About inverse problems related to deconvolution

Alain Yger, Université Bordeaux 1

ICHAA, El-Kantaoui, Sousse (Tunisia), November 2006

About Pompeïu type problems

Pompeïu transfoms; examples and classical results
Harmonic sphericals and transmutation
Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the $(n+1)$ hypercube problem

Deconvolution procedures in the n-dimensional context Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

The intrinsic hardness of spectral synthesis problems in higher dimension

Conclusion

About Pompeïu type problems

Pompeïu transfoms ; examples and classical results
Harmonic sphericals and transmutation
Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach : the $(n+1)$ hypercube problem

Deconvolution procedures in the n-dimensional context Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

The intrinsic hardness of spectral synthesis problems in higher dimension Results respect to the two disks problem
A "tensorial" approach : the $(n+1)$ hypercube problem

The Pompeïu transform and some natural related questions

The Pompeïu transform and some natural related questions

X : locally compact space equipped with positive Radon measure μ;

The Pompeïu transform and some natural related questions

X : locally compact space equipped with positive Radon measure μ; $K_{1}, \ldots, K_{N}: N$ compact subsets of X;

The Pompeïu transform and some natural related questions

X : locally compact space equipped with positive Radon measure μ; $K_{1}, \ldots, K_{N}: N$ compact subsets of X;
G : topological group acting on X, such that μ is G-invariant

The Pompeïu transform and some natural related questions

X : locally compact space equipped with positive Radon measure μ;
$K_{1}, \ldots, K_{N}: N$ compact subsets of X;
G : topological group acting on X, such that μ is G-invariant
Associated Pompeïu transform :

$$
f \in C(X) \longmapsto\left(g \in G \mapsto \int_{g K_{1}} f d \mu, \ldots, g \in G \mapsto \int_{g K_{N}} f d \mu\right) \in(C(G))^{N}
$$

- Is the transform injective ?

The Pompeïu transform and some natural related questions

X : locally compact space equipped with positive Radon measure μ;
$K_{1}, \ldots, K_{N}: N$ compact subsets of X;
G : topological group acting on X, such that μ is G-invariant
Associated Pompeïu transform :

$$
f \in C(X) \longmapsto\left(g \in G \mapsto \int_{g K_{1}} f d \mu, \ldots, g \in G \mapsto \int_{g K_{N}} f d \mu\right) \in(C(G))^{N}
$$

- Is the transform injective ?
- If yes, can it be inverted (at least in a weak sense, for example in the distribution sense)?

The Pompeïu transform and some natural related questions

X : locally compact space equipped with positive Radon measure μ;
$K_{1}, \ldots, K_{N}: N$ compact subsets of X;
G : topological group acting on X, such that μ is G-invariant
Associated Pompeïu transform :

$$
f \in C(X) \longmapsto\left(g \in G \mapsto \int_{g K_{1}} f d \mu, \ldots, g \in G \mapsto \int_{g K_{N}} f d \mu\right) \in(C(G))^{N}
$$

- Is the transform injective ?
- If yes, can it be inverted (at least in a weak sense, for example in the distribution sense)?
- What about a local version (X replaced by some open subset U and the g being restricted to the condition $g K_{j} \subset U$ when necessary) ?

The Pompeïu transform and some natural related questions

X : locally compact space equipped with positive Radon measure μ;
$K_{1}, \ldots, K_{N}: N$ compact subsets of X;
G : topological group acting on X, such that μ is G-invariant
Associated Pompeïu transform :
$f \in C(X) \longmapsto\left(g \in G \mapsto \int_{g K_{1}} f d \mu, \ldots, g \in G \mapsto \int_{g K_{N}} f d \mu\right) \in(C(G))^{N}$

- Is the transform injective ?
- If yes, can it be inverted (at least in a weak sense, for example in the distribution sense)?
- What about a local version (X replaced by some open subset U and the g being restricted to the condition $g K_{j} \subset U$ when necessary) ? If yes, can this "local version" be inverted (at least in a weak sense, for example in the distribution sense) ?

Outline
About Pompeiu type problems

Pompeïu transfoms ; examples and classical results
Harmonic sphericals and transmutation
Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem
A "tensorial" approach : the $(n+1)$ hypercube problem

For references, up to 1996...

For references, up to 1996...

- An exhaustive bibliography by L. Zalcman
[L. Zalcman, Approximation by solutions of PDE's, Kluwer, 1992, B. Fuglede ed.]
- An updated survey by C.A. Berenstein [C.A. Berenstein, The Pompeïu problem, what's new ? in Complex Analysis, Harmonic analysis and applications, Pitman Research Notes 347, 1996]

Shiffer's old (still open) question

- $X=\mathbb{R}^{n}, G$: Euclidean motion group $M(n), \mu=d x$;

Shiffer's old (still open) question

- $X=\mathbb{R}^{n}, G$: Euclidean motion group $M(n), \mu=d x$;
- $N=1, K_{1}=\bar{\Omega}$, where Ω is an open bounded open set with Lipschitz boundary such that $\mathbb{R}^{n} \backslash K_{1}$ is connected.

Suppose the related Pompeïu transfom NON INJECTIVE ; is K a disk ?

A "reformulation" by A. Williams (1976) and a partial answer by C.A. Berenstein (1980)

Theorem (A. Williams, 1976)
The Pompeïu transform in the above setting is injective is and only if there is NO $\alpha>0$ such that the overdetermined Neumann problem

$$
\begin{aligned}
\Delta u+\alpha u & =0 \operatorname{in} \Omega \\
u=1, \partial u / \partial n_{\mathrm{ext}} & =0 \text { on } \partial \Omega
\end{aligned}
$$

has a solution.

A "reformulation" by A. Williams (1976) and a partial answer by C.A. Berenstein (1980)

Theorem (A. Williams, 1976)
The Pompeïu transform in the above setting is injective is and only if there is $N O \alpha>0$ such that the overdetermined Neumann problem

$$
\begin{aligned}
\Delta u+\alpha u & =0 \text { in } \Omega \\
u=1, \partial u / \partial n_{\mathrm{ext}} & =0 \text { on } \partial \Omega
\end{aligned}
$$

has a solution.
One point of "non analyticity" on $\partial K \Longrightarrow$ INJECTIVITY ([A. Williams, 1976, following Cafarelli]) !

A "reformulation" by A. Williams (1976) and a partial answer by C.A. Berenstein (1980)

Theorem (A. Williams, 1976)
The Pompeïu transform in the above setting is injective is and only if there is $\mathrm{NO} \alpha>0$ such that the overdetermined Neumann problem

$$
\begin{aligned}
\Delta u+\alpha u & =0 \text { in } \Omega \\
u=1, \partial u / \partial n_{\text {ext }} & =0 \text { on } \partial \Omega
\end{aligned}
$$

has a solution.
One point of "non analyticity" on $\partial K \Longrightarrow$ INJECTIVITY ([A. Williams, 1976, following Cafarelli]) !
Assuming $\partial K C^{2+\epsilon}$, if the Neumann problem admits solutions for an infinite number of real values α, then K is a disk ([C.A. Berenstein, 1980])

Pompeïu transfoms ; examples and classical results

Some attempts ;positive results to question 1 in the same setting ($X=\mathbb{R}^{n}$, respect to the global injectivity question)

Some attempts ;positive results to question 1 in the same setting ($X=\mathbb{R}^{n}$, respect to the global injectivity question)

- Yes (when $n=2$) if Ω is conformally equivalent to the unit disk trough a rational (even in some cases algebraic) map : YES when Ω is a true ellipse, NO when it is a disk! [P. Ehbenfelt, 1993]

Some attempts ;positive results to question 1 in the same

 setting ($X=\mathbb{R}^{n}$, respect to the global injectivity question)- Yes (when $n=2$) if Ω is conformally equivalent to the unit disk trough a rational (even in some cases algebraic) map: YES when Ω is a true ellipse, NO when it is a disk! [P. Ehbenfelt, 1993]
- Several attacks, still when $n=2$, in particular through its natural companion (the holomorphy test of Morera with $K=\partial \Omega$, assuming $\partial \Omega$ is a piecewice Jordan curve and consider the path integral), mainly by L. Zalcman and V.V. Volchkov (1990-2000)

Pompeïu transfoms ; examples and classical results Harmonic sphericals and transmutation
Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem
A "tensorial" approach : the $(n+1)$ hypercube problem

Still in the Euclidean case, two important examples

Still in the Euclidean case, two important examples

- $N=n+1, K_{j}=\left[-r_{j}, r_{j}\right]^{n}, r_{1}, \ldots, r_{n+1}$ pairwise rationally independent [C.A. Berenstein, B.A. Taylor, 1977]

Still in the Euclidean case, two important examples

- $N=n+1, K_{j}=\left[-r_{j}, r_{j}\right]^{n}, r_{1}, \ldots, r_{n+1}$ pairwise rationally independent [C.A. Berenstein, B.A. Taylor, 1977]
- $N=2, K_{j}=B\left(0, r_{j}\right), r_{1} / r_{2}$ not quotient of two zeroes of $J_{n / 2}$

Still in the Euclidean case, two important examples

- $N=n+1, K_{j}=\left[-r_{j}, r_{j}\right]^{n}, r_{1}, \ldots, r_{n+1}$ pairwise rationally independent [C.A. Berenstein, B.A. Taylor, 1977]
- $N=2, K_{j}=B\left(0, r_{j}\right), r_{1} / r_{2}$ not quotient of two zeroes of $J_{n / 2}$
- A companion problem : J. Delsarte's two radii theorem [J. Delsarte, Lectures at Tata Institute, 1961] :

Still in the Euclidean case, two important examples

- $N=n+1, K_{j}=\left[-r_{j}, r_{j}\right]^{n}, r_{1}, \ldots, r_{n+1}$ pairwise rationally independent [C.A. Berenstein, B.A. Taylor, 1977]
- $N=2, K_{j}=B\left(0, r_{j}\right), r_{1} / r_{2}$ not quotient of two zeroes of $J_{n / 2}$
- A companion problem : J. Delsarte's two radii theorem [J. Delsarte, Lectures at Tata Institute, 1961] :

$$
f \in C\left(\mathbb{R}^{n}\right), f(x)=\int f(x+y) d \sigma_{r_{j}} \forall x \in \mathbb{R}^{n} \Longrightarrow \Delta f \equiv 0
$$

(r_{1} / r_{2} outside some exceptional countable set).

