is
(n2 + n− 1)D − n(n + 1) δ < 0,

which is the condition required. ♦
Remark. In the complex case, where the Pj satisfy the condition (2.2) and

det[gjk](x, y) =
∑

|α|+|β|≤|D|−n

γαβxαyβ ,

(where |D| = D1+. . . Dn), the general Division-Interpolation formula of Kronecker
can be stated as follows. For any Q ∈ K[x1, . . . , xn],
(2.20)

Q(y) =
∑

q,α,β∈Nn

|α|+|β|≤|D|−n
<q+1,δ>+|β|≤|D|+deg Q

γαβ Res
[

Qxα dx1 ∧ · · · ∧ dxn

P q1+1
1 , . . . , P qn+1

n

]
yβP q1

1 (y) · · ·P qn
n (y) .

This follows immediately from the Cauchy-Weil formula, together with Proposition
2.2. Such a formula probably holds in the general algebraic case where C is
replaced by a field K with arbitrary caracteristic. Note that if Q is in the ideal
generated by P1, . . . , Pn, (2.20) gives an explicit formula

Q =
n∑

k=1

AkPk

with very precise estimates on the degrees of the Ak in terms of the degree of Q
and of the Lojasiewicz multi-exponent (δ1, . . . , δn).

Proposition 2.3 is the major step in our direct formulation of the algebraic
Nullstellensatz over an integral domain A whose quotient field K is an infinite
field with arbitrary caracteristic. We will express here a Bézout identity, in the
same vein than the Bézout identities one can write in the Paley-Wiener algebra for
inconsistent systems of convolution equations which satisfy the Fundamental Prin-
ciple [BY3]. We start with a collection of polynomials P1, . . . , Pm in A[x1, . . . , xn]
without common zeroes in K

n
. Let d = D1 . . . Dµ, where µ = inf(n,m) and the

degrees are in decreasing order. Then one can find linear combinations

pj =
m∑

k=1

λjkPk, j = 1, . . . , n, λjk ∈ A,

such that deg pj = D1, 1 ≤ j ≤ n and any subfamily of {p1, . . . , pn} defines a quasi-
regular sequence in K[x1, . . . , xn]. If one uses the Ji-Kollár-Shiffman Lojasiewicz
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inequalities [JKS] and the Normalization Theorem of E. Noether, we can assume,
after a linear change of variables over A, that, for any integer l ≥ 2, the map

x 7→ (xld
1 p1(x), . . . , xld

n pn(x))

is proper, with multivalued Lojasiewicz exponent (ld− d, . . . , ld− l). Then, if l is
sufficiently large so that

1− 1
n(n + 1)

≤ d(l − 1)
ld + D1

≤ 1 ,

we can apply Proposition 2.3 and obtain the Kronecker identity

(2.21) 1 = Res




det[g(l)
jk (x, y)] dx1 ∧ · · · ∧ dxn

xld
1 p1(x), . . . , xld

n pn(x)


 ,

where

1⊗ xld
j pj − xld

j pj ⊗ 1 =
n∑

k=1

g
(l)
jk (1⊗ xk − xk ⊗ 1) .

There exists a linear combination p0, with coefficients in R, of the Pj , which
does not vanish on the common zero set of the polynomials xjpj(x). There are
g0j ∈ A[x1, . . . , xn]⊗A A[x1, . . . , xn] such that

1⊗ p0 − p0 ⊗ 1 =
n∑

k=1

g0k(1⊗ xk − xk ⊗ 1) .

