About inverse problems related to deconvolution

Alain Yger, Université Bordeaux 1

ICHAA, El-Kantaoui, Sousse (Tunisia), November 2006

Outline

About Pompeïu type problems Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion

About Pompeïu type problems

Pompeïu transfoms ; examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Deconvolution procedures in the *n*-dimensional context

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

The intrinsic hardness of spectral synthesis problems in higher dimension

Conclusion

 Outline
 Pompeiu transforms : examples and classical results

 About Pompeiu trype problems
 Harmonic sphericals and transmutation

 Deconvolution procedures in the *n*-dimensional context
 Complex nadytic tools to be applied in the Paley-Wiener algebra

 The intrinsic hardness of spectral synthesis problems in higher dimension
 Complex nadytic tools to be applied in the Paley-Wiener algebra

 A "tensorial" approach : the (n + 1) hypercube problem
 A "tensorial" approach : the (n + 1) hypercube problem

About Pompeïu type problems

Pompeïu transfoms ; examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Deconvolution procedures in the *n*-dimensional context

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

The intrinsic hardness of spectral synthesis problems in higher dimension

Conclusion

Outline About Pompeïu type problems

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

The Pompeïu transform and some natural related questions

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

The Pompeïu transform and some natural related questions

 \pmb{X} : locally compact space equipped with positive Radon measure μ ;

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

The Pompeïu transform and some natural related questions

X : locally compact space equipped with positive Radon measure μ ;

 $K_1, ..., K_N$: N compact subsets of X ;

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

The Pompeïu transform and some natural related questions

- X : locally compact space equipped with positive Radon measure μ ;
- $K_1, ..., K_N$: N compact subsets of X;
- **G** : topological group acting on X, such that μ is G-invariant

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

The Pompeïu transform and some natural related questions

- X : locally compact space equipped with positive Radon measure μ ;
- $K_1, ..., K_N$: N compact subsets of X ;
- **G** : topological group acting on X, such that μ is G-invariant

Associated Pompeïu transform :

$$f \in C(X) \longmapsto \left(g \in G \mapsto \int_{gK_1} fd\mu, \dots, g \in G \mapsto \int_{gK_N} fd\mu \right) \in (C(G))^N$$

▶ Is the transform injective ?

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

The Pompeïu transform and some natural related questions

- X : locally compact space equipped with positive Radon measure μ ;
- $K_1, ..., K_N$: N compact subsets of X ;
- **G** : topological group acting on X, such that μ is G-invariant

Associated Pompeïu transform :

$$f \in C(X) \longmapsto \left(g \in G \mapsto \int_{gK_1} f d\mu, \dots, g \in G \mapsto \int_{gK_N} f d\mu \right) \in (C(G))^N$$

- Is the transform injective ?
- If yes, can it be inverted (at least in a weak sense, for example in the distribution sense) ?

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

The Pompeïu transform and some natural related questions

- X : locally compact space equipped with positive Radon measure μ ;
- $K_1, ..., K_N$: N compact subsets of X ;
- **G** : topological group acting on X, such that μ is G-invariant

Associated Pompeïu transform :

$$f \in C(X) \longmapsto \left(g \in G \mapsto \int_{gK_1} f d\mu, \dots, g \in G \mapsto \int_{gK_N} f d\mu \right) \in (C(G))^N$$

- Is the transform injective ?
- If yes, can it be inverted (at least in a weak sense, for example in the distribution sense) ?
- What about a local version (X replaced by some open subset U and the g being restricted to the condition gK_i ⊂ U when necessary) ?

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

The Pompeïu transform and some natural related questions

- X : locally compact space equipped with positive Radon measure μ ;
- $K_1, ..., K_N$: N compact subsets of X ;
- **G** : topological group acting on X, such that μ is G-invariant

Associated Pompeïu transform :

$$f \in C(X) \longmapsto \left(g \in G \mapsto \int_{gK_1} f d\mu, \dots, g \in G \mapsto \int_{gK_N} f d\mu \right) \in (C(G))^N$$

- Is the transform injective ?
- If yes, can it be inverted (at least in a weak sense, for example in the distribution sense) ?
- What about a local version (X replaced by some open subset U and the g being restricted to the condition gK_j ⊂ U when necessary) ? If yes, can this "local version" be inverted (at least in a weak sense, for example in the distribution sense) ?

Pompeïu transfoms ; examples and classical results Complex analytic tools to be applied in the Paley-Wiener algebra A "tensorial" approach : the (n + 1) hypercube problem

.⊒...>

4 E N 4

For references, up to 1996...

 Outline
 Pompeiu type problems

 Deconvolution procedures in the n-dimensional
 Conclusion

 The intrinsic hardness of spectral synthesis problems
 Conclusion

For references, up to 1996...

An exhaustive bibliography by L. Zalcman
 [L. Zalcman, Approximation by solutions of PDE's, Kluwer, 1992, B.
 Fuglede ed.]

 An updated survey by C.A. Berenstein [C.A. Berenstein, *The Pompeiu problem, what's new*? *in* Complex Analysis, Harmonic analysis and applications, Pitman Research Notes 347, 1996]
 Outline
 Pompeïu transfoms ; examples and classical results

 About Pompeïu type problems
 Harmonic sphericals and transmutation

 Deconvolution procedures in the *n*-dimensional context
 Complex analytic tools to be applied in the Paley-Wiener algebra

 The intrinsic hardness of spectral synthesis problems in higher dimension
 Conclusion
 A "tensorial" approach : the (*n* + 1) hypercube problem

Shiffer's old (still open) question

• $X = \mathbb{R}^n$, G : Euclidean motion group M(n), $\mu = dx$;

4 E N 4

.⊒...>

 Outline
 Pompeïu transfoms : examples and classical results

 About Pompeïu trype problems
 Harmonic sphericlas and transmutation

 Deconvolution procedures in the *n*-dimensional context
 Complex analytic tools to be applied in the Paley-Wiener algebra

 The intrinsic hardness of spectral synthesis problems in higher dimension
 Conclusion

 A "tensorial" approach : the (*n* + 1) hypercube problem

Shiffer's old (still open) question

- $X = \mathbb{R}^n$, G : Euclidean motion group M(n), $\mu = dx$;
- N = 1, K₁ = Ω, where Ω is an open bounded open set with Lipschitz boundary such that ℝⁿ \ K₁ is connected.

Suppose the related Pompeiu transfom NON INJECTIVE ; is K a disk ?

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

4 3 6 4 3 6

A "reformulation" by A. Williams (1976) and a partial answer by C.A. Berenstein (1980)

Conclusion

Theorem (A. Williams, 1976)

The Pompeiu transform in the above setting is injective is and only if there is NO $\alpha > 0$ such that the overdetermined Neumann problem

 $\Delta u + \alpha u = 0 \text{in } \Omega$ $u = 1, \ \partial u / \partial n_{\text{ext}} = 0 \text{ on } \partial \Omega$

has a solution.

Outline About Pompeïu type problems

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion

Pompeïu transfoms ; examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

A "reformulation" by A. Williams (1976) and a partial answer by C.A. Berenstein (1980)

Theorem (A. Williams, 1976)

The Pompeiu transform in the above setting is injective is and only if there is NO $\alpha > 0$ such that the overdetermined Neumann problem

$$\Delta u + \alpha u = 0 \text{ in } \Omega$$
$$u = 1, \ \partial u / \partial n_{\text{ext}} = 0 \text{ on } \partial \Omega$$

has a solution.

One point of "non analyticity" on $\partial K \implies$ INJECTIVITY ([A. Williams, 1976, following Cafarelli]) !

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

オポト イヨト イヨト

A "reformulation" by A. Williams (1976) and a partial answer by C.A. Berenstein (1980)

Conclusion

Theorem (A. Williams, 1976)

The Pompeiu transform in the above setting is injective is and only if there is NO $\alpha > 0$ such that the overdetermined Neumann problem

 $\begin{array}{rcl} \Delta u + \alpha u & = & 0 \mathrm{in} \ \Omega \\ u = 1 \, , \ \partial u / \partial n_{\mathrm{ext}} & = & 0 \ \mathrm{on} \ \partial \Omega \end{array}$

has a solution.

One point of "non analyticity" on $\partial K \implies$ INJECTIVITY ([A. Williams, 1976, following Cafarelli]) ! Assuming $\partial K \ C^{2+\epsilon}$, if the Neumann problem admits solutions for an <u>infinite</u> number of real values α , then K is a disk ([C.A. Berenstein, 1980]) Outline About Pompeïu type problems

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Some attempts ;positive results to question 1 in the same setting $(X = \mathbb{R}^n$, respect to the global injectivity question)

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Some attempts ;positive results to question 1 in the same setting $(X = \mathbb{R}^n$, respect to the global injectivity question)

Conclusion

Yes (when n = 2) if Ω is conformally equivalent to the unit disk trough a rational (even in some cases algebraic) map : YES when Ω is a true ellipse, NO when it is a disk ! [P. Ehbenfelt, 1993]

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Some attempts ;positive results to question 1 in the same setting $(X = \mathbb{R}^n$, respect to the global injectivity question)

Conclusion

- Yes (when n = 2) if Ω is conformally equivalent to the unit disk trough a rational (even in some cases algebraic) map : YES when Ω is a true ellipse, NO when it is a disk ! [P. Ehbenfelt, 1993]
- Several attacks, still when n = 2, in particular through its natural companion (the holomorphy test of Morera with K = ∂Ω, assuming ∂Ω is a piecewice Jordan curve and consider the path integral), mainly by L. Zalcman and V.V. Volchkov (1990-2000)

Outline About Pompeïu type problems

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

크 > 크

Still in the Euclidean case, two important examples

Outline	Pompeïu transfoms ; examples and classical results
About Pompeiu type problems	Harmonic sphericals and transmutation
Deconvolution procedures in the n-dimensional context	Complex analytic tools to be applied in the Paley-Wiener algebra
The intrinsic hardness of spectral synthesis problems in higher dimension	Results respect to the two disks problem
Conclusion	A "tensorial" approach : the $(n+1)$ hypercube problem

Still in the Euclidean case, two important examples

▶ N = n + 1, $K_j = [-r_j, r_j]^n$, $r_1, ..., r_{n+1}$ pairwise rationally independent [C.A. Berenstein, B.A. Taylor, 1977]

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Still in the Euclidean case, two important examples

- ▶ N = n + 1, $K_j = [-r_j, r_j]^n$, $r_1, ..., r_{n+1}$ pairwise rationally independent [C.A. Berenstein, B.A. Taylor, 1977]
- ▶ N = 2, $K_j = B(0, r_j)$, r_1/r_2 not quotient of two zeroes of $J_{n/2}$

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Still in the Euclidean case, two important examples

- ▶ N = n + 1, $K_j = [-r_j, r_j]^n$, $r_1, ..., r_{n+1}$ pairwise rationally independent [C.A. Berenstein, B.A. Taylor, 1977]
- ▶ N = 2, $K_j = B(0, r_j)$, r_1/r_2 not quotient of two zeroes of $J_{n/2}$
- A companion problem : J. Delsarte's two radii theorem [J. Delsarte, Lectures at Tata Institute, 1961] :

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Still in the Euclidean case, two important examples

- ▶ N = n + 1, $K_j = [-r_j, r_j]^n$, $r_1, ..., r_{n+1}$ pairwise rationally independent [C.A. Berenstein, B.A. Taylor, 1977]
- ▶ N = 2, $K_j = B(0, r_j)$, r_1/r_2 not quotient of two zeroes of $J_{n/2}$
- ► A companion problem : J. Delsarte's two radii theorem [J. Delsarte, Lectures at Tata Institute, 1961] :

$$f \in C(\mathbb{R}^n), \ f(x) = \int f(x+y) d\sigma_{r_j} \ \forall x \in \mathbb{R}^n \Longrightarrow \Delta f \equiv 0$$

 $(r_1/r_2$ outside some exceptional countable set).