The natural extension to irreducible symmetric spaces with rank 1

The reason : the crucial relation of these questions with Spectral Synthesis Problem for radially symmetric functions in \mathbb{R}^{n} ! [L. Brown, B.M. Schreiber, B.A. Taylor, 1973]

- see [C.A. Berenstein-L. Zalcman, 1980], [C.A. Berenstein-M. Shahshahani, 1983], [C.A. Berenstein, D. Pasquas, 1994], [Molzon, 1991]

The natural extension to irreducible symmetric spaces with rank 1

The reason : the crucial relation of these questions with Spectral Synthesis Problem for radially symmetric functions in \mathbb{R}^{n} ! $[\mathrm{L}$. Brown, B.M. Schreiber, B.A. Taylor, 1973]

- see [C.A. Berenstein-L. Zalcman, 1980], [C.A. Berenstein-M. Shahshahani, 1983], [C.A. Berenstein, D. Pasquas, 1994], [Molzon, 1991]
- see the extensive work of M. Agranovsky, A. Semanov, V. Vochkov, C.A. Berenstein, D. Chen Chang, L. Zalcman (1990-1995)

The natural extension to irreducible symmetric spaces with rank 1

The reason : the crucial relation of these questions with Spectral Synthesis Problem for radially symmetric functions in \mathbb{R}^{n} ! $[\mathrm{L}$. Brown, B.M. Schreiber, B.A. Taylor, 1973]

- see [C.A. Berenstein-L. Zalcman, 1980], [C.A. Berenstein-M. Shahshahani, 1983], [C.A. Berenstein, D. Pasquas, 1994], [Molzon, 1991]
- see the extensive work of M. Agranovsky, A. Semanov, V. Vochkov, C.A. Berenstein, D. Chen Chang, L. Zalcman (1990-1995)
- see also last chapter in: C.A. Berenstein, D.C. Chang, T. Tie's book on Laguerre calculus (International Press, 2001).

What about higher rank?

A major stumbling block: the failure of the Spectral Synthesis Theorem in dimension $n>1$ [D. Gurevich, 1975, through multivariate complex analysis]

What about higher rank ?

> A major stumbling block: the failure of the Spectral Synthesis Theorem in dimension $n>1$ [D. Gurevich, 1975, through multivariate complex analysis]

A necessity : tools should come from multivariate complex analysis.

What about the "local" versions ?

- For the classical Pompeïu setting ($K=\bar{\Omega} \subset U$), the injectivity for the global problem implies the injectivity for the local one provided

What about the "local" versions ?

- For the classical Pompeïu setting ($K=\bar{\Omega} \subset U$), the injectivity for the global problem implies the injectivity for the local one provided - that U is a union of balls with radii $R_{\iota}>2 r$ (unavoidable)

What about the "local" versions ?

- For the classical Pompeïu setting ($K=\bar{\Omega} \subset U$), the injectivity for the global problem implies the injectivity for the local one provided - that U is a union of balls with radii $R_{\iota}>2 r$ (unavoidable)
- that there is some "hyperbolic" point on $\partial \Omega$ (ensuring asymptotic behavior for the Fourier transform of the radialized version of $\left.\chi_{\bar{\Omega}}\right)$.

What about the "local" versions ?

- For the classical Pompeïu setting $(K=\bar{\Omega} \subset U)$, the injectivity for the global problem implies the injectivity for the local one provided - that U is a union of balls with radii $R_{\iota}>2 r$ (unavoidable)
- that there is some "hyperbolic" point on $\partial \Omega$ (ensuring asymptotic behavior for the Fourier transform of the radialized version of $\chi_{\bar{\Omega}}$).
[C.A. Berenstein, R. Gay, 1989] ;

What about the "local" versions ?

- For the classical Pompeïu setting ($K=\bar{\Omega} \subset U$), the injectivity for the global problem implies the injectivity for the local one provided - that U is a union of balls with radii $R_{\iota}>2 r$ (unavoidable)
- that there is some "hyperbolic" point on $\partial \Omega$ (ensuring asymptotic behavior for the Fourier transform of the radialized version of $\left.\chi_{\bar{\Omega}}\right)$.
[C.A. Berenstein, R. Gay, 1989] ; (the analog in the rank 1 symmetric space setting remains unknown !)
Weak inversion possible when U is a union of balls sith radii $R_{\iota}>3 r$ ([C.A. Berenstein, R. Gay, A. Y., 1990])

What about the "local" versions ?

- For the classical Pompeïu setting ($K=\bar{\Omega} \subset U$), the injectivity for the global problem implies the injectivity for the local one provided - that U is a union of balls with radii $R_{\iota}>2 r$ (unavoidable)
- that there is some "hyperbolic" point on $\partial \Omega$ (ensuring asymptotic behavior for the Fourier transform of the radialized version of $\left.\chi_{\bar{\Omega}}\right)$.
[C.A. Berenstein, R. Gay, 1989] ; (the analog in the rank 1 symmetric space setting remains unknown !)
Weak inversion possible when U is a union of balls sith radii $R_{\iota}>3 r$ ([C.A. Berenstein, R. Gay, A. Y., 1990])
- For the two-disks theorem, global injectivity implies local one (provided U is a union of disks with radii $R_{\iota}>r_{1}+r_{2}$).
[C.A. Berenstein, R.Gay, 1986].
Weak local inversion is also OK [C.A. Berenstein, R. Gay, A.Y., 1990].

What about the "local" versions ?

- For the classical Pompeïu setting $(K=\bar{\Omega} \subset U)$, the injectivity for the global problem implies the injectivity for the local one provided - that U is a union of balls with radii $R_{\iota}>2 r$ (unavoidable)
- that there is some "hyperbolic" point on $\partial \Omega$ (ensuring asymptotic behavior for the Fourier transform of the radialized version of $\left.\chi_{\bar{\Omega}}\right)$.
[C.A. Berenstein, R. Gay, 1989] ; (the analog in the rank 1 symmetric space setting remains unknown !)
Weak inversion possible when U is a union of balls sith radii $R_{\iota}>3 r$ ([C.A. Berenstein, R. Gay, A. Y., 1990])
- For the two-disks theorem, global injectivity implies local one (provided U is a union of disks with radii $R_{\iota}>r_{1}+r_{2}$).
[C.A. Berenstein, R.Gay, 1986].
Weak local inversion is also OK [C.A. Berenstein, R. Gay, A.Y., 1990].
Versions in the symmetric spaces of rank 1 setting by A. Volchkov (injectivity), M. El Harchaoui (inversion) (around 1995).

Pompeïu transfoms ; examples and classical results Harmonic sphericals and transmutation
Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem
A "tensorial" approach : the $(n+1)$ hypercube problem

A key lemma (in the euclidean context) :

A key lemma (in the euclidean context) :

- Let H_{p} be any harmonic polynomial with degree p in n variables; for any C^{p} function F of one variable, one has the following identity :

A key lemma (in the euclidean context) :

- Let H_{p} be any harmonic polynomial with degree p in n variables; for any C^{p} function F of one variable, one has the following identity :

$$
H_{p}\left(x_{1}, \cdots, x_{n}\right)\left(\frac{d^{p} F}{d\left(r^{2}\right)^{p}}\right)_{\mid r=\|x\|}=2^{-p} H\left(\frac{\partial}{\partial x}\right)\left[F\left(\sum_{j=1}^{n} x_{j}^{2}\right)\right]
$$

A key lemma (in the euclidean context) :

- Let H_{p} be any harmonic polynomial with degree p in n variables; for any C^{p} function F of one variable, one has the following identity :

$$
H_{p}\left(x_{1}, \cdots, x_{n}\right)\left(\frac{d^{p} F}{d\left(r^{2}\right)^{p}}\right)_{\mid r=\|\times\|}=2^{-p} H\left(\frac{\partial}{\partial x}\right)\left[F\left(\sum_{j=1}^{n} x_{j}^{2}\right)\right] .
$$

- This leads via identification of Fourier transforms to the following :

A key lemma (in the euclidean context) :

- Let H_{p} be any harmonic polynomial with degree p in n variables; for any C^{p} function F of one variable, one has the following identity :

$$
H_{p}\left(x_{1}, \cdots, x_{n}\right)\left(\frac{d^{p} F}{d\left(r^{2}\right)^{p}}\right)_{\mid r=\|\times\|}=2^{-p} H\left(\frac{\partial}{\partial x}\right)\left[F\left(\sum_{j=1}^{n} x_{j}^{2}\right)\right] .
$$

- This leads via identification of Fourier transforms to the following :

$$
\begin{aligned}
H_{p}(x) \sigma_{r}(\|x\|)= & \frac{(-1)^{p}}{2^{p-1}(p-1)!} \frac{r^{2-n}}{} \operatorname{vol}\left(S^{n}\right) \\
& \times H\left(\frac{\partial}{\partial y}\right)\left[\left(r^{2}-\|y\|^{2}\right)^{p-1} \chi_{B_{n}(0, r)}(y)\right]_{\mid y=x}
\end{aligned}
$$

Then transposed as follows in the real and complex hyperbolic contexts

Then transposed as follows in the real and complex hyperbolic contexts

- in the real hyperbolic setting :

$$
\mathbf{H}_{p} \sigma_{r}=\frac{(-1)^{p} r^{2}}{2^{p-1} \operatorname{vol}\left(S^{n-1}\right) \Gamma(p)(\operatorname{ch} r)^{n-2}(\operatorname{sh} r)^{n}}\left[\mathbf{H}_{p}\left(\partial_{x}\right)\right] \delta_{0} * T_{r, p}
$$

Then transposed as follows in the real and complex hyperbolic contexts

- in the real hyperbolic setting :

$$
\begin{aligned}
\mathbf{H}_{p} \sigma_{r} & =\frac{(-1)^{p} r^{2}}{2^{p-1} \operatorname{vol}\left(S^{n-1}\right) \Gamma(p)(\operatorname{ch} r)^{n-2}(\operatorname{sh} r)^{n}}\left[\mathbf{H}_{p}\left(\partial_{x}\right)\right] \delta_{0} * T_{r, p} \\
T_{r, p}(z) & :=F\left(p, 0 ; p ; \frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)\left(\frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)^{p-1} \chi_{\mathbb{B}_{n}(0, r)}
\end{aligned}
$$

Then transposed as follows in the real and complex hyperbolic contexts

- in the real hyperbolic setting :

$$
\begin{aligned}
\mathbf{H}_{p} \sigma_{r} & =\frac{(-1)^{p} r^{2}}{2^{p-1} \operatorname{vol}\left(S^{n-1}\right) \Gamma(p)(\operatorname{ch} r)^{n-2}(\operatorname{sh} r)^{n}}\left[\mathbf{H}_{p}\left(\partial_{x}\right)\right] \delta_{0} * T_{r, p} \\
T_{r, p}(z) & :=F\left(p, 0 ; p ; \frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)\left(\frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)^{p-1} \chi_{\mathbb{B}_{n}(0, r)}
\end{aligned}
$$

- in the complex hyperbolic setting :

$$
\mathbf{H}_{p, q} \sigma_{r}=\frac{2(-1)^{p+q} r^{2}}{\operatorname{vol}\left(S^{2 n-1}\right) \Gamma(p+q)(\operatorname{sh} r)^{2 n}}\left[\mathbf{H}_{p, q}\left(\partial_{z}, \partial_{\bar{z}}\right)\right] \delta_{0} * T_{r, p, q}
$$

Then transposed as follows in the real and complex hyperbolic contexts

- in the real hyperbolic setting :

$$
\begin{aligned}
\mathbf{H}_{p} \sigma_{r} & =\frac{(-1)^{p} r^{2}}{2^{p-1} \operatorname{vol}\left(S^{n-1}\right) \Gamma(p)(\operatorname{ch} r)^{n-2}(\operatorname{sh} r)^{n}}\left[\mathbf{H}_{p}\left(\partial_{x}\right)\right] \delta_{0} * T_{r, p} \\
T_{r, p}(z) & :=F\left(p, 0 ; p ; \frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)\left(\frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)^{p-1} \chi_{\mathbb{B}_{n}(0, r)}
\end{aligned}
$$