When R = K[x1, . . . , xn], and (f1, . . . , fn) is a quasi-regular sequence in this
algebra, it is immediate to extend the definition of the residue symbol

Res
[

r0dx1 ∧ · · · ∧ dxn

f1, . . . , fn

]
, r0 ∈ R,

to the case where r0 is an element of K(x1, . . . , xn) which has no poles at the
common zeros of f1, . . . , fn. Therefore, one can rewrite (2.21) as

(2.22) 1 =
n∑

j=1

Res




∆
(l)
j

(x,y)

p0(x) dx

xld
1 p1, . . . , x

ld
n pn


 yld

j pj(y) + Res




det[g
(l)
jk

(x,y)]

p0(x) dx

xld
1 p1, . . . , x

ld
n pn


 p0(y) ,

where dx = dx1 ∧ · · · ∧ dxn and ∆(l)
j (x, y) is obtained from det[g(l)

jk (x, y)] by sub-
stitution of the column of index j by the column-vector (g01(x, y), . . . , g0n(x, y)).
This formula (2.22) can be rewritten as the Bézout identity in K[x1, . . . , xn]

1 =
m∑

k=1

AkPk , deg AkPk ≤ (n + 1)(ld + D1)− n .
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Eliminating the denominators in such a formula provides the identity

(2.23)
a =

m∑

k=1

UkPk

a ∈ A∗, Uk ∈ A[x1, . . . , xn], deg UkPk ≤ (n + 1)(ld + D1)− n .

It remains to study carefully the size estimates in such an identity when one makes
the assumption that the integral domain A is a regular factorial ring equipped with
a size.

3. Complexity of the Residue Calculus

Let A be a regular factorial domain with quotient field K, such that the
ring of polynomials in an arbitrary number of variables with coefficients in A,
Pol(A), is equipped with a logarithmic size. We have already mentioned the case
of Pol(Z) with the Mahler measure. We can also mention Pol(Fp[τ1, . . . , τq]) with
the degee in τ as a size. Let P1, . . . , Pn be polynomials in A[x1, . . . , xn] defining a
quasiregular sequence in K[x1, . . . , xn]. The explicit versions of the Bézout identity
we proposed in the last section involve computing residue symbols of the form

(3.1) Res




Q1
Q2

dx1 ∧ · · · ∧ dxn

P q1+1
1 , . . . , P qn+1

n


 , q ∈ Nn,

where Q1, Q2 ∈ A[x1, . . . , xn], and (P1, . . . , Pn, Q2) generate K[x1, . . . , xn] in this
ring. Let Dj = deg Pj , 1 ≤ j ≤ n. The key idea that one can use in order to
compute symbols of the form (3.1) is to find first a system of relations of integral
dependency

(3.2) Qj(xj , P ) =
Nj∑

k=0

Ajk(P )xNj−k
j = 0, j = 1, . . . , n,

where the Ajk are polynomials in y with coefficients in A. An old theorem of O.
Perron [Per] implies that it is possible to find such relations at the same time that
the following estimate holds,

degy Qj(y0, y
D1
1 , . . . , yDn

n ) ≤ D1 · · ·Dn .

Unfortunately, the size estimates that one can predict for the coefficients of the Ajl

are just the ones that can be predicted with plain linear algebra are are roughly in
Dn2

h, where D is the maximum of the Dj and h the maximum of the logarithmic
sizes of the Pj . There are at several ways to bypass this problem:

- Use a deep result of P. Philippon [Phi] about estimates for denominators
in the Hilbert Nullstellensatz. Such estimates follow once again from the ap-
plication of Lipman-Teissier’s theorem. We use them here for the polynomials
xj − u0, P1(x)− u1, . . . , Pn(x)− un considered as polynomials in A[u0, u1, . . . , un]
without common zeroes in K(u0, . . . , un). This was done for example in [BY9].
The size estimates are in κ(n)D1 · · ·Dn(h + D).
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- Notice, as in [ElM2], that one can obtain a relation of the form (3.2) from
a maximal non identically zero minor of the Bezoutian matrix of the polynomials
xj − u0, P1 − u1, . . . , Pn − un. The degree estimates are worse than in Perron’s
result, but the size estimates are also in κ(n)DO(n)h.

- Introduce a perturbation parameter λ and construct auxiliary relations

(3.3)
Nj∑

k=0

Ãjk(λ, λxD1+1
1 + P1, . . . , λxDn+1

n + Pn)x
Nj−k
j = 0 , j = 1, . . . , n ,

using the fact that residue calculus is quite easy to perform if the entries Pj are
a Gröbner Basis for some weight [CDS]. Here again, the size estimates are of the
same type as above. Such an idea comes from Analysis, see for example [AY].