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

The natural extension to irreducible symmetric spaces with rank 1

The reason : the crucial relation of these questions with Spectral Synthesis Problem for radially symmetric functions in \mathbb{R}^n ! [L. Brown, B.M. Schreiber, B.A. Taylor, 1973]

 see [C.A. Berenstein-L. Zalcman, 1980], [C.A. Berenstein-M. Shahshahani, 1983], [C.A. Berenstein, D. Pasquas, 1994], [Molzon, 1991]

The natural extension to irreducible symmetric spaces with rank 1

The reason : the crucial relation of these questions with Spectral Synthesis Problem for radially symmetric functions in \mathbb{R}^n ! [L. Brown, B.M. Schreiber, B.A. Taylor, 1973]

- see [C.A. Berenstein-L. Zalcman, 1980], [C.A. Berenstein-M. Shahshahani, 1983], [C.A. Berenstein, D. Pasquas, 1994], [Molzon, 1991]
- see the extensive work of M. Agranovsky, A. Semanov, V. Vochkov, C.A. Berenstein, D. Chen Chang, L. Zalcman (1990-1995)

The natural extension to irreducible symmetric spaces with rank 1

The reason : the crucial relation of these questions with Spectral Synthesis Problem for radially symmetric functions in \mathbb{R}^n ! [L. Brown, B.M. Schreiber, B.A. Taylor, 1973]

- see [C.A. Berenstein-L. Zalcman, 1980], [C.A. Berenstein-M. Shahshahani, 1983], [C.A. Berenstein, D. Pasquas, 1994], [Molzon, 1991]
- see the extensive work of M. Agranovsky, A. Semanov, V. Vochkov, C.A. Berenstein, D. Chen Chang, L. Zalcman (1990-1995)
- see also last chapter in : C.A. Berenstein, D.C. Chang, T. Tie's book on Laguerre calculus (International Press, 2001).

 Outline
 Pompeïu transfoms ; examples and classical results

 About Pompeïu type problems
 Harmonic sphericals and transmutation

 Deconvolution procedures in the *n*-dimensional context
 Complex analytic tools to be applied in the Paley-Wiener algebra

 The intrinsic hardness of spectral synthesis problems in higher dimension
 Conclusion

 A "tensorial" approach : the (*n* + 1) hypercube problem

What about higher rank ?

<u>A major stumbling block :</u> the failure of the Spectral Synthesis Theorem in dimension n > 1 [D. Gurevich, 1975, through multivariate complex analysis]

 Outline
 Pompeïu transforns ; examples and classical results

 About Pompeïu type problems
 Harrnonic sphericals and transmutation

 Deconvolution procedures in the *n*-dimensional context
 Complex analytic tools to be applied in the Paley-Wiener algebra

 The intrinsic hardness of spectral synthesis problems in higher dimension
 Results respect to the two disks problem

 A "tensorial" approach : the (*n* + 1) hypercube problem

What about higher rank ?

<u>A major stumbling block</u>: the failure of the Spectral Synthesis Theorem in dimension n > 1 [D. Gurevich, 1975, through multivariate complex analysis]

A necessity : tools should come from multivariate complex analysis.

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

What about the "local" versions ?

For the classical Pompeiu setting (K = Ω ⊂ U), the injectivity for the global problem implies the injectivity for the local one provided

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

What about the "local" versions ?

For the classical Pompeïu setting (K = Ω ⊂ U), the injectivity for the global problem implies the injectivity for the local one provided – that U is a union of balls with radii R_i > 2r (unavoidable)

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

What about the "local" versions ?

For the classical Pompeïu setting (K = Ω ⊂ U), the injectivity for the global problem implies the injectivity for the local one provided – that U is a union of balls with radii R_i > 2r (unavoidable)

– that there is some "hyperbolic" point on $\partial\Omega$ (ensuring asymptotic behavior for the Fourier transform of the radialized version of $\chi_{\overline{\Omega}}$).

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

What about the "local" versions ?

For the classical Pompeïu setting (K = Ω̄ ⊂ U), the injectivity for the global problem implies the injectivity for the local one provided – that U is a union of balls with radii R_ι > 2r (unavoidable)

– that there is some "hyperbolic" point on $\partial\Omega$ (ensuring asymptotic behavior for the Fourier transform of the radialized version of $\chi_{\overline{\Omega}}$).

[C.A. Berenstein, R. Gay, 1989];

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

What about the "local" versions ?

For the classical Pompeïu setting (K = Ω ⊂ U), the injectivity for the global problem implies the injectivity for the local one provided – that U is a union of balls with radii R_k > 2r (unavoidable)

– that there is some "hyperbolic" point on $\partial\Omega$ (ensuring asymptotic behavior for the Fourier transform of the radialized version of $\chi_{\overline{\Omega}}$).

[C.A. Berenstein, R. Gay, 1989] ; (the analog in the rank 1 symmetric space setting remains unknown !)

Weak inversion possible when U is a union of balls sith radii $R_{\iota} > 3r$ ([C.A. Berenstein, R. Gay, A. Y., 1990])

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

- - E - N

What about the "local" versions ?

For the classical Pompeïu setting (K = Ω ⊂ U), the injectivity for the global problem implies the injectivity for the local one provided – that U is a union of balls with radii R_i > 2r (unavoidable)

– that there is some "hyperbolic" point on $\partial\Omega$ (ensuring asymptotic behavior for the Fourier transform of the radialized version of $\chi_{\overline{\Omega}}$).

 $[C.A.\ Berenstein,\ R.\ Gay,\ 1989]$; (the analog in the rank 1 symmetric space setting remains unknown !)

Weak inversion possible when U is a union of balls sith radii $R_{\iota} > 3r$ ([C.A. Berenstein, R. Gay, A. Y., 1990])

 ▶ For the two-disks theorem, global injectivity implies local one (provided U is a union of disks with radii R_ℓ > r₁ + r₂). [C.A. Berenstein, R.Gay, 1986].
 Weak local inversion is also OK [C.A. Berenstein, R. Gay, A.Y., 1990].

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

What about the "local" versions ?

For the classical Pompeïu setting (K = Ω ⊂ U), the injectivity for the global problem implies the injectivity for the local one provided – that U is a union of balls with radii R_i > 2r (unavoidable)

– that there is some "hyperbolic" point on $\partial\Omega$ (ensuring asymptotic behavior for the Fourier transform of the radialized version of $\chi_{\overline{\Omega}}$).

 $[C.A.\ Berenstein,\ R.\ Gay,\ 1989]$; (the analog in the rank 1 symmetric space setting remains unknown !)

Weak inversion possible when U is a union of balls sith radii $R_{\iota} > 3r$ ([C.A. Berenstein, R. Gay, A. Y., 1990])

 ▶ For the two-disks theorem, global injectivity implies local one (provided U is a union of disks with radii R_ℓ > r₁ + r₂).
 [C.A. Berenstein, R.Gay, 1986].
 Weak local inversion is also OK [C.A. Berenstein, R. Gay, A.Y., 1000]

1990].

Versions in the symmetric spaces of rank 1 setting by A. Volchkov (injectivity),

M. El Harchaoui (inversion) (around 1995).

Outline About Pompeïu type problems

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

.⊒...>

• E >

```
A key lemma (in the euclidean context) :
```

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

A key lemma (in the euclidean context) :

Let H_p be any harmonic polynomial with degree p in n variables; for any C^p function F of one variable, one has the following identity:

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

A key lemma (in the euclidean context) :

Let H_p be any harmonic polynomial with degree p in n variables; for any C^p function F of one variable, one has the following identity:

$$H_{p}(x_{1},\cdots,x_{n})\left(\frac{d^{p}F}{d(r^{2})^{p}}\right)_{|r=||x||}=2^{-p}H\left(\frac{\partial}{\partial x}\right)\left[F\left(\sum_{j=1}^{n}x_{j}^{2}\right)\right].$$

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

A key lemma (in the euclidean context) :

Let H_p be any harmonic polynomial with degree p in n variables; for any C^p function F of one variable, one has the following identity:

$$H_{p}(x_{1},\cdots,x_{n})\left(\frac{d^{p}F}{d(r^{2})^{p}}\right)_{|r=||x||}=2^{-p}H\left(\frac{\partial}{\partial x}\right)\left[F\left(\sum_{j=1}^{n}x_{j}^{2}\right)\right].$$

▶ This leads via identification of Fourier transforms to the following :

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

A key lemma (in the euclidean context) :

Let H_p be any harmonic polynomial with degree p in n variables; for any C^p function F of one variable, one has the following identity:

$$H_{p}(x_{1},\cdots,x_{n})\left(\frac{d^{p}F}{d(r^{2})^{p}}\right)_{|r=||x||}=2^{-p}H\left(\frac{\partial}{\partial x}\right)\left[F\left(\sum_{j=1}^{n}x_{j}^{2}\right)\right].$$

▶ This leads *via* identification of Fourier transforms to the following :

$$H_{p}(x)\sigma_{r}(||x||) = \frac{(-1)^{p}}{2^{p-1}(p-1)!} \frac{r^{2-n}}{\sqrt{p}} \operatorname{vol}(S^{n}) \\ \times H\left(\frac{\partial}{\partial y}\right) \left[(r^{2} - ||y||^{2})^{p-1} \chi_{B_{n}(0,r)}(y) \right]_{|y=x}$$

Outline About Pompeïu type problems

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Then transposed as follows in the real and complex hyperbolic contexts