- in the complex hyperbolic setting :

$$
\begin{aligned}
\mathbf{H}_{p, q} \sigma_{r} & =\frac{2(-1)^{p+q} r^{2}}{\operatorname{vol}\left(S^{2 n-1}\right) \Gamma(p+q)(\operatorname{sh} r)^{2 n}}\left[\mathbf{H}_{p, q}\left(\partial_{z}, \partial_{\bar{z}}\right)\right] \delta_{0} * T_{r, p, q} \\
T_{r, p, q}(z) & =F\left(p, q ; p+q ; \frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)\left(\frac{r^{2}-\|z\|^{2}}{1-\|z\|^{2}}\right)^{p+q-1} \chi_{\mathbb{B}_{n}(0, r)}
\end{aligned}
$$

Lagrange division-interpolation (towards "economic" deconvolution)

Lagrange division-interpolation (towards "economic" deconvolution)

- Let Γ be a piecewise smooth Jordan arc in the complex plane, surrounding a bounded open set U;

Lagrange division-interpolation (towards "economic" deconvolution)

- Let Γ be a piecewise smooth Jordan arc in the complex plane, surrounding a bounded open set U;
- Let f_{1}, \ldots, f_{m} holomorphic in U, continuous in \bar{U}, zero-free on $\partial U=\operatorname{Supp} \Gamma$, such that the sets $f_{j}^{-1}(0)$ are pairwise disjoints ;

Lagrange division-interpolation (towards "economic" deconvolution)

- Let Γ be a piecewise smooth Jordan arc in the complex plane, surrounding a bounded open set U;
- Let f_{1}, \ldots, f_{m} holomorphic in U, continuous in \bar{U}, zero-free on $\partial U=\operatorname{Supp} \Gamma$, such that the sets $f_{j}^{-1}(0)$ are pairwise disjoints ;
- let $F:=f_{1} \cdots f_{m}, \Phi$ and entire function, and $z \in \mathbb{C} \backslash \partial U$; then

Lagrange division-interpolation (towards "economic" deconvolution)

- Let Γ be a piecewise smooth Jordan arc in the complex plane, surrounding a bounded open set U;
- Let f_{1}, \ldots, f_{m} holomorphic in U, continuous in \bar{U}, zero-free on $\partial U=\operatorname{Supp} \Gamma$, such that the sets $f_{j}^{-1}(0)$ are pairwise disjoints ;
- let $F:=f_{1} \cdots f_{m}, \Phi$ and entire function, and $z \in \mathbb{C} \backslash \partial U$; then

$$
\Phi(z) \chi u(z)=\frac{F(z)}{2 i \pi} \int_{\Gamma} \frac{\Phi(\zeta) d \zeta}{F(\zeta)(\zeta-z)}
$$

Lagrange division-interpolation (towards "economic" deconvolution)

- Let Γ be a piecewise smooth Jordan arc in the complex plane, surrounding a bounded open set U;
- Let f_{1}, \ldots, f_{m} holomorphic in U, continuous in \bar{U}, zero-free on $\partial U=\operatorname{Supp} \Gamma$, such that the sets $f_{j}^{-1}(0)$ are pairwise disjoints ;
- let $F:=f_{1} \cdots f_{m}, \Phi$ and entire function, and $z \in \mathbb{C} \backslash \partial U$; then

$$
\begin{aligned}
& \Phi(z) \chi_{u}(z)=\frac{F(z)}{2 i \pi} \int_{\Gamma} \frac{\Phi(\zeta) d \zeta}{F(\zeta)(\zeta-z)} \\
& \quad+\sum_{j=1}^{m} \sum_{\left\{\alpha \in U ; f_{j}(\alpha)=0\right\}}\left(\prod_{l \neq j} f_{l}(z)\right) \operatorname{Res}_{\zeta=\alpha}\left[\frac{\Phi(\zeta)\left(f_{j}(z)-f_{j}(\zeta)\right) d \zeta}{(z-\zeta) F(\zeta)}\right] .
\end{aligned}
$$

```
Inversion of the local two discs transformation via recovering the spherical decomposition (euclidean radial context) ; 1. the data :
```


Inversion of the local two discs transformation via recovering the spherical decomposition (euclidean radial context) ;
 1. the data:

Let $r_{1}, r_{2}, R>r_{1}+r_{2}$ such that the ratio r_{1} / r_{2} is such that

$$
\left\{\omega \in \mathbb{C}^{n} ; \widehat{\chi B\left(0, r_{1}\right)}(\omega)=\widehat{\chi B\left(0, r_{2}\right)}(\omega)=0\right\}=\emptyset .
$$

Inversion of the local two discs transformation via recovering the spherical decomposition (euclidean radial context) ;

 1. the data:

 1. the data:}

Let $r_{1}, r_{2}, R>r_{1}+r_{2}$ such that the ratio r_{1} / r_{2} is such that

$$
\left\{\omega \in \mathbb{C}^{n} ; \widehat{\chi_{B\left(0, r_{1}\right)}}(\omega)=\widehat{\chi_{B\left(0, r_{2}\right)}}(\omega)=0\right\}=\emptyset .
$$

Let f be a C^{∞} function in the open euclidean ball n-dimensional
$B(0, R)$ (regularization of a continuous function)

Inversion of the local two discs transform via recovering the spherical decomposition (euclidean radial context) ; 2. the result:

 the spherical decomposition (euclidean radial context) ; 2. the result:Theorem (C.A. Berenstein, R. Gay, A. Yger, 1990)
There are absolute constants c, γ, C, a strictly increasing sequence $R_{0}=0<R_{1}<R_{2}<\ldots$ with $\lim _{k}\left(R_{k}\right)=R$ such that for any $k \geq 1$, for any $r \in\left[R_{k-1}, R_{k}\left[\right.\right.$, for any spherical harmonic $S_{m}=H_{m} \sigma_{r}$ with degree m, one can construct two explicit sequences of "deconvolvers" $\left(U_{r, l}\right)_{l \geq 1}$ ($B\left(0, R-r_{1}\right)$ supported) and $\left(V_{r, 1}\right) \mid \geq 1\left(B\left(0, R-r_{2}\right)\right.$ supported) such that

$$
\begin{gathered}
I \geq c m^{2} \Longrightarrow\left|\left\langle f, S_{m}\right\rangle-\left\langle U_{r, l}, \chi_{B\left(0, r_{1}\right)} * f\right\rangle-\left\langle V_{r, l}, \chi_{B\left(0, r_{2}\right)} * f\right\rangle\right| \\
\leq \frac{\gamma}{l}(R-r)^{-N} \max _{|\alpha| \leq N}\left\|\partial^{\alpha} f\right\|_{B\left(0, R_{k+1}\right)} .
\end{gathered}
$$

In the same vein (for classical symmetric riemannian spaces of non compact type with rank 1)

In the same vein (for classical symmetric riemannian spaces of non compact type with rank 1)

A local version of the two disks theorem (with a proof based on similar ideas) was given by M. El Harchaoui (under the direction thesis of R. Gay) :

In the same vein (for classical symmetric riemannian spaces of non compact type with rank 1)

A local version of the two disks theorem (with a proof based on similar ideas) was given by M. El Harchaoui (under the direction thesis of R. Gay) :

- For the real and complex hyperbolic spaces $\mathbb{H}_{n}(\mathbb{R})$ and $\mathbb{H}_{n}(\mathbb{C})$: $[\mathrm{M}$. El Harchaoui, 1993 for $n=1,1995$ for $n>1$] recovering the spherical decomposition of a function in the hyperbolic ball $\mathbb{B}_{n}(0, R)$ from its local averages through geodesic balls with respective radii r_{1} and r_{2} (satisfying the Berenstein-Zalcman injectivity requirement for the two-balls transform [C.A. Berenstein, L. Zalcman, 1980]) ;

In the same vein (for classical symmetric riemannian spaces of non compact type with rank 1)

A local version of the two disks theorem (with a proof based on similar ideas) was given by M. El Harchaoui (under the direction thesis of R. Gay) :

- For the real and complex hyperbolic spaces $\mathbb{H}_{n}(\mathbb{R})$ and $\mathbb{H}_{n}(\mathbb{C})$: [M. El Harchaoui, 1993 for $n=1,1995$ for $n>1$] recovering the spherical decomposition of a function in the hyperbolic ball $\mathbb{B}_{n}(0, R)$ from its local averages through geodesic balls with respective radii r_{1} and r_{2} (satisfying the Berenstein-Zalcman injectivity requirement for the two-balls transform [C.A. Berenstein, L. Zalcman, 1980]) ;
- For the hyperbolic quaternionic space [M. El Harchaoui, Thèse de Doctorat, Oujda, 2000] ;

In the same vein (for classical symmetric riemannian spaces of non compact type with rank 1)

A local version of the two disks theorem (with a proof based on similar ideas) was given by M. El Harchaoui (under the direction thesis of R. Gay) :

- For the real and complex hyperbolic spaces $\mathbb{H}_{n}(\mathbb{R})$ and $\mathbb{H}_{n}(\mathbb{C})$: $[\mathrm{M}$. El Harchaoui, 1993 for $n=1,1995$ for $n>1$] recovering the spherical decomposition of a function in the hyperbolic ball $\mathbb{B}_{n}(0, R)$ from its local averages through geodesic balls with respective radii r_{1} and r_{2} (satisfying the Berenstein-Zalcman injectivity requirement for the two-balls transform [C.A. Berenstein, L. Zalcman, 1980]) ;
- For the hyperbolic quaternionic space [M. El Harchaoui, Thèse de Doctorat, Oujda, 2000] ;
- For the octonionic hyperbolic plane [M. El Harchaoui, Thèse de Doctorat, Oujda, 2000].

Outline
About Pompeïu type problems Deconvolution procedures in the n-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension

Conclusion

Pompeïu transfoms ; examples and classical results Harmonic sphericals and transmutation
Complex analytic tools to be applied in the Paley-Wiener algebra
Results respect to the two disks problem
A "tensorial" approach : the $(n+1)$ hypercube problem

The data :

The data :

- Let $r_{1}, \ldots, r_{n+1} n+1$ strictly positive numbers which are \mathbb{Q}-linearly independent

The data :

- Let $r_{1}, \ldots, r_{n+1} n+1$ strictly positive numbers which are \mathbb{Q}-linearly independent
note that this is a stronger condition that just being \mathbb{Q}-independent by pairs (enough to ensure the injectivity of the problem) !

The data :

- Let $r_{1}, \ldots, r_{n+1} n+1$ strictly positive numbers which are \mathbb{Q}-linearly independent
note that this is a stronger condition that just being \mathbb{Q}-independent by pairs (enough to ensure the injectivity of the problem) !
- Let $R>r_{1}+\cdots+r_{n+1}$ and f be a continuous function in the hypercube] $-R, R\left[{ }^{n}\right.$.