In any case, one can rewrite these relations (3.2) or (3.3) as

(3.4) Qj(xj , u) =
n∑

k=1

Qjk(xj , P, u)(Pj − u)

or

(3.5) Q̃j(xj , u, λ) =
n∑

k=1

Ãjk(x, P, u, λ)(Pj − u + λx
Dj+1
j ) .

We introduce generic parameters α ∈ An or α̃ ∈ An+1 (the quotient field K is
assumed to be infinite) in order to rewrite (3.4) or (3.5) as

Qj(xj , tα) =
n∑

k=1

Qjk(xj , P, tα)(Pj − αjt) = tνj (Rj(α, xj) + tSj(α, t, xj))

or

Q̃j(xj , tα̃) =
n∑

k=1

Ãjk(x, P, tα̃)(Pj − t (α̃j − α̃n+1x
Dj+1
j ))

= tνj (R̃j(α̃, xj) + tS̃j(α̃, t, xj)) .

Using the generalized transformation law (2.8), one obtains the calculus of the
residue symbols

(3.6) Res
[ Q1(x)

Q2(x)dt ∧ dx

tq0+1, P1 − α1t, . . . , Pn − αnt

]
=

∑

|q|=q0

αqRes
[ Q1

Q2
dx

P q1+1
1 , . . . , P qn+1

n

]
,

for q0 ∈ N, or
(3.7)

Res

[
Q1(x)
Q2(x)dt ∧ dx

t, P1 − t (α̃1 − α̃n+1x
D1+1
1 ), . . . , Pn − t (α̃n − α̃n+1x

Dn+1
n )

]
= Res

[
Q1
Q2

dx
P

]
.

Once the calculus of residue symbols is performed in that way, one can show that
the solution of the Bézout identity (2.23) satisfies size estimates of the form

max(h(a), max
k

h(Ak)) ≤ κ(n)(D1 . . . Dn)4D2
1(h + log m + D)
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where D1 ≥ D2 . . . ≥ Dm (we assume m ≥ n, which is always possible if we allow
repetitions).

One could hope that the use of the Cauchy-Weil’s formula over a ring (and not
a field as here), as introduced in [BoY2], may provide a better understanding of
such an effective method for the solution of the arithmetic Nullstellensatz. Let us
mention here that in [BY7], we developped analytic methods to compute explicitely
Green currents and arithmetic height of cycles in X = ProjZ[x0, . . . , xn] (that
are defined as complete intersections in X (C) = Pn) as residues at 0 of zeta-
functions. The resolution of the arithmetic Nullstellensatz we proposed in these
two sections, as the construction of Green currents using analytic continuation
techniques, should fit in a natural way with multivariate Arakelov theory.

4. Conclusion.

As we have seen in this paper, the methods originally introduced to solve
questions related to the Fundamental Principle or the conjecture of L. Ehrenpreis
appear to be quite useful in order to find effective solutions to some problems in
Algebraic Geometry . It is also clear that one should profit from the ideas devel-
opped by algebraists or geometers and adapt them to an analytic context. Such is
the case for example for the techniques involved in the study of sparse problems
in commutative algebra or algebraic geometry (sparse resultant, toric varieties,
toric residues, geometric description of amoebas,...). Some of the tools presented
here can be extended to the analytic context and to the study of exponential
polynomials in several variables initiated by Polya, and pursued by Khovanskii,
Kazarnovski, Ronkin, could be obtained using these tools. For example, in [Pel] it
is proved (under convenient arithmetic conditions) that the Bézout identity where
the entries are sums of exponentials can be solved using the Division-Interpolation
methods based on the residue calculus that we developped in the second section.
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[BoH1] J. Y. Boyer, M. Hickel, Une généralisation de la loi de transformation pour
les résidus, Bull. Soc. Math. France 125, 1997, 315-335.
[BoH2] J. Y. Boyer, M. Hickel, Extension dans un cadre algébrique d’une formule
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