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Then transposed as follows in the real and complex hyperbolic contexts

in the real hyperbolic setting :

$$\mathbf{H}_{p}\sigma_{r} = \frac{(-1)^{p}r^{2}}{2^{p-1}\mathrm{vol}(S^{n-1})\,\Gamma(p)(\mathrm{ch}\,r)^{n-2}(\mathrm{sh}\,r)^{n}}[\mathbf{H}_{p}(\partial_{x})]\delta_{0}*T_{r,p}$$

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Then transposed as follows in the real and complex hyperbolic contexts

in the real hyperbolic setting :

$$\mathbf{H}_{p}\sigma_{r} = \frac{(-1)^{p}r^{2}}{2^{p-1}\mathrm{vol}(S^{n-1})\,\Gamma(p)(\mathrm{ch}\,r)^{n-2}(\mathrm{sh}\,r)^{n}}[\mathbf{H}_{p}(\partial_{x})]\delta_{0}*T_{r,p}$$

$$T_{r,p}(z) := F\left(p,0;p;\frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)\left(\frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)^{p-1}\chi_{\mathbb{B}_{n}(0,r)}$$

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Then transposed as follows in the real and complex hyperbolic contexts

in the real hyperbolic setting :

$$\mathbf{H}_{p}\sigma_{r} = \frac{(-1)^{p}r^{2}}{2^{p-1}\mathrm{vol}(S^{n-1})\,\Gamma(p)(\mathrm{ch}\,r)^{n-2}(\mathrm{sh}\,r)^{n}}[\mathbf{H}_{p}(\partial_{x})]\delta_{0}*T_{r,p}$$

$$T_{r,p}(z) := F\left(p,0;p;\frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)\left(\frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)^{p-1}\chi_{\mathbb{B}_{n}(0,r)}$$

in the complex hyperbolic setting :

$$\mathbf{H}_{p,q}\sigma_r = \frac{2(-1)^{p+q}r^2}{\operatorname{vol}(S^{2n-1})\Gamma(p+q)(\operatorname{sh} r)^{2n}}[\mathbf{H}_{p,q}(\partial_z,\partial_{\overline{z}})]\delta_0 * \mathcal{T}_{r,p,q}$$

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Then transposed as follows in the real and complex hyperbolic contexts

in the real hyperbolic setting :

$$\mathbf{H}_{p}\sigma_{r} = \frac{(-1)^{p}r^{2}}{2^{p-1}\mathrm{vol}(S^{n-1})\,\Gamma(p)(\mathrm{ch}\,r)^{n-2}(\mathrm{sh}\,r)^{n}}[\mathbf{H}_{p}(\partial_{x})]\delta_{0} * T_{r,p}$$

$$T_{r,p}(z) := F\left(p,0;p;\frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)\left(\frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)^{p-1}\chi_{\mathbb{B}_{n}(0,r)}$$

in the complex hyperbolic setting :

$$\mathbf{H}_{p,q} \sigma_r = \frac{2(-1)^{p+q} r^2}{\operatorname{vol}(S^{2n-1}) \Gamma(p+q)(\operatorname{sh} r)^{2n}} [\mathbf{H}_{p,q}(\partial_z, \partial_{\overline{z}})] \delta_0 * T_{r,p,q}$$

$$T_{r,p,q}(z) = F\left(p,q; p+q; \frac{r^2 - \|z\|^2}{1 - \|z\|^2}\right) \left(\frac{r^2 - \|z\|^2}{1 - \|z\|^2}\right)^{p+q-1} \chi_{\mathbb{B}_n(0,r)}$$

Outline About Pompeïu type problems es in the *n*-dimensional context

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation **Complex analytic tools to be applied in the Paley-Wiener algebra** Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

∃ ⊳

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation **Complex analytic tools to be applied in the Paley-Wiener algebra** Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Lagrange division-interpolation (towards "economic" deconvolution)

 Let Γ be a piecewise smooth Jordan arc in the complex plane, surrounding a bounded open set U;

Pompeiu transforms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

- Let Γ be a piecewise smooth Jordan arc in the complex plane, surrounding a bounded open set U;
- Let $f_1, ..., f_m$ holomorphic in U, continuous in \overline{U} , zero-free on $\partial U = \text{Supp }\Gamma$, such that the sets $f_i^{-1}(0)$ are pairwise disjoints ;

Pompeiu transforms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

- Let Γ be a piecewise smooth Jordan arc in the complex plane, surrounding a bounded open set U;
- Let f₁,..., f_m holomorphic in U, continuous in U
 , zero-free on
 ∂U = Supp Γ, such that the sets f_i⁻¹(0) are pairwise disjoints ;
- ▶ let $F := f_1 \cdots f_m$, Φ and entire function, and $z \in \mathbb{C} \setminus \partial U$; then

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation **Complex analytic tools to be applied in the Paley-Wiener algebra** Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

- Let Γ be a piecewise smooth Jordan arc in the complex plane, surrounding a bounded open set U;
- Let f₁,..., f_m holomorphic in U, continuous in U
 , zero-free on
 ∂U = Supp Γ, such that the sets f_i⁻¹(0) are pairwise disjoints ;
- ▶ let $F := f_1 \cdots f_m$, Φ and entire function, and $z \in \mathbb{C} \setminus \partial U$; then

$$\Phi(z)\chi_U(z) = \frac{F(z)}{2i\pi} \int_{\Gamma} \frac{\Phi(\zeta)d\zeta}{F(\zeta)(\zeta-z)}$$

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation **Complex analytic tools to be applied in the Paley-Wiener algebra** Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

- Let Γ be a piecewise smooth Jordan arc in the complex plane, surrounding a bounded open set U;
- Let f₁,..., f_m holomorphic in U, continuous in U
 , zero-free on ∂U = Supp Γ, such that the sets f_i⁻¹(0) are pairwise disjoints ;
- ▶ let $F := f_1 \cdots f_m$, Φ and entire function, and $z \in \mathbb{C} \setminus \partial U$; then

$$\begin{split} \Phi(z)\chi_{U}(z) &= \frac{F(z)}{2i\pi} \int_{\Gamma} \frac{\Phi(\zeta)d\zeta}{F(\zeta)(\zeta-z)} \\ &+ \sum_{j=1}^{m} \sum_{\{\alpha \in U : f_{j}(\alpha)=0\}} \left(\prod_{l \neq j} f_{l}(z)\right) \operatorname{Res}_{\zeta=\alpha} \left[\frac{\Phi(\zeta)(f_{j}(z) - f_{j}(\zeta))d\zeta}{(z-\zeta)F(\zeta)}\right]. \end{split}$$

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra **Results respect to the two disks problem** A "tensorial" approach : the (n + 1) hypercube problem

Inversion of the local two discs transformation *via* recovering the spherical decomposition (euclidean radial context); 1. the data :

Conclusion

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Inversion of the local two discs transformation *via* recovering the spherical decomposition (euclidean radial context); 1. the data :

Let $r_1, r_2, R > r_1 + r_2$ such that the ratio r_1/r_2 is such that

 $\{\omega \in \mathbb{C}^n ; \widehat{\chi_{B(0,r_1)}}(\omega) = \widehat{\chi_{B(0,r_2)}}(\omega) = 0\} = \emptyset.$

 Outline
 Outline
 Pompei

 About Pompeiu type problems
 Harmor

 Deconvolution procedures in the *n*-dimensional context
 Comple

 The intrinsic hardness of spectral synthesis problems in higher dimension
 A "tens

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Inversion of the local two discs transformation *via* recovering the spherical decomposition (euclidean radial context); 1. the data :

Let $r_1, r_2, R > r_1 + r_2$ such that the ratio r_1/r_2 is such that

 $\{\omega \in \mathbb{C}^n ; \widehat{\chi_{B(0,r_1)}}(\omega) = \widehat{\chi_{B(0,r_2)}}(\omega) = 0\} = \emptyset.$

Let f be a C^{∞} function in the open euclidean ball *n*-dimensional B(0, R) (regularization of a continuous function)

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Inversion of the local two discs transform *via* recovering the spherical decomposition (euclidean radial context) ; 2. the result :

Conclusion

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Inversion of the local two discs transform *via* recovering the spherical decomposition (euclidean radial context) ; 2. the result :

Theorem (C.A. Berenstein, R. Gay, A. Yger, 1990) There are absolute constants c, γ, C , a strictly increasing sequence $R_0 = 0 < R_1 < R_2 < ...$ with $\lim_k (R_k) = R$ such that for any $k \ge 1$, for any $r \in [R_{k-1}, R_k]$, for any spherical harmonic $S_m = H_m \sigma_r$ with degree m, one can construct two explicit sequences of "deconvolvers" $(U_{r,l})_{l\ge 1}$ $(B(0, R - r_1)$ supported) and $(V_{r,l})_{l\ge 1}$ $(B(0, R - r_2)$ supported) such that

$$I \ge cm^2 \implies \left| \langle f, S_m \rangle - \langle U_{r,l}, \chi_{B(0,r_1)} * f \rangle - \langle V_{r,l}, \chi_{B(0,r_2)} * f \rangle \right|$$

$$\le \frac{\gamma}{l} (R-r)^{-N} \max_{|\alpha| \le N} \|\partial^{\alpha} f\|_{B(0,R_{k+1})}.$$

Outline About Pompeïu type problems es in the n-dimensional context

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra **Results respect to the two disks problem** A "tensorial" approach : the (n + 1) hypercube problem

In the same vein (for classical symmetric riemannian spaces of non compact type with rank 1)

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

In the same vein (for classical symmetric riemannian spaces of non compact type with rank 1)

A local version of the two disks theorem (with a proof based on similar ideas) was given by M. El Harchaoui (under the direction thesis of R. Gay) :

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

In the same vein (for classical symmetric riemannian spaces of non compact type with rank 1)

A local version of the two disks theorem (with a proof based on similar ideas) was given by M. El Harchaoui (under the direction thesis of R. Gay) :

For the real and complex hyperbolic spaces H_n(ℝ) and H_n(ℂ): [M. El Harchaoui, 1993 for n = 1, 1995 for n > 1] recovering the spherical decomposition of a function in the hyperbolic ball B_n(0, R) from its local averages through geodesic balls with respective radii r₁ and r₂ (satisfying the Berenstein-Zalcman injectivity requirement for the two-balls transform [C.A. Berenstein, L. Zalcman, 1980]);

Pompei'u transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

In the same vein (for classical symmetric riemannian spaces of non compact type with rank 1)

A local version of the two disks theorem (with a proof based on similar ideas) was given by M. El Harchaoui (under the direction thesis of R. Gay) :

- For the real and complex hyperbolic spaces H_n(ℝ) and H_n(ℂ): [M. El Harchaoui, 1993 for n = 1, 1995 for n > 1] recovering the spherical decomposition of a function in the hyperbolic ball B_n(0, R) from its local averages through geodesic balls with respective radii r₁ and r₂ (satisfying the Berenstein-Zalcman injectivity requirement for the two-balls transform [C.A. Berenstein, L. Zalcman, 1980]);
- ▶ For the hyperbolic quaternionic space [M. El Harchaoui, Thèse de Doctorat, Oujda, 2000];

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

In the same vein (for classical symmetric riemannian spaces of non compact type with rank 1)

A local version of the two disks theorem (with a proof based on similar ideas) was given by M. El Harchaoui (under the direction thesis of R. Gay) :

- For the real and complex hyperbolic spaces H_n(ℝ) and H_n(ℂ): [M. El Harchaoui, 1993 for n = 1, 1995 for n > 1] recovering the spherical decomposition of a function in the hyperbolic ball B_n(0, R) from its local averages through geodesic balls with respective radii r₁ and r₂ (satisfying the Berenstein-Zalcman injectivity requirement for the two-balls transform [C.A. Berenstein, L. Zalcman, 1980]);
- ► For the hyperbolic quaternionic space [M. El Harchaoui, Thèse de Doctorat, Oujda, 2000];
- For the octonionic hyperbolic plane [M. El Harchaoui, Thèse de Doctorat, Oujda, 2000].