The data :

- Let $r_{1}, \ldots, r_{n+1} n+1$ strictly positive numbers which are \mathbb{Q}-linearly independent
note that this is a stronger condition that just being \mathbb{Q}-independent by pairs (enough to ensure the injectivity of the problem) !
- Let $R>r_{1}+\cdots+r_{n+1}$ and f be a continuous function in the hypercube] $-R, R\left[{ }^{n}\right.$.
- Let $\phi_{1}, \ldots, \phi_{n} n$ sufficiently regular compactly supported functions in $]-R, R[$;

The data :

- Let $r_{1}, \ldots, r_{n+1} n+1$ strictly positive numbers which are \mathbb{Q}-linearly independent
note that this is a stronger condition that just being \mathbb{Q}-independent by pairs (enough to ensure the injectivity of the problem) !
- Let $R>r_{1}+\cdots+r_{n+1}$ and f be a continuous function in the hypercube] $-R, R\left[{ }^{n}\right.$.
- Let $\phi_{1}, \ldots, \phi_{n} n$ sufficiently regular compactly supported functions in] $-R, R[$;
(think for example, respect to potential applications, each ϕ is either a $\varphi_{k, j}$ or a $\psi_{k, j}$ from a multi-resolution analysis in $]-R, R[$).

Outline
About Pompeiu type problems Deconvolution procedures in the n-dimensional context The intrinsic hardness of spectral synthesis problems in higher dimension

Pompeïu transfoms ; examples and classical results Harmonic sphericals and transmutation
Complex analytic tools to be applied in the Paley-Wiener algebra
Results respect to the two disks problem
A "tensorial" approach : the $(n+1)$ hypercube problem

The result :

The result :

Theorem (C.A. Berenstein, A. Yger (1988), E. Maghras (1995))

There is an explicit procedure to recover

$$
\left\langle f, \varphi_{1}\left(x_{1}\right) \otimes \cdots \otimes \varphi_{n}\left(x_{n}\right)\right\rangle
$$

from the knowledge of each $\chi_{\left[-r_{k}, r_{k}\right]^{n}} * f$ on the hypercube (] $-R+r_{k}, R-r_{k}[)^{n}, k=1, \ldots, n$.

The method $(n=2)$ [inspired by P.G. Laird, 1980] :

The method $(n=2)$ [inspired by P.G. Laird, 1980] :

$$
\langle f, \phi \otimes \psi\rangle=\sum_{k=1}^{3}\left\langle D_{\varphi, \psi}^{k}, \chi_{\left(1-r_{k}, r_{k} \mid\right)^{n}} * f\right\rangle
$$

The method $(n=2)$ [inspired by P.G. Laird, 1980] :

$$
\begin{aligned}
& \langle f, \phi \otimes \psi\rangle=\sum_{k=1}^{3}\left\langle D_{\varphi, \psi}^{k}, \chi_{(]-r_{k}, r_{k} \mid n} * f\right\rangle \\
& D_{\varphi, \psi}^{1}=\theta_{\varphi}^{1,2}(x) \otimes\left(\nu_{\psi}^{1} * \chi_{]-r_{2}, r_{2}}\right)(y)+\theta_{\psi}^{1,3}(x) \otimes\left(\nu_{\psi}^{3} * \chi_{]-r_{3}, r_{3}}\right)(y) \\
& D_{\varphi, \psi}^{2}=\theta_{\varphi}^{2,3}(x) \otimes\left(\nu_{\psi}^{2} * \chi_{]}-r_{3}, r_{3}\right)(y)+\theta_{\psi}^{1,2}(x) \otimes\left(\nu_{\psi}^{1} * \chi_{]-r_{1}, r_{1}}\right)(y) \\
& D_{\varphi, \psi}^{3}=\theta_{\varphi}^{2,3}(x) \otimes\left(\nu_{\psi}^{2} * \chi_{]}-r_{3}, r_{3}\right)(y)+\theta_{\psi}^{1,3}(x) \otimes\left(\nu_{\psi}^{3} * \chi_{]}-r_{1}, r_{1}\right)(y)
\end{aligned}
$$

The method $(n=2)$ [inspired by P.G. Laird, 1980] :

$$
\text { Supp } D_{\varphi, \psi}^{k} \subset(]-R+r_{k}, R-r_{k}[)^{2}, k=1,2,3 .
$$

$$
\begin{aligned}
& \langle f, \phi \otimes \psi\rangle=\sum_{k=1}^{3}\left\langle D_{\varphi, \psi}^{k}, \chi_{(]-r_{k}, r_{k}[)^{*}} * f\right\rangle \\
& D_{\varphi, \psi}^{1}=\theta_{\varphi}^{1,2}(x) \otimes\left(\nu_{\psi}^{1} * \chi_{]-r_{2}, r_{2}}\right)(y)+\theta_{\psi}^{1,3}(x) \otimes\left(\nu_{\psi}^{3} * \chi_{]-r_{3}, r_{3}}\right)(y) \\
& D_{\varphi, \psi}^{2}=\theta_{\varphi}^{2,3}(x) \otimes\left(\nu_{\psi}^{2} * \chi_{]}-r_{3, r_{3}}\right)(y)+\theta_{\psi}^{1,2}(x) \otimes\left(\nu_{\psi}^{1} * \chi_{]}-r_{1}, r_{1}\right)(y) \\
& D_{\varphi, \psi}^{3}=\theta_{\varphi}^{2,3}(x) \otimes\left(\nu_{\psi}^{2} * \chi_{]}-r_{3}, r_{[}\right)(y)+\theta_{\psi}^{1,3}(x) \otimes\left(\nu_{\psi}^{3} * \chi_{]}-r_{1}, r_{1}\right)(y)
\end{aligned}
$$

Results respect to the two disks problem
A "tensorial" approach : the $(n+1)$ hypercube problem

Potential applications and further references

Potential applications and further references

- Relation with Shannon sampling and interpolation in Paley-Wiener spaces ([S. Casey, D. Walnut, 1994, D. Walnut, 1998, see also the survey in Progress in Maths 238, 2005])

Potential applications and further references

- Relation with Shannon sampling and interpolation in Paley-Wiener spaces ([S. Casey, D. Walnut, 1994, D. Walnut, 1998, see also the survey in Progress in Maths 238, 2005])
- Detection of brutal local distorsions of spectrum in radar signals ([A.L. Charbonniaud, J.F. Crouzet, R. Gay, 1997])

Potential applications and further references

- Relation with Shannon sampling and interpolation in Paley-Wiener spaces ([S. Casey, D. Walnut, 1994, D. Walnut, 1998, see also the survey in Progress in Maths 238, 2005])
- Detection of brutal local distorsions of spectrum in radar signals ([A.L. Charbonniaud, J.F. Crouzet, R. Gay, 1997])
- Auxiliary tool in the Gerschberg-Papoulis extrapolation algorithm of signals with band-limited spectrum ?

About Pompeïu type problems
Pompeïu transfoms ; examples and classical results
Harmonic sphericals and transmutation
Complex analytic tools to be applied in the Paley-Wiener algebra
Results respect to the two disks problem
A "tensorial" approach : the $(n+1)$ hypercube problem
Deconvolution procedures in the n-dimensional context Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

> The intrinsic hardness of spectral synthesis problems in higher dimension

Conclusion

Division via interpolation : the "toy" model of polynomials

Division via interpolation : the "toy" model of polynomials

- Let P_{1}, \ldots, P_{n+1} elements in $\mathbb{C}\left[X_{1}, \ldots ., X_{n}\right]$ with no common zero in \mathbb{C}^{n}, with respective total degrees D_{1}, \ldots, D_{n+1};

Division via interpolation : the "toy" model of polynomials

- Let P_{1}, \ldots, P_{n+1} elements in $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ with no common zero in \mathbb{C}^{n}, with respective total degrees D_{1}, \ldots, D_{n+1};
- Assume furthermore that there exist strictly positive constants c, C such that :

Division via interpolation : the "toy" model of polynomials

- Let P_{1}, \ldots, P_{n+1} elements in $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ with no common zero in \mathbb{C}^{n}, with respective total degrees D_{1}, \ldots, D_{n+1};
- Assume furthermore that there exist strictly positive constants c, C such that :

$$
\|\zeta\| \geq C \Longrightarrow \sum_{k=1}^{n} \frac{\left|P_{k}(\zeta)\right|}{\|\zeta\|^{D_{k}}} \geq c
$$

Division via interpolation : the "toy" model of polynomials

- Let P_{1}, \ldots, P_{n+1} elements in $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ with no common zero in \mathbb{C}^{n}, with respective total degrees D_{1}, \ldots, D_{n+1};
- Assume furthermore that there exist strictly positive constants c, C such that :

$$
\|\zeta\| \geq C \Longrightarrow \sum_{k=1}^{n} \frac{\left|P_{k}(\zeta)\right|}{\|\zeta\|^{D_{k}}} \geq c
$$

- Let $P_{k}(\zeta)-P_{k}(z)=\sum_{j=1}^{n} g_{k, j}(z, \zeta)\left(\zeta_{j}-z_{j}\right), k=1, \ldots, n$, thanks (for example) to divided differences.

Division via interpolation : the "toy" model of polynomials

Division via interpolation : the "toy" model of polynomials

Theorem (Macaulay revisited, C.A. Berenstein, A.Y., 1991)

$$
1=\operatorname{Res}\left[\left.\begin{array}{cccc}
g_{1,1}(z, \zeta) & \ldots & \ldots & g_{n+1,1}(z, \zeta) \\
\vdots & \vdots & \vdots & \vdots \\
g_{1, n}(z, \zeta) & \ldots & \ldots & g_{n+1, n}(z, \zeta) \\
P_{1}(z) & \ldots & P_{n}(z) & P_{n+1}(z)
\end{array} \right\rvert\, d \zeta\right]
$$

Division via interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

Division via interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

- Let P_{1}, \ldots, P_{n+1} elements in $\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots ., X_{n}^{ \pm n}\right]$ with no common zero in $\left(\mathbb{C}^{*}\right)^{n}$ and respective Newton diagrams $\Delta_{1}, \ldots, \Delta_{n+1}$, all containing the origin as interior point ;

Division via interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

- Let P_{1}, \ldots, P_{n+1} elements in $\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots ., X_{n}^{ \pm n}\right]$ with no common zero in $\left(\mathbb{C}^{*}\right)^{n}$ and respective Newton diagrams $\Delta_{1}, \ldots, \Delta_{n+1}$, all containing the origin as interior point ;

Think about the exponentials sums $\omega \longrightarrow P_{j}\left(e^{-i \omega_{1}}, \ldots, e^{-i \omega_{n}}\right)$!

Division via interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

- Let P_{1}, \ldots, P_{n+1} elements in $\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots ., X_{n}^{ \pm n}\right]$ with no common zero in $\left(\mathbb{C}^{*}\right)^{n}$ and respective Newton diagrams $\Delta_{1}, \ldots, \Delta_{n+1}$, all containing the origin as interior point ;

Think about the exponentials sums $\omega \longrightarrow P_{j}\left(e^{-i \omega_{1}}, \ldots, e^{-i \omega_{n}}\right)$!