Outline	Pompeïu transfoms ; examples and classical results
About Pompeïu type problems	Harmonic sphericals and transmutation
Deconvolution procedures in the <i>n</i> -dimensional context	Complex analytic tools to be applied in the Paley-Wiener algebra
The intrinsic hardness of spectral synthesis problems in higher dimension	Results respect to the two disks problem
Conclusion	A "tensorial" approach : the $(n + 1)$ hypercube problem

æ

≣≯

Outline	Pompeïu transfoms ; examples and classical results
About Pompeiu type problems	Harmonic sphericals and transmutation
Deconvolution procedures in the <i>n</i> -dimensional context	Complex analytic tools to be applied in the Paley-Wiener algebra
The intrinsic hardness of spectral synthesis problems in higher dimension	Results respect to the two disks problem
Conclusion	A "tensorial" approach : the $(n + 1)$ hypercube problem

▶ Let r₁,..., r_{n+1} n + 1 strictly positive numbers which are Q-linearly independent

Outline	Pompeïu transfoms ; examples and classical results
About Pompeïu type problems	Harmonic sphericals and transmutation
Deconvolution procedures in the n-dimensional context	Complex analytic tools to be applied in the Paley-Wiener algebra
The intrinsic hardness of spectral synthesis problems in higher dimension	Results respect to the two disks problem
Conclusion	A "tensorial" approach : the $(n + 1)$ hypercube problem

▶ Let r₁,..., r_{n+1} n + 1 strictly positive numbers which are Q-linearly independent

note that this is a stronger condition that just being $\mathbb Q\text{-independent}$ by pairs (enough to ensure the injectivity of the problem) !

Outline	Pompeïu transfoms ; examples and classical results
About Pompeïu type problems	Harmonic sphericals and transmutation
Deconvolution procedures in the n-dimensional context	Complex analytic tools to be applied in the Paley-Wiener algebra
The intrinsic hardness of spectral synthesis problems in higher dimension	Results respect to the two disks problem
Conclusion	A "tensorial" approach : the $(n + 1)$ hypercube problem

▶ Let r₁,..., r_{n+1} n + 1 strictly positive numbers which are Q-linearly independent

note that this is a stronger condition that just being $\mathbb Q\text{-independent}$ by pairs (enough to ensure the injectivity of the problem) !

Let R > r₁ + · · · + r_{n+1} and f be a continuous function in the hypercube] − R, R[ⁿ.

Outline	Pompeïu transfoms ; examples and classical results
About Pompeïu type problems	Harmonic sphericals and transmutation
Deconvolution procedures in the n-dimensional context	Complex analytic tools to be applied in the Paley-Wiener algebra
The intrinsic hardness of spectral synthesis problems in higher dimension	Results respect to the two disks problem
Conclusion	A "tensorial" approach : the $(n + 1)$ hypercube problem

▶ Let r₁,..., r_{n+1} n + 1 strictly positive numbers which are Q-linearly independent

note that this is a stronger condition that just being $\mathbb Q\text{-independent}$ by pairs (enough to ensure the injectivity of the problem) !

- Let R > r₁ + · · · + r_{n+1} and f be a continuous function in the hypercube] − R, R[ⁿ.
- ▶ Let φ₁, ..., φ_n n sufficiently regular compactly supported functions in] - R, R[;

Outline	Pompeïu transfoms ; examples and classical results
About Pompeïu type problems	Harmonic sphericals and transmutation
Deconvolution procedures in the <i>n</i> -dimensional context	Complex analytic tools to be applied in the Paley-Wiener algebra
The intrinsic hardness of spectral synthesis problems in higher dimension	Results respect to the two disks problem
Conclusion	A "tensorial" approach : the $(n + 1)$ hypercube problem

▶ Let r₁,..., r_{n+1} n + 1 strictly positive numbers which are Q-linearly independent

note that this is a stronger condition that just being $\mathbb Q\text{-independent}$ by pairs (enough to ensure the injectivity of the problem) !

- Let R > r₁ + · · · + r_{n+1} and f be a continuous function in the hypercube] − R, R[ⁿ.
- ▶ Let φ₁, ..., φ_n n sufficiently regular compactly supported functions in] - R, R[;

(think for example, respect to potential applications, each ϕ is either a $\varphi_{k,j}$ or a $\psi_{k,j}$ from a multi-resolution analysis in] - R, R[).

Outline	Pompeïu transfoms ; examples and classical results
About Pompeïu type problems	Harmonic sphericals and transmutation
Deconvolution procedures in the n-dimensional context	Complex analytic tools to be applied in the Paley-Wiener algebra
The intrinsic hardness of spectral synthesis problems in higher dimension	Results respect to the two disks problem
Conclusion	A "tensorial" approach : the $(n + 1)$ hypercube problem

The result :

문 🛌 🚊

Outline	Pompeïu transfoms ; examples and classical results
About Pompeiu type problems	Harmonic sphericals and transmutation
Deconvolution procedures in the <i>n</i> -dimensional context	Complex analytic tools to be applied in the Paley-Wiener algebra
The intrinsic hardness of spectral synthesis problems in higher dimension	Results respect to the two disks problem
Conclusion	A "tensorial" approach : the $(n + 1)$ hypercube problem

The result :

Theorem (C.A. Berenstein, A. Yger (1988), E. Maghras (1995)) There is an explicit procedure to recover

$$\langle f, \varphi_1(x_1) \otimes \cdots \otimes \varphi_n(x_n) \rangle$$

from the knowledge of each $\chi_{[-r_k,r_k]^n} * f$ on the hypercube $(] - R + r_k, R - r_k[)^n$, k = 1, ..., n.

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\langle f, \phi \otimes \psi \rangle = \sum_{k=1}^{3} \langle D_{\varphi,\psi}^{k}, \chi_{(]-r_{k},r_{k}[)^{n}} * f \rangle$$

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\langle f, \phi \otimes \psi \rangle = \sum_{k=1}^{3} \langle D_{\varphi,\psi}^{k}, \chi_{(]-r_{k},r_{k}]^{n}} * f \rangle$$

$$\begin{aligned} D^{1}_{\varphi,\psi} &= \theta^{1,2}_{\varphi}(x) \otimes (\nu^{1}_{\psi} * \chi_{]-r_{2},r_{2}}](y) + \theta^{1,3}_{\psi}(x) \otimes (\nu^{3}_{\psi} * \chi_{]-r_{3},r_{3}}](y) \\ D^{2}_{\varphi,\psi} &= \theta^{2,3}_{\varphi}(x) \otimes (\nu^{2}_{\psi} * \chi_{]-r_{3},r_{3}}](y) + \theta^{1,2}_{\psi}(x) \otimes (\nu^{1}_{\psi} * \chi_{]-r_{1},r_{1}}](y) \\ D^{3}_{\varphi,\psi} &= \theta^{2,3}_{\varphi}(x) \otimes (\nu^{2}_{\psi} * \chi_{]-r_{3},r_{3}}](y) + \theta^{1,3}_{\psi}(x) \otimes (\nu^{3}_{\psi} * \chi_{]-r_{1},r_{1}}](y) \end{aligned}$$

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\langle f, \phi \otimes \psi \rangle = \sum_{k=1}^{3} \langle D_{\varphi,\psi}^{k}, \chi_{(]-r_{k},r_{k}]^{n}} * f \rangle$$

$$\begin{aligned} D^{1}_{\varphi,\psi} &= \theta^{1,2}_{\varphi}(x) \otimes (\nu^{1}_{\psi} * \chi_{]-r_{2},r_{2}}](y) + \theta^{1,3}_{\psi}(x) \otimes (\nu^{3}_{\psi} * \chi_{]-r_{3},r_{3}}](y) \\ D^{2}_{\varphi,\psi} &= \theta^{2,3}_{\varphi}(x) \otimes (\nu^{2}_{\psi} * \chi_{]-r_{3},r_{3}}](y) + \theta^{1,2}_{\psi}(x) \otimes (\nu^{1}_{\psi} * \chi_{]-r_{1},r_{1}}](y) \\ D^{3}_{\varphi,\psi} &= \theta^{2,3}_{\varphi}(x) \otimes (\nu^{2}_{\psi} * \chi_{]-r_{3},r_{3}}](y) + \theta^{1,3}_{\psi}(x) \otimes (\nu^{3}_{\psi} * \chi_{]-r_{1},r_{1}}](y) \end{aligned}$$

$$\operatorname{Supp} D_{\varphi,\psi}^k \subset (] - R + r_k, R - r_k[)^2, \ k = 1, 2, 3.$$

Deconvolution procedures in the *n*-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension Conclusion Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

크 > 크

Potential applications and further references

Pompeiu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Potential applications and further references

 Relation with Shannon sampling and interpolation in Paley-Wiener spaces ([S. Casey, D. Walnut, 1994, D. Walnut, 1998, see also the survey in Progress in Maths 238, 2005])

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Potential applications and further references

- Relation with Shannon sampling and interpolation in Paley-Wiener spaces ([S. Casey, D. Walnut, 1994, D. Walnut, 1998, see also the survey in Progress in Maths 238, 2005])
- Detection of brutal local distorsions of spectrum in radar signals ([A.L. Charbonniaud, J.F. Crouzet, R. Gay, 1997])

Pompeïu transfoms : examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Potential applications and further references

- Relation with Shannon sampling and interpolation in Paley-Wiener spaces ([S. Casey, D. Walnut, 1994, D. Walnut, 1998, see also the survey in Progress in Maths 238, 2005])
- Detection of brutal local distorsions of spectrum in radar signals ([A.L. Charbonniaud, J.F. Crouzet, R. Gay, 1997])
- Auxiliary tool in the Gerschberg-Papoulis extrapolation algorithm of signals with band-limited spectrum ?