- Assume furthermore that there exist strictly positive constants c, C such that:

Division via interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

- Let P_{1}, \ldots, P_{n+1} elements in $\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots ., X_{n}^{ \pm n}\right]$ with no common zero in $\left(\mathbb{C}^{*}\right)^{n}$ and respective Newton diagrams $\Delta_{1}, \ldots, \Delta_{n+1}$, all containing the origin as interior point ;
Think about the exponentials sums $\omega \longrightarrow P_{j}\left(e^{-i \omega_{1}}, \ldots, e^{-i \omega_{n}}\right)$!
- Assume furthermore that there exist strictly positive constants c, C such that:

$$
\|\operatorname{Im} \omega\| \geq C \Longrightarrow \sum_{k=1}^{n} \frac{\left|P_{k}\left(e^{-i \omega_{1}}, \ldots, e^{-i \omega_{n}}\right)\right|}{e^{H_{\Delta_{k}}(\operatorname{Im} \omega)}} \geq c
$$

Division via interpolation, more towards "deconvolution" : the "toy" model of Laurent polynomials

- Let P_{1}, \ldots, P_{n+1} elements in $\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm n}\right]$ with no common zero in $\left(\mathbb{C}^{*}\right)^{n}$ and respective Newton diagrams $\Delta_{1}, \ldots, \Delta_{n+1}$, all containing the origin as interior point ;
Think about the exponentials sums $\omega \longrightarrow P_{j}\left(e^{-i \omega_{1}}, \ldots, e^{-i \omega_{n}}\right)$!
- Assume furthermore that there exist strictly positive constants c, C such that:

$$
\|\operatorname{Im} \omega\| \geq C \Longrightarrow \sum_{k=1}^{n} \frac{\left|P_{k}\left(e^{-i \omega_{1}}, \ldots, e^{-i \omega_{n}}\right)\right|}{e^{H_{\Delta_{k}}(\operatorname{Im} \omega)}} \geq c
$$

- Let $P_{k}(\zeta)-P_{k}(z)=\sum_{j=1}^{n} g_{k, j}(z, \zeta)\left(\zeta_{j}-z_{j}\right), k=1, \ldots, n$, thanks (for example) to divided differences.

Division via interpolation, more towards "deconvolution" : the toy model of Laurent polynomials

Division via interpolation, more towards "deconvolution" : the toy model of Laurent polynomials

Theorem (C.A. Berenstein, A. Vidras, A.Y., 2001)

$$
1=\operatorname{Res}\left[\left.\begin{array}{cccc}
g_{1,1}(z, \zeta) & \ldots & \ldots & g_{n+1,1}(z, \zeta) \\
\vdots & \vdots & \vdots & \vdots \\
g_{1, n}(z, \zeta) & \ldots & \ldots & g_{n+1, n}(z, \zeta) \\
P_{1}(z) & \ldots & P_{n}(z) & P_{n+1}(z)
\end{array} \right\rvert\, d \zeta\right]
$$

Division via interpolation, more towards "deconvolution" : the toy model of Laurent polynomials

Theorem (C.A. Berenstein, A. Vidras, A.Y., 2001)

$$
\begin{aligned}
& 1=\operatorname{Res}\left[\left|\begin{array}{cccc}
g_{1,1}(z, \zeta) & \ldots & \ldots & g_{n+1,1}(z, \zeta) \\
\vdots & \vdots & \vdots & \vdots \\
g_{1, n}(z, \zeta) & \ldots & \ldots & g_{n+1, n}(z, \zeta) \\
P_{1}(z) & \ldots & P_{n}(z) & P_{n+1}(z)
\end{array}\right| d \zeta\right] \\
& \left.+\sum_{\underline{q} \in \mathcal{A}(\Delta) \subset \mathbb{N}^{n}} \operatorname{Res}\left[\begin{array}{ccc}
g_{1,1}(X, \zeta) & \ldots & g_{n, 1}(X, \zeta) \\
\vdots & \vdots & \vdots \\
g_{1, n}(X, \zeta) & \cdots & g_{n, n}(X, \zeta) \\
P_{1}^{q_{1}+1}(\zeta), \ldots, P_{n}^{q_{n}+1}(\zeta)
\end{array}\right] d \zeta\right] \prod_{j=k}^{n} P_{k}^{q_{k}(X)}
\end{aligned}
$$

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; the data :

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; the data :

- U a bounded open set in \mathbb{C}^{n} with piecewise smooth boundary ;

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; the data :

- U a bounded open set in \mathbb{C}^{n} with piecewise smooth boundary ;
- $f_{k, j}, k=1, \ldots, n, j=1, \ldots, m_{k}$ a collection of functions holomorphic in U, continuous on \bar{U}, such that :

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; the data :

- U a bounded open set in \mathbb{C}^{n} with piecewise smooth boundary;
- $f_{k, j}, k=1, \ldots, n, j=1, \ldots, m_{k}$ a collection of functions holomorphic in U, continuous on \bar{U}, such that :
- the functions $F_{k}:=\prod_{j=1}^{m_{k}} f_{k, j}, k=1, \ldots, n$, have no common zero on ∂U

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; the data :

- U a bounded open set in \mathbb{C}^{n} with piecewise smooth boundary ;
- $f_{k, j}, k=1, \ldots, n, j=1, \ldots, m_{k}$ a collection of functions holomorphic in U, continuous on \bar{U}, such that :
- the functions $F_{k}:=\prod_{j=1}^{m_{k}} f_{k, j}, k=1, \ldots, n$, have no common zero on ∂U
- for any $k \in\{1, \ldots, n\}$ and any distinct indices $j_{1}, j_{2} \in\left\{1, \ldots, m_{k}\right\}$, the functions $f_{k, j_{1}}, f_{k, j_{2}}, F_{1}, \ldots, \widehat{F_{k}}, \ldots, F_{n}$ have no common zero in U;

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; the data :

- U a bounded open set in \mathbb{C}^{n} with piecewise smooth boundary ;
- $f_{k, j}, k=1, \ldots, n, j=1, \ldots, m_{k}$ a collection of functions holomorphic in U, continuous on \bar{U}, such that :
- the functions $F_{k}:=\prod_{j=1}^{m_{k}} f_{k, j}, k=1, \ldots, n$, have no common zero on ∂U
- for any $k \in\{1, \ldots, n\}$ and any distinct indices $j_{1}, j_{2} \in\left\{1, \ldots, m_{k}\right\}$, the functions $f_{k, j_{1}}, f_{k, j_{2}}, F_{1}, \ldots, \widehat{F}_{k}, \ldots, F_{n}$ have no common zero in U;
- Φ an entire function in \mathbb{C}^{n} and z a point in U.

Kronecker-Jacobi division-interpolation (towards "economic" deconvolution) ; a first "candidate" formula :

Kronecker-Jacobi division-interpolation (towards

 "economic" deconvolution) ; a first "candidate" formula:$$
\begin{aligned}
F_{k}(\zeta)-F_{k}(z) & =F_{k}\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)-F_{k}\left(z_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)+\cdots \\
& =\sum_{I=1}^{n}\left(\zeta_{I}-z_{l}\right) g_{k, I}(z, \zeta)
\end{aligned}
$$

Kronecker-Jacobi division-interpolation (towards

 "economic" deconvolution) ; a first "candidate" formula:$$
\begin{aligned}
& F_{k}(\zeta)-F_{k}(z)=F_{k}\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)-F_{k}\left(z_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)+\cdots \\
&=\sum_{l=1}^{n}\left(\zeta_{1}-z_{l}\right) g_{k, l}(z, \zeta) \\
& \Delta(z, \zeta):=\operatorname{det}\left[g_{k, l}(z, \zeta)\right]_{k, l}
\end{aligned}
$$

Kronecker-Jacobi division-interpolation (towards

 "economic" deconvolution) ; a first "candidate" formula:$$
\begin{aligned}
& F_{k}(\zeta)-F_{k}(z)=F_{k}\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)-F_{k}\left(z_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)+\cdots \\
&=\sum_{l=1}^{n}\left(\zeta_{l}-z_{l}\right) g_{k, l}(z, \zeta) \\
& \Delta(z, \zeta):=\operatorname{det}\left[g_{k, l}(z, \zeta)\right]_{k, l}
\end{aligned}
$$

$$
\Phi(z) \chi u(z)=\frac{1}{(2 i \pi)^{n}} \int_{\partial U} \Phi(\zeta) K(z, \zeta)
$$

$$
+\sum_{\left\{\alpha \in U_{;} F_{1}(\alpha)=\cdots=F_{n}(\alpha)=0\right\}} \operatorname{Res}_{\alpha}\left[\begin{array}{c}
\phi(\zeta) \Delta(z, \zeta) d \zeta \\
F_{1}(\zeta), \cdots, F_{n}(\zeta)
\end{array}\right]
$$

$$
S(z, \zeta):=\sum_{l=1}^{n}\left(\overline{\zeta_{j}}-z_{j}\right) d \zeta_{j}
$$

$$
\begin{gathered}
S(z, \zeta):=\sum_{l=1}^{n}\left(\overline{\zeta_{j}}-z_{j}\right) d \zeta_{j} \\
b(z, \zeta):=\frac{\sum_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum_{k=1}^{n}\left|F_{k}(\zeta)\right|^{2}}=\lim _{\epsilon \rightarrow 0}\left(\frac{\sum_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum_{k=1}^{n}\left|F_{k}(\zeta)\right|^{2}+\epsilon}\right)
\end{gathered}
$$

$$
\begin{gathered}
S(z, \zeta):=\sum_{l=1}^{n}\left(\bar{\zeta}-z_{j}\right) d \zeta_{j} \\
b(z, \zeta):=\frac{\sum_{k=1}^{n} \frac{F_{k}(\zeta)}{}\left(F_{k}(z)\right.}{\sum_{k=1}^{n}\left|F_{k}(\zeta)\right|^{2}}=\lim _{\epsilon \rightarrow 0}\left(\frac{\sum_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum_{k=1}^{n} \mid F_{k}(\zeta \zeta)^{2}+\epsilon}\right) \\
a(z, \zeta):=\frac{\sum_{k=1}^{F_{k}(\zeta)}\left(\sum_{n=1}^{n} g_{k,(}(z, \zeta) d \zeta_{i}\right)}{\sum_{k=1}\left|F_{k}(\zeta)\right|^{2}}
\end{gathered}
$$

$$
\begin{gathered}
S(z, \zeta):=\sum_{l=1}^{n}\left(\overline{\zeta_{j}}-z_{j}\right) d \zeta_{j} \\
b(z, \zeta):=\frac{\sum_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum_{k=1}^{n}\left|F_{k}(\zeta)\right|^{2}}=\lim _{\epsilon \rightarrow 0}\left(\frac{\sum_{k=1}^{n} \overline{F_{k}(\zeta)} F_{k}(z)}{\sum_{k=1}^{n}\left|F_{k}(\zeta)\right|^{2}+\epsilon}\right) \\
a(z, \zeta):=\frac{\sum_{k=1}^{n} \overline{F_{k}(\zeta)}\left(\sum_{l=1}^{n} g_{k, l}(z, \zeta) d \zeta_{l}\right)}{\sum_{k=1}^{n}\left|F_{k}(\zeta)\right|^{2}}
\end{gathered}
$$

$$
K(z, \zeta):=\sum_{k_{0}+\kappa_{1}=n-1}\binom{n}{k_{1}}[b(z, \zeta)]^{n-\kappa_{1}} \frac{\left[S \wedge[\bar{\partial} S]^{k_{0}} \wedge[\bar{\partial} z]^{k_{1}}\right](z, \zeta)}{\|\zeta-z\|^{2\left(\kappa_{0}+1\right)}}
$$

A particular case of a more elaborate formula :

A particular case of a more elaborate formula :

$$
\begin{aligned}
& \Phi(z) \chi_{U}(z)=\frac{1}{(2 i \pi)^{n}} \int_{\partial U} \Phi(\zeta) K_{N}(\zeta, z) \\
& +\sum_{|\underline{k}| \leq N-n} \operatorname{Res} U\left[\begin{array}{c}
\Phi(\zeta) \Delta(z, \zeta) d \zeta \\
F_{1}, \cdots, F_{n}
\end{array}\right] \prod_{j=1}^{n} F_{j}^{k_{j}}(z)
\end{aligned}
$$

A particular case of a more elaborate formula :

$$
\begin{gathered}
\Phi(z) \chi u(z)=\frac{1}{(2 i \pi)^{n}} \int_{\partial U} \Phi(\zeta) K_{N}(\zeta, z) \\
\left.+\sum_{|\underline{k}| \leq N-n} \operatorname{Res} U \begin{array}{c}
\Phi(\zeta) \Delta(z, \zeta) d \zeta \\
F_{1}, \cdots, F_{n}
\end{array}\right] \prod_{j=1}^{n} F_{j}^{\kappa_{j}}(z) \\
K_{N}(z, \zeta):=\sum_{\kappa_{0}+\kappa_{1}=n-1}\binom{n}{k_{1}}[b(z, \zeta)]^{N-\kappa_{1}} \frac{\left[S \wedge[\bar{\partial} S]^{\kappa_{0}} \wedge[\bar{\partial} a]^{\kappa_{1}}\right](z, \zeta)}{\|\zeta-z\|^{2\left(\kappa_{0}+1\right)}}
\end{gathered}
$$

Introducing an additional product F_{n+1} of holomophic functions in \bar{U} such that F_{1}, \ldots, F_{n} have no common zero in the open set U

Introducing an additional product F_{n+1} of holomophic functions in \bar{U} such that F_{1}, \ldots, F_{n} have no common zero in the open set U

$$
\operatorname{Res} u\left[\begin{array}{c}
\Phi(\zeta) \Delta(z, \zeta) d \zeta \\
F_{1}(\zeta), \cdots, F_{n}(\zeta)
\end{array}\right]=
$$

Introducing an additional product F_{n+1} of holomophic functions in \bar{U} such that F_{1}, \ldots, F_{n} have no common zero in the open set U

$$
\operatorname{Res} u\left[\begin{array}{c}
\Phi(\zeta) \Delta(z, \zeta) d \zeta \\
F_{1}(\zeta), \cdots, F_{n}(\zeta)
\end{array}\right]=\operatorname{Res} u\left[\begin{array}{c}
\Phi(\zeta) \\
F_{n+1}(\zeta) \\
F_{n+1}(\zeta) \Delta(z, \zeta) d \zeta \\
F_{1}(\zeta), \cdots, F_{n}(\zeta)
\end{array}\right]
$$

Introducing an additional product F_{n+1} of holomophic functions in \bar{U} such that F_{1}, \ldots, F_{n} have no common zero in the open set U

$$
\begin{aligned}
& \operatorname{Res} u\left[\begin{array}{c}
\Phi(\zeta) \Delta(z, \zeta) d \zeta \\
F_{1}(\zeta), \cdots, F_{n}(\zeta)
\end{array}\right]=\operatorname{Res} u\left[\begin{array}{c}
\Phi(\zeta) \frac{F_{n+1}(\zeta)}{F_{n+1}(\zeta)} \Delta(z, \zeta) d \zeta \\
F_{1}(\zeta), \cdots, F_{n}(\zeta)
\end{array}\right] \\
& =\operatorname{Res} u\left[\begin{array}{cccc}
\Phi(\zeta) \\
F_{n+1}(\zeta) & \left|\begin{array}{cccc}
g_{1,1}(z, \zeta) & \ldots & \cdots & g_{n+1,1}(z, \zeta) \\
\vdots & \vdots & \vdots & \vdots \\
g_{1, n}(z, \zeta) & \cdots & \cdots & g_{n+1, n}(z, \zeta) \\
F_{1}(z) & \cdots & \cdots & F_{n+1}(z)
\end{array}\right| d \zeta \\
F_{1}(\zeta), \cdots, F_{n}(\zeta)
\end{array}\right]
\end{aligned}
$$

Finally ...

Finally ...

$$
\Phi(z) \chi_{U}(z)=\operatorname{Res} \cup\left[\frac{\Phi(\zeta)}{F_{n+1}(\zeta)}\left|\begin{array}{cccc}
g_{1,1}(z, \zeta) & \cdots & \cdots & g_{n+1,1}(z, \zeta) \\
\vdots & \vdots & \vdots & \vdots \\
g_{1, n}(z, \zeta) & \cdots & \cdots & g_{n+1, n}(z, \zeta) \\
F_{1}(z) & \cdots & \cdots & F_{n+1}(z)
\end{array}\right| d \zeta\right]
$$

Finally ...

$$
\left.\begin{array}{l}
\Phi(z) \chi u(z)=\operatorname{Res} U\left[\left.\begin{array}{c}
\Phi(\zeta) \\
F_{n+1}(\zeta)
\end{array} \begin{array}{cccc}
g_{1,1}(z, \zeta) & \ldots & \cdots & g_{n+1,1}(z, \zeta) \\
\vdots & \vdots & \vdots & \vdots \\
g_{1, n}(z, \zeta) & \ldots & \cdots & g_{n+1, n}(z, \zeta) \\
F_{1}(z) & \cdots & \cdots & F_{n+1}(z)
\end{array} \right\rvert\, d \zeta\right] \\
F_{1}(\zeta), \cdots, F_{n}(\zeta)
\end{array}\right]
$$

Finally ...

$$
\left.\begin{array}{l}
\Phi(z) \chi_{U}(z)=\operatorname{Res} U\left[\frac{\Phi(\zeta)}{F_{n+1}(\zeta)}\left|\begin{array}{cccc}
g_{1,1}(z, \zeta) & \ldots & \cdots & g_{n+1,1}(z, \zeta) \\
\vdots & \vdots & \vdots & \vdots \\
g_{1, n}(z, \zeta) & \cdots & \cdots & g_{n+1, n}(z, \zeta) \\
F_{1}(z) & \cdots & \cdots & F_{n+1}(z)
\end{array}\right| d \zeta\right] \\
F_{1}(\zeta), \cdots, F_{n}(\zeta)
\end{array}\right]
$$

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

- Let $\widehat{h_{1}}, \ldots, \widehat{h_{M}}(M>n)$ be the Paley-Wiener transforms of M "convolvers" (there are no common zeroes in \mathbb{C}^{n});

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

- Let $\widehat{h_{1}}, \ldots, \widehat{h_{M}}(M>n)$ be the Paley-Wiener transforms of M "convolvers" (there are no common zeroes in \mathbb{C}^{n});
- let (having in mind Wiener filtering)

$$
B(\omega, \zeta):=\frac{\sum_{k=1}^{M} \overline{\widehat{h_{k}}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h}_{k}(\zeta)\right|^{2}}
$$

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

- Let $\widehat{h_{1}}, \ldots, \widehat{h_{M}}(M>n)$ be the Paley-Wiener transforms of M "convolvers" (there are no common zeroes in \mathbb{C}^{n});
- let (having in mind Wiener filtering)

$$
B(\omega, \zeta):=\frac{\sum_{k=1}^{M} \overline{\widehat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h}_{k}(\zeta)\right|^{2}}=\lim _{\epsilon \rightarrow 0}\left(\frac{\sum_{k=1}^{M} \overline{\widehat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h}_{k}(\zeta)\right|^{2}+\epsilon}\right)
$$

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

- Let $\widehat{h_{1}}, \ldots, \widehat{h_{M}}(M>n)$ be the Paley-Wiener transforms of M "convolvers" (there are no common zeroes in \mathbb{C}^{n});
- let (having in mind Wiener filtering)

$$
B(\omega, \zeta):=\frac{\sum_{k=1}^{M} \overline{\widehat{h_{k}}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h_{k}}(\zeta)\right|^{2}}=\lim _{\epsilon \rightarrow 0}\left(\frac{\sum_{k=1}^{M} \overline{\widehat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h_{k}}(\zeta)\right|^{2}+\epsilon}\right)
$$

- $\widehat{h_{k}}(\zeta)-\widehat{h_{k}}(\omega)=\sum_{j=1}^{n} g_{j, k}(\omega, \zeta)\left(\zeta_{j}-\omega_{j}\right), k=1, \ldots, M$;

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean n dimensional real setting) ?

- Let $\widehat{h_{1}}, \ldots, \widehat{h_{M}}(M>n)$ be the Paley-Wiener transforms of M"convolvers" (there are no common zeroes in \mathbb{C}^{n});
- let (having in mind Wiener filtering)

$$
B(\omega, \zeta):=\frac{\sum_{k=1}^{M} \overline{\widehat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h}_{k}(\zeta)\right|^{2}}=\lim _{\epsilon \rightarrow 0}\left(\frac{\sum_{k=1}^{M} \overline{\widehat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h}_{k}(\zeta)\right|^{2}+\epsilon}\right)
$$

- $\widehat{h_{k}}(\zeta)-\widehat{h_{k}}(\omega)=\sum_{j=1}^{n} g_{j, k}(\omega, \zeta)\left(\zeta_{j}-\omega_{j}\right), k=1, \ldots, M$;

Find the $g_{j, k}$ is done either through divided differences or Taylor integral formula, so that convex enveloppes of supports are preserved both in ζ and z after inverse Paley-Wiener transform and the antecedents of the $g_{j, k}$ via Paley-Wiener are explicit in terms of the convolvers h_{1}, \ldots, h_{n}).

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean setting) ?

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean setting) ?

Let U a bounded domain in \mathbb{C}^{n} with piecewise smooth boundary, such that $\widehat{h_{1}}, \ldots, \widehat{h_{n}}$ have no common zero on ∂U. Let T be any compacty supported distribution. Then, for any $\omega \in U \backslash \partial U$,

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean setting) ?