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

About Pompeïu type problems

Pompeïu transfoms ; examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Deconvolution procedures in the *n*-dimensional context Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

The intrinsic hardness of spectral synthesis problems in higher dimension

Conclusion

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

글 🖌 🔺 글 🕨

Division via interpolation : the "toy" model of polynomials

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Division via interpolation : the "toy" model of polynomials

• Let $P_1, ..., P_{n+1}$ elements in $\mathbb{C}[X_1, ..., X_n]$ with no common zero in \mathbb{C}^n , with respective total degrees $D_1, ..., D_{n+1}$;

Division via interpolation : the "toy" model of polynomials

- ▶ Let $P_1, ..., P_{n+1}$ elements in $\mathbb{C}[X_1, ..., X_n]$ with no common zero in \mathbb{C}^n , with respective total degrees $D_1, ..., D_{n+1}$;
- ► Assume furthermore that there exist strictly positive constants *c*, *C* such that :

Division via interpolation : the "toy" model of polynomials

- ▶ Let $P_1, ..., P_{n+1}$ elements in $\mathbb{C}[X_1, ..., X_n]$ with no common zero in \mathbb{C}^n , with respective total degrees $D_1, ..., D_{n+1}$;
- Assume furthermore that there exist strictly positive constants c, C such that :

$$\|\zeta\| \ge C \Longrightarrow \sum_{k=1}^n \frac{|P_k(\zeta)|}{\|\zeta\|^{D_k}} \ge c.$$

.

Division via interpolation : the "toy" model of polynomials

- ▶ Let $P_1, ..., P_{n+1}$ elements in $\mathbb{C}[X_1, ..., X_n]$ with no common zero in \mathbb{C}^n , with respective total degrees $D_1, ..., D_{n+1}$;
- Assume furthermore that there exist strictly positive constants c, C such that :

$$\|\zeta\| \ge C \Longrightarrow \sum_{k=1}^n \frac{|P_k(\zeta)|}{\|\zeta\|^{D_k}} \ge c.$$

• Let $P_k(\zeta) - P_k(z) = \sum_{j=1}^n g_{k,j}(z,\zeta)(\zeta_j - z_j)$, k = 1, ..., n, thanks (for example) to divided differences.

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

글 🖌 🔺 글 🕨

Division via interpolation : the "toy" model of polynomials

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Division via interpolation : the "toy" model of polynomials

Theorem (Macaulay revisited, C.A. Berenstein, A.Y., 1991)

$$1 = \operatorname{Res} \begin{bmatrix} \begin{vmatrix} g_{1,1}(z,\zeta) & \cdots & \cdots & g_{n+1,1}(z,\zeta) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1,n}(z,\zeta) & \cdots & \cdots & g_{n+1,n}(z,\zeta) \\ P_1(z) & \cdots & P_n(z) & P_{n+1}(z) \\ & & P_1(\zeta), \dots, P_n(\zeta) \end{bmatrix} d\zeta$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Division *via* interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

Division *via* interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

 Let P₁,..., P_{n+1} elements in C[X₁^{±1}, ..., X_n^{±n}] with no common zero in (C*)ⁿ and respective Newton diagrams Δ₁, ..., Δ_{n+1}, all containing the origin as interior point ;

Division *via* interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

 Let P₁,..., P_{n+1} elements in C[X₁^{±1},...,X_n^{±n}] with no common zero in (C*)ⁿ and respective Newton diagrams Δ₁,...,Δ_{n+1}, all containing the origin as interior point ;

Think about the exponentials sums $\omega \longrightarrow P_j(e^{-i\omega_1}, ..., e^{-i\omega_n})$!

Division *via* interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

 Let P₁,..., P_{n+1} elements in C[X₁^{±1},...,X_n^{±n}] with no common zero in (C*)ⁿ and respective Newton diagrams Δ₁,...,Δ_{n+1}, all containing the origin as interior point ;

Think about the exponentials sums $\omega \longrightarrow P_j(e^{-i\omega_1}, ..., e^{-i\omega_n})$!

Assume furthermore that there exist strictly positive constants c, C such that :

Division *via* interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

 Let P₁,..., P_{n+1} elements in C[X₁^{±1},...,X_n^{±n}] with no common zero in (C*)ⁿ and respective Newton diagrams Δ₁,...,Δ_{n+1}, all containing the origin as interior point ;

Think about the exponentials sums $\omega \longrightarrow P_j(e^{-i\omega_1}, ..., e^{-i\omega_n})$!

Assume furthermore that there exist strictly positive constants c, C such that :

$$\|\mathrm{Im}\omega\| \ge C \Longrightarrow \sum_{k=1}^n \frac{|P_k(e^{-i\omega_1},...,e^{-i\omega_n})|}{e^{H_{\Delta_k}(\mathrm{Im}\,\omega)}} \ge c \,.$$

Division *via* interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

 Let P₁,..., P_{n+1} elements in C[X₁^{±1},...,X_n^{±n}] with no common zero in (C*)ⁿ and respective Newton diagrams Δ₁,...,Δ_{n+1}, all containing the origin as interior point ;

Think about the exponentials sums $\omega \longrightarrow P_j(e^{-i\omega_1}, ..., e^{-i\omega_n})$!

Assume furthermore that there exist strictly positive constants c, C such that :

$$\|\mathrm{Im}\omega\| \geq C \Longrightarrow \sum_{k=1}^{n} \frac{|P_k(e^{-i\omega_1}, ..., e^{-i\omega_n})|}{e^{H_{\Delta_k}(\mathrm{Im}\,\omega)}} \geq c\,.$$

• Let $P_k(\zeta) - P_k(z) = \sum_{j=1}^n g_{k,j}(z,\zeta)(\zeta_j - z_j)$, k = 1, ..., n, thanks (for example) to divided differences.

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Division *via* interpolation, more towards "deconvolution" : the toy model of Laurent polynomials

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Division *via* interpolation, more towards "deconvolution" : the toy model of Laurent polynomials

Theorem (C.A. Berenstein, A. Vidras, A.Y., 2001)

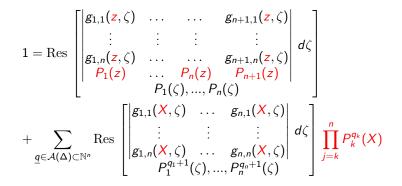
$$1 = \operatorname{Res} \begin{bmatrix} \begin{vmatrix} g_{1,1}(z,\zeta) & \dots & \dots & g_{n+1,1}(z,\zeta) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1,n}(z,\zeta) & \dots & \dots & g_{n+1,n}(z,\zeta) \\ P_1(z) & \dots & P_n(z) & P_{n+1}(z) \\ & & P_1(\zeta), \dots, P_n(\zeta) \end{bmatrix} d\zeta$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

< ロト (得) (注) (注) (注) (注)

Division *via* interpolation, more towards "deconvolution" : the toy model of Laurent polynomials

Theorem (C.A. Berenstein, A. Vidras, A.Y., 2001)



Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; the data :

• U a bounded open set in \mathbb{C}^n with piecewise smooth boundary ;

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

- U a bounded open set in \mathbb{C}^n with piecewise smooth boundary ;
- *f_{k,j}*, *k* = 1, ..., *n*, *j* = 1, ..., *m_k* a collection of functions holomorphic in *U*, continuous on *U*, such that :

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

- U a bounded open set in \mathbb{C}^n with piecewise smooth boundary ;
- *f_{k,j}*, *k* = 1, ..., *n*, *j* = 1, ..., *m_k* a collection of functions holomorphic in *U*, continuous on *U*, such that :
 - ▶ the functions $F_k := \prod_{j=1}^{m_k} f_{k,j}$, k = 1, ..., n, have no common zero on ∂U

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

- U a bounded open set in \mathbb{C}^n with piecewise smooth boundary ;
- *f_{k,j}*, *k* = 1, ..., *n*, *j* = 1, ..., *m_k* a collection of functions holomorphic in *U*, continuous on *U*, such that :
 - ► the functions $F_k := \prod_{j=1}^{m_k} f_{k,j}$, k = 1, ..., n, have no common zero on ∂U
 - ► for any $k \in \{1, ..., n\}$ and any distinct indices $j_1, j_2 \in \{1, ..., m_k\}$, the functions $f_{k,j_1}, f_{k,j_2}, F_1, ..., \widehat{F_k}, ..., F_n$ have no common zero in U;

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

- U a bounded open set in \mathbb{C}^n with piecewise smooth boundary ;
- *f_{k,j}*, *k* = 1, ..., *n*, *j* = 1, ..., *m_k* a collection of functions holomorphic in *U*, continuous on *U*, such that :
 - ▶ the functions $F_k := \prod_{j=1}^{m_k} f_{k,j}$, k = 1, ..., n, have no common zero on ∂U
 - ► for any $k \in \{1, ..., n\}$ and any distinct indices $j_1, j_2 \in \{1, ..., m_k\}$, the functions $f_{k,j_1}, f_{k,j_2}, F_1, ..., \widehat{F_k}, ..., F_n$ have no common zero in U;
- Φ an entire function in \mathbb{C}^n and z a point in U.