Let U a bounded domain in \mathbb{C}^{n} with piecewise smooth boundary, such that $\widehat{h_{1}}, \ldots, \widehat{h_{n}}$ have no common zero on ∂U. Let T be any compacty supported distribution. Then, for any $\omega \in U \backslash \partial U$,

$$
\left.\begin{array}{l}
\widehat{T}(\omega) \chi_{u}(\omega) \\
\equiv \sum_{j=n+1}^{M} \operatorname{Res} u\left[\frac{\widehat{h_{j}}(\zeta) \widehat{T}(\zeta)}{\|h(\zeta)\|^{2}}\left|\begin{array}{cccc}
g_{1,1}(\omega, \zeta) & \ldots & \ldots & g_{j, 1}(\omega, \zeta) \\
\vdots & \vdots & \vdots & \vdots \\
g_{1, n}(\omega, \zeta) & \ldots & \ldots & g_{j, n}(\omega, \zeta) \\
\widehat{h}_{1}(\omega) & \ldots & \widehat{h_{n}}(\omega) & \widehat{h}_{j}(\omega)
\end{array}\right| d \zeta\right] \\
\widehat{h_{1}(\zeta), \ldots, \widehat{h}_{n}(\zeta)}
\end{array}\right]
$$

What should be an ideal ingredient for local inversion via deconvolution (in the euclidean setting) ?

Let U a bounded domain in \mathbb{C}^{n} with piecewise smooth boundary, such that $\widehat{h_{1}}, \ldots, \widehat{h_{n}}$ have no common zero on ∂U. Let T be any compacty supported distribution. Then, for any $\omega \in U \backslash \partial U$,

$$
\begin{aligned}
& \widehat{T}(\omega) \chi_{u}(\omega) \\
& \equiv \sum_{j=n+1}^{M} \operatorname{Res} u\left[\frac{\widehat{h_{j}}(\zeta) \widehat{T}(\zeta)}{\|h(\zeta)\|^{2}} \left\lvert\, \begin{array}{cccc}
g_{1,1}(\omega, \zeta) & \ldots & \ldots & g_{j, 1}(\omega, \zeta) \\
\vdots & \vdots & \vdots & \vdots \\
g_{1, n}(\omega, \zeta) & \ldots & \ldots & g_{j, n}(\omega, \zeta) \\
\left.\left.\widehat{h_{1}(\omega)} \begin{array}{|c}
\widehat{h_{n}}(\omega) \\
\widehat{h}_{j}(\omega), \ldots, \widehat{h}_{n}(\zeta)
\end{array} \right\rvert\, d \zeta\right]
\end{array}\right.\right]
\end{aligned}
$$

(modulo a corrective boundary term expected to vanish at infinity with I when $U=U_{l}$ belongs to an exhaustive sequence $\left(U_{l}\right)_{l \geq 1}$ of $\left.\mathbb{C}^{n}\right)$.

About the "corrective" term

About the "corrective" term

$$
B(\omega, \zeta):=\frac{\sum_{k=1}^{M} \widehat{\hat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h_{k}}(\zeta)\right|^{2}}
$$

About the "corrective" term

$$
B(\omega, \zeta):=\frac{\sum_{k=1}^{M} \widehat{\hat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h}_{k}(\zeta)\right|^{2}}
$$

$$
A(\omega, \zeta):=\frac{\sum_{k=1}^{M} \overline{\widehat{h_{k}}(\zeta)}\left(\sum_{j=1}^{n} g_{j}(\omega, \zeta) d \zeta_{j}\right)}{\sum_{k=1}^{M}\left|\widehat{h_{k}}(\zeta)\right|^{2}}
$$

About the "corrective" term

$$
\begin{aligned}
B(\omega, \zeta) & :=\frac{\sum_{k=1}^{M} \overline{\widehat{h_{k}}(\zeta)} \widehat{h_{k}}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h_{k}}(\zeta)\right|^{2}} \\
b(\omega, \zeta) & :=\frac{\sum_{k=1}^{n} \overline{\widehat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{n}\left|\widehat{h}_{k}(\zeta)\right|^{2}}
\end{aligned}
$$

$$
A(\omega, \zeta):=\frac{\sum_{k=1}^{M} \overline{\widehat{h_{k}}(\zeta)}\left(\sum_{j=1}^{n} g_{j}(\omega, \zeta) d \zeta_{j}\right)}{\sum_{k=1}^{M}\left|\widehat{h}_{k}(\zeta)\right|^{2}}
$$

About the "corrective" term

$$
\begin{aligned}
B(\omega, \zeta):=\frac{\sum_{k=1}^{M} \overline{\hat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h_{k}}(\zeta)\right|^{2}} \quad A(\omega, \zeta):=\frac{\sum_{k=1}^{M} \overline{\widehat{h_{k}}(\zeta)}\left(\sum_{j=1}^{n} g_{j}(\omega, \zeta) d \zeta_{j}\right)}{\sum_{k=1}^{M}\left|\widehat{h_{k}}(\zeta)\right|^{2}} \quad a(\omega, \zeta):=\frac{\left.\sum_{k=1}^{n} \overline{\hat{h}_{k}(\zeta)}\right|^{2}}{b(\omega, \zeta):=\frac{\sum_{k=1}^{n} \widehat{h_{k}}(\zeta)}{\sum_{j=1}^{n} g_{j}(\omega, \zeta) d \zeta_{j}}} \sum_{j=1}^{n}\left|\widehat{h_{k}}(\zeta)\right|^{2}
\end{aligned}
$$

About the "corrective" term

$$
\begin{aligned}
B(\omega, \zeta):=\frac{\sum_{k=1}^{M} \overline{\widehat{h}_{k}(\zeta)} \widehat{h}_{k}(\omega)}{\sum_{k=1}^{M}\left|\widehat{h_{k}}(\zeta)\right|^{2}} & A(\omega, \zeta):=\frac{\sum_{k=1}^{M} \overline{\widehat{h_{k}}(\zeta)}\left(\sum_{j=1}^{n} g_{j}(\omega, \zeta) d \zeta_{j}\right)}{\sum_{k=1}^{M}\left|\widehat{h_{k}}(\zeta)\right|^{2}} \\
b(\omega, \zeta):=\frac{\sum_{k=1}^{n} \overline{\widehat{h}_{k}(\zeta)} \widehat{h_{k}}(\omega)}{\sum_{k=1}^{n}\left|\widehat{h_{k}}(\zeta)\right|^{2}} & a(\omega, \zeta):=\frac{\sum_{k=1}^{n} \widehat{\widehat{h}_{k}(\zeta)} \sum_{j=1}^{n} g_{j}(\omega, \zeta) d \zeta_{j}}{\sum_{k=1}^{n}\left|\widehat{h_{k}}(\zeta)\right|^{2}} \\
S(\omega, \zeta) & =\sum_{j=1}^{n}\left(\overline{\zeta_{j}}-\overline{\omega_{j}}\right) d \zeta_{j}
\end{aligned}
$$

About the "corrective" term

About the "corrective" term

$$
\begin{aligned}
& \frac{1}{(2 i \pi)^{n}}\left(\int_{\partial U} \widehat{T} \sum_{p+q=n-1}\binom{n}{n-q} \frac{\left[b^{n-q} B S \wedge(\bar{\partial} S)^{p} \wedge(\bar{\partial} a)^{p}\right](\omega, \zeta)}{\|\zeta-\omega\|^{2(p+1)}}\right. \\
& +\int_{\partial U} \widehat{T} \sum_{p+q=n-2}\binom{n}{n-q} \frac{\left[b^{n-q} S \wedge(\bar{\partial} S)^{p} \wedge(\bar{\partial} a)^{p} \wedge \bar{\partial} A\right](\omega, \zeta)}{\|\zeta-\omega\|^{2(p+1)}} \\
& \left.\quad+n \int_{\partial U} \hat{T}\left[b(\bar{\partial} a)^{n-1} \wedge A\right](\omega, \zeta)\right)
\end{aligned}
$$

Candidates for an "economic" deconvolution process (classical setting)

Candidates for an "economic" deconvolution process (classical setting)

A collection of $n+1$ "convolvers" such one has :

$$
\sum_{k=1}^{n} \frac{\left|\widehat{h_{k}}(\omega)\right|}{e^{H \delta_{k}(\operatorname{Im}(\omega))}} \geq c \frac{\operatorname{dist}\left(\omega,\left\{\widehat{h_{1}}=\cdots=\widehat{h_{n}}=0\right\}\right)}{(1+\|\omega\|)^{N}}
$$

for some $N \geq 1$, for some convex compact sets δ_{k} such that fo each $k=1, \ldots, n$,

$$
\delta_{k} \subset \operatorname{conv}\left(\operatorname{Supp} h_{k}\right)
$$

(joint Lojasievicz ineqalities) ;

Candidates for an "economic" deconvolution process (classical setting)

A collection of $n+1$ "convolvers" such one has :

$$
\sum_{k=1}^{n} \frac{\left|\widehat{h_{k}}(\omega)\right|}{e^{H \delta_{k}(\operatorname{Im}(\omega))}} \geq c \frac{\operatorname{dist}\left(\omega,\left\{\widehat{h_{1}}=\cdots=\widehat{h_{n}}=0\right\}\right)}{(1+\|\omega\|)^{N}}
$$

for some $N \geq 1$, for some convex compact sets δ_{k} such that fo each $k=1, \ldots, n$,

$$
\delta_{k} \subset \operatorname{conv}\left(\operatorname{Supp} h_{k}\right)
$$

(joint Lojasievicz ineqalities) ;
and :

$$
\left\{\omega \in \mathbb{C}^{n} ; \widehat{h_{1}}(\omega)=\cdots=\widehat{h_{n+1}}(\omega)=0\right\}=\emptyset .
$$

About Pompeïu type problems
Pompeïu transfoms ; examples and classical results
Harmonic sphericals and transmutation
Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem
A "tensorial" approach : the $(n+1)$ hypercube problem
Deconvolution procedures in the n-dimensional context Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

The intrinsic hardness of spectral synthesis problems in higher dimension

Conclusion

About asymptotics for exponential polynomials, spherical harmonics

About asymptotics for exponential polynomials, spherical harmonics

- Polya theory revisited ([Differential-Difference equations, Belmann-Cooke, 1963])

About asymptotics for exponential polynomials, spherical harmonics

- Polya theory revisited ([Differential-Difference equations, Belmann-Cooke, 1963])
- Analytic Lojasiewicz inequalities (in particular for exponential polynomials, Bessel functions, etc. ([C.A. Berenstein, B.A. Taylor, 1979-1980], [C.A. Berenstein, A.Y., 1988])

About asymptotics for exponential polynomials, spherical harmonics

- Polya theory revisited ([Differential-Difference equations, Belmann-Cooke, 1963])
- Analytic Lojasiewicz inequalities (in particular for exponential polynomials, Bessel functions, etc. ([C.A. Berenstein, B.A. Taylor, 1979-1980], [C.A. Berenstein, A.Y., 1988])
- Ideals generated by exponential polynomials ([D. Gurevich, 1974-1975], [C.A. Berenstein, A.Y], 1986-1995], [B. Kazarnovskii, 1980-1981], [L.I. Ronkin])

About asymptotics for exponential polynomials, spherical harmonics

- Polya theory revisited ([Differential-Difference equations, Belmann-Cooke, 1963])
- Analytic Lojasiewicz inequalities (in particular for exponential polynomials, Bessel functions, etc. ([C.A. Berenstein, B.A. Taylor, 1979-1980], [C.A. Berenstein, A.Y., 1988])
- Ideals generated by exponential polynomials ([D. Gurevich, 1974-1975], [C.A. Berenstein, A.Y], 1986-1995], [B. Kazarnovskii, 1980-1981], [L.I. Ronkin])
- Asymptotics for elementary spherical functions ([J.J.Duistermaat, 1980])