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; a first "candidate" formula :

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; a first "candidate" formula :

$$F_{k}(\zeta) - F_{k}(z) = F_{k}(\zeta_{1}, \zeta_{2}, ..., \zeta_{n}) - F_{k}(z_{1}, \zeta_{2}, ..., \zeta_{n}) + \cdots$$
$$= \sum_{l=1}^{n} (\zeta_{l} - z_{l}) g_{k,l}(z, \zeta)$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; a first "candidate" formula :

$$F_{k}(\zeta) - F_{k}(z) = F_{k}(\zeta_{1}, \zeta_{2}, ..., \zeta_{n}) - F_{k}(z_{1}, \zeta_{2}, ..., \zeta_{n}) + \cdots$$
$$= \sum_{l=1}^{n} (\zeta_{l} - z_{l}) g_{k,l}(z, \zeta)$$

 $\Delta(z,\zeta) := \det [g_{k,l}(z,\zeta)]_{k,l}$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; a first "candidate" formula :

$$F_{k}(\zeta) - F_{k}(z) = F_{k}(\zeta_{1}, \zeta_{2}, ..., \zeta_{n}) - F_{k}(z_{1}, \zeta_{2}, ..., \zeta_{n}) + \cdots$$
$$= \sum_{l=1}^{n} (\zeta_{l} - z_{l}) g_{k,l}(z, \zeta)$$

 $\Delta(z,\zeta) := \det [g_{k,l}(z,\zeta)]_{k,l}$

$$\Phi(z)\chi_U(z) = \frac{1}{(2i\pi)^n} \int_{\partial U} \Phi(\zeta) K(z,\zeta) + \sum_{\{\alpha \in U; F_1(\alpha) = \dots = F_n(\alpha) = 0\}} \operatorname{Res}_{\alpha} \left[\begin{array}{c} \Phi(\zeta) \, \Delta(z,\zeta) \, d\zeta \\ F_1(\zeta), \dots, F_n(\zeta) \end{array} \right]$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

-2

$$S(z,\zeta) := \sum_{l=1}^{n} (\overline{\zeta_j} - z_j) d\zeta_j$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

æ

$$S(z,\zeta) := \sum_{l=1}^n (\overline{\zeta_j} - z_j) d\zeta_j$$

$$b(z,\zeta) := \frac{\sum\limits_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum\limits_{k=1}^{n} |F_{k}(\zeta)|^{2}} = \lim_{\epsilon \to 0} \left(\frac{\sum\limits_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum\limits_{k=1}^{n} |F_{k}(\zeta)|^{2} + \epsilon} \right)$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

æ

$$S(z,\zeta) := \sum_{l=1}^n (\overline{\zeta_j} - z_j) d\zeta_j$$

$$b(z,\zeta) := \frac{\sum\limits_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum\limits_{k=1}^{n} |F_{k}(\zeta)|^{2}} = \lim_{\epsilon \to 0} \left(\frac{\sum\limits_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum\limits_{k=1}^{n} |F_{k}(\zeta)|^{2} + \epsilon} \right)$$
$$a(z,\zeta) := \frac{\sum\limits_{k=1}^{n} \overline{F_{k}(\zeta)} \left(\sum\limits_{l=1}^{n} g_{k,l}(z,\zeta) d\zeta_{l}\right)}{\sum\limits_{k=1}^{n} |F_{k}(\zeta)|^{2}}$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

æ

$$S(z,\zeta) := \sum_{l=1}^{n} (\overline{\zeta_{j}} - z_{j}) d\zeta_{j}$$

$$b(z,\zeta) := \frac{\sum_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum_{k=1}^{n} |F_{k}(\zeta)|^{2}} = \lim_{\epsilon \to 0} \left(\frac{\sum_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum_{k=1}^{n} |F_{k}(\zeta)|^{2} + \epsilon} \right)$$
$$a(z,\zeta) := \frac{\sum_{k=1}^{n} \overline{F_{k}(\zeta)} \left(\sum_{l=1}^{n} g_{k,l}(z,\zeta) d\zeta_{l}\right)}{\sum_{k=1}^{n} |F_{k}(\zeta)|^{2}}$$

$$\mathcal{K}(z,\zeta) := \sum_{\kappa_0 + \kappa_1 = n-1} \binom{n}{\kappa_1} \left[b(z,\zeta) \right]^{n-\kappa_1} \frac{\left[S \wedge [\overline{\partial}S]^{\kappa_0} \wedge [\overline{\partial}a]^{\kappa_1} \right](z,\zeta)}{\|\zeta - z\|^{2(\kappa_0+1)}}$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

- ∢ ≣ ▶

A particular case of a more elaborate formula :

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

A =
 A
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A particular case of a more elaborate formula :

$$\Phi(z)\chi_{U}(z) = \frac{1}{(2i\pi)^{n}} \int_{\partial U} \Phi(\zeta) K_{N}(\zeta, z) + \sum_{|\underline{k}| \le N-n} \operatorname{Res}_{U} \begin{bmatrix} \Phi(\zeta) \Delta(z, \zeta) d\zeta \\ F_{1}, \cdots, F_{n} \end{bmatrix} \prod_{j=1}^{n} F_{j}^{k_{j}}(z)$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

A =
 A
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A particular case of a more elaborate formula :

$$\Phi(z)\chi_{U}(z) = \frac{1}{(2i\pi)^{n}} \int_{\partial U} \Phi(\zeta) K_{N}(\zeta, z) + \sum_{|\underline{k}| \le N-n} \operatorname{Res}_{U} \begin{bmatrix} \Phi(\zeta) \Delta(z, \zeta) \, d\zeta \\ F_{1}, \cdots, F_{n} \end{bmatrix} \prod_{j=1}^{n} F_{j}^{k_{j}}(z)$$

$$\mathcal{K}_{N}(z,\zeta) := \sum_{\kappa_{0}+\kappa_{1}=n-1} \binom{n}{\kappa_{1}} \left[b(z,\zeta) \right]^{N-\kappa_{1}} \frac{\left[S \wedge \left[\overline{\partial}S\right]^{\kappa_{0}} \wedge \left[\overline{\partial}a\right]^{\kappa_{1}}\right](z,\zeta)}{\|\zeta-z\|^{2(\kappa_{0}+1)}}$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Conclusion

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

$$\operatorname{Res}_{U} \begin{bmatrix} \Phi(\zeta) \, \Delta(z,\zeta) \, d\zeta \\ F_1(\zeta), \cdots, F_n(\zeta) \end{bmatrix} =$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

$$\operatorname{Res}_{U} \begin{bmatrix} \Phi(\zeta) \, \Delta(\mathbf{z}, \zeta) \, d\zeta \\ F_{1}(\zeta), \cdots, F_{n}(\zeta) \end{bmatrix} = \operatorname{Res}_{U} \begin{bmatrix} \Phi(\zeta) \, \frac{F_{n+1}(\zeta)}{F_{n+1}(\zeta)} \Delta(\mathbf{z}, \zeta) \, d\zeta \\ F_{1}(\zeta), \cdots, F_{n}(\zeta) \end{bmatrix}$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

Conclusion

$$\operatorname{Res}_{U} \begin{bmatrix} \Phi(\zeta) \ \Delta(z, \zeta) \ d\zeta \\ F_{1}(\zeta), \cdots, F_{n}(\zeta) \end{bmatrix} = \operatorname{Res}_{U} \begin{bmatrix} \Phi(\zeta) \ \frac{F_{n+1}(\zeta)}{F_{n+1}(\zeta)} \Delta(z, \zeta) \ d\zeta \\ F_{1}(\zeta), \cdots, F_{n}(\zeta) \end{bmatrix}$$
$$= \operatorname{Res}_{U} \begin{bmatrix} g_{1,1}(z, \zeta) & \cdots & g_{n+1,1}(z, \zeta) \\ \vdots & \vdots & \vdots \\ g_{1,n}(z, \zeta) & \cdots & g_{n+1,n}(z, \zeta) \\ F_{1}(z) & \cdots & F_{n+1}(z) \end{bmatrix} d\zeta$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

æ

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

æ

$$\Phi(z)\chi_U(z) = \operatorname{Res}_U \begin{bmatrix} \varphi(\zeta) & f_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n}(z,\zeta) & f_{n+1}(z,\zeta) \\ F_{n+1}(z) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \end{bmatrix} d\zeta$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

æ

$$\begin{split} \Phi(z)\chi_U(z) &= \operatorname{Res}_U \begin{bmatrix} \Phi(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(z) \\ F_{n+1}($$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

æ

$$\begin{split} \Phi(z)\chi_{U}(z) &= \operatorname{Res}_{U} \begin{bmatrix} \varphi(\zeta) \\ \overline{F_{n+1}(\zeta)} \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(\zeta) \\ F_{n+1}(z) \\ F$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

 Let h
₁,..., h
_M (M > n) be the Paley-Wiener transforms of M"convolvers" (there are no common zeroes in Cⁿ);

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

- Let h
 ₁,..., h
 _M (M > n) be the Paley-Wiener transforms of M"convolvers" (there are no common zeroes in Cⁿ);
- let (having in mind Wiener filtering)

$$B(\omega,\zeta) := \frac{\sum_{k=1}^{M} \overline{\widehat{h_k}(\zeta)} \widehat{h_k}(\omega)}{\sum_{k=1}^{M} |\widehat{h_k}(\zeta)|^2}$$

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

 Let h
₁,..., h
_M (M > n) be the Paley-Wiener transforms of M"convolvers" (there are no common zeroes in Cⁿ);

let (having in mind Wiener filtering)

$$B(\omega,\zeta) := \frac{\sum_{k=1}^{M} \overline{\widehat{h_k}(\zeta)} \widehat{h_k}(\omega)}{\sum_{k=1}^{M} |\widehat{h_k}(\zeta)|^2} = \lim_{\epsilon \to 0} \left(\frac{\sum_{k=1}^{M} \overline{\widehat{h_k}(\zeta)} \widehat{h_k}(\omega)}{\sum_{k=1}^{M} |\widehat{h_k}(\zeta)|^2 + \epsilon} \right)$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

 Let h
₁,..., h
_M (M > n) be the Paley-Wiener transforms of M"convolvers" (there are no common zeroes in Cⁿ);

let (having in mind Wiener filtering)

$$B(\omega,\zeta) := \frac{\sum_{k=1}^{M} \overline{\widehat{h_k}(\zeta)} \widehat{h_k}(\omega)}{\sum_{k=1}^{M} |\widehat{h_k}(\zeta)|^2} = \lim_{\epsilon \to 0} \left(\frac{\sum_{k=1}^{M} \overline{\widehat{h_k}(\zeta)} \widehat{h_k}(\omega)}{\sum_{k=1}^{M} |\widehat{h_k}(\zeta)|^2 + \epsilon} \right)$$

 $\blacktriangleright \ \widehat{h_k}(\zeta) - \widehat{h_k}(\omega) = \sum_{j=1}^n \underline{g_{j,k}}(\omega,\zeta)(\zeta_j - \omega_j), \ k = 1, ..., M ;$

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

 Let h
₁,..., h
_M (M > n) be the Paley-Wiener transforms of M"convolvers" (there are no common zeroes in Cⁿ);

let (having in mind Wiener filtering)

$$B(\omega,\zeta) := \frac{\sum_{k=1}^{M} \overline{\widehat{h_k}(\zeta)} \widehat{h_k}(\omega)}{\sum_{k=1}^{M} |\widehat{h_k}(\zeta)|^2} = \lim_{\epsilon \to 0} \left(\frac{\sum_{k=1}^{M} \overline{\widehat{h_k}(\zeta)} \widehat{h_k}(\omega)}{\sum_{k=1}^{M} |\widehat{h_k}(\zeta)|^2 + \epsilon} \right)$$

$$\blacktriangleright \ \widehat{h_k}(\zeta) - \widehat{h_k}(\omega) = \sum_{j=1}^n \underline{g_{j,k}}(\omega,\zeta)(\zeta_j - \omega_j), \ k = 1, ..., M;$$

Find the $g_{j,k}$ is done either through divided differences or Taylor integral formula, so that convex enveloppes of supports are preserved both in ζ and z after inverse Paley-Wiener transform and the antecedents of the $g_{j,k}$ via Paley-Wiener are <u>explicit</u> in terms of the convolvers $h_1, ..., h_n$).