Difference-differential operators ; digression from an example by J. Delsarte (1960)

Difference-differential operators ; digression from an example by J. Delsarte (1960)

$$
F_{j}\left(\zeta_{1}, \ldots, \zeta_{n}\right)=P_{j}\left(\zeta_{1}, \ldots, \zeta_{n}, e^{i\left\langle\gamma_{1}, \zeta\right\rangle}, \ldots, e^{i\left\langle\gamma_{N}, \zeta\right\rangle}\right), j=1, \ldots, M
$$

Difference-differential operators ; digression from an example by J. Delsarte (1960)

$$
F_{j}\left(\zeta_{1}, \ldots, \zeta_{n}\right)=P_{j}\left(\zeta_{1}, \ldots, \zeta_{n}, e^{i\left\langle\gamma_{1}, \zeta\right\rangle}, \ldots, e^{i\left\langle\gamma_{N}, \zeta\right\rangle}\right), j=1, \ldots, M
$$

$\left(\gamma_{1}, \ldots, \gamma_{N} \in \mathbb{R}^{n}\right.$, being jointly \mathbb{Q} - linearly independent)

Difference-differential operators ; digression from an example by J. Delsarte (1960)

$$
\begin{aligned}
& F_{j}\left(\zeta_{1}, \ldots, \zeta_{n}\right)=P_{j}\left(\zeta_{1}, \ldots, \zeta_{n}, e^{i\left\langle\gamma_{1}, \zeta\right\rangle}, \ldots, e^{i\left\langle\gamma_{N}, \zeta\right\rangle}\right), j=1, \ldots, M \\
& \left(\gamma_{1}, \ldots, \gamma_{N} \in \mathbb{R}^{n}, \text { being jointly } \mathbb{Q} \text { - linearly independent }\right)
\end{aligned}
$$

A useful (but sometimes hard to check!) criterion to ensure the ideal $\left(F_{1}, \ldots, F_{M}\right)$ is closed in the Paley-Wiener algebra ([C.A. Berenstein, A. Yger, 1986]) :

Difference-differential operators ; digression from an

 example by J. Delsarte (1960)$$
F_{j}\left(\zeta_{1}, \ldots, \zeta_{n}\right)=P_{j}\left(\zeta_{1}, \ldots, \zeta_{n}, e^{i\left\langle\gamma_{1}, \zeta\right\rangle}, \ldots, e^{i\left\langle\gamma_{\gamma}, \zeta\right\rangle}\right), j=1, \ldots, M
$$

($\gamma_{1}, \ldots, \gamma_{N} \in \mathbb{R}^{n}$, being jointly \mathbb{Q} - linearly independent)
A useful (but sometimes hard to check!) criterion to ensure the ideal $\left(F_{1}, \ldots, F_{M}\right)$ is closed in the Paley-Wiener algebra ([C.A. Berenstein, A. Yger, 1986]) :
"For any $\left(\rho_{1}, \ldots, \rho_{N}\right)$ sufficiently close to $(\underline{1})$ in $\left(S^{1}\right)^{N}$, the set

$$
\left\{\zeta \in \mathbb{C}^{n} ; P_{j}\left(\zeta_{1}, \ldots, \zeta_{n}, \rho_{1} e^{i\left\langle\gamma_{1}, \zeta\right\rangle}, \ldots, \rho_{N} e^{i\left\langle\gamma_{N}, \zeta\right\rangle}\right), j=1, \ldots, M\right\}
$$

remains discrete."

Candidates for an "economic" deconvolution process (again)

Candidates for an "economic" deconvolution process (again)

A collection of $n+1$ "convolvers" such one has :

$$
\sum_{j=1}^{n} \frac{\left|\widehat{h}_{j}(\omega)\right|}{e^{H_{\delta_{j}}(\operatorname{Im}(\omega))}} \geq c \frac{\operatorname{dist}\left(\omega,\left\{\widehat{h}_{1}=\cdots=\widehat{h}_{n}=0\right\}\right)}{(1+\|\omega\|)^{N}}
$$

for some $N \geq 1$, for some convex compact sets δ_{k} such that fo each $k=1, \ldots, n$,

$$
\delta_{k} \subset \operatorname{conv}\left(\operatorname{Supp} h_{k}\right)
$$

(joint Lojasievicz ineqalities) ;

Candidates for an "economic" deconvolution process (again)

A collection of $n+1$ "convolvers" such one has :

$$
\sum_{j=1}^{n} \frac{\left|\widehat{h}_{j}(\omega)\right|}{e^{H_{\delta_{j}}(\operatorname{Im}(\omega))}} \geq c \frac{\operatorname{dist}\left(\omega,\left\{\widehat{h}_{1}=\cdots=\widehat{h}_{n}=0\right\}\right)}{(1+\|\omega\|)^{N}}
$$

for some $N \geq 1$, for some convex compact sets δ_{k} such that fo each $k=1, \ldots, n$,

$$
\delta_{k} \subset \operatorname{conv}\left(\operatorname{Supp} h_{k}\right)
$$

(joint Lojasievicz ineqalities) ;
and :

$$
\left\{\omega \in \mathbb{C}^{n} ; \widehat{h_{1}}(\omega)=\cdots=\widehat{h_{n+1}}(\omega)=0\right\}=\emptyset .
$$

Turning around the division problem (for example for exponential-polynomials)

Turning around the division problem (for example for exponential-polynomials)

$$
F_{1}, \ldots, F_{M} \in H\left(\mathbb{C}^{n}\right),\left\{F_{1}=\cdots=F_{M}=0\right\}=\emptyset
$$

Turning around the division problem (for example for exponential-polynomials)

$$
\begin{gathered}
F_{1}, \ldots, F_{M} \in H\left(\mathbb{C}^{n}\right),\left\{F_{1}=\cdots=F_{M}=0\right\}=\emptyset \\
\sum_{k=1}^{M}\left|F_{k}\right|^{2} \geq ?
\end{gathered}
$$

Turning around the division problem (for example for exponential-polynomials)

$$
\begin{gathered}
F_{1}, \ldots, F_{M} \in H\left(\mathbb{C}^{n}\right),\left\{F_{1}=\cdots=F_{M}=0\right\}=\emptyset \\
\sum_{k=1}^{M}\left|F_{k}\right|^{2} \geq ?
\end{gathered}
$$

Trick : Control the "growth" of the distribution $\left\|\left\|\|^{-2}\right.\right.$ via "fictive" integrations by parts.

$$
\mathcal{Q}_{j}\left(\underline{\lambda}, X, e^{\langle\gamma, X\rangle}\right)\left[F_{j} \prod_{k=1}^{M} F_{k}^{\lambda_{k}}\right]=b(\underline{\lambda},[]) \prod_{k=1}^{M} F_{k}^{\lambda_{k}}, k=1, \ldots, M
$$

(Bernstein-Sato type relations)

Some results (and the intrusion or arithmetics)

Two cases could be studied that way ([C.A. Berenstein, A.Y., 1995]) :

$$
\begin{aligned}
& F_{j}=P_{j}\left(\zeta_{1}, \ldots, \zeta_{n}, e^{i \zeta_{1}}\right), j=1, \ldots, M,, P_{j} \in \mathbb{C}\left[X_{1}, \ldots, X_{n+1}\right] \\
& F_{j}=P_{j}\left(\zeta_{1}, \ldots, \zeta_{n}, e^{i \zeta_{1}}, e^{i \omega \zeta_{1}}\right), j=1, \ldots, M, P_{j} \in \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right], \omega \in \overline{\mathbb{Q}} .
\end{aligned}
$$

An ingredient : the formal independence between exponential and polynomials :

An ingredient: the formal independence between exponential and polynomials :

Transcendence degree $\mathbb{C}\left[\varphi_{1}, \ldots, \varphi_{n}, e^{\varphi_{1}}, \ldots, e^{\varphi_{n}}\right] \geq n$.
($\varphi_{1}, \ldots, \varphi_{n}$ functions of $k \geq 1$ parameters)

An ingredient: the formal independence between exponential and polynomials :

Transcendence degree $\mathbb{C}\left[\varphi_{1}, \ldots, \varphi_{n}, e^{\varphi_{1}}, \ldots, e^{\varphi_{n}}\right] \geq n$.
($\varphi_{1}, \ldots, \varphi_{n}$ functions of $k \geq 1$ parameters)
As an example, related to J. Ritt's theorem : if an irreducible polynomial divides (as an entire function)

$$
\zeta \longmapsto \sum_{j} A_{j}(\omega) e^{i\left\langle\gamma_{j}, \omega\right\rangle},
$$

either it divides all A_{j}, either it is an affine polynomial

$$
P(\omega)=\left\langle\gamma_{j}-\gamma_{I}, \omega\right\rangle-\text { Cst. }
$$

Arithmetic constraints imply more rigidity.

About Pompeïu type problems

Pompeïu transfoms ; examples and classical results
Harmonic sphericals and transmutation
Complex analytic tools to be applied in the Paley-Wiener algebra Results respect to the two disks problem A "tensorial" approach: the $(n+1)$ hypercube problem

Deconvolution procedures in the n-dimensional context Algebraic models for "division-interpolation" following Lagrange Transposing such ideas to the analytic context Some natural candidates for deconvolution formulas

The intrinsic hardness of spectral synthesis problems in higher dimension

Conclusion

Encouraging news from Tunisia and questions after the conference

Encouraging news from Tunisia and questions after the conference

- the recent work of [A. El Garna, B. Selmi] about the injectivity of the two radii problem respect to the convolution related to the Dunkle operator D^{α};

Encouraging news from Tunisia and questions after the conference

- the recent work of [A. El Garna, B. Selmi] about the injectivity of the two radii problem respect to the convolution related to the Dunkle operator D^{α};
- the recent work of [B. Selmi, M. Nessibi] about the injectivity of the same problem respect to the convolution related to the Chebli-Trimèche hypergroup ;

Encouraging news from Tunisia and questions after the conference

- the recent work of [A. El Garna, B. Selmi] about the injectivity of the two radii problem respect to the convolution related to the Dunkle operator D^{α};
- the recent work of [B. Selmi, M. Nessibi] about the injectivity of the same problem respect to the convolution related to the Chebli-Trimèche hypergroup ;
- A question after listening to the lectures ; is there any hope to state some theorem of the Delsarte type (probably with $n+1$ radii) to caracterize the harmonicity respect to the Dunkl Laplacian ?

Encouraging news from Tunisia and questions after the conference

- the recent work of [A. El Garna, B. Selmi] about the injectivity of the two radii problem respect to the convolution related to the Dunkle operator D^{α};
- the recent work of [B. Selmi, M. Nessibi] about the injectivity of the same problem respect to the convolution related to the Chebli-Trimèche hypergroup ;
- A question after listening to the lectures ; is there any hope to state some theorem of the Delsarte type (probably with $n+1$ radii) to caracterize the harmonicity respect to the Dunkl Laplacian ?
- Can the machinery involved in toric geometry or in studying by indirect approaches problems where exponential polynomials (the "classical" exponential) are involved be of any help ?