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

What should be an ideal ingredient for local inversion *via* deconvolution (in the euclidean setting) ?

What should be an ideal ingredient for local inversion *via* deconvolution (in the euclidean setting) ?

Let U a bounded domain in \mathbb{C}^n with piecewise smooth boundary, such that $\hat{h_1}, ..., \hat{h_n}$ have no common zero on ∂U . Let T be any compacty supported distribution. Then, for any $\omega \in U \setminus \partial U$,

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

What should be an ideal ingredient for local inversion *via* deconvolution (in the euclidean setting) ?

Let U a bounded domain in \mathbb{C}^n with piecewise smooth boundary, such that $\hat{h_1}, ..., \hat{h_n}$ have no common zero on ∂U . Let T be any compacty supported distribution. Then, for any $\omega \in U \setminus \partial U$,

$$\begin{split} \widehat{T}(\omega)\chi_{U}(\omega) \\ &\equiv \sum_{j=n+1}^{M} \operatorname{Res}_{U} \begin{bmatrix} \frac{\overline{\hat{h}_{j}(\zeta)}\widehat{T}(\zeta)}{\|\widehat{h}(\zeta)\|^{2}} \begin{vmatrix} g_{1,1}(\omega,\zeta) & \cdots & \cdots & g_{j,1}(\omega,\zeta) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1,n}(\omega,\zeta) & \cdots & \cdots & g_{j,n}(\omega,\zeta) \\ \widehat{h_{1}}(\omega) & \cdots & \widehat{h_{n}}(\omega) & \widehat{h_{j}}(\omega) \\ & & \widehat{h_{1}}(\zeta), \dots, \widehat{h_{n}}(\zeta) \end{bmatrix} d\zeta \end{split}$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

What should be an ideal ingredient for local inversion *via* deconvolution (in the euclidean setting) ?

Let U a bounded domain in \mathbb{C}^n with piecewise smooth boundary, such that $\hat{h_1}, ..., \hat{h_n}$ have no common zero on ∂U . Let T be any compacty supported distribution. Then, for any $\omega \in U \setminus \partial U$,

$$\widehat{T}(\omega)\chi_{U}(\omega) = \sum_{j=n+1}^{M} \operatorname{Res}_{U} \begin{bmatrix} \frac{\overline{\hat{h}_{j}(\zeta)}\widehat{T}(\zeta)}{\|\hat{h}(\zeta)\|^{2}} \begin{vmatrix} g_{1,1}(\omega,\zeta) & \dots & \dots & g_{j,1}(\omega,\zeta) \\ \vdots & \vdots & \vdots & \vdots \\ g_{1,n}(\omega,\zeta) & \dots & \dots & g_{j,n}(\omega,\zeta) \\ \widehat{h_{1}}(\omega) & \dots & \widehat{h_{n}}(\omega) & \widehat{h_{j}}(\omega) \\ & & \widehat{h_{1}}(\zeta), \dots, \widehat{h_{n}}(\zeta) \end{bmatrix}$$

(modulo a corrective boundary term expected to vanish at infinity with I when $U = U_I$ belongs to an exhaustive sequence $(U_I)_{I \ge 1}$ of \mathbb{C}^n).

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

< 注入 < 注入

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

< 注入 < 注入

$$B(\omega,\zeta) := rac{\sum\limits_{k=1}^{M} \overline{\widehat{h_k}(\zeta)} \widehat{h_k}(\omega)}{\sum\limits_{k=1}^{M} |\widehat{h_k}(\zeta)|^2}$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

▲ 臣 ▶ | ★ 臣 ▶ |

About the "corrective" term

$$B(\omega,\zeta) := \frac{\sum_{k=1}^{M} \overline{\widehat{h_k}(\zeta)} \widehat{h_k}(\omega)}{\sum_{k=1}^{M} |\widehat{h_k}(\zeta)|^2} \qquad A(\omega,\zeta) := \frac{\sum_{k=1}^{M} \overline{\widehat{h_k}(\zeta)} \left(\sum_{j=1}^{n} g_j(\omega,\zeta) d\zeta_j\right)}{\sum_{k=1}^{M} |\widehat{h_k}(\zeta)|^2}$$

. .

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

< 注入 < 注入

$$B(\omega,\zeta) := \frac{\sum_{k=1}^{M} \overline{\hat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M} |\widehat{h}_{k}(\zeta)|^{2}} \qquad A(\omega,\zeta) := \frac{\sum_{k=1}^{M} \overline{\hat{h}_{k}(\zeta)} \left(\sum_{j=1}^{n} g_{j}(\omega,\zeta) d\zeta_{j}\right)}{\sum_{k=1}^{M} |\widehat{h}_{k}(\zeta)|^{2}}$$
$$b(\omega,\zeta) := \frac{\sum_{k=1}^{n} \overline{\hat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{n} |\widehat{h}_{k}(\zeta)|^{2}}$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

< 注入 < 注入

$$B(\omega,\zeta) := \frac{\sum\limits_{k=1}^{M} \overline{\hat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum\limits_{k=1}^{M} |\widehat{h}_{k}(\zeta)|^{2}} \qquad A(\omega,\zeta) := \frac{\sum\limits_{k=1}^{M} \overline{\hat{h}_{k}(\zeta)} \Big(\sum\limits_{j=1}^{n} g_{j}(\omega,\zeta) d\zeta_{j}\Big)}{\sum\limits_{k=1}^{M} |\widehat{h}_{k}(\zeta)|^{2}}$$
$$b(\omega,\zeta) := \frac{\sum\limits_{k=1}^{n} \overline{\hat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum\limits_{k=1}^{n} |\widehat{h}_{k}(\zeta)|^{2}} \qquad a(\omega,\zeta) := \frac{\sum\limits_{k=1}^{n} \overline{\hat{h}_{k}(\zeta)} \sum\limits_{j=1}^{n} g_{j}(\omega,\zeta) d\zeta_{j}}{\sum\limits_{k=1}^{n} |\widehat{h}_{k}(\zeta)|^{2}}$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

★ Ξ ► ★ Ξ ►

$$B(\omega,\zeta) := \frac{\sum\limits_{k=1}^{M} \overline{\hat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum\limits_{k=1}^{M} |\widehat{h}_{k}(\zeta)|^{2}} \qquad A(\omega,\zeta) := \frac{\sum\limits_{k=1}^{M} \overline{\hat{h}_{k}(\zeta)} \left(\sum\limits_{j=1}^{n} g_{j}(\omega,\zeta) d\zeta_{j}\right)}{\sum\limits_{k=1}^{M} |\widehat{h}_{k}(\zeta)|^{2}}$$
$$b(\omega,\zeta) := \frac{\sum\limits_{k=1}^{n} \overline{\hat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum\limits_{k=1}^{n} |\widehat{h}_{k}(\zeta)|^{2}} \qquad a(\omega,\zeta) := \frac{\sum\limits_{k=1}^{n} \overline{\hat{h}_{k}(\zeta)} \sum\limits_{j=1}^{n} g_{j}(\omega,\zeta) d\zeta_{j}}{\sum\limits_{k=1}^{n} |\widehat{h}_{k}(\zeta)|^{2}}$$
$$S(\omega,\zeta) = \sum\limits_{j=1}^{n} (\overline{\zeta_{j}} - \overline{\omega_{j}}) d\zeta_{j}$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

< 注入 < 注入

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

< 注入 < 注入

$$\frac{1}{(2i\pi)^n} \left(\int_{\partial U} \widehat{T} \sum_{p+q=n-1} \binom{n}{n-q} \frac{[b^{n-q} B S \wedge (\overline{\partial}S)^p \wedge (\overline{\partial}a)^p](\omega,\zeta)}{\|\zeta - \omega\|^{2(p+1)}} \right. \\ \left. + \int_{\partial U} \widehat{T} \sum_{p+q=n-2} \binom{n}{n-q} \frac{[b^{n-q} S \wedge (\overline{\partial}S)^p \wedge (\overline{\partial}a)^p \wedge \overline{\partial}A](\omega,\zeta)}{\|\zeta - \omega\|^{2(p+1)}} \right. \\ \left. + n \int_{\partial U} \widehat{T} \left[b(\overline{\partial}a)^{n-1} \wedge A \right](\omega,\zeta) \right)$$

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

.⊒...>

Candidates for an "economic" deconvolution process (classical setting)

Candidates for an "economic" deconvolution process (classical setting)

A collection of n + 1 "convolvers" such one has :

$$\sum_{k=1}^{n} \frac{|\widehat{h}_{k}(\omega)|}{e^{H_{\delta_{k}}(\mathrm{Im}\;(\omega))}} \geq c \frac{\mathrm{dist}\left(\omega, \{\widehat{h_{1}}=\cdots=\widehat{h_{n}}=0\}\right)}{(1+\|\omega\|)^{N}}$$

for some $N \ge 1$, for some convex compact sets δ_k such that fo each k = 1, ..., n,

 $\delta_k \subset \operatorname{conv}(\operatorname{Supp} h_k)$

(joint Lojasievicz ineqalities);

Candidates for an "economic" deconvolution process (classical setting)

A collection of n + 1 "convolvers" such one has :

$$\sum_{k=1}^{n} \frac{|\widehat{h_k}(\omega)|}{e^{H_{\delta_k}(\mathrm{Im}\,(\omega))}} \geq c \frac{\mathrm{dist}\,(\omega,\{\widehat{h_1}=\cdots=\widehat{h_n}=0\})}{(1+\|\omega\|)^N}$$

for some $N \ge 1$, for some convex compact sets δ_k such that fo each k = 1, ..., n, $\delta_k \subset \operatorname{conv}(\operatorname{Supp} h_k)$

(joint Lojasievicz ineqalities);

and :

$$\{\omega \in \mathbb{C}^n; \, \widehat{h_1}(\omega) = \cdots = \widehat{h_{n+1}}(\omega) = 0\} = \emptyset.$$

About Pompeïu type problems

Pompeïu transfoms ; examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Deconvolution procedures in the *n*-dimensional context

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

The intrinsic hardness of spectral synthesis problems in higher dimension

About asymptotics for exponential polynomials, spherical harmonics

⊒ ⊳

 Polya theory revisited ([Differential-Difference equations, Belmann-Cooke, 1963])

- Polya theory revisited ([Differential-Difference equations, Belmann-Cooke, 1963])
- Analytic Lojasiewicz inequalities (in particular for exponential polynomials, Bessel functions, *etc.* ([C.A. Berenstein, B.A. Taylor, 1979-1980], [C.A. Berenstein, A.Y., 1988])

- Polya theory revisited ([Differential-Difference equations, Belmann-Cooke, 1963])
- Analytic Lojasiewicz inequalities (in particular for exponential polynomials, Bessel functions, *etc.* ([C.A. Berenstein, B.A. Taylor, 1979-1980], [C.A. Berenstein, A.Y., 1988])
- Ideals generated by exponential polynomials ([D. Gurevich, 1974-1975], [C.A. Berenstein, A.Y], 1986 - 1995], [B. Kazarnovskii, 1980-1981], [L.I. Ronkin])

- Polya theory revisited ([Differential-Difference equations, Belmann-Cooke, 1963])
- Analytic Lojasiewicz inequalities (in particular for exponential polynomials, Bessel functions, *etc.* ([C.A. Berenstein, B.A. Taylor, 1979-1980], [C.A. Berenstein, A.Y., 1988])
- Ideals generated by exponential polynomials ([D. Gurevich, 1974-1975], [C.A. Berenstein, A.Y], 1986 - 1995], [B. Kazarnovskii, 1980-1981], [L.I. Ronkin])
- Asymptotics for elementary spherical functions ([J.J.Duistermaat,1980])

• • = • • = •

Difference-differential operators ; digression from an example by J. Delsarte (1960)

크 > 크

Difference-differential operators ; digression from an example by J. Delsarte (1960)

$$F_j(\zeta_1,...,\zeta_n) = P_j(\zeta_1,...,\zeta_n, e^{i\langle\gamma_1,\zeta\rangle},...,e^{i\langle\gamma_N,\zeta\rangle}), j = 1,...,M$$

크 > 크

Difference-differential operators ; digression from an example by J. Delsarte (1960)

$$F_j(\zeta_1,...,\zeta_n) = P_j(\zeta_1,...,\zeta_n, e^{i\langle\gamma_1,\zeta\rangle},...,e^{i\langle\gamma_N,\zeta\rangle}), j = 1,...,M$$

 $(\gamma_1, ..., \gamma_N \in \mathbb{R}^n, \text{ being jointly } \mathbb{Q} - \text{linearly independent})$

Difference-differential operators ; digression from an example by J. Delsarte (1960)

$$F_j(\zeta_1,...,\zeta_n) = P_j(\zeta_1,...,\zeta_n, e^{i\langle\gamma_1,\zeta\rangle},...,e^{i\langle\gamma_N,\zeta\rangle}), j = 1,...,M$$

 $(\gamma_1, ..., \gamma_N \in \mathbb{R}^n, \text{ being jointly } \mathbb{Q} - \text{linearly independent})$

A useful (but sometimes hard to check !) criterion to ensure the ideal $(F_1, ..., F_M)$ is closed in the Paley-Wiener algebra ([C.A. Berenstein, A. Yger, 1986]) :

Difference-differential operators ; digression from an example by J. Delsarte (1960)

$$F_j(\zeta_1,...,\zeta_n) = P_j(\zeta_1,...,\zeta_n, e^{i\langle\gamma_1,\zeta\rangle},...,e^{i\langle\gamma_N,\zeta\rangle}), j = 1,...,M$$

 $(\gamma_1, ..., \gamma_N \in \mathbb{R}^n, \text{ being jointly } \mathbb{Q} - \text{linearly independent})$

A useful (but sometimes hard to check !) criterion to ensure the ideal $(F_1, ..., F_M)$ is closed in the Paley-Wiener algebra ([C.A. Berenstein, A. Yger, 1986]) :

"For any $(\rho_1, ..., \rho_N)$ sufficiently close to $(\underline{1})$ in $(S^1)^N$, the set

 $\{\zeta \in \mathbb{C}^n ; P_j(\zeta_1, ..., \zeta_n, \rho_1 e^{i\langle \gamma_1, \zeta \rangle}, ..., \rho_N e^{i\langle \gamma_N, \zeta \rangle}), j = 1, ..., M\}$

remains discrete."

.

Candidates for an "economic" deconvolution process (again)

Alain Yger, Université Bordeaux 1 About inverse problems related to deconvolution

프 · 프

Candidates for an "economic" deconvolution process (again)

A collection of n + 1 "convolvers" such one has :

$$\sum_{j=1}^n \frac{|\widehat{h_j}(\omega)|}{e^{H_{\delta_j}(\mathrm{Im}\,(\omega))}} \geq c \frac{\mathrm{dist}\,(\omega,\{\widehat{h_1}=\cdots=\widehat{h_n}=0\})}{(1+\|\omega\|)^N}$$

for some $N \geq 1$, for some convex compact sets δ_k such that fo each k = 1, ..., n,

 $\delta_k \subset \operatorname{conv}(\operatorname{Supp} h_k)$

(joint Lojasievicz ineqalities);

Candidates for an "economic" deconvolution process (again)

A collection of n + 1 "convolvers" such one has :

$$\sum_{j=1}^n \frac{|\widehat{h_j}(\omega)|}{e^{H_{\delta_j}(\mathrm{Im}\,(\omega))}} \geq c \frac{\mathrm{dist}\,(\omega,\{\widehat{h_1}=\cdots=\widehat{h_n}=0\})}{(1+\|\omega\|)^N}$$

for some $N \geq 1$, for some convex compact sets δ_k such that fo each k = 1, ..., n,

 $\delta_k \subset \operatorname{conv}(\operatorname{Supp} h_k)$

(joint Lojasievicz ineqalities);

and :

$$\{\omega\in\mathbb{C}^n\,;\,\widehat{h_1}(\omega)=\cdots=\widehat{h_{n+1}}(\omega)=0\}=\emptyset\,.$$

Turning around the division problem (for example for exponential-polynomials)

글 > _ 글

Turning around the division problem (for example for exponential-polynomials)

$$F_1,...,F_M \in H(\mathbb{C}^n), \ \{F_1=\cdots=F_M=0\}=\emptyset.$$

글 > _ 글

Turning around the division problem (for example for exponential-polynomials)

크 > 크

Turning around the division problem (for example for exponential-polynomials)

$$F_1,...,F_M \in H(\mathbb{C}^n), \ \{F_1 = \cdots = F_M = 0\} = \emptyset.$$

$$\sum_{k=1}^M |F_k|^2 \ge ?$$

Trick : Control the "growth" of the distribution $\| \|^{-2}$ via "fictive" integrations by parts.

$$\mathcal{Q}_{j}(\underline{\lambda}, X, e^{\langle \gamma, X \rangle}) \Big[\mathbf{F}_{j} \prod_{k=1}^{M} \mathbf{F}_{k}^{\lambda_{k}} \Big] = b(\underline{\lambda}, []) \prod_{k=1}^{M} \mathbf{F}_{k}^{\lambda_{k}}, \ k = 1, ..., M$$

(Bernstein-Sato type relations)

Some results (and the intrusion or arithmetics)

Two cases could be studied that way ([C.A. Berenstein, A.Y., 1995]) :

$$\begin{array}{rcl} F_{j} & = & P_{j}(\zeta_{1},...,\zeta_{n},e^{i\zeta_{1}})\,,\; j=1,...,M,\;,\; P_{j}\in\mathbb{C}[X_{1},...,X_{n+1}]\\ F_{j} & = & P_{j}(\zeta_{1},...,\zeta_{n},e^{i\zeta_{1}},e^{i\omega\zeta_{1}})\,,\; j=1,...,M\;,\; P_{j}\in\overline{\mathbb{Q}}[X_{1},...,X_{n}]\,,\; \omega\in\overline{\mathbb{Q}} \end{array}$$

An ingredient : the formal independence between exponential and polynomials :

크 > 크

An ingredient : the formal independence between exponential and polynomials :

Transcendence degree $\mathbb{C}[\varphi_1, ..., \varphi_n, e^{\varphi_1}, ..., e^{\varphi_n}] \ge n$.

 $(\varphi_1,...,\varphi_n \text{ functions of } k \geq 1 \text{ parameters})$

An ingredient : the formal independence between exponential and polynomials :

Transcendence degree $\mathbb{C}[\varphi_1, ..., \varphi_n, e^{\varphi_1}, ..., e^{\varphi_n}] \ge n$.

 $(\varphi_1, ..., \varphi_n \text{ functions of } k \ge 1 \text{ parameters})$

As an example, related to J. Ritt's theorem : if an irreducible polynomial divides (as an entire function)

$$\zeta\longmapsto \sum_{j} A_{j}(\omega) e^{i\langle \gamma_{j},\omega
angle},$$

either it divides <u>all</u> A_j , either it is an affine polynomial

$$P(\omega) = \langle \gamma_j - \gamma_I, \, \omega \rangle - \mathrm{Cst} \, .$$

Arithmetic constraints imply more rigidity.

About Pompeïu type problems

Pompeïu transfoms ; examples and classical results Harmonic sphericals and transmutation Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the (n + 1) hypercube problem

Deconvolution procedures in the *n*-dimensional context

Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

The intrinsic hardness of spectral synthesis problems in higher dimension

Conclusion

Encouraging news from Tunisia and questions after the conference

Alain Yger, Université Bordeaux 1 About inverse problems related to deconvolution

크 - 프

 the recent work of [A. El Garna, B. Selmi] about the injectivity of the two radii problem respect to the convolution related to the Dunkle operator D^α;

- the recent work of [A. El Garna, B. Selmi] about the injectivity of the two radii problem respect to the convolution related to the Dunkle operator D^α;
- the recent work of [B. Selmi, M. Nessibi] about the injectivity of the same problem respect to the convolution related to the Chebli-Trimèche hypergroup ;

- the recent work of [A. El Garna, B. Selmi] about the injectivity of the two radii problem respect to the convolution related to the Dunkle operator D^α;
- the recent work of [B. Selmi, M. Nessibi] about the injectivity of the same problem respect to the convolution related to the Chebli-Trimèche hypergroup ;
- ► A question after listening to the lectures ; is there any hope to state some theorem of the Delsarte type (probably with n + 1 radii) to caracterize the harmonicity respect to the Dunkl Laplacian ?

- the recent work of [A. El Garna, B. Selmi] about the injectivity of the two radii problem respect to the convolution related to the Dunkle operator D^α;
- the recent work of [B. Selmi, M. Nessibi] about the injectivity of the same problem respect to the convolution related to the Chebli-Trimèche hypergroup ;
- ► A question after listening to the lectures ; is there any hope to state some theorem of the Delsarte type (probably with n + 1 radii) to caracterize the harmonicity respect to the Dunkl Laplacian ?
- Can the machinery involved in toric geometry or in studying by indirect approaches problems where exponential polynomials (the "classical" exponential) are involved be of any help ?